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Abstract

We present two models of sparse dynamic networks that display transitivity - the tendency
for vertices sharing a common neighbour to be neighbours of one another. Our first network
is a continuous time Markov chain G = {Gt = (V,Et), t ≥ 0} whose states are graphs with
the common vertex set V = {1, . . . , n}. The transitions are defined as follows. Given t, the
vertex pairs {i, j} ⊂ V are assigned independent exponential waiting times Aij . At time
t+minij Aij the pair {i0, j0} with Ai0j0 = minij Aij toggles its adjacency status. To mimic
clustering patterns of sparse real networks we set intensities aij of exponential times Aij to
be negatively correlated with the degrees of the common neighbours of vertices i and j in Gt.
Another dynamic network is based on a latent Markov chain H = {Ht = (V ∪W,Et), t ≥ 0}
whose states are bipartite graphs with the bipartition V ∪W , where W = {1, . . . ,m} is an
auxiliary set of attributes/affiliations. Our second network G′ = {G′

t = (E′
t, V ), t ≥ 0} is the

affiliation network defined by H: vertices i1, i2 ∈ V are adjacent in G′
t whenever i1 and i2

have a common neighbour in Ht. We analyze geometric properties of both dynamic networks
at stationarity and show that networks possess high clustering. They admit tunable degree
distribution and clustering coefficients.

1 Introduction

Many real networks, especially those depicting human interaction, like social networks of
friendships, collaboration networks, citation networks and other show clustering, the propen-
sity of nodes to cluster together by forming relatively small groups with a high density of ties
within a group. Clustering is closely related to network transitivity, the tendency for two
nodes sharing a common neighbour to be neighbors of one another thus forming a triangle of
connections. Locally, in a vicinity of a node, this tendency can be quantified by the proba-
bility that two randomly selected neighbours of the node are adjacent. The network average
of this probability, called the (average) local clustering coefficient, is used to quantify the
network transitivity. Another popular measure of network transitivity, the global clustering
coefficient, is the probability that two randomly selected neighbours of a randomly selected
node are adjacent. In many social networks both clustering coefficients are on the order of
tens of persent while the edge density, the probability that two randomly selected nodes are
adjacent, is of much smaller order. Often the edge density scales as n−1, where n is the
number of nodes in the network. We call networks with such edge densities sparse.

Mathematical modelling of sparse networks displaying clustering/transitivity has at-
tracted considerable attention in the literature, see e.g., [14] and references therein. We
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briefly review several approaches to modeling of clustered networks. In order to enhance the
number of triangles in an evolving locally tree-like network Holme and Kim [15] suggested
inserting additional edges that close desired fraction of open triangles (paths of lenght two).
Newman [20] generalised the configuration random graph model by prescribing network nodes
numbers of triangles they participate in. In this way a predefined number of triangles can be
introduced into configuration random graph. Bollobás et al. [6] built a clustered network by
taking a union of randomly located small dense subgraphs of variable sizes. Guillaume and
Latapy [11] noted an underlying bipartite structure present in many social networks, where
nodes (actors) sharing a common hobby or affiliation are more likely to become friends,
and where each hobby/affiliation defines a tightly connected cluster of actors related to it.
They suggested modelling a clustered network by first linking actors to affiliations and then
connecting actors that share common affiliations, see also [2], [13]. We call such networks
affiliation networks.

The present paper is devoted to the modelling of sparse and clustered dynamic networks
using Markov chains. By dynamic network we mean a collection of random graphs {Gt =
(V,Et), t ≥ 0} sharing the same vertex set V = {1, . . . , n} and having random edge sets
Et, t ≥ 0. We present two stationary random processes {Gt, t ≥ 0} with tunable degree
distribution and tunable non-vanishing clustering coefficients. Our study is build upon earlier
work on dynamic network Markov chains [10], [24], [26]. We mention that network Markov
chain of [26] is composed of

(
n
2

)
independent Markov chains defining the adjacency status

of each vertex pair {i, j} ⊂ V individually (we refer to Section 2 for details). The network
admits tunable edge density and degree distribution, but since the edges are inserted/deleted
independently of each other it does not show clustering. Grindrod et al [10] and Užupytė and
Witt [24] introduced transitivity into the network Markov chain by relating the birth/death
rate of an edge to the number of triangles it participates in (cf. [15]). More preciselly, they
set the birth (death) rate of an edge i ∼ j to be an affine function of the number of the
common neighbours of vertices i and j. Here i ∼ j means that i and j are adjacent. A
drawback of the models of [10], [24] is that for large n they have a little control over the edge
density and clustering strength.

In the present paper we suggest a remedy to this drawback. Inspired by clustering
patterns observed in real networks, where the number of closed triangles incident to a vertex
negatively correlates with the degree of the vertex ([7], [21], [22], [25]) we set the birth rate
of an edge i ∼ j to be negatively correlated with the degrees of the common neighbours of
i and j. We show below that such a modification leads to a stationary dynamic network
model admiting tunable edge density and clustering coefficients.

Another dynamic clustered network considered in this paper is a stationary affiliation
network built upon an underlying bipartite graph valued Markov chain with independent
edges. Now the clustering property is caused by the bipartite structure as noted in [11].
We analyse the degree sequence and global clustering coefficient at stationarity using the
tools developed for random intersection graphs [2]. We note that earlier work on dynamic
affiliation network models ([3], [4], [12]) addresses the case where the network size n = n(t)
increases with time. Clearly, such networks do not admit stationary distributions.

Finally, we mention the recent work by Milewska et al. [19], where a sparse and clus-
tered dynamic network is constructed by taking unions of small dense subgraphs that are
inserted/deleted at random times (cf. [6]).

The rest of the paper is organized as follows. In section 2 we formally define the network
Markov chain and analyze geometric properties of the network analytically and by numer-
ical simulations. In section 3 we define stationary affiliation network and show the degree
distribution and global clustering coefficient. Proofs of the results of section 3 are given in
Appendix.
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2 Network Markov chain

Let G = {Gt = (V,Et), t ≥ 0} be a continuous time Markov chain, whose states are graphs
on the vertex set V and transitions are defined as follows. Given Gt (the state occupied at
time t), the update takes place at time t′ := t+minij Aij , where Aij = Aij(Gt), {i, j} ∈ V
are independent exponential waiting times with intensities aij = aij(Gt) defined below. The
pair {i0, j0} with Ai0j0 = minij Aij changes its adjacency status: the edge i0 ∼ j0 is inserted
if it is not present at time t; the edge i0 ∼ j0 is removed if it is present at time t. Thus, at
time t′ the Markov chain jumps to the state Gt′ = (V,Et′), where the edge sets Et and Et′

differ in the single edge i0 ∼ j0.
Let us define the intensities aij for {i, j} ⊂ V . Let α, β, λ, µ ≥ 0 and let λi, µi, 1 ≤ i ≤ n,

be positive numbers. Given graph G = (V,E) we assign clustering weights νij(G,α) and
νij(G, β) to each vertex pair {i, j} ⊂ V , where

νij(G, s) =
∑

v∈Nij

(dv(G))−s, s ≥ 0. (1)

For s = 0 we have νij(G, 0) = |Nij |. Here Nij = Nij(G) stands for the set of common
neighbours of vertices i and j in G; dv(G) denotes the degree of vertex v in G. Furthermore,
each vertex pair {i, j} is assigned intensity

aij(G) =

{
λiλj + λνij(G,α) for {i, j} ̸∈ E,

(µiµj − µνij(G, β))+ for {i, j} ∈ E.
(2)

Here x+ stands for max{x, 0}. A standard argument shows that the chain G has unique
stationary distribution. Chain G starting with random graph G0 having such a distribution
is called stationary network in what follows.

For λ = µ = 0 transitions of the chain G are defined by the transitions of
(
n
2

)
independent

Markov chains describing adjacency dynamic of each vertex pair {i, j} ⊂ V separately. (The
Markov chain of the vertex pair {i, j} has two states i ∼ j and i ̸∼ j, where state i ∼ j
(i and j are adjacent) has exponential holding time with the intensity µiµj and the state
i ̸∼ j (i and j aren’t adjacent) has exponential holding time with the intensity λiλj .) The
stationary network of G has independent edges and, hence, it lacks the clustering property.
Assuming, in addition, that µi is the same for each vertex i ∈ V (µi ≡ const) we obtain a
dynamic network considered in [26]. Let us mention that weights λi strongly correlate with
respective vertex degrees di(Gt), i ∈ V , and are useful in modeling the degree distribution
of Gt for large t. Furthermore, large values of λi, µi enhance the variability (over time) of
links incident to vertex i ∈ V .

Grindrod et al. [10] introduced the term λνij(G, 0) to enhance the triadic closure ef-
fect. We mention that [10] considers the (discrete) jump chain G∗ = {G∗

k = (V,E∗
k), k =

0, 1, 2, . . . } related to G defined by (2), where λi = const1, µi = const2 do not depend on i
and where µ = 0. More precisely, G∗ represents the list of distinct states visited by the chain
G arranged in the chronological order. That is, G∗

0 = G0, G
∗
1 = Gt1 , G

∗
2 = Gt2 , . . . , where

t1 < t2 < . . . are the subsequent jump times of continuous chain G. Užupytė and Wit [24]
complemented the model of [10] by adding the “triadic protection” term µνij(G, 0) aimed at
reducing the deletion rate of the edges belonging to the closed triangles. They consider the
continuos chain G defined by (2) with λi = const1, µi = const2.

It has already been mentioned that for large n dynamic networks of [10], [24] permit
little control over the edge density, which becomes very sensitive to parameters µ and λ. To
overcome such disadvantage we suggest choosing clustering weights νij(G, s) that correlate
negatively with degrees of the common neigbours of i and j. An intuition behind this choice
is based on the plausible assumption that for i, j being friends of an individual with a large
number of acquaintances makes less impact on the mutual relations between i, j than beying
friends with a person having just a few contacts. Moreover, [21], [22], [25], see also [7], note
that in some sparse and clustered real networks the fraction of closed triangles incident to a
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vertex scales as a negative power of the degree of that vertex. Findings of [7], [21], [22], [25]
motivated our choice of the clustering weights (1).

We are most interested in sparse networks, where the number of vertices n is large. In
the simplest case, where λ = µ = 0 and wehere λi = const1 and µi = const2 are the same for
each i (we write, for short, λiλj = λ0 and µiµj = µ0) each vertex pair toggles its adjacency
status independently and the expected holding time of an edge (respectively, non-edge) is
µ−1
0 (respectively, λ−1

0 ). By the law of large numbers the probability that i and j are adjacent
in Gt is asymptotically µ−1

0 /(µ−1
0 + λ−1

0 ) = λ0/(µ0 + λ0) as t → ∞. Hence a snapshot Gt

of the stationary network has the distribution of the binomial random graph with the edge
density λ0/(µ0 + λ0). Furthermore, a sparse network is obtained if one chooses µ0 = n and
λ0 = c, where c > 0 denotes a number independent of n (think of a sequence of network
Markov chains with vertex number n → ∞). More generally, for λ = µ = 0, µiµj ≡ n and∑n

i=1 λi ≤ cn uniformly in n one can obtain a sparse stationary network having independent
edges and the degree sequence strongly correlated with the sequence of weights {λi}, [26].

The simulation study of subsection 2.1 below shows that network Markov chain (2) with
clustering weights νij(G,α), νij(G, β), where α, β > 0, can produce highly clustered sparse
stationary dynamic networks with tunable edge density and clustering coefficients. These
empirical findings are supported by a limited analytical study (given in subsection 2.2 below)
showing upper and lower bounds of the order n−1 on the average edge density. In addition,
we establish a lower bound of the order n on the average number of triangles and in a special
case of α = 2 we relate the average edge density to the average local clustering coefficient.

Before proceeding further, we introduce some notation. We use terms vertex and node
interchangeably. Given a graph G = (V,E) we denote by ∆v(G) the number of triangles
incident to a vertex v ∈ V . The total number of triangles is denotedN∆(G) = 1

3

∑
v∈V ∆v(G)

The total number of 2-paths is denoted NΛ(G) =
∑

v∈V

(
dv(G)

2

)
. For a vertex v ∈ V of

degree dv(G) ≥ 2 we denote CL
v (G) = ∆v(G)

(
dv(G)

2

)−1
the local clustering coefficient of v

(= probability that two randomly selected neighbours of v are neighbours to each other). In
the case where dv(G) ≤ 1 we put CL

v (G) = 0. The average local clustering coefficient and
the global clustering coefficient are denoted

C̄L(G) =
1

n

∑
v∈V

CL
v (G) and CGL(G) =

3N∆(G)

NΛ(G)
.

We put CGL(G) = 0 when N∆(G) = 0. The average degree and the average edge density are

denoted d̄(G) = n−1
∑

v∈V dv(G) and e(G) =
(
n
2

)−1|E| respectively. Finally, we denote by
IA the indicator function of an event (or set) A.

2.1 Numerical Simulations

The aim of the simulation study is twofold: testing the clustering properties of sparse network
(2) equipped with clustering weights νij(G,α), νij(G, β), where α, β > 0 and comparison of
the clustering properties for α, β > 0 and α = β = 0 (the case α = β = 0 corresponds to the
setup of [10], [24]).

To address both questions simultaneously we consider a simplified model (2), where we
assume that λiλj ≡ const1 := λ0 and µiµj ≡ const2 := µ0, see (3) below. Recall that for
λ = µ = 0 the edges are inserted/deleted independently of each other and the ratio µ0/λ0

defines the network edge density 1/(1 + µ0/λ0) at stationarity. Hence, tuning the ratio
µ0/λ0 one can achieve the desired edge density. Here we assume that the ratio µ0/λ0 is fixed
and address the question about tuning parameters λ and µ for achieving desired values of
clustering coefficients.

In the simulations we put the vertex number n = 1000, µ0 = n and λ0 = 1 (for λ = µ = 0
such network is sparse at stationarity). We only consider two instances of values of the pair
(α, β): the choice of parameters α = 2.75 and β = 2.5 is referred to as “general triadic model”
below; the choice of parameters α = β = 0 is referred to as “simple triadic model”. Given
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(α, β) we generate network Markov chains for different values of (µ, λ) from the range that
features variability of the local clustering coefficient (our target parameter). For each choice
of (µ, λ) we sample network snaphot Gt out of (approximately) stationary distribution and
evaluate the edge density e(Gt) (Figure 1) and local clustering coefficient C̄L(Gt) (Figure
2). To generate an approximately stationary network we run the respective Markov chain
starting from an empty graph until 3n2 jumps (edge changes) occur. Further simulation
steps do not change values of e(Gt) and C̄L(Gt) beyond the rounding error.

(a) Simple triadic model (b) General triadic model

Figure 1: Edge densities in stationary graphs

(a) Simple triadic model (b) General triadic model

Figure 2: Average local clustering coefficients in stationary graphs

In Figures 1 and 2 values of parameters µ and λ are depicted on the vertical and horizontal
axis respectively. Evenly spaced labels on each axis depict values of geometric sequences
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with the common ratio 1.35. The colours are put on logarithmic scale and the same scale is
applied across different images.

As we can see from Figure 1, “general triadic model” admits tunable (average) local
clustering coefficient while the edge density remains reasonably small (recall that the ratio
µ0/λ0 remains fixed). On the other hand, “simple triadic model” shows a swift jump from a
sparse graph to the complete graph. Hence while trying to achieve the desired values of the
clustering coefficient we are losing cotrol over the edge density.

In Figure 3 (a) we examine several clustering characteristics of the stationary network
generated by the “general triadic model” with µ = 15000 and λ = 20000. Given integer k ≥ 2,
let g(k) denote the number of vertices v of degree d(v) = k. Let f(k) = 1

g(k)

∑
v: d(v)=k C

L
v (G)

denote the average value of the local clustering coefficient over the set of vertices of degree
k. We put f(k) = 0 for g(k) = 0. We call f the “local clustering coefficient curve”. The fact
that f is decreasing tells us that the local clustering coefficient negatively correlates with
vertex degree, a phenomenon observed in many sparse real networks ([7], [21], [22], [25]).
The “general triadic model” reproduces this network property. We also mention that the
edge density 0.004 is by two orders less than the average local clustering coefficient. Hence
the network is sparse and highly clustered.

Lastly, we touch on the question of the component structure. One may wonder whether
the high values of the clustering coefficients are caused by a few (perhaps one) relatively
small, but dense subgraphs. Figure 3 (b) shows that this is not the case. The stationary
network generated by “general triadic model” admits a large connected component collecting
a fraction of nodes. For simplicity we put µ ≡ 0 (no triad protection). Hence the only
remaining parameter to vary is λ. On the horizontal axis we depict values of λ

n . We recall
that the number of vertices n = 1000 remains fixed.

(a) Clustering versus degree (b) Largest component and clustering

Figure 3: Clustering versus degree and the largest component size

2.2 Rigorous results

Let f be a real valued function defined on the set of graphs with the vertex set V . For
example, it can be the number of edges f(G) = |E| of graph G = (V,E), or the number of
triangles f(G) = N∆(G), etc. For a stationary Markov chain G the function t → Ef(Gt) is
a constant. Hence ∂

∂tEf(Gt) = 0. This identity, when applied to properly chosen function
f , can give useful information about average characteristics of the network at stationarity.
We explore two instances. Choosing f(G) = |E| we show lower and upper bounds for the
average edge density et := Ee(Gt); choosing f(G) = N∆(G) we infer about the number of
triangles.

Since for stationary G the average edge density et and average clustering coefficient
EC̄L(Gt) do not depend on t, we sometimes drop the subscript t and write e = et and
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C̄L = EC̄L(Gt). We observe that, by symmetry, the probability distribution of bivariate
random variable (dv(Gt),∆v(Gt)) is the same for all v ∈ V . Furthermore, for a stationary
network this distribution does not depend on t either. We denote by (d,∆) a bivariate
random variable having the same distribution as (dv(Gt),∆v(Gt)).

To make calculations feasible we assume for the rest of the section that the products λiλj

and µiµj in (2) do not depend on i, j. In this case (2) reads as follows

aij(G) =

{
λ0 + λνij(G,α) for {i, j} ̸∈ E,

(µ0 − µνij(G, β))+ for {i, j} ∈ E,
(3)

where λ, λ0 > 0 and µ, µ0 > 0. Below G denotes a stationary Markov chain defined by (3).
Edge density. We have that

e ≥ λ0

λ0 + µ0
. (4)

For α, β ≥ 2 we have

e ≤
λ0 +

1
n−1 max{λ, µ}
λ0 + µ0

. (5)

For α, β ≥ 1 and λ0 + µ0 > max{λ, µ} we have that

e ≤ λ0

λ0 + µ0 −max{λ, µ}
. (6)

An important conlcussion to draw from inequalities (4), (5), (6) is that for µ0

λ0
of the order

n and max{λ, µ} of the order µ0 the network Gt is sparse and has average edge density of
the order n−1 as n → +∞.

Proof of (4), (5), and (6). Equation ∂
∂tE|Et| = 0 implies

E
∑

{i,j}/∈Et

aij(Gt) = E
∑

{i,j}∈Et

aij(Gt). (7)

In view of (3) we can write the latter identity in the form

E

(
λ0

((
n

2

)
− |Et|

)
+ ν′t + ν′′t − µ0|Et|

)
= 0. (8)

where

ν′t = λ
∑

{i,j}/∈Et

∑
v∈Nij

1

dαv
and ν′′t =

∑
{i,j}∈Et

min

µ0, µ
∑

v∈Nij

1

dβv

 (9)

account for the contribution of the clustering weights λνij(Gt, α) and µνij(Gt, β). Here we
write, for short, Nij = Nij(Gt) and dw = dw(Gt). By the linearity of expectation, we obtain
from (8) that

λ0 − (λ0 + µ0)et +

(
n

2

)−1

E(ν′t + ν′′t ) = 0. (10)

The inequalities ν′t ≥ 0, ν′′t ≥ 0 imply λ0 − (λ0 + µ0)et ≥ 0. We arrived to lower bound (4).
Let us show upper bounds (5), (6). We denote τ := min{α, β} and estimate

ν′t ≤ λ
∑

{i,j}/∈Et

∑
v∈Nij

1

dτv
,

ν′′t ≤ µ
∑

{i,j}∈Et

∑
v∈Nij

1

dβv
≤ µ

∑
{i,j}∈Et

∑
v∈Nij

1

dτv
.
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Combining these inequalities we obtain

ν′t + ν′′t ≤ max{λ, µ}
∑

1≤i<j≤n

∑
v∈Nij

1

dτv
= max{λ, µ}

∑
v∈V : dv≥2

1

dτv

(
dv
2

)
≤ max{λ, µ}1

2

∑
v∈V

d2−τ
v .

For τ = 2 we have ν′t + ν′′t ≤ n
2 max{λ, µ}. Invoking this inequality in (10) we obtain (5).

For τ = 1 we have ν′t + ν′′t ≤ 1
2 max{λ, µ}|Et|. Now (10) yields (6).

Special case of α = 2. In this special case we consider a slightly modified version of (3)
that includes the “correction term”

κij(G) =
1

n− 1

(
I{di(G)=0} + I{dj(G)=0}

)
+

1

n− 2

(
I{di(G)=1} + I{dj(G)=1}

)
.

In addition, we replace νij(G, 2) by related quantity ν∗ij(G) =
∑

w∈Nij(G)

(
dw(G)

2

)−1
. We set

aij(G) =

{
λ0 + λν∗ij(G) + λκij(G) for {i, j} ̸∈ E,

µ0 for {i, j} ∈ E.
(11)

The reason for such a modification is that it admits a closed form expression for the average
edge density.

For a stationary network Markov chain defined by (11) we have that

e =
λ0 +

2
n−1λ(1− C̄L)

λ0 + µ0
(12)

Noting that C̄L ≤ 1 we obtain from (12) the upper and lower bounds for the average edge
density

λ0

λ0 + µ0
≤ e ≤

λ0 +
2

n−1λ

λ0 + µ0
.

Letting n → +∞ and choosing µ0

λ0
, λ

λ0
and µ

λ0
of the order n we have that e is of the order

n−1. Hence the model produces a sparse dynamic network.
Proof of (12). Equation (7) implies

E
∑

{i,j}/∈Et

λ0 + λκij + λ
∑

w∈Nij

1(
dw

2

)
 = µ0E|Et|. (13)

Here we write, for short, κij = κij(Gt), Nij = Nij(Gt) and dw = dw(Gt). Invoking the
identities ∑

{i,j}/∈Et

1 =

(
n

2

)
− |Et|,

∑
{i,j}/∈Et

κij =
∑
w∈V

I{dw=0} +
∑
w∈V

I{dw=1},

∑
{i,j}̸∈Et

∑
w∈Nij

1(
dw

2

) =
∑

w∈V : dw≥2

(
dw

2

)
−∆w(Gt)(
dw

2

) =
∑

w∈V : dw≥2

(1− CL
w(Gt))

and dividing both sides of (13) by
(
n
2

)
we have

λ0(1− e) +
2λ

n− 1

(
P{d ≤ 1}+P{d ≥ 2} − C̄L

)
= µ0e,

8



where d denotes the degree of a randomly selected vertex. We have arrived to (12).
Number of triangles. For a stationary network Markov chain defined by (3) where 0 <

α ≤ 2 we show that

E∆ ≥ λ

4(λ0 + µ0 + λ)
P{d ≥ 2}. (14)

An important conlcussion to draw from inequality (14) is that choosing µ0

λ0
, λ

λ0
and µ

λ0
of

the order n one can obtain a sparse stationary dynamic network with the property that
the average number of triangles incident to a vertex of degree at least two (formally, the
conditional expectation E(∆|d ≥ 2) = E∆

P{d≥2} ) is bounded from below by a constant. Note

that dv(Gt) ≤ 1 implies ∆v(Gt) = 0. Hence ∆v(Gt) = ∆v(Gt)I{dv(Gt)≥2} and ∆ = ∆I{d≥2}.

Proof of (14). Equation ∂
∂tN∆(Gt) = 0 implies

E
∑

{i,j}/∈Et

|Nij(Gt)|aij(Gt) = E
∑

{i,j}∈Et

|Nij(Gt)|aij(Gt). (15)

Here the left sum evaluates the average birth rate of triangles: connecting a pair of non-
adjacent vertices i, j by an edge creates |Nij(Gt)| new triangles. The right sum evaluates the
average death rate of triangles: deletion of an edge {i, j} ∈ Et eliminates |Nij(Gt)| triangles
from Gt. Furthermore, for {i, j} ∈ Et we have aij(Gt) ≤ µ0. Hence the sum on the right of
(15) ∑

{i,j}∈Et

|Nij(Gt)|aij(Gt) ≤
∑

{i,j}∈Et

|Nij(Gt)|µ0 =
∑

v∈V : dv(Gt)≥2

∆v(Gt)µ0. (16)

In the last identity we use the observation that ∆v(Gt) counts edges whose both endpoints
are adjacent to v. Similarly for the sum on the left of (15)∑

{i,j}/∈Et

|Nij(Gt)|aij(Gt) ≥
∑

v∈V : dv(Gt)≥2

((
dv(Gt)

2

)
−∆v(Gt)

)(
λ0 +

λ

dαv (Gt)

)
(17)

Here we use the observation that
(
dv(Gt)

2

)
−∆v(Gt) counts pairs {i, j} of neighbours of v that

are non-adjacent ({i, j} /∈ Et). Inequality (17) follows from the fact that aij(Gt) ≥ λ0 +
λ
dα
v

for each v ∈ Nij(Gt).
Invoking (16) and (17) in (15) we obtain

E
∑

v∈V : dv(Gt)≥2

((
dv(Gt)

2

)
−∆v(Gt)

)(
λ0 +

λ

dαv (Gt)

)
≤ E

∑
v∈V : dv(Gt)≥2

∆v(Gt)µ0.

Recall that the probability distribution of bivariate random variable (dv(Gt), Dv(Gt)) is the
same for all v ∈ V . Collecting the terms ∆v(Gt) on the right and dividing both sides by n
we have

λ0

2
E
(
d(d− 1)

)
+

λ

2
E(d1−α(d− 1)I{d≥2} ≤ (λ0 + µ0)E∆+ λE

(
∆v

I{dv≥2}

dαv

)
.

Next we upper bound λE
(
∆vd

−α
v I{dv≥2}

)
≤ λE∆ and obtain

λ

2
E
(
d1−α(d− 1)I{d≥2}

)
≤ (λ0 + µ0 + λ)E∆.

Furthermore, using inequality 1
2 ≤ d−1

d ≤ d−1
dα−1 , which holds for 0 < α ≤ 2 and d ≥ 2 we

lower bound the left side by λ
4 and obtain inequality equivalent to (14)

λ

4
P{d ≥ 2} ≤ (λ0 + µ0 + λ)E∆.

9



3 Dynamic affiliation network

Let H = {Ht = (V ∪W,Et), t ≥ 0} be a continuous time Markov chain, whose states are bi-
partite graphs with the bipartition V ∪W , where V = {1, . . . , n} and W = {1, . . . ,m}. Tran-
sitions of H are defined as follows. Given Ht (the state occupied at time t), the update takes
place at time t′ := t+min(i,u)∈V×W Biu when the pair (i0, u0) with Bi0u0 = min(i,u)∈V×W Biu

changes its adjacency status. Here Biu = Biu(Ht), are independent exponential waiting times
with intensities biu = biu(Ht) defined below. Thus, at time t′ chain H jumps to the state
Ht′ = (V ∪W,Et′), where the edge sets Et and Et′ differ in the single edge i0 ∼ u0. Markov
chain H defines dynamic affiliation network G′ = {G′

t = (E′
t, V ), t ≥ 0}: for each t any two

vertices i, j ∈ V are adjacent in G′
t whenever i and j have a common neighbour in Ht.

Now we define intensities biu. We fix µ > 0 and assign positive weights yi and xu to i ∈ V
and u ∈ W that model activity of actors and attrativeness of attributes. For a bipartite graph
H = (V ∪W,E) we set

biu(H) =

{
yixu for (i, u) ̸∈ E,

µ for (i, u) ∈ E.
(18)

Clearly, H has a unique stationary distribution defined by the weight sequences {yi}ni=1,
{xu}mu=1 and µ. Furthermore, H comprises of n×m independent continuous Markov chains
describing adjacency dynamic of each vertex pair (i, u) ⊂ V × W separately, where the
Markov chain of a pair (i, j) has two states i ∼ u and i ̸∼ u whose exponential holding times
have intensities µ and yixu respectively. Thus, at stationarity, a snaphot Ht represents a
random bipartite graph, where edges are inserted independently with probabilities

P{i ∼ u} =
yixu

yixu + µ
=: piu, (19)

for (i, u) ∈ V ×W . We assume in what follows that dynamic affiliation network G′ is defined
by a stationary Markov chain H satisfying (19). In this case probability distributions of
random graphs G′

t and H ′
t do not depend on t and with a little abuse of notation we write,

for short, G′ = G′
t and H = Ht. We show that G′ admits tunable degree distribution and

nonvanishing global clustering coefficient.
We will use the following notation. By Py,n =

∑n
i=1 δyi

and Px,m =
∑m

u=1 δxu
we denote

empirical distributions of the sequences {y1, . . . , yn} and {x1, . . . , xm}. Here δt stands for
the degenerate distribution that assigns mass 1 to point t. Furthermore we denote

⟨xs⟩ = 1

m

∑
u∈[m]

xs
u, ⟨ys⟩ = 1

n

∑
i∈[n]

ysi , γ2 =
m

n
, κ =

nm

µ2
.

It is important to mention that the ratio γ2 = m
n correlates negatively with the clustering

strength. More precisely, the global clustering coefficient of G′ is asymptotically inversely
proportional to γ for large n and m, see (25) below.

Degrees of G′. Here we show that the expected value Edi of the degree di = di(G
′)

of vertex i is approximately proportional to its weight yi. Moreover, di has asymptotic
compound Poisson distribution as the network size n → +∞.

Theorem 1. For each i ∈ V we have

0 ≤ yiκ ⟨x2⟩⟨y⟩ −Edi ≤
κ
µ
yi
(
⟨x3⟩⟨y2⟩+ yi⟨x3⟩⟨y⟩

)
+

κ2

n
y2i ⟨x2⟩2⟨y2⟩+ 1

n
yi⟨x2⟩. (20)

It follows from Theorem 1 that for large n,m and µ = µ(n,m) of the order
√
nm the

expected degree of a vertex i in G′ is asymptotically proportional its “activity” weight yi.

Corollary 1. Let n,m → +∞. Put µ =
√
nm and assume that for some c > 0 we have

⟨x3⟩ ≤ c and ⟨y2⟩ ≤ c uniformly in n,m. Then for each i

Edi = yi⟨x2⟩⟨y⟩+O

(
y2i√
nm

)
. (21)
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In the sparse regime, when Edi remains bounded as n,m → +∞, the probability distribu-
tion of di does not concentrate around the expected value Edi. Theorem 2 below shows that
di has a compound Poisson asymptotic distribution. Recall that compound Poisson distribu-
tion is the probability distribution of a randomly stopped sum

∑Λ
k=1 ξk, where ξ1, ξ2, . . . are

independent and identically distributed random variables, which are independent of Poisson
random variable Λ. We write Λ ∼ P(λ), where λ := EΛ denotes the expected value and

denote by CP(λ, Pξ) the (compound Poisson) distribution of
∑Λ

k=1 ξk. Here Pξ denotes the
(common) probability distribution of ξk.

Let x1, x2, . . . and y1, y2, . . . be positive infinite sequences of weights. In Theorem 2 we
consider random affiliation networks G′

n,m, n,m = 1, 2, . . . , based on respective bipartite
random graphs Hn,m whose edges are inserted independently with probabilities (19). Note
that each Hn,m is defined by truncated (finite) sequences {x1, . . . , xm} and {y1, . . . , yn}.

To formulate our next result we need the following conditions: for n,m → +∞ we have
(i) Px,m converges weakly to some probability distribution, say PX , having a finite first

moment
∫
sPX(ds) < ∞ and ⟨x⟩ converges to

∫
sPX(ds);

(ii) the family of distributions {Py,n, n = 1, 2, . . . } is uniformly integrable and ⟨y⟩ con-
verges to some number ay > 0.

Theorem 2. Let µ =
√
nm. Let n → +∞. Assume that m = m(n) is such that m/n

converges to some γo > 0. Assume that (i) and (ii) hold. Denote ax =
∫
sPX(ds) and

introduce function s → λs = sayγ
−1
o . For each i = 1, 2, . . . the probability distribution of

di converges weakly to the compound Poisson distribution CP(yiaxγo, Q), where the discrete
probability distribution Q assigns probabilities

Q({t}) =
∫

s

ax
e−λs

λt
s

t!
PX(ds). (22)

to integers t = 0, 1, 2, . . . .

We note that Q is a mixture of Poisson distributions. To sample from Q one can use
the two step procedure: 1) generate a (size biased) random variable X̃ according to the
distribution P{X̃ = s} = s

ax
P{X = s}, s = 0, 1, . . . ; 2) sample Poisson random variable

with rate X̃ayγ
−1
o .

Clustering in G′. We recall that N∆(G
′) denotes the number of triangles in G′ and

NΛ(G
′) denotes the number of 2- paths in G′.

Theorem 3. Let µ =
√
nm. Let n → +∞. Assume that m = m(n) is such that m/n

converges to some γo > 0. Assume that for some constant c > 0 we have ⟨x5⟩ < c and
⟨y4⟩ < c for all n. Then

N∆(G
′) =

n

6γ
⟨x3⟩⟨y⟩3 + oP (

√
n), (23)

NΛ(G
′) =

n

2γ
⟨x3⟩⟨y⟩3 + n

2
⟨x2⟩2⟨y2⟩⟨y⟩2 +OP (

√
n). (24)

In particular, the global clustering coefficient

CGL(G) =
⟨x3⟩⟨y⟩3

⟨x3⟩⟨y⟩3 + γo⟨x2⟩2⟨y2⟩⟨y⟩2
+ oP (1). (25)

We remark that conditions ⟨x5⟩ < c and ⟨y4⟩ < c of Theorem 3 can be relaxed. We
expect that the minimal conditions ⟨x3⟩ < c and ⟨y2⟩ < c plus the uniform integrability of
t3Px,m(dt) and t2Py,n(dt) would suffice.
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4 Concluding remarks

We presented two dynamic network models that generate sparse and clustered stationary
networks. Both models seems natural as they mimic dynamics of real network processes.
Luckily, for rigorous analysis of dynamic affiliation network we can use techniques developed
for random intersection graphs [2], [9], [13], [14], [18], [19]. On the other hand we have only
a few rigorous results for stationary Markov chains with clustering like (2), (3). It would be
interesting to learn more about network structure and properties of this model via rigorous
analysis.

Acknowledgement. The diagrams were generated using Matplotlib [16]. Authors thank
Information technology research center of Vilnius University for a high performance comput-
ing resourses.

5 Appendix

Here we prove Theorems 1, 2, 3. Before proofs we introduce some notation.
For v ∈ V ∪ W we denote by Nv the set of neighbours of v in H. Note that for i ∈ V

and u ∈ W we have Ni ⊂ W and Nu ⊂ V . For i ∈ V , u ∈ W we denote by Iiu = I{i∼u} the
indicator function of the event i ∼ u (meaning that i and u are adjacent in H). For i ∈ V
we denote by NG

i the set of neighbours of i in G′; di = |NG
i | denotes the degree of i in G′.

We write, for short,

Sa(x) =
∑
i∈[m]

xa
i = m⟨xa⟩, Sa(y) =

∑
j∈[n]

yaj = n⟨ya⟩, p⋆ik =
yixk

µ
.

In the proof (sometimes without mentioning) we apply inequalities

p⋆iu ≥ piu ≥ (1− p⋆iu) p
⋆
iu,

∏
j

p⋆ijuj
≥
∏
j

pijuj
≥

1−
∑
j

p⋆ijuj

∏
j

p⋆ijuj
. (26)

The first (and third) inequality is obvious. The second one follows from the inequalities
a
b ≥ a

a+b ≥
(
1− a

b

)
a
b , for a > 0 and b > 0. The fourth one is obtained by iterating the

second inequality.
Proof of Theorem 1. We only prove (20). Let

d
(1)
i =

∑
u∈Ni

|Nu \ {i}| =
∑
u∈W

Iiu
∑

j∈[n]\{i}

Iju,

Ri =
∑

{u,v}⊂Ni

∣∣(Nu \ {i}) ∩ (Nv \ {i})
∣∣ = ∑

{u,v}⊂W

IiuIiv
∑

j∈[n]\{i}

IjuIjv.

Using inclusion-exclusion inequalities we estimate the number of elements of the set NG
i =

∪u∈Ni
(Nu \ {i}). We have

d
(1)
i −Ri ≤ |NG

i | ≤ d
(1)
i . (27)

To prove the left inequality of (20) we use Edi ≤ Ed
(1)
i (see (27)) and invoke bound (28)

shown below. To show the right inequality of (20) we use Ed
(1)
i −ERi ≤ Edi (see (27)) and

12



invoke bounds (29), (30) below. Finally, using (26) we estimate Ed
(1)
i and ERi.

Ed
(1)
i =

∑
u∈[m]

piu
∑

j∈[n]\{i}

pju ≤
∑

u∈[m]

piu
∑
j∈[n]

pju ≤ mn

µ2
yi⟨x2⟩⟨y⟩, (28)

Ed
(1)
i =

∑
u∈[m]

∑
j∈[n]

piupju −
∑

u∈[m]

p2iu

≥
∑

u∈[m]

∑
j∈[n]

p⋆iup
⋆
ju

(
1− p⋆iu − p⋆ju

)
−
∑

u∈[m]

(p⋆iu)
2

=
mn

µ2
yi⟨x2⟩⟨y⟩ − mn

µ3
y2i ⟨x3⟩⟨y⟩ − mn

µ3
yi⟨x3⟩⟨y2⟩ − m

µ2
y2i ⟨x2⟩ (29)

and

ERi ≤
∑

{u,v}⊂[m]

piupiv
∑
j∈[n]

pjupjv ≤
∑

{u,v}⊂[m]

p⋆iup
⋆
iv

∑
j∈[n]

p⋆jup
⋆
jv

≤ 1

2

m2n

µ4
y2i ⟨x2⟩2⟨y2⟩. (30)

Proof of Theorem 1 is complete.

Proof of Theorem 2. Before the proof we introduce some notation and collect auxiliary
results. Given two random variables ξ and ζ we denote by dTV (Pξ, Pζ) the total variation
distance between the probability distributions Pξ and Pζ of ξ and ζ. With a little abuse of
notation we also write dTV (ξ, ζ).

We fix vertex i ∈ V . For u ∈ W we write, for short, ζu = Iiu and ξu =
∑

j∈V \{i} Iju. Let
ζ∗u, ζ

⋆
u, ζ

o
u and ξ∗u, ξ

⋆
u, ξ

o
u be Poisson random variables with expected values

Eζ∗u = piu, Eζ⋆u = p⋆iu, Eζou =
γo
γ
p⋆iu,

Eξ∗u =
∑

j∈V \{i}

pju, Eξ⋆u =
∑

j∈V \{i}

p⋆ju, Eξou = γ−1
o xuay.

Note that Eζ∗u = Eζu and Eξ∗u = Eξu. Let (ξu(k), ξ
∗
u(k), ξ

⋆
u(k), ξ

o
u(k)), k ≥ 1, be iid copies of

(ξu, ξ
∗
u, ξ

⋆
u, ξ

o
u). We assume that each collection

{ζu, ξu(k), u ∈ W,k ∈ N}, {ζ∗u, ξu(k), u ∈ W,k ∈ N}, {ζ∗u, ξ∗u(k), u ∈ W,k ∈ N},
{ζ⋆u, ξ∗u(k), u ∈ W,k ∈ N}, {ζ⋆u, ξ⋆u(k), u ∈ W,k ∈ N}, {ζou, ξou(k), u ∈ W,k ∈ N}

consists of independent random variables. We introduce random variables

d
(2)
i =

∑
u∈W

ζ∗
u∑

k=1

ξu(k), d
(3)
i =

∑
u∈W

ζ∗
u∑

k=1

ξ∗u(k),

d
(4)
i =

∑
u∈W

ζ⋆
u∑

k=1

ξ⋆u(k), d
(5)
i =

∑
u∈W

ζo
u∑

k=1

ξou(k).

When estimating the total variation distance between sums of random variables, say,∑
k∈[m] ηk =: η and

∑
k∈[m] κk =: κ we will often apply the following device. We define

intermediate sums φr =
∑r

k=1 κk +
∑m

k=r+1 ηk so that η = φ0 and κ = φm and note that
dTV (φr, φr+1) ≤ dTV (ηr, κr). Combining this inequality with the triangle inequality we have

dTV (η, κ) ≤
m−1∑
r=0

dTV (φr, φr+1) ≤
m∑
r=1

dTV (ηr, κr). (31)
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Let a, b > 0 and let τ, ν be random variables. We will use the following inequality for the
total variation distance between compound Poisson distributions CP(a, Pτ ) and CP(b, Pν),
see [5] formula (25),

dTV (CP(a, Pτ ), CP(b, Pν)) ≤ 2|a− b|+ bdTV (Pτ , Pν). (32)

Now we are ready to prove the theorem. We first assume that the sequence x1, x2, . . . is
bounded, that is, for some M > 0 we have xj ≤ M ∀j. The proof of the general case (where
this assumption is waived) is given afterwards. The assumption implies that

pju ≤ yjM

yjM + µ
≤ yjM

µ
, for (j, u) ∈ V ×W. (33)

Here the first inequality follows from the fact that the function x → yjx
yjx+µ is increasing.

The proof consist of two parts. In the first part (steps 1 - 5 below) we show that

dTV (di, d
(5)
i ) = o(1). In the second part (step 6 below) we show that the Fourier transform

(characteristic function) of the distribution of d
(5)
i converges to that of CP(yiaxγo, Q).

Let us show that dTV (di, d
(5)
i ) = o(1). We first apply triangle inequality

dTV

(
di, d

(5)
i

)
≤ dTV

(
di, d

(1)
i

)
+

4∑
k=1

dTV

(
d
(k)
i , d

(k+1)
i

)
(34)

and then show that each term on the right is of the order o(1).

Step 1. Here we show that dTV (di, d
(1)
i ) = o(1). We have, see (27), (30),

dTV (di, d
(1)
i ) ≤ P{di ̸= d

(1)
i } ≤ P{Ri ≥ 1} ≤ ERi (35)

≤
∑

{u,v}⊂W

piupiv
∑
j∈V

pjupjv.

Using (33) we estimate piupiv ≤ y2
iM

2

µ2 and pjupjv ≤ yjM
µ

yjM
yjM+µ and upper bound the right

side of (35) by

M3

(
m

2

)
y2i
µ3

S, where S :=
∑
j∈V

yj
yjM

yjM + µ
. (36)

It remains to show that S = o(n). To this aim we fix ε ∈ (0, 1) and estimate

yjM

yjM + µ
≤

{
1, for yj > εµ,
yjM
µ ≤ εM, for yj ≤ εµ.

(37)

We have

S ≤ εM
∑

j: yj≤εµ

yj +
∑

j: yj>εµ

yj ≤ εMS1(y) +
∑

j: yj>εµ

yj (38)

=εMn⟨y⟩+ n

∫
s>εµ

sPy,n(ds).

Choosing ε = εn ↓ 0 such that εnµ → ∞ as n → ∞ we obtain
∫
s>εnµ

sPy,n(ds) = o(1) by

the uniform integrability condition (ii). Hence S = o(n).

Step 2. Here we show that dTV

(
d
(1)
i , d

(2)
i

)
= o(1). To this aim we write d

(1)
i in the

form d
(1)
i =

∑
u∈W

∑ζu
k=1 ξu(k) and apply (31). In this case ηr =

∑ζr
k=1 ξr(k) and κr =

14



∑ζ∗
r

k=1 ξr(k). Invoking inequalities dTV (ηr, κr) ≤ dTV (ζ
∗
r , ζr) ≤ p2ir (the last inequality follows

by LeCam’s inequality [23]) we obtain

dTV

(
d
(1)
i , d

(2)
i

)
≤
∑
r∈[m]

dTV (ζr, ζ
∗
r ) ≤

∑
r∈[m]

p2ir.

We note that the sum on the right
∑

r∈[m] p
2
ir ≤ M2y2i

m
µ2 = O(n−1).

Step 3. Here we show that dTV (d
(2)
i , d

(3)
i ) = o(1). To this aim we apply (31) with

ηr =
∑ζ∗

r

k=1 ξ
∗
r (k) and κr =

∑ζ∗
r

k=1 ξr(k). Invoking inequalities

dTV (ηr, κr) ≤ pirdTV (ξ
∗
r , ξr) ≤ pir

∑
j∈V \{i}

p2jr

(the first inequality follows by (32), the second one follows by LeCam’s inequality) we obtain

dTV (d
(2)
i , d

(3)
i ) ≤

∑
r∈[m]

dTV

 ζ∗
r∑

k=1

ξ∗r (k),

ζ∗
r∑

k=1

ξr(k)

 ≤
∑
r∈[m]

pir
∑

j∈V \{i}

p2jr.

To show that the quantity on the right is of the order o(1) we proceed as in (37), (38) above.
We have ∑

r∈[m]

pir
∑

j∈V \{i}

p2jr ≤
∑
r∈[m]

yiM

µ

∑
j∈V \{i}

yjM

µ

yjM

yjM + µ

= M2 yi
n

∑
j∈V \{i}

yj
yjM

yjM + µ
≤ M2 yi

n
S = o(1).

Step 4. Here we show that dTV (d
(3)
i , d

(4)
i ) = o(1). To this aim we apply (31) with

ηr =
∑ζ∗

r

k=1 ξ
∗
r (k) and κr =

∑ζ⋆
r

k=1 ξ
⋆
r (k). Invoking inequalities

dTV (ηr, κr) ≤ 2(p⋆ir − pir) + pirdTV (ξ
⋆
r , ξ

∗
r ) ≤ 2(p⋆ir − pir) + 2pir

∑
j∈V \{i}

(p⋆jr − pjr)

(the first inequality follows by (32), the second one follows from (32) applied to Poisson
random variables ξ⋆r and ξ∗r ) we obtain

dTV (d
(3)
i , d

(4)
i ) ≤ 2

∑
r∈[m]

(p⋆ir − pir) + 2
∑
r∈[m]

pir
∑

j∈V \{i}

(p⋆jr − pjr). (39)

Using inequality 0 ≤ p⋆ir − pir ≤ (p⋆ir)
2, which follows from the first inequality of (26), we

upper bound the first term on the right of (39)

∑
r∈[m]

(p⋆ir − pir) ≤
∑
r∈[m]

(p⋆ir)
2 ≤

∑
r∈[m]

y2iM
2

µ2
= M2 y

2
i

n
= O(n−1). (40)

To show that the second term on the right of (39) is of the order o(1) we proceed as in (37),
(38) above. Denote S′ =

∑
r∈[m] pir

∑
j∈V \{i}(p

⋆
jr − pjr). Given ε > 0 we estimate

p⋆jr − pjr ≤

{
p⋆jr ≤ yj

M
µ , for yj > εµ,

(p⋆jr)
2 ≤ y2

jM
2

µ2 ≤ εyj
M2

µ , for yj ≤ εµ.
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Furthermore, we estimate pir ≤ p⋆ir. These inequalities imply

S′ ≤
∑
r∈[m]

yiM

µ

ε
M2

µ

∑
j: yj≤εµ

yj +
M

µ

∑
j: yj>εµ

yj


≤ yiM

2nm

µ2

(
εM⟨y⟩+

∫
s>εµ

sPy,n(ds)

)
.

Choosing ε = εn ↓ 0 such that εnµ → ∞ as n → ∞ we obtain
∫
s>εnµ

sPy,n(ds) = o(1) by

the uniform integrability condition (ii). Hence S′ = o(1).

Step 5. Here we show that dTV (d
(4)
i , d

(5)
i ) = o(1). To this aim we apply (31) with

ηr =
∑ζo

r

k=1 ξ
o
r (k) and κr =

∑ζ⋆
r

k=1 ξ
⋆
r (k). Invoking inequalities

dTV (ηr, κr) ≤ 2

∣∣∣∣γoγ − 1

∣∣∣∣ p⋆ir + p⋆irdTV (ξ
⋆
r , ξ

o
r )

≤ 2

∣∣∣∣γoγ − 1

∣∣∣∣ p⋆ir + p⋆ir2 |Eξ⋆r −Eξor |

(the first inequality follows by (32), the second one follows from (32) applied to Poisson
random variables ξ⋆r and ξor ) we obtain

dTV (d
(4)
i , d

(5)
i ) ≤ 2

∣∣∣∣γoγ − 1

∣∣∣∣ ∑
r∈[m]

p⋆ir + 2
∑
r∈[m]

p⋆ir |Eξ⋆r −Eξor | =: R1 + 2R2. (41)

The first term on the right R1 = o(1) because
∑

r∈[m] p
⋆
ir = yiγ⟨x⟩ ≤ yiγM is bounded and

γ → γo. To show that R2 = o(1) we write Eξor −Eξ⋆r in the form

Eξor −Eξ⋆r = xrδ + p⋆ir, δ := γ−1
o ay − γ−1⟨y⟩

and note that δ = o(1). We have

R2 ≤ |δ|
∑
r∈[m]

xrp
⋆
ir +

∑
r∈[m]

(p⋆ir)
2 = o(1).

Here we used
∑

r∈[m] xrp
⋆
ir ≤ yiM

2γ = O(1) and
∑

r∈[m](p
⋆
ir)

2 = O(n−1), see (40).

Step 6. We write the Fourier transform of the probability distribution CP(yiaxγo, Q)
in the form f(t) = eyiaxγo(fQ(t)−1), t ∈ R. Here fQ(t) =

∫
eitsQ(ds) denotes the Fourier

transform of the probability distribution Q; i =
√
−1 denotes the imaginary unit. We write

the characteristic function of d
(5)
i in the form (recal that S1(x) =

∑m
r=1 xr)

Eeitd
(5)
i =

m∏
r=1

exp
{(

e(e
it−1)Eξor − 1

)
Eζor

}
= exp

{
γoyi⟨x⟩

m∑
r=1

xr

S1(x)

(
e(e

it−1)Eξor − 1
)}

.

We denote by P̃X(ds) := s
ax
PX(ds) the size biased distribution PX . We denote by P̃x,m(ds) =∑m

r=1
xr

S1(x)
δxr the size biased distribution Px,m. Condition (i) implies that P̃x,m converges

weakly to P̃X as m → +∞. Hence

m∑
r=1

xr

S1(x)

(
e(e

it−1)Eξor − 1
)
=

∫ (
e(e

it−1)λs − 1
)
P̃x,m(ds)
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converges to ∫ (
e(e

it−1)λs − 1
)
PX(ds) = fQ(t)− 1.

This fact together with the convergence of the first moments ⟨x⟩ → ax yield the pointwise

convergence of the Fourier transforms Eeitd
5)
i → f(t) as m → ∞.

We have proved Theorem 2 in the case, where the sequence xk, k ≥ 1 is bounded.
Now we waive the assumption of boundedness of xk, k ≥ 1. Let xr, r ≥ 1 be a weight

sequence satisfying condition (i). Given M > 0 define the truncated sequence xr,M =
xrI{xr≤M}, r ≥ 1. Let PX,M denote the probability distribution of XI{X≤M}. Condition

(i) implies that 1
m

∑
r∈[m] δxr,M

converges weakly to PX,M and 1
m

∑
r∈[m] xr,M converges

to E(XI{X≤M}) =: ax,M as m → ∞. Let di,M denote the degree of vertex i ∈ V in the
affiliation random graph G′

M defined by the sequences yk, k ≥ 1 and xk,M , k ≥ 1. Let DM

and D be random variables with the distributions CP(yiax,Mγo, QM ) and CP(yiaxγo, Q).
We have

dTV (di, D) ≤ dTV (di, di,M ) + dTV (di,M , DM ) + dTV (DM , D).

Note that the first term on the right

dTV (di, di,M ) ≤ P{di,M ̸= di} ≤ P{∃u ∈ W : i ∼ u, xu > M}

≤ E

(∑
u∈W

I{i∼u}I{xu>M}

)
=
∑
u∈W

piuI{xu>M}

≤
∑
u∈W

p⋆iuI{xu>M} = yiγ

∫
s>M

sPx,m(ds)

converges to 0 uniformly in m as M → +∞, by the uniform integrability condition (i). Fur-
thermore, the second term dTV (di,M , DM ) = o(1) as n,m → ∞ because the convergence in
distribution of integer valued random variables implies the convergence in the total variation
distance. Finally, for M → +∞ we have dTV (DM , D) = o(1), because ax,M → ax and
QM → Q.

Now we show that dTV (di, D) → 0 as n,m → ∞. We fix ε > 0 and choose large M such
that dTV (di, di,M ) < ε and dTV (DM , D) < ε. Then, given M , we let n,m → ∞. We obtain
dTV (di, D) ≤ 2ε+ o(1). Proof of Theorem 2 is complete.

Before the proof of Theorem 3 below we introduce some notation and state an auxiliary
result. Let V 3

0 denote the set of ordered triples (i, j, k) of distinct elements i, j, k ∈ V ; by(
V
3

)
we denote the collection of subsets of V of size 3. For w ∈ W we denote

Uw =
∑
i∈V

p⋆iw, T (w) =
∑

{i,j,k}∈(V3)

p⋆iwp
⋆
jwp

⋆
kw.

Furthermore, we denote

T ′(u, v) =
∑

(i,j,k)∈V 3
0

p⋆iup
⋆
jup

⋆
jvp

⋆
kv and T ′ =

∑
{u,v}⊂W

T ′(u, v).

Lemma 1. Let µ2 = nm. Denote Ly = ⟨y2⟩⟨y⟩2 − 2
n ⟨y

3⟩⟨y⟩ − 1
n ⟨y

2⟩2 + 2
n2 ⟨y4⟩. We have

0 ≤ 1

6

n3

µ3
x3
w⟨y⟩3 − T (w) ≤ 1

2

n2

µ3
x3
w⟨y2⟩⟨y⟩, (42)

T ′
3 =

n

2

(
⟨x2⟩2 − ⟨x4⟩

m

)
Ly. (43)
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Proof of Lemma 1. Recall that V = [n]. For numbers ai, bi, ci, i ∈ [n] we use notation
S(a) =

∑
i∈[n] ai, S(ab) =

∑
i∈[n] aibi, S(abc) =

∑
i∈[n] aibici.

Proof of (42). We apply identity

S3(a) =
∑
i∈[n]

a3i + 3
∑
i∈[n]

a2i
∑

j∈[n]\i

aj + 6
∑

1≤i<j<k≤n

aiajak

to ai = p⋆iw and obtain inequalities that are equivalent to (42).

0 ≤ U3
w − 6T (w) ≤ 3

∑
i∈V

(p⋆iw)
2
∑
j∈V

p⋆jw.

Proof of (43). We apply identity∑
(i,j,k)∈V 3

0

aibjck = S(a)S(b)S(c)− S(a)S(bc)− S(b)S(ac)− S(c)S(ab) + 2S(abc)

to ai = p⋆iu, bj = p⋆jup
⋆
jv, ck = p⋆kv and obtain T ′(u, v) = n3

µ4 x
2
ux

2
vLy.

Proof of Theorem 3. Let Gc = (V,Ec) be the multigraph with colored edges defined by
the bipartite graph H = (V ∪ W,E): vertices i, j ∈ V are connected by an edge of color

w ∈ W in Gc (denoted i
w∼ j) whenever i, j are neighbours of w in H. A subgraph of Gc is

projected to subgraph of G′ by removing edge colors and merging obtained parallel edges.
Triangle count. Here we show (23). Note that each triangle of G′ is either projection

of a monochromatic triangle or projection of a triangle with all edges of different colors (we
call such triangle of Gc polychromatic). Let ∆w be the set of monochromatic triangles of
color w. Let ∆u,v,z be the set of polychromatic triangles with edge colors u, v, z. Let ∆∗

w

(respectively ∆∗
u,v,z) denote the set of triangles in G′ obtained as projections of triangles

from ∆w (respectively ∆u,v,z). We denote

∆′ = ∪w∈W∆∗
w and ∆′′ = ∪{u,v,z}⊂W∆∗

u,v,z.

The union ∆′ ∪∆′′ contains all triangles of G′. Hence N∆ = |∆′ ∪∆′′| and (23) follows from
the relations shown below

|∆′| = n

6γ
⟨x3⟩⟨y⟩3 +OP (

√
n), (44)

E|∆′′| ≤ 1

6
⟨x2⟩3⟨y2⟩3 = OP (1). (45)

Proof of (44). Denote T1 =
∑

w∈W |∆∗
w| and T2 =

∑
{u,v}⊂W |∆∗

u ∩ ∆∗
v|. By inclusion-

exclusion inequalities we have

T1 − T2 ≤ |∆′| ≤ T1. (46)

We show below that ET2 = o(1). Hence |∆′| = T1 + oP (1). Furthermore, we show that

ET1 =
n

6γ
⟨x3⟩⟨y⟩3 +O(1) (47)

and VarT1 = O(n). These two relations imply T1 = ET1 + OP (
√
n), by Chebyshev’s

inequality. We have arrived to (44).
Let us show that ET2 = O(m−1). We have |∆∗

u∩∆∗
v| =

∑
{i,j,k}⊂V IiuIjuIkuIivIjvIkv and

ET2 = E

 ∑
{u,v}⊂W

∑
{i,j,k}⊂V

IiuIjuIkuIivIjvIkv


≤

∑
{u,v}⊂W

∑
{i,j,k}⊂V

p⋆iup
⋆
jup

⋆
kup

⋆
ivp

⋆
jvp

⋆
kv (48)

≤ 1

12m
⟨x3⟩2⟨y2⟩3. (49)
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Let us prove (47). Note that T1 =
∑

w∈W |∆w| since |∆∗
w| = |∆w| ∀w ∈ W . We evaluate

E|∆w| =
∑

{i,j,k}⊂V

IiwIjwIkw =
∑

{i,j,k}⊂V

piwpjwpkw.

Using (26) we approximate E|∆w| by T (w) :=
∑

{i,j,k}⊂V p⋆iwp
⋆
jwp

⋆
kw,

T (w)−R1(w) ≤ E|∆w| ≤ T (w), (50)

R1(w) :=
∑

{i,j,k}⊂V

p⋆iwp
⋆
jwp

⋆
kw

(
p⋆iw + p⋆jw + p⋆kw

)
.

A straightforward calculation shows

R1(w) =
1

6

∑
(i,j,k)∈V 3

0

p⋆iwp
⋆
jwp

⋆
kw

(
p⋆iw + p⋆jw + p⋆kw

)
≤ 1

2

n3

µ4
x4
w⟨y2⟩⟨y⟩2.

Combining these inequalities with (42) and (50) we obtain

0 ≤ 1

6

n3

µ3
x3
w⟨y⟩3 −E|∆w| ≤

1

2

n3

µ4
x4
w⟨y2⟩⟨y⟩2 +

1

2

n2

µ3
x3
w⟨y2⟩⟨y⟩. (51)

Summing over w ∈ W we obtain for µ =
√
nm

0 ≤ n

6γ
⟨x3⟩⟨y⟩3 −ET1 ≤ 1

2γ2
⟨x4⟩⟨y2⟩⟨y⟩2 + 1

2γ
⟨x3⟩⟨y2⟩⟨y⟩. (52)

We have arrived to (47).
It remains to show that VarT1 = O(n). By the independence of ∆w, w ∈ W , we have

VarT1 =
∑

w∈W Var|∆w|. We show below that for each w ∈ W

Var|∆w| ≤
5∑

r=3

xr
w

γr
⟨y⟩r. (53)

This bound implies

VarT1 ≤
5∑

r=3

m

γr
⟨xr⟩⟨y⟩r = n

5∑
r=3

γ2−r⟨xr⟩⟨y⟩r = O(n).

Proof of (53). We fix w ∈ W . For A ⊂ V we denote IA =
∏

i∈A Iiw and ĪA = IA − EIA.
Note that |∆w| =

∑
A∈(V3)

IA. Since E(ĪAĪA′) = 0 for A ∩A′ = ∅, we have

Var|∆w| = E

 ∑
A∈(V3)

ĪA


2

= S1 + 2S2 + 2S3, (54)

S1 :=
∑

A∈(V3)

EĪ2A, S2 :=
∑

{A,A′}⊂(V3):|A∩A′|=2

E(ĪAĪA′),

S3 :=
∑

{A,A′}⊂(V3):|A∩A′|=1

E(ĪAĪA′).
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We upper bound the sums S1, S1, S3 using simple inequality E(ĪAĪA′) ≤ EIA∪A′ . A straight-
forward calculation shows that

S1 ≤
∑

A∈(V3)

EIA =
∑

{i,j,k}⊂V

piwpjwpkw ≤
∑

{i,j,k}⊂V

p⋆iwp
⋆
jwp

⋆
kw ≤ U3

w

6
=

x3
w

6γ3
⟨y⟩3,

S2 ≤
∑

{i,j}⊂V

∑
{k,l}⊂V \{i,j}

EI{i,j,k}∪{i,j,l} =
∑

{i,j}⊂V

∑
{k,l}⊂V \{i,j}

piwpjwpkwplw

≤
∑

{i,j}⊂V

∑
{k,l}⊂V \{i,j}

p⋆iwp
⋆
jwp

⋆
kwp

⋆
lw ≤ U4

w

4
=

x4
w

4γ4
⟨y⟩4,

2S3 ≤
∑
i∈V

∑
{j,k}⊂V \{i}

∑
{s,t}⊂V \{i,j,k}

EI{i,j,k}∪{i,s,t}

=
∑
i∈V

∑
{j,k}⊂V \{i}

∑
{s,t}⊂V \{i,j,k}

piwpjwpkwpswptw

≤ 1

4

(∑
i∈V

piw

)5

≤ U5
w

4
=

x5
w

4γ5
⟨y⟩5.

Invoking these bounds in (54) and then summing (54) over w ∈ W we obtain (53).
Proof of (45). Given {i, j, k} ⊂ V and {u, v, w} ⊂ W the expected number of polychro-

matic triangles in Gc on vertices i, j, k and with edge colors u, v, w is the sum∑
π

piπu
pjπu

piπv
pkπv

pjπw
pkπw

that runs over permutations π = (πu, πv, πw) of (u, v, w). Using pab ≤ p⋆ab we upper bound
the sum by ∑

π

p⋆iπu
p⋆jπu

p⋆iπv
p⋆kπv

p⋆jπw
p⋆kπw

=
6

µ6
(xuxvxwyiyjyk)

2.

Consequently, we have

E|∆′′| ≤
∑

{i,j,k}⊂V

∑
{u,v,w}⊂W

6

µ6
(xuxvxwyiyjyk)

2 ≤ 1

6
⟨x2⟩3⟨y2⟩3. (55)

Count of 2-paths. Here we show (24). For u, v ∈ W we denote by Λu (respectively Λuv)
the set of 2-paths of Gc with both edges colored u (respectively with edges receiving different
colors u and v). Every 2-path of Gc is projected to a path in G′ by removing edge colors.
Let Λ∗

u (respectively Λ∗
uv) denote the sets of 2-paths in G′ obtained as projections of 2-paths

of Λu (respectively Λuv). Denote Λ′ = ∪u∈WΛ∗
u and Λ′′ = ∪{u,v}⊂WΛ∗

uv. The union Λ′ ∪Λ′′

contains all 2-paths of G′. Hence NΛ = |Λ′ ∪ Λ′′|. To show (24) we use inclusion-exclusion
identity

NΛ = |Λ′ ∪ Λ′′| = |Λ′|+ |Λ′′| − |Λ′ ∩ Λ′′|

and evaluate each term on the right

|Λ′| = 3|∆′| = n

2γ
⟨x3⟩⟨y⟩3 +OP (

√
n), (56)

|Λ′′| = n

2
⟨x2⟩2⟨y⟩2⟨y2⟩+OP (

√
n). (57)

E|Λ′ ∩ Λ′′| ≤ 2

γ
⟨x3⟩⟨x2⟩⟨y2⟩2⟨y⟩ = O(1). (58)
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The first identity of (56) is obvious, the second relation is shown in (44). It remains to prove
(57), (58).

Proof of (58). Given a path i ∼ j ∼ k ∈ Λ′ ∩ Λ′′ there exists {u, v} ∈ V such that

the monochromatic 2-path i
u∼ j

u∼ k of color u is present in Gc and at least one of the
edges i

v∼ j, j
v∼ k of color v is present in Gc. In the inequality below IiuIjuIku represents

the indicator of the monochromatic triangle and IivIjv represents the indicator of additional
edge of color v connecting i and j in Gc. We have

E|Λ′ ∩ Λ′′| ≤ E

∑
u∈W

∑
v∈W\{u}

∑
{i,j,k}⊂V

2IiuIjuIku (IivIjv + IivIkv + IjvIkv)


= 2

∑
u∈W

∑
v∈W\{u}

∑
{i,j,k}⊂V

piupjupku (pivpjv + pivpkv + pjvpkv)

≤ 2
∑
u∈W

∑
v∈W\{u}

∑
(i,j,k)∈V 3

piupjupkupivpjv

≤ 2
∑
u∈W

∑
v∈W\{u}

∑
(i,j,k)∈V 3

p⋆iup
⋆
jup

⋆
kup

⋆
ivp

⋆
jv ≤ 2

γ
⟨x3⟩⟨x2⟩⟨y2⟩2⟨y⟩.

Proof of (57). In the proof we use relations

|Λ∗
uv| ≤ |Λuv| =

∑
(i,j,k)∈V 3

0

IiuIjuIjvIkv, (59)

|Λuv| − |Λ∗
uv| = |Λ∗

u ∩ Λ∗
v| = 3|∆∗

u ∩∆∗
v|. (60)

We only comment on (60) since (59) is obvious. The difference |Λuv| − |Λ∗
uv| counts 2-paths

i ∼ j ∼ k ∈ Λ∗
uv such that both colored paths i

u∼ j
v∼ k and i

v∼ j
u∼ k are present in

Λuv. This means that i, j, k ∈ Nu ∩ Nv. In particular, we have |Λuv| − |Λ∗
uv| = |Λ∗

u ∩ Λ∗
v|.

Hence the first identity of (60). The second identity of (60) follows from the fact that in G′

a triangle gives rise to three 2-paths.
Denote T3 =

∑
{u,v}⊂W |Λuv|. We establish (57) in three steps: we show that

|Λ′′| =
∑

{u,v}⊂W

|Λ∗
uv|+OP (1), (61)

∑
{u,v}⊂W

|Λ∗
uv| = T3 +OP (1), (62)

T3 =
n

2
⟨x2⟩2⟨y⟩2⟨y2⟩+OP (

√
n). (63)

Step 1. Here we prove (61). To this aim we apply inclusion-exclusion inequality

0 ≤
∑

{u,v}⊂W

|Λ∗
uv| − |Λ′′| ≤ R2, R2 :=

∑
{u,v},{s,t}⊂W :
{u,v}̸={s,t}

|Λ∗
uv ∩ Λ∗

st| (64)

and show that

ER2 ≤ 1

n
⟨x2⟩4⟨y4⟩⟨y2⟩2 + ⟨x2⟩3⟨y⟩⟨y2⟩⟨y3⟩+ 1

µ
⟨x2⟩2⟨x3⟩⟨y2⟩2⟨y3⟩.

To estimate ER2 we split

R2 = R2.0 +R2.1, where R2.k =
∑

{u,v},{s,t}⊂W :
|{u,v}∩{s,t}|=k

|Λ∗
uv ∩ Λ∗

st|
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and upper bound ER2.0, ER2.1. We start with ER2.0. For {u, v} ∩ {s, t} = ∅ we have

E|Λ∗
uv ∩ Λ∗

st| ≤ E
∑

(i,j,k)∈V 3
0

IiuIjuIjvIkv (IisIjsIjtIkt + IitIjtIjsIks)

= E
∑

(i,j,k)∈V 3
0

piupjupjvpkv (pispjspjtpkt + pitpjtpjspks)

≤ 2
n3

µ8
x2
ux

2
vx

2
sx

2
t ⟨y4⟩⟨y2⟩2.

Here the sum
∑

(i,j,k)∈V 3
0
IiuIjuIjvIkv runs over colored 2-paths i

u∼ j
v∼ k ∈ Λuv and

IisIjsIjtIkt + IitIjtIjsIks accounts for the matching 2-paths from Λst. In the very last in-
equality we used ppq ≤ p⋆pq, see (26). We obtain

ER2.0 ≤
∑

{u,v},{s,t}⊂W :
|{u,v}∩{s,t}|=0

2
n3

µ8
x2
ux

2
vx

2
sx

2
t ⟨y4⟩⟨y2⟩2 ≤ 1

n
⟨x2⟩4⟨y4⟩⟨y2⟩2.

We similarly upper bound ER2.1. For u = s we have

E|Λ∗
uv ∩ Λ∗

ut| ≤ E
∑

(i,j,k)∈V 3
0

IiuIjuIjvIkv (IiuIjuIjtIkt + IitIjtIjuIku)

= E
∑

(i,j,k)∈V 3
0

piupjupjvpkv (pjtpkt + pitpjtpku)

≤ n3

µ6
x2
ux

2
vx

2
t ⟨y⟩⟨y2⟩⟨y3⟩+

n3

µ7
x3
ux

2
vx

2
t ⟨y2⟩2⟨y3⟩.

Hence

ER2.1 ≤
∑

{u,v}⊂W

∑
t∈W\{u,v}

E (|Λ∗
uv ∩ Λ∗

ut|+ |Λ∗
uv ∩ Λ∗

vt|)

≤ ⟨x2⟩3⟨y⟩⟨y2⟩⟨y3⟩+ 1

µ
⟨x2⟩2⟨x3⟩⟨y2⟩2⟨y3⟩.

Step 2. Here we show (63). From (60) and (49) we obtain

T3 −
∑

{u,v}⊂W

|Λ∗
uv| = 3

∑
{u,v}⊂W

|∆∗
u ∩∆∗

v| = 3T2 = oP (1). (65)

Step 3. Here we prove (63). To this aim we show that

ET3 =
n

2
⟨x2⟩2⟨y⟩2⟨y2⟩+O(1) and VarT3 = O(n). (66)

Note that (66) combined with Chebyshev’s inequality implies T3 = ET3 +OP (
√
VarT3).

Let us evaluate ET3. We have ET3 =
∑

{u,v}⊂W

∑
(i,j,k)∈V 3

0
piupjupjvpkv, by the second

relation of (59). We approximate ET3 by T ′ =
∑

{u,v}⊂W

∑
(i,j,k)∈V 3

0
p⋆iup

⋆
jup

⋆
jvp

⋆
kv. Inequal-

ities (26) imply 0 ≤ T ′ −ET3 ≤ R′, where

R′ =
∑

{u,v}⊂W

∑
(i,j,k)∈V 3

0

p⋆iup
⋆
jup

⋆
jvp

⋆
kv(p

⋆
iu + p⋆ju + p⋆jv + p⋆kv)

≤ 1

γ
⟨x3⟩⟨x2⟩

(
⟨y2⟩2⟨y⟩+ ⟨y3⟩⟨y⟩2

)
.

Combining this bound with (43) we obtain the first relation of (66).
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It remains to prove the second relation of (66). Note that |Λuv| and |Λs,t| are independent
for {u, v} ∩ {s, t} = ∅. Hence

VarT3 = S1 + S2, Sk =
∑

{u,v},{s,t}⊂W :
|{u,v}∩{s,t}|=k

Cov(|Λuv|, |Λst|), k = 1, 2.

In the rest part of the proof we show that S1 = O(n) and S2 = O(n).

Let us evaluate S2 =
∑

{u,v}⊂W Var|Λuv|. Given {u, v} ⊂ W and (i, j, k) ∈ V 3
0 we denote

I(i,j,k) = IiuIjuIjvIkv, Ī(i,j,k) = I(i,j,k) −EI(i,j,k), (67)

I{i,j,k} =
∑
π

I(πi,πj ,πk), Ī{i,j,k} = I{i,j,k} −EI{i,j,k}.

Here the sum run over permutations π = (πi, πj , πk) of i, j, k. We write |Λuv| − E|Λuv| in
the form

∑
A⊂V,|A|=3 ĪA, where ĪA = Ī{i,j,k} for A = {i, j, k}, and note that ĪA and ĪA′ are

uncorrelated unless |A ∩A′| ≥ 1. Hence

Var|Λuv| = E

 ∑
A⊂V,|A|=3

ĪA

2

= S2.1(u, v) + S2.2(u, v) + S2.3(u, v),

S2.k(u, v) =
∑
A⊂V :
|A|=3

∑
A′⊂V : |A′|=3,

|A∩A′|=k

E(ĪAĪA′), k = 1, 2, 3.

Now we upper bound the terms S2.r(u, v), r = 1, 2, 3. We use the simple inequality for the
covariance of non-negative random variables X,Y ,

E(XY )−EXEY ≤ E(XY ). (68)

We apply (68) to sums of Bernoulli random variables. We have for distinct i, j, k, q, r ∈ V

EĪ2(i,j,k) ≤ EI(i,j,k) = piupjupjvpkv ≤ p⋆iup
⋆
jup

⋆
jvp

⋆
kv =

1

µ4
x2
ux

2
vyiy

2
j yk, (69)

E
(
Ī(i,j,k)

(
Ī{i,j,q} + Ī{i,q,k} + Ī{q,j,k}

))
≤ E

(
I(i,j,k)

(
I{i,j,q} + I{i,q,k} + I{q,j,k}

))
≤ E

(
I(i,j,k)9 (Iqu + Iqv)

)
= 9piupjupjvpkv (pqu + pqv) (70)

≤ 9p⋆iup
⋆
jup

⋆
jvp

⋆
kv

(
p⋆qu + p⋆qv

)
=

9

µ5
x2
ux

2
v(xu + xv)yiy

2
j ykyq, (71)

E
(
Ī(i,j,k)

(
Ī{i,r,q} + Ī{r,j,q} + Ī{r,q,k}

))
≤ E

(
I(i,j,k)

(
I{i,r,q} + I{r,j,q} + I{r,q,k}

))
≤ E

(
I(i,j,k)9 (IquIrv + IqvIru)

)
= 9piupjupjvpkv (pquprv + prupqv) (72)

≤ 9p⋆iup
⋆
jup

⋆
jvp

⋆
kv

(
p⋆qup

⋆
rv + p⋆rup

⋆
qv

)
=

18

µ6
x3
ux

3
vyiy

2
j ykyqyr. (73)

In the first inequality of (70) (respectively (72)) we used inequality I{l,r,q} ≤ 3(Iqu + Iqv)
(respectively I{l,r,q} ≤ 3(IquIrv + IqvIru)) which hold for any distinct l, q, r ∈ V .

Estimation of S2.3(u, v). Combining the inequality (
∑6

i=1 ai)
2 ≤ 6

∑6
i=1 a

2
i , which follows

by Hölder’s inequality, with (69) we obtain

EĪ2{i,j,k} ≤ 6
∑
π

EĪ2(πi,πj ,πk)
≤ 6

µ4
x2
ux

2
vyiyjyk(2yi + 2yj + 2yk).

Summing over {i, j, k} ⊂ V we have

S2.3(u, v) =
∑

{i,j,k}⊂V

EĪ2{i,j,k} ≤ 6
n

m2
x2
ux

2
v⟨y2⟩⟨y⟩2. (74)
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Estimation of S2.2(u, v). Here we use inequality (71). We have

S2.2(u, v) =
∑

(i,j,k)∈V 3
0

∑
q∈V \{i,j,k}

E
(
Ī(i,j,k)

(
Ī{i,j,q} + Ī{i,q,k} + Ī{q,j,k}

))
(75)

≤ 9

µ5

∑
(i,j,k)∈V 3

0

∑
q∈V \{i,j,k}

x2
ux

2
v(xu + xv)yiy

2
j ykyq

≤ 9

γ

n

m2
x2
ux

2
v(xu + xv)⟨y2⟩⟨y⟩3.

Estimation of S2.1(u, v). Here we use inequality (73). We have

S2.1(u, v) =
∑

(i,j,k)∈V 3
0

∑
{q,r}⊂V \{i,j,k}

E
(
Ī(i,j,k)

(
Ī{i,r,q} + Ī{r,j,q} + Ī{r,q,k}

))
(76)

≤ 18

µ6

∑
(i,j,k)∈V 3

0

∑
{q,r}⊂V \{i,j,k}

x3
ux

3
vyiy

2
j ykyqyr

≤ 9

γ2

n

m2
x3
ux

3
v⟨y2⟩⟨y⟩4.

Combining (74), (75) and (76) we obtain

S2 =
∑

{u,v}⊂W

Var|Λuv|

≤ n

(
3⟨x2⟩2⟨y2⟩⟨y⟩2 + 9

γ
⟨x3⟩⟨x2⟩⟨y2⟩⟨y⟩3 + 9

2γ2
⟨x3⟩2⟨y2⟩⟨y⟩4

)
= O(n).

Let us evaluate S1. To this aim we write S1 in the form

S1 =
∑

{u,v}⊂W

∑
t∈W\{u,v}

(Cov(|Λuv|, |Λut|) +Cov(|Λuv|, |Λvt|))

and evaluate Cov(|Λuv|, |Λut|) and Cov(|Λuv|, |Λvt|). We now focus on Cov(|Λuv|, |Λut|).
We fix u, v, t and use notation (67). In addition, we denote

I(i,j,k) = IiuIjuIjtIkt, Ī(i,j,k) = I(i,j,k) −EI(i,j,k).

In view of the second relation of (59) we have

|Λuv| −E|Λuv| =
∑

(i,j,k)∈V 3
0

Ī(i,j,k), |Λut| −E|Λut| =
∑

(p,q,r)∈V 3
0

Ī(p,q,r).

Furthermore, since for {i, j}∩{p, q} = ∅ random variables Ī(i,j,k), Ī(p,q,r) are independent we
have

Cov(|Λuv|, |Λut|) =
∑

(i,j,k)∈V 3
0

∑
(p,q,r)∈V 3

0

E
(
Ī(i,j,k)Ī(p,q,r)

)
(77)

=
∑

(i,j,k)∈V 3
0

∑
(p,q,r)∈V 3

0 :
{p,q}∩{i,j}̸=∅

E
(
Ī(i,j,k)Ī(p,q,r)

)
=: S′

1(u, t; v) + S′
2(u, t; v).

Here, for h = 1, 2, we denote

S′
h(u, t; v) =

∑
(i,j,k)∈V 3

0

∑
(p,q,r)∈V 3

0 :
|{p,q}∩{i,j}|=h

E
(
Ī(i,j,k)Ī(p,q,r)

)
.

24



Now we estimate S′
h(u, t; v) using inequalities (68) and pab ≤ p⋆ab ≤ xbya/µ, see (26).

Estimation of S′
2(u, t; v). We have

S′
2(u, t; v) =

∑
(i,j,k)∈V 3

0

∑
r∈V \{i,j}

E
(
Ī(i,j,k)(Ī(i,j,r) + Ī(j,i,r))

)
≤

∑
(i,j,k)∈V 3

0

∑
r∈V \{i,j}

E
(
I(i,j,k)(I(i,j,r) + I(j,i,r))

)
=

∑
(i,j,k)∈V 3

0

∑
r∈V \{p,q}

piupjupjvpkv(pjtprt + pitprt)

≤ n4

µ6
x2
ux

2
vx

2
t

(
⟨y3⟩⟨y⟩3 + ⟨y2⟩2⟨y⟩2

)
.

Estimation of S′
1. Denote for short a(i,j,q,r) = I(i,q,r) + I(q,i,r) + I(j,q,r) + I(q,j,r) and

ā(i,j,q,r) = a(i,j,q,r) −E a(i,j,q,r). We have

S′
1(u, t; v) =

∑
(i,j,k)∈V 3

0

∑
(q,r)∈V 2: q ̸=r,
{q,r}∩{i,j}=∅

E
(
Ī(i,j,k)ā(i,j,q,r)

)
.

Invoking inequalities

E
(
Ī(i,j,k)ā(i,j,q,r)

)
≤ E

(
I(i,j,k)a(i,j,q,r)

)
= piupjupjvpkv (pqupqtprt + pqupitprt + pqupjtprt)

≤ 1

µ6
x3
ux

2
vx

2
t

(
2yiy

2
j yky

2
qyt + y2i y

2
j ykyqyr + yiy

3
j ykyqyr

)
we obtain

S′
1(u, t; v) ≤

n5

µ7
x3
ux

2
vx

2
t

(
3⟨y2⟩2⟨y⟩3 + ⟨y3⟩⟨y⟩4

)
.

Combining the upper bounds for S′
1(u, v; t), S

′
2(u, v; t) above with (77) we obtain∑

{u,v}⊂W

∑
t∈W\{u,v}

Cov(|Λuv|, |Λut|) ≤ n⟨x2⟩3
(
⟨y3⟩⟨y⟩3 + ⟨y2⟩2⟨y⟩2

)
+

n

γ
⟨x3⟩⟨x2⟩2

(
3⟨y2⟩2⟨y⟩3 + ⟨y3⟩⟨y⟩4

)
.

The same bound holds for
∑

{u,v}⊂W

∑
t∈W\{u,v} Cov(|Λuv|, |Λvt|). Hence S1 = O(n). Proof

of Theorem 3 is complete.
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