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Abstract

Let R be a local Artin ring with residue field k of positive characteristic. We prove that every finite

flat group scheme over R whose special fiber belongs to a certain explicit family of non-commutative

k-group schemes is killed by its order. This is achieved via a classification result which rely on the

explicit study of the infinitesimal deformation theory for such non-commutative k-group schemes.

The main result answers positively in a new case a question of Grothendieck in SGA 3 on whether

all finite flat group schemes are killed by their order.

1 Introduction

Let S be a locally Noetherian base scheme and let G be an S-scheme. Denote by OS and OG their
respective structure sheaves. The S-scheme G is finite and flat if and only if OG is a locally free OS-
module of finite rank. A standard EGA reduction argument (see section 8.9, 8.10 and especially section
9.2 in EGA IV Tome 3 in [Gro66]), allows us to restrict locally and assume that S = Spec(R) for some
local Noetherian ring R and G = Spec(A) where A is a finite and free R-module of finite rank, say the
positive integer nR. By functoriality, the positive integer nR is the restriction to Spec(R) of a locally
constant function say n defined on S with positive integer values. Such function is called the order of
the finite flat S-scheme G.
Assume now that G = Spec(A) over Spec(R) has the extra structure of an R-group scheme. Note
that in notation and terminology in this article we will say R-group scheme instead of Spec(R)-group
scheme. The category of affine R-group schemes is anti-equivalent to the category of commutative Hopf
R-algebras. This implies that A has a natural structure of Hopf algebra over R. Let now n be the order
of G = Spec(A) over R, i.e. the rank of A as a finite and free R-module. We say that G is killed by its
order if the multiplication-by-n morphism [n] : G→ G is the zero morphism of R-group schemes. This
is equivalent to say that the induced morphism of Hopf R-algebras [n] : A → A⊗n → A (obtained via
a composition of the diagonal map and the multiplication map on G) satisfies that its kernel Ker([n])
contains the augmentation ideal I = Ker(ε : A→ R) where ε denotes the unit section of G.
Around 1960s, Grothendieck asked if every finite flat group scheme over any base scheme is killed by its
order (see SGA 3, Exp. VIII Rem. 7.3.1 in [Art+64] , see also pag. 145 in [Tat97] and the survey article
[Sch19]). This is the generalization in the context of finite flat group schemes of what is well-known in
abstract group theory, i.e. if G is a finite group of order n then for all g ∈ G we have gn = eG. Note
that strictly speaking this fact is an immediate consequence of Lagrange’s theorem, which has indeed
been generalized in the context of finite flat group schemes (see for example [Sha86]). We clarify this
in the hope that the title of the article will be interpreted properly.
Grothendieck’s question has been positively answered in many important cases. When the group scheme
G is commutative, this has been proven by Deligne around 1970. The proof has not been published by
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Deligne himself but it has been reproduced many times in the literature (see for example section 1 in
[TO70], section 3.8 in [Tat97] and section 3.3 in J. Stix’s lecture notes [Sti09]). When the base scheme
is the spectrum of a field, or more generally is a reduced scheme, this has been proven by Grothendieck
in SGA 3 Exp. VII A section 8 (see [DG11] or see also Cor. 2.2 in [Sch01]).
When studying Grothendieck’s question for finite flat group schemes over a local Noetherian ring R,
it is very useful to notice that it is possible to make a further reduction. First, by Krull’s intersection
theorem, we deduce that the question holds if and only if it holds for all local Artin quotients of R, i.e.
we can assume without loss of generality that R is a local Artin ring. This simplification is known to
be very useful as it opens up the possibility of proceeding by induction on the lenght of R, as it will
be done in this article. Moreover, it is clear that the problem of understanding when a finite flat group
scheme G over R is killed by its order can be studied up to faithfully flat extension of R. Thanks to
EGA 3 Tome 1 Prop. 10.3.1 in [Gro61], we have that there exists a faithfully flat local extension of R
such that its residue field k is algebraically closed. This allows one to do a final reduction and assume
that the residue field k of characteristic p is algebraically closed and that R is a strictly Henselian ring.
For the moment, without loss of generality we assume only that k is a perfect field of characteristic p.
Coming back to the state of art of Grothendieck’s question, the best known result in the general case is
due to Schoof (see [Sch01]):

Theorem 1 (Schoof, 2001). Let p be a prime and let R be a local Artin ring with maximal ideal mR
and with residue field k of positive characteristic p. Assume that mpR = pmR = 0, than any finite flat
group scheme G over R is killed by its order.

After reducing the problem to assuming that R is strictly Henselian and k is an algebraically closed field
of characteristic p, the above result is proven by discussing separately two cases depending on whether
the base change G⊗R k of G from R to its residue field k (which is a k-group scheme of order say pm+1,
just for psychological reasons and notation consistency) is killed or not by pm.
Schoof proceeds by showing first that under the strong hypothesis on the lenght of R, the groups G
whose base change G ⊗R k is already killed by pm are killed by their order. The proof continues by
showing that G⊗R k is not killed by pm if and only if G⊗R k is isomorphic to µpm/k or to the matrix
k-group scheme

G1 =

(

1 αp
0 µpm

)

=

{

(

1 x
0 y

)

: xp = 0, yp
m

= 0

}

,

endowed with the usual matrix multiplication. It is interesting to remark that these groups are his-
torically very important in the study of finite group schemes. Indeed, for example when m = 1, we
have the non-commutative k-group scheme G1 of order p2 whose existence reflects the existence of a
non-trivial action of µp on αp (which are both commutative groups of order p). This phenomenon does
not have any analogue in the classical theory of finite abstract groups where every group of order p2 is
commutative.
Note that the group G1 is denoted G0 in [Sch01] but it will be clear soon enough why we adopt this
new notation and why it is not an explicit tentative to confuse the reader. Finally, Schoof concludes by
showing that all deformations of G1 and µpm for some positive integer m are killed by their order.
In other words, because finite flat deformations of µpm over local Artin rings R are well-known to be
trivial (as we see will see later on), Schoof’s strategy is essentially reduced to the following result for
which no restrictions are needed on the length of the local Artin ring R:

Theorem 2 (Schoof, 2001). Let p be a prime and let R be a local Artin ring of residue field k of positive
characteristic p. Any finite flat R-group scheme G such that G⊗R k ∼= G1 is killed by its order.

We define now a certain family of finite flat group schemes Gλ over k where λ ∈ {1, · · · pm − 1} and

which interpolates G1 =

(

1 αp
0 µpm

)

exactly when λ = 1.

Let G be any finite flat multiplicative group scheme over k acting on αp, i.e. we have a non-trivial mor-
phism ϕ : G→ Autk(αp) ∼= Gm. Then there exists a unique extension of G by αp, i.e. Ext

1
ϕ(G,αp)

∼= 0

2



(see Cor. 6.4, Chapt. 3 in [DG70]). This is a consequence of the fact that group extensions can be
embedded in the group of extensions of fpqc sheaves (see Rem. 2.5 in [DG70]) and such group is trivial
under the assumption that k is perfect. More generally, this holds when the base scheme is the spectrum
of a small k-ring R (in the sense of Demazure and Gabriel see [DG70]) such that R/Rp = 0. For more
details on the relation between affine group schemes and fpqc sheaves we refer the reader to the nice
summary in [Sti09] and to SGA 1 Exp. VI for a more in depth treatment (see for example section 6 in
[Gro71]).
Taking G = µpm we have that ϕ is the restriction to µpm of the standard action of Gm on Ga
which corresponds uniquely to an element λ ∈ {1, · · · , pm − 1}. In more precise terms, for every
λ ∈ {1, · · · , pm − 1} there is a unique finite flat k-group scheme Gλ corresponding to the unique split
exact sequence 0 → αp → Gλ → µpm → 0. In other words, the k-group scheme Gλ is the semi-direct
product αp⋊λµpm where the subscript λ indicates exactly the action of µpm which we are using to build
the semi-direct product. To be completely explicit, we have that the k-group scheme Gλ is described
as:

Gλ ∼= Spec
(

k[x, y]�(xp, yp
m

)

)

with group law:
k[x, y]/(xp, yp

m

) → k[x, y]/(xp, yp
m

)⊗k k[x, y]/(x
p, yp

m

)

x 7→ (1 + y)λ ⊗ x+ x⊗ 1

y 7→ y ⊗ 1 + 1⊗ y + y ⊗ y

More concisely, we adopt the notation (x, y)◦ (x′, y′) = ((1+ y)λx′+x, y+ y′+ yy′) for the group law in
G between generic elements h = (x, y) and h′ = (x′, y′). It is straightforward to verify that when λ = 1
one gets exactly the group G1 described above which appears in [Sch01].
We show that Gλ is a family of finite, flat, non-commutative group schemes of order pm+1 which depend
only on the p-adic valuation of λ, and that Gλ is not killed by pm if and only if λ is a unit. Hence, taking
a generic λ puts us outside of the range of Schoof’s theorem. The fact that λ is not in general a unit
presents many subtle challenges which do not allow us to simply extend the proof of Schoof and force
us to find a new and different strategy, especially when one wants to determine explicitly the R-scheme
theoretical structure of the generic deformation of Gλ. However, it is possible to find a way to extend
Schoof’s result without restriction on R and have the following:

Theorem 3. Let R be a local Artin ring of positive residue characteristic p and let λ ∈ {1, · · · , pm−1}.
Let G be a finite flat deformation over R of the k-group scheme Gλ, then G is killed by its order.

This result constitutes a positive answer in a new case to Grothendieck’s question on whether all
finite flat group schemes over any base scheme are killed by their order. The above theorem is a
direct consequence of the complete classification of all the deformations of the non-commutative k-
group scheme Gλ. On a side note, we mention that one could also consider the case of λ = 0, which
corresponds to the case of the k-group scheme G0 = αp × µpm . However, while it is possible to use
the techniques in this article to show that the deformations of G0 in characteristic p are also killed by
their order, this still leaves the problem open. Indeed, the k-group scheme G0 admits deformations in
characteristic zero (because αp does) which a priori have not a clear R-schematic description. We hope
to come back to this problem later on.
Going back to our original question, the study of the deformation problem for Gλ with λ ∈ {1, · · · , pm}
will allow us to prove the following complete and explicit classification:

3



Theorem 4. Let p be a prime and let R be a local Artin ring of perfect residue field k of positive
characteristic p. Let G be a deformation over R of the k-group scheme Gλ ∼= αp⋊λ µpm with parameter
λ ∈ {1, · · · , pm − 1}.
Then the characteristic of R is p and we have the following classification:

(i) if vp(λ) 6= m− 1, all deformations of Gλ over R are trivial, i.e.

G ∼= (αp ⋊λ µpm)×Spec(k) Spec(R);

(ii) if vp(λ) = m− 1, all deformations of Gpm−1 over R form a 1-dimensional family (over k) of
non-commutative finite flat R-group schemes of order pm+1.

In particular, in (ii), there is a unique a ∈ k such that we have an isomorphism:

G ∼= H̃a as R-group schemes,

where H̃a
∼= Spec(R[x, y]/(xp, yp

m

)) is endowed with the group law:

x 7→ (1 + y)p
m−1

⊗ x+ x⊗ 1 + aπWp(x⊗ 1, 1⊗ x),

y 7→ y ⊗ 1 + 1⊗ y + y ⊗ y.

for the polynomial Wp(x, x
′) = (x+x′)p−xp−x′p

p .

Remark 1. Note that this results extends to all λ ∈ {1, pm − 1} the proposition 3.3 in [Sch01] where
the specific case vp(λ) = 0 is treated. Moreover, even when vp(λ) = 0, Theorem 4 ensures us that all
deformations of Gλ are trivial over R rather than potentially trivial after base change to a faithful flat
extension as shown in proposition 3.3 in [Sch01].

Remark 2. Note that the groups H̃a for a ∈ k are isomorphic to the semidirect product Ha ⋊ µpm

where Ha is the deformation of αp as described by Prop. 1 where the action of µpm on Ha is the one
corresponding to λ = pm−1.

In the first section after the introduction, we prove some useful properties concerning the groups Gλ
and in the second section we state the main theorem and carry on the study of the deformation problem
for the k-group schemes Gλ. We conclude the second section by stating and proving Theorem 3.
A notation remark, the base change of a R-group scheme via a R-algebra morphism R → S is usually
denoted G×Spec(R) Spec(S) but sometimes more concisely we adopt the notation G⊗R S.

Acknowledgments: I would like to thank R. Schoof for sharing his insights on the topic. I would
also like to thank A. Vanhaecke and A. Conti for many interesting conversations. I would also like to
thank G. Bisson and A. Rahm in the GAATI group at University of French Polynesia who supported
my research as part of the MELODIA project. The MELODIA project is funded by ANR under grant
number ANR-20-CE40-0013.

2 The family of finite flat group schemes Gλ over k

In this short section we summarize the main properties of the family Gλ of finite flat group schemes over
a perfect field k of characteristic p. First, note that the k-group scheme Gλ has order pm+1 and it is
killed by its order. This can be checked either by a direct computation or by using the well-known fact
that any finite flat group scheme over a field is killed by its order (see for example SGA 3, Exp. VIIA
Prop. 8.5 in [DG11]). The family of k-group schemes Gλ also satisfy the following useful properties:

Lemma 1. The k-group scheme Gλ (of order pm+1) is killed by pm if and only if v := vp(λ) ≥ 1.
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Proof. We prove first the ”if” part. We recall that the group operation on Gλ is as follows:

(x, y) ◦Gλ
(x′, y′) = (x′(1 + y)λ + x, y + y′ + yy′).

By induction, it is straighforward to check that for all h ∈ Z≥0 we have that:

[ph](x, y) =
(

x

ph−1
∑

i=0

(1 + y)λi, (1 + y)p
h

− 1
)

Proving that pm kills Gλ means to prove that [pm](x, y) = (0, 0) which boils down to prove that:

pm−1
∑

i=0

(1 + y)λi = 0

in the ring k[y]/(yp
m

), because it is clear that (1 + y)p
m

− 1 = 0. Note first that the positive integer
m− v is the minimal positive integer h such that that (1 + y)λh = 1. For r ≤ s positive integers denote

a(r, s) =

s
∑

i=r

(1 + y)λi.

The claim is to prove that a(0, pm − 1) = 0. Recall that v := vp(λ). We have:

a(0, pm − 1) = a(0, pm−v − 1) + a(pm−v, 2pm−v − 1) + · · ·+ a((pv − 1)pm−v, pvpm−v − 1) =

= a(0, pm−v − 1) + (1 + y)λp
m−v

a(0, pm−v − 1) + · · ·+ (1 + y)λ(p
v−1)pm−v

a(0, pm−v − 1) =

= pva(0, pm−v − 1) = 0

where the last equality holds because v ≥ 1 and k is of characteristic p.
Now we prove the ”only if” part. Assume by contradiction that [pm](x, y) = (0, 0), i.e. that pm kills
Gλ (where vp(λ) = 0, i.e. λ is a unit). Since ψλ : µpm → µpm such that ψλ(y) = (1 + y)λ − 1 is

an isomorphism, we have that
∑pm−1
i=0 (1 + y)λi = 0 if and only if

∑pm−1
i=0 (1 + y)i = 0. Denote by

f(y) :=
∑pm−1
i=0 (1 + y)i. We have that f(0) = 0 and that the degree deg(f) = pm−1. However, as

k-vector space we have that dimk(k[y]/(y
pm)) = pm so there cannot be any non-trivial zero linear

combination of the standard basis and this gives the desired contradiction.

Lemma 2. We have that Gλ ∼= Gµ if and only if vp(λ) = vp(µ).

Proof. Let u be a positive integer (strictly smaller than pm) such that vp(u) = 0. We have an isomor-
phism of finite flat R-group schemes ψu : µpm → µpm such that ψu(y) = (1 + y)u − 1, where y is a
chosen variable parametrizing µpm (which is endowed with the group law y → y ⊗ 1 + 1 ⊗ y + y ⊗ y).
Let now λ and µ := uλ, so we have vp(λ) = vp(µ). Let ϕλ and ϕµ denote the two actions of µpm
corresponding respectively to the integers λ and µ. Then a direct computation shows that we have the
following commutative diagram:

µpm × αp

µpm × αp αp

ϕµψu×Id

ϕλ

where ψu × Id is an isomorphism. Via the isomorphism ψu × Id, we have that Extλ(µpm , αp) ∼=
Extµ(µpm , αp) ∼= 0 (see for example Cor. 6.4 in [DG70]). In particular, there is a unique extension
which implies that Gλ ∼= Gµ. On the other hand, if we have such isomorphism it is straightforward to
conclude after comparing the group laws of Gλ and Gµ.
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3 Classification of the deformations of Gλ

In this section, we study the problem of classifying as explicitly as possible all the deformations of the
groups Gλ. Deformation theory for general finite flat group schemes is a relatively complicated problem
in the sense that the deformation functor is not always representable. In the case of deformations of
commutative groups, the problem has been solved by Oort and Mumford in a positive way (see [OM68]).
For example, we mention now a useful result which will be used later on and it concerns the classification
of finite flat R-group schemes of order a prime p. To be precise, Oort and Tate have proven the following
(see [TO70] or also [Oor71]):

Proposition 1. Let p be a prime. There exist a polynomial Wp ∈ Zp[x, y] such that for all R complete
local Noetherian ring of residue characteristic p and for any finite flat group scheme G over R of order
p, we have that G = Spec(A) where A = R[τ ]/(τp − aτ) with group operation given by:

τ 7→ τ1 + τ2 + bWp(τ1, τ2)

and ab = p ∈ R.

This result is a fundamental step in deformation theory of finite flat group schemes in order to understand
how complicated deformations might be in relation of possible necessary ramification of the base ring
(here represented by the relation ac = p in R). In particular, the above result describes all the possible
deformations of the finite flat group scheme αp. As the k-group schemes in the family Gλ are non-
commutative extra care is needed. We are ready now to present the first main result of the section:

Theorem 5. Let p be a prime and let R be a local Artin ring of perfect residue field k of positive
characteristic p. Let G be a deformation over R of the k-group scheme Gλ ∼= αp⋊λ µpm with parameter
λ ∈ {1, · · · , pm − 1}. Then the characteristic of R is p and we have the following classification:

(i) if vp(λ) 6= m− 1, all deformations of Gλ over R are trivial, i.e.

G ∼= (αp ⋊λ µpm)×Spec(k) Spec(R);

(ii) if vp(λ) = m− 1, all deformations of Gpm−1 over R form a 1-dimensional family (over k) of
non-commutative finite flat R-group schemes of order pm+1.

In particular, in (ii), there is a unique a ∈ k such that we have an isomorphism:

G ∼= H̃a as R-group schemes,

where H̃a
∼= Spec(R[x, y]/(xp, yp

m

)) is endowed with the group law:

x 7→ (1 + y)p
m−1

⊗ x+ x⊗ 1 + aπWp(x⊗ 1, 1⊗ x),

y 7→ y ⊗ 1 + 1⊗ y + y ⊗ y.

for the polynomial Wp(x, x
′) = (x+x′)p−xp−x′p

p .

We now proceed in proving the above result in several different steps. The strategy is to proceed by
induction on the lenght of R. When the lenght of R is 1, everything follows by observing that one
can take R = k. Now, assume that we are under the induction hypothesis. Let π ∈ Ann(mR) and let
R′ := R/πR. We have that the length of R′ is strictly smaller than the one of R, so we can apply
the inductive hypothesis. First, this implies that the characteristic of R′ is p, hence there exists an
element γ ∈ R such that p = γπ. Now, the deformation G over R of Gλ can be described explicitly
(scheme-theoretically) by polynomials f and g inside R[x, y] such that, writing G = Spec(A),

A ∼= R[x, y]/(xp − πf(x, y), yp
m

− πg(x, y)).
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Now, the Hopf R-algebra structure on A is given by the group law:

(x, y) ◦G (x′, y′) = (x′(1 + y)λ + x+ πh1(x, x
′, y, y′), y + y′ + yy′ + πh2(x, x

′, y, y′)),

for certain polynomials h1 and h2 in R[x, x′, y, y′]/(xp, x′p, yp
m

, y′p
m

).
We first prove that the characteristic of R is p, i.e. every deformation of Gλ lives in positive characteristic
p. Consider two generic points h = (x, y) and h′ = (x′, y′) in G and impose that h ◦G h

′ is still an
element in G to deduce relations concerning the polynomials f, g, h1 and h2.
The following conditions have to hold:

{

[x′(1 + y)λ + x+ πh1]
p − πf(x′(1 + y)λ + x+ πh1, y + y′ + yy′ + πh2) = 0

[y + y′ + yy′ + πh2]
pm − πg(x′(1 + y)λ + x+ πh1, y + y′ + yy′ + πh2) = 0

Since π2 = 0 and since R/πR has characteristic p we have that:

{

[x′(1 + y)λ + x]p − πf(x′(1 + y)λ + x, y + y′ + yy′) = 0

[y + y′ + yy′]p
m

− πg(x′(1 + y)λ + x, y + y′ + yy′) = 0

because πf(z+πh1, z
′+πh2) = πf(z, z′). Now, since g and g′ belong to G we have that xp−πf(x, y) =

x′
p
− πf(x′, y′) = 0 and focusing on the first equation in the above system we have:

x′
p
(1 + y)λp +

p−1
∑

k=1

(

p

k

)

[x′(1 + y)λ]kxp−k + xp − πf(x′(1 + y)λ + x, y + y′ + yy′) = 0

so we deduce that:

πf(x′, y′)(1+ y)λp+[x′(1+ y)λ+x]p−x′
p
(1+ y)λp−xp+πf(x, y)−πf(x′(1+ y)λ+x, y+ y′+ yy′) = 0.

Denoting by Wp(x, x
′) = (x+x′)p−xp−x′p

p , the expression becomes:

π[γWp(x, x
′(1 + y)λ)− f(x′(1 + y)λ + x, y + y + yy′) + f(x, y) + f(x′, y′)(1 + y)λp] = 0

imposing y = y′ = 0, we get:

π[γWp(x, x
′)− f(x+ x′, 0) + f(x, 0) + f(x′, 0)] = 0

Note that inside the square parenthesis, there is the monomial γx′xp−1 (coming from the polynomial
Wp) and it is the only monomial of that type because degx(f(x, y)) ≤ p−1. We deduce that γ ∈ mR and
as a consequence, since πγ = p and since π ∈ Ann(mR) we deduce that p = 0 in R, i.e. char(R) = p > 0.
This completes the first part of the proof.

Remark 3. It is interesting to notice that the above computation still holds when λ = 0, i.e. if we
were in a situation where G is a deformation of the k-group scheme G0

∼= αp×µpm . However, it is clear
that deformations of αp × µpm exists also over some ring characteristic 0, e.g. H × µpm where H is a
deformation of αp (described by Oort and Tate in [TO70]) and all groups are taken over a ring R over
which p ramifies. Indeed, the issue is in the assumption that a generic deformation G are only of the
form considered in this article. This fact is indeed false when λ = 0.

Taking up again the system of equations of before, and implementing the new information that the
characteristic of R is p, we have that:

{

f(x′(1 + y)λ + x, y + y′ + yy′) = f(x, y) + f(x′, y′)(1 + y)λp

g(x′(1 + y)λ + x, y + y′ + yy′) = g(x, y) + g(x′, y′)

7



for the second equation we have used that:

(y + y′ + yy′)p
m

− πg(x′(1 + y)λ + x, y + y′ + yy′) = 0

and so
yp

m

+ y′
pm

+ yp
m

y′
pm

− πg(x′(1 + y)λ + x, y + y′ + yy′) = 0

and substituting inside

yp
m

− πg(x, y) = y′
pm

− πg(x′, y′) = 0.

In order to understand the underlying R-scheme structure of G, we have to classify all the possible
polynomials f, g ∈ R[x, y], knowing that the characteristic of R is p. It might be possible that a direct
computational approach allows one to classify f and g by imposing that the couple f, g has to satisfy
that if h and h′ are two generic points in G then the coordinates of h ◦G h

′ have also to satisfy the
equations xp − πf(x, y) = yp

m

− πg(x, y). We prefer here to proceed in a more conceptual way. Before
going deeper in such approach we take a little detour to introduce cohomology of linear representation
of finite flat group schemes (in terms of Hochschild cohomology) which will play a central role in what
follows. Consider the following general situation. Let R be a sufficiently nice ring, e.g. in order to cover
all the situations we have to deal with it is enough to take the class of ”models” in the sense of Demazure
and Gabriel (see the beginning of [DG70]). These rings form a full subcategory of the category of rings
which is exactly the subcategory of U -small rings where U is a certain Grothendieck universe.
Let H be a finite, flat group scheme over R and let V be a projective R-module of finite type. Denote
by GL(V ) be the R-group functor sending each R-algebra S to Gl(V ⊗R S) (where Gl is the usual
general linear group). A linear representation of G in V is a natural transformation (i.e. a morphism
of functors) ρ : G → GL(V ). Equivalently, writing G = Spec(A) for the R-Hopf algebra A, the mor-
phism ρ corresponds to a R-linear map ∆ρ : V → V ⊗R A such that for all v ∈ V we have that
∆ρ(v) = ρ(g0)vA ∈ V ⊗R A (here vA = v ⊗R 1A) where g0 ∈ G(A) is the element corresponding to the
identity map on A. Of course, the map ∆ρ also reflects other functorial relations corresponding to the
fact that A is a R-Hopf algebra. The point of view of considering ∆ρ instead of ρ is useful as it allows
explicit computations as we will see later on. Now, starting from an R-module V , we denote by Va the
commutative R-group functor on the category of R-algebras sending S 7→ Va(S) = V ⊗R S.
For all positive integers n, we define the n-cohomology groupHn(G, V ) := Hn

Hoc(G, Va) whereH
∗
Hoc(G, Va)

denotes the Hochscild cohomology of the G-module Va. An important point is that the groupsHn(G, V )
depend only on the action of G on V . To be precise, there exists a complex C∗(G, V ) where Cn(G, V ) =
V ⊗R A · · · ⊗R A (n-times ⊗RA) whose boundary maps depend only on ∆ρ and such that Hn(G, V ) ∼=
Hn(Cn(G, V )). For more information on this, we refer the reader to the book of Demazur and Gabriel
(see section 3 Chapt. 2 in [DG70]).
Another tool we need for studying deformation of non-commutative schemes is the adjoint representa-
tion of a finite flat group scheme: As we will see later on, such special representation plays a central role
in deforming group structures. Let R(ǫ) be the R-algebra of dual R-numbers, i.e. R[T ]/(T 2). Denote
by p : R(ǫ) → R the projection which sends p(1) = 1 and p(ǫ) = 0. The Lie group of a finite flat group
scheme G over R is defined as Lie(G)(R) = Ker(p : G(R(ǫ)) → G(R)). The group G acts functorially
on Lie(G) in the following way, called adjoint representation of G:

AdG : G(R) → GL(Lie(G)(R))

g 7→ (x 7→ i(g)xi(g)−1)

where i : G(R) → G(R(ǫ)) is induced by the injection i : R →֒ R(ǫ) such that i(1) = 1.
We recall that there are two compatible operation on Lie(G)(R) by R and by G(R). Now, we have
a canonical isomorphism as R-modules (see for example section 4 Chapt. II in [DG70]) Lie(G)(R) ∼=
Da(ωG⊗k)(R) ∼= Modk(ωG⊗k, R). Moreover, since G is finite flat we have that such R-module is also
canonically isomorphic to Modk(IG/I

2
G, R) where IG is the augmentation ideal of G. Using the additive
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notation for the elements of the Lie group of G (namely x = eǫx), we have that the explicit adjoint
representation as R-module:

AdG : G(R) → GL(Modk(IG/I
2
G, R))

is determined by the formula geǫfg−1 = eǫAdG(g)f for all g ∈ G(R) and all f ∈ Modk(IG/I
2
G, R). We

denote with Vad = Modk(IGλ
/I2Gλ

, R) the adjoint representation of Gλ. Finally, we are ready continue
our study of the scheme structure of the deformations G over R of Gλ. Because of what has been done
previously, we know that:

G = Spec(R[x, y]/(xp − πf(x, y)), yp
m

− πg(x, y))

with group law depending on the parameter λ ∈ {1, . . . , pm − 1} and certain polynomials h1 and h2 in
R[x, x′, y, y′]. Define the vector F (x, y) = (f(x, y), g(x, y))T and F (x, y) := F (x, y) mod mR. Consider
now as usual two generic elements h = (x, y) and h′ = (x′, y′) in Gλ, we have:

F (h◦Gh
′) = F ((x, y)◦Gλ

(x′, y′)) =

(

f((x, y) ◦Gλ
(x′, y′))

g((x, y) ◦Gλ
(x′, y′))

)

mod mR =

(

f(x, y) + f(x′, y′)(1 + y)λp

g(x, y) + g(x′, y′)

)

mod mR =

=

(

f(x, y)
g(x, y)

)

+

(

(1 + y)λp 0
0 1

)(

f(x′, y′)
g(x′, y′)

)

mod mR

hence we deduce the relation:

F (h ◦Gλ
h′) = F (h) +

(

(1 + y)λp 0
0 1

)

F (h′)

Define now the k-vector space V = ke1 ⊕ ke2 over which Gλ acts via:

∆ : V → V ⊗k
k[x, y]�(xp, yp

m

)

where ∆(e1) = e1 ⊗ (1 + y)λp and ∆(e2) = e2.
The relation proven above for F (x, y) is equivalent to say that F is a crossed homomorphism from Gλ
to V and as such, we can identify it with a 1-cocycle for the representation V , i.e. F ∈ H1(Gλ, V ).
We recall now that Gλ ∼= αp ⋊λ µpm , i.e. it fits into a split exact sequence 0 → αp → Gλ → µpm → 0.
The action of Gλ on V factors via the quotient µpm . Now, diagonalizable group schemes, such as µpm ,
satisfy the following useful property (on which we rely also later on, so we state it properly):

Proposition 2. Let H be a diagonalizable k-group scheme and ρ : H → GL(V ) a linear representation
of H then for all n > 0 we have that Hn(H,V ) = 0.

Proof. See for example Prop. 4.2, Sec. 3, Chapt. II in [DG70]. This result holds for any base R which
is a ”model” in the sense of [DG70].

Moreover, we can combine the above result with the following:

Proposition 3. Let G be a finite flat k-group scheme and let N be a finite flat normal subgroup scheme
inside G. Let W be any G-module and assume that G/N (which is as well a finite flat k-group scheme)
is diagonalizable. Then for all i ≥ 0 we have isomorphisms:

Hi(G,W )
∼=
−→ Hi(N,W )G/N .

Proof. This is a consequence of proposition 2 applied to Grothendieck’s generalization of the Lyndon-
Hochschild-Serre spectral sequence. See for example Corollary 6.9 in [Jan87].
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We recall that the action of G on the cohomology groups H∗(N,W ) is deduced by the action of G on
the cocycles C∗(N,W ) =W ⊗O(N)⊗∗ which comes from the action of G on N via conjugation and on
W via its G-module structure (see for example section 6.7 in [Jan87]). Finally, we have that Proposition
3 allows us to compute explicitly:

Proposition 4. Let λ ∈ {1, · · · , pm − 1}, we have H1(Gλ, V ) = 0.

Proof. First, we recall that the Gλ-representation V decomposes as a direct sum L⊕Ga (with L ∼= Ga
as k-group schemes) where the action of a generic element g = (x, y) ∈ Gλ on L is given by the
multiplication by (1+ y)λp and it is the trivial one on the second factor Ga. By Proposition 3, we have
that:

H1(Gλ, V ) ∼= H1(Gλ, L)⊕H1(Gλ,Ga) ∼= H1(αp, L)
µpm ⊕H1(αp,Ga)

µpm .

We have that H1(Ga,Ga) ∼= Grk(Ga,Ga) is the k-group scheme of endomorphisms of Ga which is

isomorphic to the group {p(x) =
∑

k≥0 aix
pi with ai ∈ k} with the usual addition of polynomials

(see for example sec. 3.4 in Chapter 2 in [DG70]). Hence, we have that any 1-cocycle c : αp → Ga
corresponds to a polynomial pc(x) = acx for some ac ∈ k. A direct computation shows that both
actions of µpm of L and the trivial one on Ga are incompatible with the conjugation on N (which
corresponds to sending a generic element x of αp in (1 + y)λx). As a consequence, we have that
H1(αp, L)

µpm = H1(αp,Ga)
µpm = 0.

We deduce then that F is a 1-cobord, or equivalently, there exists (c, d) ∈ k2 such that for every
h = (x, y) ∈ Gλ we have that F (h) = ρ(h) · (c, d)T − (c, d)T . After making the representation ρ explicit,
we have that there exists some polynomials z1 and z2 in R[x, y] with coefficients in mR such that

F (x, y) =

(

f(x, y)
g(x, y)

)

=

(

c[(1 + y)λp − 1] + z1
z2

)

.

Since π ∈ Ann(mR), we deduce that πf(x, y) = cπ[(1 + y)λp− 1] and πg(x, y) = 0. Finally, we conclude
that the underlying R-scheme structure of the generic deformation G over R of Gλ has to have the form:

G = Spec
(

R[x, y]�(xp − cπ[(1 + y)λp − 1], yp
m

)

)

.

Note also that (since char(R) = p) (1 + y)λp = 1 + yλp if and only if λ is a power of p. Hence, we
first simplify a bit the expression cπ[(1 + y)λp − 1] by using the results in section 2. By Lemma 2, we
have indeed that without loss of generality we can assume that λ = pv for a certain integer v ≥ 0 and
so cπ[(1 + y)λp − 1] = cπyp

v+1

. Summarizing what we have proven until now, we have that for every
deformation G of Gλ we have the following isomorphisms of R-schemes:

G ∼= Spec
(

R[x, y]�
(xp − cπyp

v+1

, yp
m

)

)

for some c ∈ k

Our goal is to prove the following stronger description:

Proposition 5. For all λ ∈ {1, · · · , pm − 1}, we have that every finite flat deformation G over R of

Gλ is isomorphic as R-scheme to Spec
(

R[x, y]�(xp, yp
m

)

)

, i.e. to the base change Gλ ⊗k R.

Our aim is now to prove that as R-schemes, we have that G is isomorphic to Spec(R[x, y]/(xp, yp
m

)), i.e.
c = 0. This point of the proof is the most delicate as the situation is substantially different from the one
treated in [Sch01] where vp(λ) = 0 and a new approach is necessary. Indeed, if vp(λ) = 0, it is possible to
directly conclude by a linear isomorphic substitution after observing that xp−cπ[(1+y)λp−1] = (x−ωy)p

after suitably extending R finitely flat by adding the element ω such that ωp = cπ. However, when
vp(λ) > 1, the situation is much more subtle because such substitution is not available. Our first goal
is to determine the possible values of the constant c ∈ k and the possible polynomials h1 and h2 up
to automorphisms. Since G is a R-group scheme with neutral element (0, 0) we have that in order
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for the group axioms to be satisfied we have that hi(x, y, 0, 0) = hi(0, 0, x
′, y′) = 0 for i = 1, 2. The

strategy is to use the inductive hypothesis on R/πR and k to transport certain group structures from
the infinitesimal deformations (i.e. deformations over R/πR where π2 = 0) to G over R. In order to
deal with infinitesimal deformations, we rely on two results. The first one deals with deformations of
group laws (this is a specialization of Theorem 3.5 in [DG11] SGA 3 Exp. III):

Theorem 6. Let S be a scheme and let I and J be two quasi-coherent ideals such that J ⊂ I and
I · J = 0 defining respectively closed sub-schemes S0 and SJ .
Let X be a finite flat S-scheme and denote by XJ and X0 the S-subschemes of X obtained by base
change via natural projections modulo the ideals I and J . Assume that XJ has the structure of S-group
scheme and denote by L0 the commutative S0-group functor given by the derivations of X0/S0, i.e.

HomS0
(∗, L0) := HomO∗

(ω1
X0/S0

⊗OS0
O∗, J ⊗OS0

O∗).

The S0-group functor L0 acts on X0 via its adjoint representation. Moreover, the existence of a struc-
ture of S-group scheme on X is equivalent to the following two conditions:

(i) there exists a S-scheme morphism P : X ×X → X which induces modulo J the group law
PJ of XJ ,

(ii) a certain obstruction class c(PJ ) ∈ H3(X0, L0) (corresponding to the associativity property which
P has to satisfy) is zero.

In addition, if the conditions (i), (ii) are both satisfied, the set E of group laws of X (modulo S-
automorphisms of X) inducing the group law PJ on XJ is a principal homogeneous space for the abelian
group H2(X0, L0).

The proof of this result is particularly useful as it allows explicit computations. Indeed, we want to use
this result to impose explicit conditions on the possible group laws on G, which amount to imposing
conditions on the polynomials h1 and h2. Let E be the set of R-automorphisms orbits of group laws P
on G such that after reducing modulo (π) we have that P coincides exactly with the group law of Gλ
over R/πR (by inductive hypothesis). By the above result, we know that E is a principal homogeneous
space for the abelian group H2(Gλ/k, VAd) where VAd is the k-adjoint representation of Gλ/k. Note
that for this fact we are using that the groups involved are finite and flat. Denote the action of an
element δ ∈ H2(Gλ/k, VAd) on an element µ ∈ E by δ · µ. Now, in order to make things explicit we
consider the action of H2(Gλ/k, VAd) on E on points. Set a coefficient ring, say the R-algebra S. We
have that for all g, g′ ∈ G(S) and for all µ, µ′ ∈ E(S) we have that:

µ′(g, g′) = δ(µ, µ′)(g0, g
′
0) · µ(g, g

′) = µ(g, g′) +Dδ(µ,µ′)(g0,g′0)
∈ G(S) = HomR-Alg(A,S)

where the derivation Dδ(µ,µ′)(g0,g′0)
is the derivation associated to the image of (g0, g

′
0) via the 2-cocycle

δ(µ, µ′) ∈ H2(Gλ, VAd) which is the one corresponding to the couple (µ, µ′) (note that we are using
that E is a principal homogeneous space, i.e. the action of the abelian group H2(Gλ, VAd)) is free
and transitive which grant the existence and unicity of δ in function of µ and µ′). Note also that as
k-module homomorphism, the image of Dδ(µ,µ′)(g0,g′0)

is contained in the ideal (π) in R. This is indeed
a fundamental point which ensures that the R-algebra homomorphism determined by µ(g, g′) plus the
R-module homomorphism Dδ(µ,µ′)(g0,g′0)

is still an R-algebra homomorphism.
Another result which allows us to transport group structures via infinitesimal deformations concerns
lifts of group morphisms. To be precise, we have the following (this is specialization of Theorem 2.1 in
[DG11], SGA 3 Exp. III):

Theorem 7. Let S be a scheme and let I and J be two quasi-coherent ideals such that J ⊂ I and
I · J = 0 defining respectively closed sub-schemes S0 and SJ .
Consider the following:
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(i) X an S-group scheme,
(ii) L0 the commutative S0-group scheme given by the derivations of X0/S0, i.e.

HomS0
(∗, L0) := HomO∗

(ω1
X0/S0

⊗OS0
O∗, J ⊗OS0

O∗),

(iii) Y a flat S-group scheme and fJ : YJ → XJ a morphism of SJ -group schemes.

Then we have that fJ lifts to a S-group scheme morphism f : Y → X if and only the following
two statements hold:

(1) fJ lifts to a S-scheme morphism f : Y → X,
(2) a certain obstruction class c(fJ) ∈ H2(Y0, L0) is zero.

As explained before, using the additive notation for the elements of the Lie group of G (namely x = eǫx),
we have that the explicit adjoint representation as R-module:

AdG : G(R) → GL(Modk(IG/I
2
G, R))

is determined by the formula geǫfg−1 = eǫAdG(g)f for all g ∈ G(R) and all f ∈ Modk(IG/I
2
G, R). Let

now consider the case where G = Gλ defined over a finite perfect field k of positive characteristic p. We
know that:

Gλ = Spec
(

k[x, y]�(xp, yp
m

)

)

with group law given by (x, y) ◦Gλ
(x′, y′) = (x′(1 + y)λ + x, y + y′ + yy′).

Let g = (x′, y′) and denote by g−1 = (x′′, y′′). The following relations hold:

{

(1 + y′)λx′′ + x′ = 0

y′ + y′′ + y′y′′ = 0

Let f(x, y) = afx + bfy ∈ Modk(IGλ
/I2Gλ

, R) where IGλ
= (x, y) as an ideal inside O(Gλ). Now, we

impose that geǫfg−1 = eǫAdG(g)f . In other words, we have to compute geǫfg−1 = f(g ◦ (x, y) ◦ g−1) as
an element in Modk(IGλ

/I2Gλ
, R). We have that:

f((x′, y′) ◦ (x, y) ◦ (x′′, y′′)) = f((1 + y′)λ[(1 + y)λx′′ + x] + x′, y′ + y + y′′ + yy′′ + y′(y + y′′ + yy′′)))

Now, using the relations between g and g−1 and that we are doing computations modulo the ideal (x, y)2

inside O(Gλ) = k[x, y](xp, yp
m

), we conclude that the above expression is equal to:

f((1 + y′)λx− λx′y, y) = f

(

(

(1 + y′)λ −λx′

0 1

)(

x
y

)

)

where we used that (1 + y)λ = 1+ λy mod (x, y)2. We deduce finally that the a adjoint representation
of Gλ is the representation:

AdGλ
: Gλ(R) → GL(Modk(IGλ

/I2Gλ
, R))

g = (x, y) 7→

(

(1 + y)λ −λx
0 1

)

We have now enough information for computing the cohomology of Vad with respect to the Gλ-action.
To be precise, we have the following:

12



Proposition 6. Let λ ∈ {1, · · · , pm − 1} and let Vad be the adjoint representation of Gλ over k.
We have that:

H2(Gλ, Vad) =

{

〈Wp〉 if vp(λ) = m− 1,

0 otherwise;

where the class Wp represents the polynomial Wp(x, x
′) = 1

p [(x + x′)p − xp − x′p].

Proof. When vp(λ) = 0, the claim has been proven by Schoof (see Lemma 3.2 in [Sch01]). Assume now
that vp(λ) ≥ 1. It is well-known that H2(αp,Ga) ∼= 〈Wp〉 (see for example Cor. 4.8 in section 3 in
chapter II in [DG70]). By Proposition 3, we have that:

H2(Gλ, Vad) ∼= H2(αp, Vad)
µpm ∼= H2(αp, L

′)µpm ⊕H2(αp,Ga)
µpm ,

where L′ ∼= Ga (as k-group schemes) has a µpm -module structure given by the action of µpm sending x
to (1 + y)λx and where the action of µpm on Ga is the trivial one. It is straightforward to check how
µpm acts on every 2-cocycle α2

p → Ga by directly checking how it acts on the 2-cocycle given by Wp.
In order to find the µpm-invariants, we have to impose that the 2-cocycle Wp is invariant under the
simultaneous action of µpm via conjugation on αp and the adjoint representation action on either the
first factor L′ or the second factor Ga. A direct computation shows that only one case is non-trivial.
Indeed, let γ ∈ µpm represented by the variable y. Then considering the trivial action of µpm on Ga we
have:

Wp(γ(x, x
′)) =Wp((1 + y)λx, (1 + y)λx′) = (1 + y)λpWp(x, x

′).

Hence, we have that H2(αp,Ga)
µpm is different from zero if and only if

Wp(γ(x, x
′)) =Wp(x, x

′)

which happens, by the above computation, if and only if vp(λ) = m−1 (note that we are assuming λ ≥ 1).
We deduce that H2(αp, L

′)µpm = 0 and H2(αp,Ga)
µpm ∼= 〈Wp〉 (if and only if vp(λ) = m− 1).

As a consequence of proposition 6, we can completely classify all group structures of the generic defor-
mation of Gλ by describing explicitly the polynomials h1 and h2. To be precise, we have the following:

Lemma 3. The polynomials h1 and h2 in R[x, y, x′, y′] satisfy the following properties:

if vp(λ) 6= m− 1, then h1 = h2 = 0,

if vp(λ) = m− 1, then h1 ∈ 〈Wp(x, x
′)〉 and h2 = 0.

Proof. We have that the action of H2(Gλ, VAd) on the principal homogeneous space E of group laws
on G depends only on the derivations evaluated in αp. A direct computation shows that for g = (x, y)
and g′ = (x′, y′) the morphism µ0(g, g

′) := (x+ x′, y + y′ + yy′) defines a group law on G, i.e. µ0 ∈ E,
and because of Theorem 6 any other group law µ is uniquely obtained by translations via derivations,
i.e. µ(g, g′) = µ0(g, g

′) + Dµ0,µ(g0, g
′
0) where g0 and g′0 are the reductions mod k of g and g′ and are

generic elements of Gλ. Finally, since the derivation Dµ0,µ(g0, g
′
0) has image living in the ideal (π) and

depends only on x and x′, in the only non-zero case (i.e. when vp(λ) = m− 1) we have that the image
of Dµ0,µ(g0, g

′
0) is exactly aπWp(x, x

′) for some a ∈ k.

Note that in all cases we have hi(x, 0) = hi(0, x
′) = 0 for i = 1, 2 because of the axiom for the neutral

element. We recall that now we restrict our attention to the case vp(λ) 6= m−1. Consider the R-scheme
morphism:

ϕ : N := Spec(R[x]/(xp)) →֒ G = Spec(R[x, y]/(xp − cπyp
v+1

, yp
m

))

where ϕ corresponds to the natural projection for y = 0.
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Lemma 4. For all λ ∈ {1, · · · , pm − 1}, the R-scheme N has a group law for which it is a normal
R-subgroup scheme of G with the closed immersion given by the R-group morphism ϕ and N ∼= αp as
R-group schemes.

Proof. By inductive hypothesis, we know that after taking a base change to R/πR, we have that
H ⊗ R/πR has the structure of an R/πR-group scheme isomorphic to µpm/R/πR and ϕ ⊗ R/πR is a
R/πR-group scheme homomorphism. The idea now is to use the results from SGA mentioned above
to transport these group structures from the infinitesimal deformations over R/πR to R. Note the
fundamental fact that N is a flat R-scheme of finite type over R.
According to Theorem 6, in order to prove that N has the structure of group scheme we have to verify
two statements. First that there exists a R-scheme morphism PN : N × N → N which specialize to
the group law of αp after base change to R/πR and second, that a certain class c(PN ) ∈ H3(αp/k, VAd)
(corresponding to the associativity property of PN ) is zero. For the first part, note that G as a R-
group scheme has its group law which can be seen as a R-scheme morphism P : G × G → G which
induces the usual group law on Gλ after base changing to R/πR (by inductive hypothesis). Because
of Lemma 3, taking the restriction of P to generic elements of N we get that P ((x, 0), (x′, 0)) =
(x + x′ + πh1, 0). Hence, defining PN as the restriction of P to N we get a well-defined R-schemes
morphism PN : N × N → N satisfying the required properties. Now, the class c(PN ) ∈ H3(αp, VAd)
which corresponds to the associativity property of PN is nothing else than the image of the respective
class c(P ) ∈ H3(Gλ, VAd) under the group homomorphism H3(Gλ, VAd) → H3(αp, VAd) induced by the
inclusion αp →֒ Gλ (because PN is defined as the restriction of P to N ×N). Since P is a group law, we
have that c(P ) = 0 which implies that c(PN ) = 0. We conclude that N has the structure of a finite flat
group R-scheme. Now, applying Theorem 7 to the R-scheme morphism ϕ together with the (necessary)
induction hypothesis that ϕ⊗R/πR is the closed immersion corresponding to the projection y = 0, we
can conclude that ϕ is also a closed immersion R-group scheme morphism.
Alternatively, it can be checked by formulas that the R-scheme morphism ϕ preserves the group law
via a direct computation as everything is explicit. Finally, because the group law of N is explicit,
another direct computation shows that N is a normal R-subgroup scheme inside G. This concludes the
lemma.

Now that we endowed N with a finite flat R-subgroup scheme structure which makes it normal inside
G, which allows us to take the quotient. As this procedure is usually delicate because the category of
finite flat affine group schemes over an arbitrary R is not an abelian category, we state precisely a result
of Grothendieck which grants us the existence of the quotient of G by N as a finite flat group scheme
over R (note the fundamental hypothesis that N is normal) (see for example section 3 in [Tat97] , or
sec. 6.3 in [Sti09] or [Sch00]):

Theorem 8. Let N be a finite flat closed normal subgroup of an affine finite group scheme G over
R. Then the quotient group fpqc sheaf G/N is representable by an affine finite group scheme H, which
coincides with the categorical cokernel for the inclusion N ⊂ G with the natural projection G → G/N
being finite and faithfully flat.
Moreover, if G = Spec(A) and N = Spec(A/J) is commutative then G/N = Spec(B) where the R-
algebra B is described explicitly by B = {a ∈ A : c(a) ≡ 1 ⊗ a mod (J ⊗ A)}, where c denotes the
co-multiplication on A.

The fact that the natural projection G → G/N is finite and faithfully flat implies in particular that G
is finite flat if and only if G/N is finite and flat (note that we are assuming as hypothesis that N is
already finite and flat). Coming back to our case, since G is a finite flat deformation of Gλ we have
that G/N is a finite flat R-group scheme. Moreover, we have that N = Spec(R[x]/(xp)) with the group
law mentioned above is commutative because it is a finite flat group scheme of prime order (this is a
result of Oort and Tate, see for example [TO70]). Hence, G/N is isomorphic Spec(B) where B is the

R-subalgebra of R[x, y]/(xp − cπyp
v+1

, yp
m

) such that

B = {a ∈ R[x, y]/(xp − cπyp
v+1

, yp
m

) : c(a) ≡ 1⊗ a mod ((y)⊗A)}

14



where as usual, the group law of G is determined by c(x) = (1+y)λ⊗x+x⊗1 and c(y) = 1⊗y+y⊗1+y⊗y

(after Lemma 3). It is straightforward to check that B is the R-subalgebra of R[x, y]/(xp−cπyp
v+1

, yp
m

)

generated by the elements xp and y with relation xp − cπyp
v+1

= 0. Indeed we have that because the
formulas for c holds as above, the element x does not belong to B but the elements xp and y do (and
no smaller power of x belongs to B). Note also that (xp)2 = 0 because π2 = 0. If c 6= 0, the relation

xp − cπyp
v+1

= 0 prevents the R-algebra B to be free (note that R is local) which would contradict the
fact that Spec(B) is a finite and flat R-group scheme. This allows us to conclude directly that c must be
zero. Another equivalent way to prove that c = 0 comes from the deformation theory of µpm . Indeed,
the finite flat R-group scheme G/N is a deformation of µpm , i.e. G/N ⊗R k ∼= µpm/k (because base
change of algebraic groups preserves exactness under flatness hypothesis). However, the k-group scheme
µpm does not admit non-trivial deformations over a local Artin ring R, i.e. we have the following:

Proposition 7. Let R be a local Artin ring. Let H be a finite flat R-group scheme such that H ⊗R k ∼=
µpm then we have that H ∼= µpm/R. In other words, all deformations of µpm are trivial for all positive
integers m.

Proof. This is a direct consequence of the fact that the category of R-group schemes which are of
multiplicative type and finite over R is equivalent to the same category over R/mRR ∼= k, and we know
that H⊗Rk ∼= µpm is of multiplicative type. This implies that H and µpm over R have to be isomorphic.
See for example Cor. 2.3 and 2.4, Rem. 4.0.1 and Lemma 4.1 in SGA 3 Exp. X. in [Art+64].

We conclude that we have the isomorphism G/N ∼= µpm as R-group schemes, which implies that
B ∼= R[y]/(yp

m

) which holds if and only if c = 0. Finally, for all λ we have that:

G ∼= Spec(R[x, y]/(xp, yp
m

))

with group law given for a certain a ∈ k by:

(x, y) ◦G (x′y′) = ((1 + y)λx′ + x+ aπWp(x, x
′), y + y′ + yy′).

By Lemma 3, we conclude that if vp(λ) 6= m − 1 there are no non-trivial deformations of Gλ over R,
i.e. G ∼= Gλ ⊗k R ∼= αp ⋊λ µpm which explicitly is the R-scheme R[x, y]/(xp, yp

m

) with group structure
given by (x, y) ◦Gλ

(x′, y′) = ((1 + y)λx′ + x, y + y′ + yy′).
If vp(λ) = m− 1, we have that the deformations of Gλ form a 1-dimensional family H̃a (with parameter
a ∈ k) of non-commutative R-group schemes of order pm+1. We have that the family of finite flat
R-group schemes H̃a can be explicitly described as:

H̃a
∼= Spec(R[x, y]/(xp, yp

m

))

with group law given by:

(x, y) ◦G (x′, y′) = ((1 + y)p
m

x′ + x+ aπWp(x, x
′), y + y′ + yy′).

This concludes the proof of Theorem 5. Finally, we can apply Theorem 5 to the problem of understanding
if any finite flat deformation G over R of Gλ is killed by its order. In particular, we conclude with the
following:

Theorem 9. Let R be a local Artin ring of positive residue characteristic p. Let G be a deformation
over R of the k-group scheme Gλ for any λ ∈ {1, · · · , pm−1}. Then G is killed by its order.

Proof. By Theorem 5, if vp(λ) 6= m− 1, we have that G ∼= (αp ⋊λ µpm)×Spec(k) Spec(R) over R and we
conclude that also G is killed by its order.
Now, assume that vp(λ) = m − 1. By Theorem 5, for any deformation G over R of Gpm−1 there exist
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a ∈ k such that we have that G ∼= H̃a. We can perform now computations as the group law is also
explicit in this case. Indeed, given a generic element h = (x, y) ∈ H̃a, we have that

[pm](x, y) =
(

x

pm−1
∑

k=0

(1 + y)kp
m−1

, yp
m
)

because Wp(x, x) = 0 since xp = 0. Since yp
m

= 0 the second component is zero. Finally, the same
exact computation performed in Section 2 can be repeated here which grants us that also the first

component is indeed zero because
∑pm−1

k=0 (1 + y)kp
m−1

= pm−1
∑p−1

k=0(1 + y)kp
m−1

= 0 because R is of

characteristic p. This proves that [pm] kills H̃a and in particular we deduce that G is killed by its order.
This concludes the proof of the theorem.
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