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Abstract—The evolution of floating-point computation has been
shaped by algorithmic advancements, architectural innovations,
and the increasing computational demands of modern technolo-
gies, such as artificial intelligence (AI) and high-performance
computing (HPC). This paper examines the historical progression
of floating-point computation in scientific applications and con-
textualizes recent trends driven by AI, particularly the adoption
of reduced-precision floating-point types. The challenges posed
by these trends, including the trade-offs between performance,
efficiency, and precision, are discussed, as are innovations in
mixed-precision computing and emulation algorithms that offer
solutions to these challenges. This paper also explores archi-
tectural shifts, including the role of specialized and general-
purpose hardware, and how these trends will influence future
advancements in scientific computing, energy efficiency, and
system design.

Index Terms—floating-point, computer architecture, GPU,
CPU, emulation, mixed-precision

I. INTRODUCTION

Floating-point computation is foundational to modern
scientific applications, enabling the representation of real
numbers across a wide range of magnitudes and providing
the precision necessary for calculations in fields like physics,
chemistry, and engineering. Over the decades, the evolution
of floating-point computation has been influenced by the
increasing complexity of scientific problems, technological
advancements, and the rise of new computational paradigms,
such as deep neural network- (DNN-) based AI algorithms [1].

This paper explores the history of floating-point
computation, focusing on architectural innovations that have
shaped the current landscape. It examines key developments,
from early emulation to dedicated hardware, and highlights
recent trends, including mixed-precision computing and
reduced-precision floating-point types (Figure 1). The impact
of these trends on scientific computing and AI is analyzed,
along with the challenges they present regarding system
design, energy efficiency, and performance.

Fig. 1. Various floating-point (FP) representations used today in scientific
computing and AI. The exponent bits determine the dynamic range of the
FP number, while the mantissa bits determine the precision. Four IEEE FP
types are shown: half (FP16), single (FP32), double (FP64), and quad (FP128).
TensorFloat-32 (TF32), available on NVIDIA GPUs starting with the Ampere
architecture, is a Tensor Core matrix multiply compute mode where input and
output are FP32, but input operands are truncated. Bfloat16 (BF16), which
was introduced by Google [2], has the same range as FP32 at the expense
of mantissa bits. Two variants of FP8, with different splits of exponent and
mantissa bits [3] are shown.

II. BENCHMARKS

Throughout this paper, we will refer to several community
benchmarks that have emerged over time, each serving
a critical role in evaluating and exposing performance
characteristics and limitations of the underlying hardware,
as well as serving as a readily conveyed, widely understood
record of progress. These benchmarks have become standard
tools in the high-performance computing (HPC) community
for assessing the efficiency and effectiveness of various
computing systems. While in this paper, we focus on floating-
point operation-focused benchmarks, other benchmarks exist.
One such example is the Graph 500 [4], which measures a
system’s performance on graph-based problems important for
large dataset analysis.
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The most well-known benchmark is HPL [5] (High-
Performance Linpack). Traditionally used to rank systems in
the TOP500 list [6], [7], which focuses on a system’s ability
to solve dense linear equations, it measures the floating-point
computing power of supercomputers, highlighting their
raw computational capability. As valuable as it is, HPL
emphasizes peak performance of double-precision dense
matrix multiplications, which may not always correlate with
real-world application performance.

In contrast, the Green500 [8] list focuses on the energy
efficiency of the HPL benchmark, measuring the FLOPS
per watt delivered by a system. As power consumption
becomes an increasingly critical factor in supercomputing,
with recent systems approaching 40 MegaWatts of power
consumption [7], Green500 plays a pivotal role in pushing the
development of energy-efficient architectures and balancing
performance with power usage.

HPCG [9] (High-Performance Conjugate Gradient) was
introduced to provide a more comprehensive measure of
real-world application performance, especially for systems
that perform well in terms of memory bandwidth, network
latency, and irregular memory access patterns. HPCG aims to
capture a broader range of system performance characteristics,
some of which HPL might overlook, providing insight into
a machine’s ability to handle more complex, memory-bound
workloads.

A more recent addition, HPL-MxP (formerly called HPL-
AI) [10], or HPL for mixed precision, is designed to bench-
mark systems optimized for AI and machine learning work-
loads. By focusing on mixed-precision operations, HPL-MxP
reflects the growing need for systems capable of efficiently
handling lower-precision calculations typical in AI models,
exposing the performance capabilities of modern hardware
in these emerging domains without abandoning the needs of
scientific computing.

Each of these benchmarks exposes different performance
aspects of a computer system, from raw computational power
and energy efficiency to memory and network bandwidth and
latency to flexibility concerning floating-point precision. They
give a holistic view of how well a machine will likely perform
across various real-world tasks. Viewed against the landscape
of history, as seen in Figures 2 and 3, these benchmarks can
provide not only a comparator to larger hardware trends (such
as processor efficiency or transistor density), but an indication
of the factors that will constrain progress in future systems.
Taken together, they are essential tools for guiding hardware
design and system optimizations in the quest for faster, more
efficient, and versatile computing platforms.

Fig. 2. Historical record of the advances made in transistor density and
process efficiency [11], contrasted with the increases seen in the TOP500 and
Green500 lists since 2013. All series are normalized to 1.0 at the outset of
the chart in 2013. It is notable that both the TOP500 and Green500 entries
have improved at a far greater rate than process technology and, further, that
the TOP500 (performance) has increased at a greater rate than the Green500
(efficiency).

Fig. 3. Ratio of HPL-MxP (formerly HPL-AI) Rmax to HPL Rmax

over time, since the inception of the HPL-MxP benchmark. Some top-
ranked Supercomputers are highlighted with colors and labels. The bubble
size is inversely proportional to the Top500 HPL ranking of that particular
supercomputer, which explains why Summit or Fugaku bubbles shrink over
time. In addition to the general trend of the ratio increasing over time for
top-ranked systems, implementation optimizations also increase the speed-up
over time, as illustrated by the Summit and Fontier systems.

III. THE EVOLUTION OF FLOATING-POINT COMPUTATION

A. Early Emulation

In the early days of computing, into the mid-1950s,
floating-point operations were typically performed via
software emulation, where general-purpose processors
simulated floating-point arithmetic utilizing fixed-point
representations and operations [12]. This approach, while
functional, was slow and resource-intensive. Emulation
required many CPU cycles for each floating-point operation,
making these computations much slower than integer
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arithmetic.

Despite its limitations, emulation allowed early computers
to perform scientific calculations and helped lay the foundation
for future advancements in floating-point hardware throughout
the 1960s and 1970s.

B. The Co-Processor Era

The introduction of dedicated floating-point co-processors
in the 1980s marked a significant leap forward in floating-
point computation. These co-processors, such as Intel’s
8087 [13], were separate hardware components designed
to handle floating-point operations independently of the
CPU. This separation significantly improved performance and
allowed computers to tackle more complex scientific problems.

While the 8087 might be the best-known example of
this technology, co-processors were in widespread use at the
time. For example, the Motorola 68020, relied on external
FPUs, such as the 68881 [14], similar to the way in which
Intel’s pre-x486 and AMD’s pre-K5 architectures, used
external units like the 8087. External FPUs were also seen
in early SPARC systems and MIPS processors, such as the
SPARCstation 1 with the Weitek 3170 FPU [15] and the
MIPS R4000.

However, using co-processors introduced additional system
complexity, requiring specialized hardware and coordination
between the CPU and the floating-point unit (FPU). Despite
this, co-processors became a staple in high-performance
systems, enabling faster scientific computing and simulations.

C. Integration of Floating-Point Units

The release of Intel’s x486 [16] processor in 1989 marked
a turning point in floating-point computation. The x486
integrated the FPU directly into the CPU, eliminating the
need for separate hardware. This integration simplified system
design, improved performance, and made floating-point
operations a standard feature of general-purpose computing.

As computing requirements expanded, especially in fields
such as scientific computing and multimedia, FPUs became
standard across many architectures. With the x486, floating-
point computation became more accessible and widely used
in applications such as computer graphics, simulations, and
scientific calculations. This development set the stage for
the widespread adoption of floating-point hardware in both
consumer and professional computing environments.

Beyond Intel’s x86 line, many CPU architectures incorporated
FPUs, either as external coprocessors or integrated directly
into the CPU, to enhance floating-point performance. Notable
examples include the Motorola 68040 [17], which was the first
in the 68000 series to integrate the FPU, and the PowerPC
601 [18], which became popular in Apple’s early Macintosh
systems for its integrated floating-point capabilities.

D. The GPU Revolution

GPUs were initially developed in the 1980s and 1990s to
meet the growing demand for 2D and 3D graphics rendering.
Early GPUs, produced by companies such as SGI (Silicon
Graphics), 3dfx, NVIDIA, and ATI (later acquired by AMD),
were primarily focused on enhancing the real-time rendering
of images, textures, and geometry, especially in gaming and
graphical user interfaces (GUIs). A significant milestone came
in 1999 with the release of NVIDIA’s GeForce 256 [19],
marketed as the first “GPU” capable of processing graphics
independently from the CPU. This allowed the CPU to
focus on other tasks while the GPU specialized in real-time
rendering. GPUs handled critical graphics tasks such as vertex
transformations, lighting calculations, and texture mapping,
all essential for 3D graphics in gaming and multimedia.

The early 2000s saw another major shift with the
introduction of programmable graphics processing units
(GPUs). NVIDIA’s GeForce3, launched in 2001, was a key
milestone in this revolution, offering programmable shaders
that allowed developers to directly program the GPU for
custom operations, including floating-point computations [20].

The mid-2000s marked a turning point for GPUs, as
their parallel processing capabilities were broadly recognized
as useful in scientific and engineering computing. Unlike
CPUs, which are optimized for serial processing and excel at
handling a few threads quickly, GPUs have hundreds or even
thousands of cores optimized for parallel workloads, making
them ideal for tasks that can be divided into many smaller
operations that thousands of threads can execute. This made
GPUs especially useful in HPC, where they could accelerate
simulations and large-scale mathematical computations, as
well as in machine learning and AI, where they became
indispensable for training deep learning models.

TABLE I
GPU GENERATIONS: COMPUTE THROUGHPUT VS MEMORY BANDWIDTH

Figure of Merit Volta Ampere Hopper Blackwell
(V100) (A100) (H200) (B200)

FP64 FMA (TFLOP/s) 7.8 9.75 33.5 40
FP64 Tensor (TFLOP/s) N/A 19.5 67 40
FP16 FMA (TFLOP/s) 31.4 78 134 80
FP16 Tensor (TFLOP/s) 125 312 989 2250
Memory BW (TB/s) 0.9 2.0 4.8 8
FP64 FMA (B/FLOP) 0.124 0.225 0.158 0.220
FP64 Tensor (B/FLOP) N/A 0.112 0.079 0.220
FP16 FMA (B/FLOP) 0.031 0.028 0.039 0.110
FP16 Tensor (B/FLOP) 0.008 0.007 0.005 0.004

NVIDIA’s CUDA [21] (Compute Unified Device Architecture)
platform, first introduced in 2006, enabled a broad developer
base to harness GPU power for non-graphics workloads. As
a result, GPUs, initially designed for rendering graphics,
soon became indispensable for general-purpose computing
tasks, particularly in scientific computing [22]. Breakthroughs
in AI algorithms in the same timeframe [23], [24] rapidly
led to leveraging GPUs outside of scientific computing. The
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GPU’s ability to perform parallel floating-point operations at
high speeds, complemented by equally impressive bandwidth
capabilities (see Table I), firmly established them as ideal
for diverse tasks requiring massive computational power,
from training deep learning models to running large-scale
simulations in physics and biology.

Today, GPUs are widely used in fields as varied as
engineering and scientific simulations, medical research,
cryptocurrency mining, big data processing, finance, and
countless AI applications, cementing their role as a critical
tool for a wide range of computational tasks beyond graphics
rendering.

IV. RECENT TRENDS IN FLOATING-POINT COMPUTATION

A. The Rise of AI and Reduced Precision

Artificial intelligence, particularly deep learning, has
profoundly impacted floating-point computation. AI workloads
are dominated by matrix multiplications and tensor operations
which can tolerate lower precision without a significant loss in
accuracy. As a result, reduced-precision floating-point types,
such as FP16 (half-precision), BF16 (brain floating-point,
also referred to as bfloat16), and, most recently, FP8 [3] have
become increasingly popular in AI applications (see Figure 1).

Reduced precision offers several advantages, including
faster computations and lower energy consumption. In
AI, especially in training and inference tasks, models can
maintain high accuracy using lower precision, which leads
to improved throughput and efficiency. This shift has driven
the development of specialized hardware, such as NVIDIA’s
Tensor Cores [25], initially optimized for matrix operations
at a reduced precision.

It should be noted that the move toward reduced precision
capabilities poses challenges for applications that require
higher accuracy, such as scientific simulations and financial
modeling. While AI applications can often tolerate lower
precision, many scientific fields depend on high-precision
calculations to ensure the validity of their results.

B. Mixed-Precision Computing

Mixed-precision computing has emerged as a promising
solution to address the limitations of reduced precision.
Mixed-precision algorithms [26], distinct from the mixed-
precision operations they sometimes leverage, dynamically
adjust the precision of floating-point calculations based on the
accuracy required for each specific task. This approach allows
systems to use lower precision for less critical calculations
while reserving higher precision for tasks that require greater
accuracy (see [27]), requiring careful algorithmic design to
ensure that performance gains from using lower precision do
not come at the expense of accuracy.

In our discussion of mixed-precision computation, we
will explore an approach that involves using different levels
of precision at various stages of the computation process
for solving a dense system of equations. Specifically, one
phase of the computation, where the highest level of accuracy
is not critical, may be performed using a lower (or even
fixed) precision, such as half-precision (FP16), to optimize
performance and reduce resource consumption [28].

As the computation progresses, we will switch to a higher
precision, such as single-precision (FP32) or double-precision
(FP64), for parts of the process where increased accuracy is
essential. This transition is necessary in phases where errors
accumulated during earlier steps must be corrected or refined,
ensuring that the final result meets the desired accuracy
thresholds. The dynamic adjustment between lower and
higher precision enables a balance between computational
speed, energy efficiency, and numerical precision. By
strategically employing mixed precision, we can achieve
significant performance gains without compromising the
overall accuracy of the computation.

Mixed-precision computing has proven especially useful
in AI [29] and HPC [30]. For example, in deep learning,
models can be trained using a combination of FP8, BF16,
FP16, and FP32 (single precision) calculations, reducing the
computational load without sacrificing accuracy. The same
domain affords opportunities for finer-grained application of
this technique. For example, forward propagation through
a neural network typically requires higher precision for
weights and activations. In contrast, gradients in the backward
propagation (used for updating weights) require a higher
dynamic range. This has led to the introduction of two
different FP8 variants, E4M3 and E5M2 [3]. Mixed-precision
algorithms must manage these precision transitions efficiently
to maximize performance without sacrificing the quality of
results.

TABLE II
MIXED-PRECISION ITERATIVE REFINEMENT SOLVER (FROM CUSOLVER)

PERFORMANCE AND EFFICIENCY FOR SOLUTION OF A 32K
DOUBLE-PRECISION COMPLEX SYSTEM OF EQUATIONS

Volta Ampere Hopper
(V100) (A100) (H200)

Performance FP64 6.6 16.9 42.6
TFLOP/s FP16+FP64 MxP 34.6 74.6 124.2
Efficiency FP64 28 45 78
GFLOP/s/Watt FP16+FP64 MxP 173 262 529

This technique has also been applied in scientific computing,
in cases where certain phases of simulations can tolerate
lower precision, allowing for faster computations (see Table II
and Figure 4). Using error-correction techniques, such as
stochastic rounding [31] and iterative refinement to prevent
the propagation of errors, allows mixed-precision algorithms to
maintain high accuracy even when using reduced precision for
certain operations, making mixed-precision computing suitable
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for various scientific and AI applications. By optimizing pre-

Fig. 4. Representative power consumption curves measured on an NVIDIA
Ampere A100 GPU during the execution of two different equations solvers is
shown. The blue line shows the FP64 LU solver (corresponds to ZGETRF &
ZGETRS in LAPACK) while the green line shows the Tensor Core accelerated
mixed-precision iterative refinement solver available in the cuSOLVER library,
which relies on cuBLAS for Level 3 BLAS operations, both for a matrix size
of 32000. The mixed-precision solver is 4.4 times faster and 5.8 times more
power-efficient. Comparison with other GPU architectures can be found in
Table II.

cision based on task requirements, mixed-precision computing
improves both performance and energy efficiency, making it
an essential technique for modern floating-point computation.

C. Emulation in Modern Systems

Emulation, once a necessity in the absence of dedicated
floating-point hardware, has come back in modern systems.
Emulation techniques have evolved in terms of their un-
derlying methods, implementations, and the flexibility with
which they leverage (plentiful) hardware resources [32]–[34].
This adaptability is particularly important in domains such as
AI and HPC, where computational needs often exceed the
capabilities of the more established, higher-precision hardware
resources.

TABLE III
PRELIMINARY HPL PERFORMANCE AND EFFICIENCY MEASUREMENTS

ON BLACKWELL B200 GPU COMPARING EMULATION WITH S=7 [33] TO
NATIVE FP64 [DATA SUBJECT TO CHANGE]

Native Emulation
FP64 (s=7) Ratio

At Maximum TFLOP/s 34.5 68.4 2.0
Performance GFLOP/s/Watt 41.7 71.3 1.7
At Maximum TFLOP/s 23.1 53.4 2.3
Efficiency GFLOP/s/Watt 51.4 82.1 1.6

For example, high-precision floating-point operations can be
emulated on hardware designed for lower, or even fixed-, pre-
cision, allowing systems to balance performance and accuracy.
Emulation also provides a novel means to support evolving
computational demands without requiring a complete hardware
overhaul and something of an added degree of freedom in

designing new systems, as it allows some components to serve
a dual purpose. This is demonstrated in Table III where the
performance of HPL employing native FP64 and emulation
using the techniques described in [33] are compared. When
configured for maximum performance, emulation yields a
two-fold improvement in performance and 70% improvement
in power efficiency. In contrast, when maximum efficiency
is the target, emulation yields a 2.3x speed-up and a 60%
improvement in power efficiency.

V. CHALLENGES IN FLOATING-POINT COMPUTATION

A. Balancing Precision and Efficiency

One of the key challenges in floating-point computation
is finding the right balance between precision and efficiency.
High-precision formats like FP64 (double-precision) are
necessary for certain scientific applications, but they come
at a cost regarding speed and energy consumption, as seen
in Figure 3. In contrast, reduced-precision formats like FP16
are much faster and more efficient but may not provide the
accuracy needed for all tasks (See Figure 1).

This trade-off is particularly pronounced when considering
fields like AI, where reduced precision is sufficient for many
tasks, and scientific computing, where precision cannot be
sacrificed. Today, the same systems often run applications of
both stripes and the integration of AI methods and scientific
computing is a burgeoning field of study [35]. As a result,
system designers must carefully consider the needs of each
application when selecting the appropriate precision format.

B. Specialized vs. General-Purpose Hardware

Another challenge in floating-point computation is the
tension between specialized hardware (such as custom
FPUs with the ability to execute compound instructions)
and general-purpose processors (CPUs). On the one hand,
specialized hardware is optimized for specific tasks, such
as matrix multiplications in AI, but may lack the flexibility
needed for broader applications. General-purpose processors,
on the other hand, can handle a wide range of tasks but may
not be as efficient for specialized computations.

VI. ARCHITECTURAL INNOVATIONS AND THEIR IMPACT

A. Heterogeneous Computing

Heterogeneous computing has become a cornerstone
of modern floating-point computation, combining CPUs,
GPUs, and other accelerators to optimize performance. By
accelerating floating-point operations via different types of
processors, systems can achieve higher performance and
energy efficiency.

Unsurprisingly, the tolerance that programmers once had
for (relatively) distant accelerator engines, in terms of both
programmability and access latency, has decreased over
the years and concerted efforts have been undertaken to
enable practitioners to “eat their cake and have it too.”
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Almost a decade ago, the Sierra and Summit supercomputing
systems, at Lawrence Livermore (LLNL) and Oak Ridge
(ORNL) National Laboratories, respectively, leveraged
the first generation of NVLINK to tightly couple IBM’s
POWER9 processor to NVIDIA’s Volta (V100) GPU [36].
Today, NVIDIA’s Grace Hopper Superchip architecture [37]
integrates tightly coupled CPU and GPU components,
enabling seamless transitions between general-purpose and
specialized processing. This integration allows systems to
handle highly serial sparse calculations, high-throughput
scientific calculations, and reduced-precision AI workloads
efficiently. AMD’s Instinct MI300A and Apple’s M3 [38]–[40]
are additional realizations of the goal to tightly couple distinct
compute resources in a way that allows them to be viewed
less as separate entities and more as a potent, unified resource.

Entwined with the drive for tighter integration, the trend of
designing custom silicon tailored to specific software needs
has grown significantly. Companies like Google and Apple
have invested in designing chips, such as Google’s TPUs for
the acceleration of AI workloads and Apple’s A-series chips
for sophisticated mobile devices. These chips are designed
in tandem with the software they will run, allowing for
optimizations that general-purpose hardware cannot achieve.
This hardware-software co-design allows for significant
improvements in performance and efficiency, as the hardware
is fine-tuned to the software’s needs.

Addressing the needs of the developer community, het-
erogeneous computing environments [41]–[44] offer several
advantages, including the ability to optimize each task for
the most suitable processor. This approach not only improves
performance, but also reduces energy consumption for a broad
range of applications by offloading computationally intensive
tasks to specialized hardware.

B. Energy Efficiency in Floating-Point Hardware

Energy efficiency has become a critical consideration
in the design of floating-point hardware, particularly in
large-scale computing environments like data centers and
supercomputers. As computational workloads continue to
grow, the energy required to power these systems has become
a significant constraint, approaching 40 MegaWatts. The
centrality of this is reflected in the growing attention given to
the Green500 list, described in Section II.

Introduced by NVIDIA with the Volta [45] architecture
in 2017, Tensor Cores are specialized hardware designed to
accelerate matrix multiply-accumulate (MMA) operations,
which are critical for deep learning tasks such as matrix
multiplication and convolution in neural networks. These
cores are particularly efficient due to the use of complex
instruction types optimized for high-throughput operations
(Table I). Tensor Cores are available across many different
precisions, but are highly utilized in AI workloads that make
extensive use of dense matrix operations. This complex

operation approach significantly speeds up computations and
reduces energy requirements without compromising requisite
accuracy (see Figure 4 and Table II).

Tensor Cores [46] excel at accelerating matrix
multiplications (A[m × k] · B[k × n]), a fundamental
operation in neural networks. They process these operations
in blocks (e.g., (m, n, k) = (16, 16, 8)) [47], which
boosts throughput for critical tasks like forward and
backpropagation. This allows neural network operations that
typically require hundreds of regular GPU instructions to
be executed with relatively few tensor operations executed
in a fraction of the time. Furthermore, Tensor Cores enable
massive parallelism by executing multiple floating-point
operations simultaneously and in a systolic manner, resulting
in highly efficient throughput for deep learning models
such as convolutional neural networks (CNNs) [24] or
transformers [48]. Additionally, their power efficiency is
notable, as the ability of a single Tensor Core to perform
operations that would require multiple steps on a traditional
GPU reduces energy consumption—a key consideration for
both chip-level performance limits and the capabilities of
large-scale data centers.

Energy-efficient hardware is especially important in AI
and HPC environments, where systems must process massive
amounts of data while minimizing their environmental impact.
The development of low-power FPUs and specialized proces-
sors has enabled these systems to meet the growing demand
for computational power without exceeding energy constraints.

VII. THE ROLE OF FLOATING-POINT IN AI AND HPC

A. AI-Driven Workloads

Artificial intelligence, particularly deep learning, has
revolutionized floating-point computation. AI workloads are
characterized by large-scale matrix multiplications requiring
massive computational power. Reduced-precision floating-
point types like FP16 have become the standard for these
workloads, offering the best balance between performance
and accuracy [49].

Tensor operations, which are the foundation of most AI
models, benefit from the parallel processing capabilities of
GPUs and Tensor Cores. These specialized processors are
optimized for matrix operations, allowing AI models to be
trained and deployed more quickly and efficiently.

As AI grows in importance, the demand for floating-point
hardware that can handle AI-specific workloads will increase.
This trend will drive further innovations in reduced-precision
computing and specialized hardware for AI.

B. Scientific Computing and High Precision

In contrast to AI, scientific computing often requires
high-precision floating-point calculations. Most simulations
in fields like molecular dynamics, computational mechanics,
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and fluid dynamics depend on FP64 precision to ensure the
accuracy of their results. These calculations are typically run
on HPC systems designed to handle large-scale simulations
that require high precision and significant computational
power.

While reduced-precision techniques are becoming more
common in scientific computing [50], [51], they are often
used in conjunction with high-precision calculations. This
approach improves the speed and efficiency of scientific
simulations, enabling researchers to run more complex
models in less time without sacrificing accuracy.

VIII. HARDWARE’S IMPACT ON SOFTWARE

The interaction between hardware and software is deeply
interdependent, with hardware setting the constraints within
which software must operate. As hardware evolves, it directly
influences how software is designed, written, and optimized.
This co-evolution drives both fields forward, as hardware
improvements open new opportunities for software innovation
while software demands push hardware development to new
heights.

A. Performance and Capabilities

The performance of hardware, particularly in terms of
floating-point computation, dictates the upper limits of what
software can achieve. For example, the availability of GPUs
and Tensor Cores with specialized floating-point capabili-
ties has enabled popular AI frameworks like PyTorch [52],
TensorFlow [53], and JAX [54] to handle large-scale matrix
operations more efficiently. As a result, software developers
can design more complex models and algorithms that rely on
the enhanced performance provided by these hardware features
without undue consideration of architectural details.

B. Instruction Sets and Architectures

On CPUs, the hardware architecture, such as x86, ARM,
or RISC-V, determines the instruction sets (ISAs) available to
software. Software must be compatible with the hardware’s
architecture, which affects how low-level operations are
performed and how efficiently the software can execute. The
introduction of SIMD (Single Instruction, Multiple Data) and
specialized floating-point instructions has allowed scientific
and AI software to accelerate matrix operations and other
floating-point-intensive tasks.

Similarly, on GPUs, the Parallel Thread Execution (PTX) [47]
ISA is available to enable it as a computing device. PTX is
a part of CUDA, the parallel computing platform developed
by NVIDIA that enables GPUs to perform general-purpose
computing tasks beyond graphics rendering. It allows
developers to leverage the massive parallel processing power
of GPUs by offloading compute-intensive tasks from the CPU.
CUDA provides a unified architecture that manages thousands
of threads in a SIMT model (Single Instruction, Multiple
Threads), supports various precision modes (such as FP16

and FP64), and optimizes memory access, making it highly
efficient for parallel workloads like scientific computing, AI,
and machine learning.

As NVIDIA’s GPUs have evolved, CUDA has remained
central to utilizing them to maximum advantage, particularly
with the introduction of Tensor Cores for mixed-precision
operations, beginning with the Volta architecture. These
innovations have led to dramatic increases in compute
throughput, especially in AI/ML applications (Table I).
Memory bandwidth has also significantly improved, offering
higher Bytes/FLOP for non-Tensor Core operations. CUDA’s
ability to manage parallel execution, memory hierarchy,
and precision makes it essential for extracting maximum
performance from modern GPUs.

C. Specialized Hardware and Software Paradigms

Developing specialized hardware, such as GPU Tensor
Cores and Tensor Processing Units (TPUs) [55], has created
new software paradigms. For instance, deep learning frame-
works are optimized to leverage the parallelism of GPUs,
which has drastically improved the training times for neu-
ral networks. Without these hardware advances, modern AI
software could not scale to the levels required for training
models like GPT-4 [56] or other large neural networks. Con-
versely, this is an example of the inseparability of hardware
and software. Because software has been able to leverage
hardware capabilities to great advantage, technology has been
pushed to deliver ever greater resources to supply the needs
of applications.

IX. SOFTWARE’S IMPACT ON HARDWARE

Software has increasingly become a driving force in hard-
ware design, as complex and demanding applications push the
limits of existing hardware capabilities. As software grows
more intricate, hardware must evolve to meet the demands for
greater performance, efficiency, and flexibility.

A. Energy Efficiency and Power Constraints

As software applications become more resource-intensive,
hardware must prioritize energy efficiency to maintain perfor-
mance without consuming unsustainable amounts of power.
Big data, real-time analytics, and AI-driven applications have
all contributed to a demand for hardware that can deliver high
performance per watt. In response, hardware manufacturers
have developed energy-efficient architectures, such as Arm
processors for data centers, GPUs with dynamic voltage and
frequency scaling (DVFS) [57], as well as applications of this
technology to commodity desktop and server processors, for
example Intel’s SpeedStep [58] and AMD’s Cool’n’Quiet [59].

X. NON-STANDARD DATA TYPES

While floating-point representations, from FP8 to FP64,
dominate AI and scientific applications, several non-standard
data types, and their corresponding computational mecha-
nisms, have emerged in recent years. These data types offer
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marked potential advantages in terms of precision, energy
efficiency, and computational speed, particularly in special-
ized applications. Exotic formats and technologies such as
posits [60], Spiking Neural Networks (SNNs) [61], and analog
computing [62] offer tantalizing potential advantages along
several axes of interest, but they face significant hurdles in
terms of hardware and software support, scalability, and noise
management. As computing demands evolve, these data types
could find greater adoption in specialized fields where their
advantages are most beneficial and their shortcomings are
acceptable or less keenly felt, for example, in environments
requiring extreme levels of energy efficiency or domains with
specific accuracy requirements.

XI. ALGORITHMIC COMPLEXITY AND MEMORY
BANDWIDTH

A. Impact of Algorithmic Complexity on Floating-Point Per-
formance

The complexity of algorithms significantly influences the
efficiency of floating-point operations. For example, dense
linear algebra algorithms, such as matrix multiplications,
exhibit high floating-point operation intensity (a.k.a. arithmetic
intensity) and are well-suited to GPUs with high floating-point
throughput. In contrast, sparse matrix operations often require
irregular memory accesses, leading to memory bandwidth
bottlenecks that reduce floating-point efficiency. This impact
is so broadly and acutely felt, especially in contexts that
require real-time data processing, that multiple high-profile
benchmarks, most notably HPCG (see section II), provide a
figure of merit for systems, largely based on this characteristic.
As a result, optimizing for memory access patterns becomes
a critical aspect of hardware-software co-design in HPC and
AI. Table I shows pertinent GPU specifications for FP16
and FP64 computations and the corresponding Bytes/FLOP
values which are important for application performance.

The introduction of high-bandwidth memory (HBM) [63]
and on-chip memory hierarchies has helped mitigate some of
these issues by providing faster data access and reducing the
latency associated with memory operations. Figure 5 plots
the data from Table I, illustrating improvements over time in
the data access per floating-point operation over generations,
which is important for a very broad class of applications that
cannot leverage high-throughout matrix multiply operations.

Even with these hardware innovations, one of the remaining
key challenges in HPC and AI applications is performance
optimization across high and low arithmetic intensity
components of complex algorithms. Overcoming these
challenges often involves a technique called kernel fusion,
where large amounts of repeated data load and store operations
are avoided by combining multiple kernels, sometimes at the
expense of performing some extra floating-point operations.
A good example of this, from Transformers for LLM
applications, is Flash Attention and its variants [64], [65].

Fig. 5. Comparison of Bytes/FLOP across four generations of GPUs for FMA
and Tensor Core throughput from Table I. The dashed line shows Tensor Core
accelerated DGEMM performance using integer based emulation with 7 slices.

XII. FUTURE DIRECTIONS IN FLOATING-POINT
COMPUTATION

A. Advances in Mixed-Precision Techniques

As AI and scientific computing evolve, mixed-precision
computing will become increasingly important. Future systems
will likely incorporate more sophisticated algorithms that
dynamically adjust precision levels to optimize performance
and energy efficiency. These systems will be able to switch
between FP8, BF16, FP16, FP32, and FP64 as needed,
ensuring that each task is handled with the appropriate level
of precision.

This flexibility will be particularly valuable in environments
where both AI and scientific computing tasks are performed,
as it will allow systems to optimize for both speed and
accuracy without compromise.

B. Emulation for Flexibility

Emulation will continue to play a key role in floating-
point computation, particularly as new applications require
higher precision or more specialized calculations. Emulation
provides a flexible solution for extending the capabilities of
existing hardware, allowing systems to perform floating-point
operations that are not natively supported by the hardware,
and offering power efficiency gains (see Table III).

As computational demands grow, emulation will become
an increasingly valuable tool for maintaining flexibility and
extending the lifespan of hardware systems.

C. Energy-Efficient Designs

The need for energy-efficient floating-point hardware will
only increase as computational workloads grow. Future inno-
vations in floating-point design will focus on reducing power
consumption while maintaining high performance. This will

8



involve the development of more energy-efficient FPUs and
new architectures that minimize the energy cost of floating-
point operations. These innovations will be significant in data
centers and HPC environments, where energy consumption is
a major constraint on system performance.

XIII. CONCLUSION

The evolution of floating-point computation has been driven
by advancements in both hardware and software, shaped by
the demands of scientific research, artificial intelligence, and
high-performance computing. As the field continues to evolve,
innovations in mixed-precision computing, emulation, energy-
efficient design, and non-standard data types will play a critical
role in meeting the growing demands of modern applications.
By balancing the competing needs for precision, performance,
and energy efficiency, floating-point hardware will remain
a key component of scientific and AI-driven computation,
enabling future breakthroughs in research and technology.
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