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DUALITY FOR p-ADIC GEOMETRIC PRO-ÉTALE COHOMOLOGY I: A

FARGUES-FONTAINE AVATAR

PIERRE COLMEZ, SALLY GILLES, AND WIESŁAWA NIZIOŁ

Abstract. p-adic geometric pro-étale cohomology of smooth partially proper rigid analytic

varieties over p-adic fields can be represented by solid quasi-coherent sheaves on the Fargues-

Fontaine curve. We prove that these sheaves satisfy a Poincaré duality. This is done by passing,

via comparison theorems, to analogous sheaves representing syntomic cohomology and then

reducing to Poincaré duality for B+
st-twisted Hyodo-Kato and filtered B

+

dR
-cohomologies that, in

turn, reduce to Serre duality for smooth Stein varieties – a classical result. A similar computation

yields a Künneth formula.
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1. Introduction

Let K be a finite extension of Qp and C = Q̂p. In [10, Th. 1.1], we have established a
Poincaré duality for the arithmetic p-adic pro-étale cohomology of dagger curves over K and
stated a conjecture for the existence of such a duality for partially proper rigid analytic varieties
of arbitrary dimension. In this paper, we investigate the possibility of existence of geometric (i.e.,
for pro-étale cohomology over C) Poincaré duality for such varieties. The case of the open unit
disc D of dimension 1 shows that such a duality cannot be the naive one (except in the case of
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2 PIERRE COLMEZ, SALLY GILLES, AND WIESŁAWA NIZIOŁ

proper varieties). Indeed, using syntomic methods as in [12, 15], we obtain that the only notrivial
cohomology groups are as follows:

H0(DC ,Qp(1)) ≃ Qp(1), H1(DC ,Qp(1)) ≃ O(DC)/C,(1.1)

H2
c (DC ,Qp(1)) ≃ Qp ⊕ O(∂DC)/O(DC),

where ∂DC denotes the "boundary of DC". Since we have the isomorphisms

O(DC)/C
∼
→ Ω1(DC), O(∂DC)/O(DC)

∼
→ H1

c (DC ,O),

we see in (1.1) a Serre duality as well as a simple Qp-duality but they do not fit together into an
obvious duality.

We will show in this paper that if we see the pro-étale cohomology as living on the Fargues-
Fontaine curve then we do have a Poincaré duality. Recall that the p-adic geometric pro-étale
cohomology of a smooth partially proper rigid analytic variety X over K can be represented by
a solid quasi-coherent sheaf on the Fargues-Fontaine curve, i.e., the pro-étale cohomology can be
computed as

RΓproét(XC ,Qp) ≃ RΓ(XFF,C♭ , Eproét(XC ,Qp)),

for a (nuclear) solid quasi-coherent sheaf Eproét(XC ,Qp) on the Fargues-Fontaine curve XFF,C♭

defined using relative period sheaves. Similarly, geometric compactly supported pro-étale coho-
mology RΓproét,c(XC ,Qp) can be represented by solid quasi-coherent sheaf Eproét,c(XC ,Qp) on
XFF,C♭ . See Section 4.1.2 for the definitions.

Via comparison theorems, we see that, if ∗ ∈ { , c},

Eproét,∗(XC ,Qp(r)) ≃ Esyn,∗(XC ,Qp(r)), r ≥ 2d,

where d is the dimension of X and Esyn,∗(XC ,Qp(r)) is the syntomic cohomology sheaf (a solid
quasi-coherent sheaf on the Fargues-Fontaine curve representing syntomic cohomology; see Section
3.2 for a definition). This is equivalent to proving a comparison theorem between corresponding
Frobenius equivariant sheaves on the Fargues-Fontaine curve YFF,C♭ , which amounts to untwisting
Frobenius from classical comparison theorems. Luckily for us, the proofs of comparison theorems
in [13] and [1] do actually (implicitly) prove the untwisted versions (see Theorem 4.6 for details).

Recall that classical syntomic cohomology is built from (ϕ,N)-eigenspaces of B+
st-twisted Hyodo-

Kato cohomology and from filtered B+
dR-cohomology. Representing it (in a stable range) by the

sheaf Esyn,∗(XC ,Qp(r)) on the Fargues-Fontaine curve separates these terms: heuristically speak-
ing, the (completed) stalks of Esyn,∗(XC ,Qp(r)) at points outside ∞ are N -eigenspaces of B+

st-
twisted Hyodo-Kato cohomology and the (completed) stalk at ∞ is the r-th filtration level of
B+

dR-cohomology.
Now, the stalk cohomology sheaves satisfy Poincaré duality: Poincaré duality for Hyodo-Kato

cohomology reduces, via the Hyodo-Kato isomorphism, to that for de Rham cohomology and
Poincaré duality for filtered de Rham cohomology, in turn, reduces to Serre duality for smooth
Stein varieties – a classical result (see [1] and Section 5.1 for details). These dualities are inherited
by the sheaves Esyn,∗(XC ,Qp(r)), for r ≥ 2d, and then by the sheaves Eproét,∗(XC ,Qp(r)) yielding
the main result of this paper:

Theorem 1.2. (Poincaré duality for pro-étale sheaves) We have a natural, Galois equivariant,

quasi-isomorphims in QCoh(XFF,C♭)

(1.3) Eproét(XC ,Qp)
∼
→ RH omQCoh(X

FF,C♭ )(Eproét,c(XC ,Qp(d))[2d],O).

The proof of the theorem does not proceed as sketched above though, due to the difficulties of
passing to stalks in the theory of solid quasi-coherent sheaves. Instead we argue in a similar vein
with ϕ-modules on the YFF,C♭-curve. In the last part of the paper, we sketch an alternative proof
of Theorem 1.2 that, instead of passing to the YFF,C♭-curve, uses dual modifications.
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Analogous argument, with splitting into Hyodo-Kato and de Rham terms, yields a Künneth
formula:

Theorem 1.4. (Künneth formula) Let X,Y be smooth partially proper varieties over K. Then

the canonical map

κ : Eproét(XC ,Qp)⊗
L
O Eproét(YC ,Qp)→ Eproét((X ×K Y )C ,Qp)

is a quasi-isomorphism in QCoh(XFF,C♭).

Remark 1.5. In Theorem 1.2 and Theorem 1.4, we can replace C, functorially, with any affinoid
perfectoid over C.

Remark 1.6. This paper1, is the first one in a series of two papers, the second of which will
descend the duality (1.3) to the "real" world, which for us is the world of Topological Vector
Spaces (that is, topologically enriched Vector Spaces). It is most likely that for publication the
two papers will be combined.

Remark 1.7. (Related work) There is an ongoing project of Johannes Anschütz, Arthur-César Le
Bras, and Lucas Mann on developing 6-functor formalism for solid quasi-coherent sheaves on the
Fargues-Fontaine curve. They have announced that it includes Poincaré duality of the type proved
in this paper for smooth rigid analytic varieties.

Acknowledgments. We have profited from mathematical generosity of many of our colleagues while
writing this paper. In particular we would like to thank Piotr Achinger, Johannes Anschütz,
Guido Bosco, Dustin Clausen, Gabriel Dospinescu, Arthur-César Le Bras, Zhenghui Li, Lucas
Mann, Akhil Mathew, Juan Esteban Rodriguez Camargo, Peter Scholze, Bogdan Zavyalov, and
Mingjia Zhang for many helpful comments and discussions concerning the content of this paper
and for listening patiently to our expositions of the work in progress.

Parts of this paper were written during the first and third authors’ stay at the Hausdorff Research
Institute for Mathematics in Bonn, in the Summer of 2023, and at IAS at Princeton, in the Spring
2024. We would like to thank these institutes for their support and hospitality. The second author
would like to thank the MPIM of Bonn and the IAS of Princeton for their support and hospitality
during the academic years 2022-2023 and 2023-2024.

Notation and conventions. Let K be a finite extension of Qp. Let OK be the ring of integers in K,
and k be its residue field. Let W (k) be the ring of Witt vectors of k and let F be its fraction field
(i.e., W (k) = OF ).

Let K be an algebraic closure of K and let OK denote the integral closure of OK in K. Let

C = K̂ be the p-adic completion of K. Set GK = Gal(K/K) and let ϕ be the absolute Frobenius
on W (k).

We will denote by Bcr,Bst,BdR the crystalline, semistable, and de Rham period rings of
Fontaine.

All rigid analytic spaces and dagger spaces considered will be over K or C; we assume that they
are separated, taut, and countable at infinity. Huber pairs will always be sheafy. The category of
affinoid perfectoid spaces over an affinoid perfectoid space S over C will be denoted by PerfS .

We will use condensed mathematics as developed in [7], [8]. We fix an implicit cut-off cardinal
κ (in the sense of [17, Sec. 4]), and assume all our perfectoid spaces, and condensed sets to be
κ-small.

1It was written in connection with W. N.’s lectures at a workshop in Singapore, in November 2024.
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We will use the bracket notation for certain limits: [C1
f
→ C2] denotes the mapping fiber of f

and we set 

C1

f1 //

��

K1

��
C2

f2 // K2


 :=

[
[C1

f1
−→ K1]→ [C2

f2
−→ K2]

]
.

2. Quasi-coherent sheaves on the Fargues-Fontaine curve

Here, we will review briefly basic facts concerning quasi-coherent sheaves on the Fargues-
Fontaine curve. This is partly based on [2], [3], and [6, Sec. 6.2].

2.1. Fargues-Fontaine curve. Recall the definition of the relative Fargues-Fontaine curve (see
[18, Lecture 12]). Let S = Spa(R,R+) be an affinoid perfectoid space over the finite field Fp. Let

YFF,S := Spa(W (R+),W (R+)) \ V (p[p♭])

be the relative mixed characteristic punctured unit disc. It is an analytic adic space over Qp. The
Frobenius on R+ induces the Witt vector Frobenius and hence a Frobenius ϕ on YFF,S with free
and totally discontinuous action. The Fargues-Fontaine curve relative to S (and Qp) is defined as

XFF,S := YFF,S/ϕ
Z.

For an interval I = [s, r] ⊂ (0,∞) with rational endpoints, we have the open subset

YFF,S,I := {| · | : |p|
r ≤ |[p♭]| ≤ |p|s} ⊂ YFF,S .

It is a rational open subset of Spa(W (R+),W (R+)) hence an affinoid space,

YFF,S,I := Spa(BS,I ,B
+
S,I).

One can form XFF,S as the quotient of YFF,S,[1,p] via the identification ϕ : YFF,S,[1,1]
∼
→ YFF,S,[p,p].

If S = Spa(C♭,OC♭), we will write YFF, XFF, YFF,I ,BI ,B
+
I .

We will denote by x∞ the (C,OC)-point of the curve XFF corresponding to Fontaine’s map
θ : W (OC) → OC , by y∞ – the corresponding point on YFF, and by ι∞ : Spa(C,OC) → TFF,
T = X,Y , the corresponding closed immersions. More generally, if S is the tilt of a perfectoid
space S♯ over Spa(Qp), there is an induced closed immersion θ : S♯ →֒ YFF,S which is locally given

by Fontaine’s map θ : W (R+) → R♯,+. We will denote by ι∞ : S♯ θ
→ TFF,S the induced closed

immersions and by y∞, x∞, the corresponding divisors.
We set

BS := lim
I⊂(0,∞)

BS,I ,

where I varies over all the compact intervals of (0,∞) with rational endpoints. We will denote
by BS,log the log-crystalline period ring (see [14, Sec. 10.3.1]). We have BS [U ]

∼
→ BS,log, U 7→

log([p♭]/p), with ϕ(U) = pU, σ(U) = U + log[σ(p♭)/p♭], for σ ∈ GK , and N = −d/dU . We define
BS,I,log in a similar manner.

2.2. Quasi-coherent sheaves on the Farges-Fontaine curve. We will present now quasi-
coherent sheaves on XFF as ϕ-modules on a convenient chart of YFF.

2.2.1. Solid quasi-coherent sheaves. We start with a brief survey of solid quasi-coherent sheaves.
Let Y be an analytic adic space over Qp. We denote by QCoh(Y ) the ∞-category of solid quasi-
coherent sheaves on Y , and by Nuc(Y ) the full ∞-subcategory of solid nuclear sheaves on Y . See
[2], [3] for the definitions of these categories and their basic properties. We will often drop the
word "solid" if this does not cause confusion. If Y = Spa(R,R+), then we have an equivalence [2,
Th. 1.6]

(2.1) QCoh(Y ) ≃ D((R,R+)✷),
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where the latter is the derived category of solid (R,R+)-modules, i.e., modules over the analytic
ring (R,R+)✷. In what follows, if this does not confusion, we will write Ran

✷
:= (R,R+)✷. For a

general Y , the category QCoh(Y ) is obtained by gluing the categories D((R,R+)✷) in the analytic
topology.

By Perf(Y ), we denote the full∞-subcategory of perfect sheaves on Y ; that is, complexes which
locally for the analytic topology are quasi-isomorphic to a bounded complex of finite, locally free
OY -modules. If Y = Spa(R,R+) is affinoid, then the natural functor

Perf(R)→ Perf(Y )

is an equivalence, where the left-hand side denotes the ∞-category of perfect complexes of R-
modules (i.e., bounded complexes of finite projective R-modules).

The categories QCoh(Y ), Nuc(Y ), and Perf(Y ) are (compatibly) symmetric monoidal. In the
definition of the∞-category QCoh(Y ) we will bound everything by a fixed uncountable cardinal so
that the category is presentable; it is then also closed symmetric monoidal. The∞-categoryNuc(Y )

is as well presentable and closed symmetric monoidal. Similarly for the ∞-category Perf(Y ).

Remark 2.2. The categories QCoh(Y ), Nuc(Y ), and Perf(Y ) can be defined in a more general
setting, where Y = (R,R+) is a pair such that R is a complete Huber ring and R+ ⊂ R0 is an
arbitrary subring (see [2, Sec. 3.3] for details). We will most often use the case when R+ = Z.

2.2.2. Quasi-coherent ϕ-sheaves on YFF. The ∞-category of quasi-coherent ϕ-equivariant sheaves
over YFF,S (in short: ϕ-sheaves over YFF,S) is the equalizer

QCoh(YFF,S)
ϕ := eq

(
QCoh(YFF,S) Id //

ϕ∗

//
QCoh(YFF,S)

)
.

It is the∞-category of pairs (E , ϕE ), where E is a quasi-coherent sheaf on YFF,S and ϕE : ϕ∗E
∼
→ E

is a quasi-isomorphism2. The category Nuc(YFF,S)
ϕ (resp. Perf(YFF,S)

ϕ) is the full∞-subcategory
of QCoh(YFF,S)

ϕ spanned by the pairs (E , ϕE ), where E is a nuclear (resp. perfect) sheaf on YFF,S.
In what follows we will set u = (p− 1)/p, v = p− 1 if p 6= 2; for p = 2 we take u = 3/4, v = 3/2.

If S is the tilt of a perfectoid space S♮ over Spa(Qp), then the divisor on YS,[u,v] associated to t

is y∞ and t is a unit in BS,[u,v/p]. Via analytic descent, we like to describe the above categories
of ϕ-equivariant sheaves using the chart YFF,S,[u,v] (via Frobenius we have ϕ : YFF,S,[u/p,v/p]

∼
→

YFF,S,[u,v]):

QCoh(YFF,S)
ϕ ≃ eq

(
QCoh(YFF,S,[u,v]) j∗ //

ϕ∗

//
QCoh(YFF,S,[u,v/p] )

)
.

We wrote here ϕ, j for the Frobenius and the open embedding maps from YFF,S,[u,v/p] to YFF,S,[u,v],
respectively. That is, QCoh(YFF,S)

ϕ is the∞-category of pairs (E , ϕE ), where E is a quasi-coherent
sheaf on YFF,S,[u,v] and ϕE : ϕ∗E

∼
→ j∗E is a quasi-isomorphism. The categories Nuc(YFF,S)

ϕ,
Perf(YFF,S)

ϕcan be described in an analogous way.
We note that, since we have the equivalence (2.1), we can also write3

QCoh(YFF,S)
ϕ ≃ D(BFF

S,✷)
ϕ := eq

(
D(Ban

S,[u,v],✷) j∗ //

ϕ∗

//
D(Ban

S,[u,v/p],✷)
)
.

(Frobenius ϕ maps Ban
S,[u,v],✷ to Ban

S,[u,v/p],✷.) It is the ∞-category of pairs MS = (MS,[u,v], ϕM ),
where MS,[u,v] is a complex of Ban

S,[u,v],✷-modules and the Frobenius ϕM is a quasi-isomorphism of
complexes of Ban

S,[u,v/p],✷-modules

ϕM : ϕ∗MS,[u,v]
∼
→MS,[u,v/p] := MS,[u,v] ⊗

L
B

an
S,[u,v],✷

Ban
S,[u,v/p],✷.

2We will call isomorphisms in the ∞-categories QCoh(−) quasi-isomorphisms to be compatible with more classical

set-ups.
3We stress here that D(BFF

S,✷) and B
FF
S,✷ is just a notation; the ring B

FF
S,✷ does not exist.



6 PIERRE COLMEZ, SALLY GILLES, AND WIESŁAWA NIZIOŁ

Remark 2.3. In what follows it will be convenient to consider the following variant of the ∞-
category D(BFF

S,✷)
ϕ (where we drop the superscript (−)an from the rings):

D(BFF
S )ϕ := eq

(
D(BS,[u,v],✷) j∗ //

ϕ∗

//
D(BS,[u,v/p],✷)

)
.

It is the ∞-category of pairs MS = (MS,[u,v], ϕM ), where MS,[u,v] is a complex of solid BS,[u,v]-
modules and the Frobenius ϕM is a quasi-isomorphism of complexes of solid BS,[u,v/p]-modules

ϕM : ϕ∗MS,[u,v]
∼
→MS[u,v/p] := MS,[u,v] ⊗

L
BS,[u,v],✷

BS,[u,v/p].

We call D(BFF
S )ϕ the category of ϕ-complexes of BFF

S -modules. Since we have the equivalences of
symmetric monoidal categories D((BS,I ,Z)✷) = D(BS,I,✷) (see [5, Lemma A.16]), this corresponds
to using the analytic structure with respect to Z in place of B+

S,I . In particular, we have a canonical
monoidal functor D(BFF

S )ϕ → D(BFF
S,✷)

ϕ.

2.2.3. Monoidal structure on quasi-coherent sheaves on YFF. The category QCoh(YFF,S)
ϕ is closed

symmetric monoidal. We will now present how the closed symmetric monoidal structure can
be seen on the level of the category D(BFF

S,✷)
ϕ. In what follows we have set B1 := Ban

S,[u,v],✷,
B2 := Ban

S,[u,v/p],✷.
The (derived) tensor product in D(BFF

S,✷)
ϕ, denoted by (−)⊗L

B
FF
S,✷

(−), is inherited from the one

of the category D(B1). More precisely, for (M,ϕM ), (N,ϕN ) ∈ D(BFF
S,✷)

ϕ, their tensor product is
defined by:

M ⊗L
B

FF
S,✷

N := (MS,[u,v] ⊗
L
B1

NS,[u,v], ϕM⊗N ),

ϕM⊗N = ϕM ⊗ ϕN : (MS,[u,v] ⊗
L
B1

NS,[u,v])⊗
L
B1,ϕ B2 → (MS,[u,v] ⊗

L
B1

NS,[u,v])⊗
L
B1

B2 = (MS,[u,v/p] ⊗
L
B2

NS,[u,v/p]).

Frobenius ϕM⊗N is a quasi-isomorphism because so are Frobeniuses ϕM and ϕN .
The internal RHom, denoted by RHom

B
FF
S,✷

(−,−), in the category D(BFF
S,✷)

ϕ is defined by:

RHom
B

FF
S,✷

(M,N) := (RHom
B1

(MS,[u,v], NS,[u,v]), ϕM,N ),

ϕM,N := (ϕ−1
M , ϕN ) : RHom

B1
(MS,[u,v], NS,[u,v])⊗

L
B1,ϕ B2 → RHom

B1
(MS,[u,v], NS,[u,v])⊗

L
B1

B2.

In the definition of Frobenius ϕM,N we have used the following (non-obvious) fact:

Lemma 2.4. The canonical maps

RHom
B1

(MS,[u,v], NS,[u,v])⊗
L
B1,ϕ B2 → RHom

B2
(MS,[u,v] ⊗

L
B1,ϕ B2, NS,[u,v] ⊗

L
B1,ϕ B2),

RHom
B1

(MS,[u,v], NS,[u,v])⊗
L
B1

B2 → RHom
B2

(MS,[u,v/p], NS,[u,v/p])

are quasi-isomorphisms.

Proof. To start, note that, since the first map is induced by the composition of the maps

ϕ : Ban
S,[u,v],✷→Ban

S,[u/p,v/p],✷, can : Ban
S,[u/p,v/p],✷ → Ban

S,[u,v/p],✷

where the first map is an isomorphism, it suffices to argue for the second quasi-isomorphism in the
lemma.

Write MS,[u,v] = colimi∈I M
i
S,[u,v] as a filtered colimit of compact objects {M i

S,[u,v]}, i ∈ I. Then

RHom
B1

(MS,[u,v], NS,[u,v]) = RHom
B1

(colimi∈I M
i
S,[u,v], NS,[u,v])

≃ R lim
I

RHom
B1

(M i
S,[u,v], NS,[u,v])

and similarly for [u, v/p]. It follows that it suffices to show that

(R lim
I

RHom
B1

(M i
S,[u,v], NS,[u,v]))⊗

L
B1

B2
∼
→ R lim

I
RHom

B2
(M i

S,[u,v/p], NS,[u,v/p]).
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But, by [2, Prop. 5.38], we have

RHom
B1

(M i
S,[u,v], NS,[u,v])⊗

L
B1

B2
∼
→ RHom

B2
(M i

S,[u,v/p], NS,[u,v/p]).

Hence it suffices to show that

(R lim
I

RHom
B1

(M i
S,[u,v], NS,[u,v]))⊗

L
B1

B2
∼
→ R lim

I
(RHom

B1
(M i

S,[u,v], NS,[u,v])⊗
L
B1

B2).

That is, that the functor (−)⊗L
B1

B2 commutes with derived limits.
To show this write BS,[u,v/p] = BS,[u,v]〈f〉, where f = (p/[p♭]p/v) ∈ BS,[u,v]. By [2, Prop. 4.11],

we have

(−)⊗L
B1

B2 ≃ (−)⊗L
(Z[T ],Z)✷

(Z[T ],Z[T ])✷,(2.5)

where the map (Z[T ],Z)✷ → (BS,[u,v],B
+
S,[u,v])✷ is induced by T 7→ f . But, by [2, Prop. 3.12], for

M ∈ D((Z[T ],Z)✷), we have

M ⊗L
(Z[T ],Z)✷

(Z[T ],Z[T ])✷ ≃ RHomR(R∞/R,M)[1],

where R = Z[T ], R∞ = Z((T−1)). It follows that the functor (−)⊗L
B1

B2 commutes with derived
limits, as wanted. �

Finally, we note that Frobenius ϕM,N is a quasi-isomorphism because so are Frobeniuses ϕM

and ϕN .

Remark 2.6. (1) Everything above is valid for the category D(BFF
S )ϕ with the same proofs.

(2) Let M,N ∈ D((R,Z)✷). We note that the natural map

RHom(R,Z)✷(M,N)⊗L
(R,Z)✷

(R,R+)✷ → RHom(R,R+)✷(M ⊗
L
(R,Z)✷

(R,R+)✷, N ⊗
L
(R,Z)✷

(R,R+)✷)

is a quasi-isomorphism in the case N is (R,R+)✷-complete. It follows that RHom(R,Z)✷(M,N) is
then also (R,R+)✷-complete. For example, this is the case when N is nuclear.

2.2.4. Quasi-coherent ϕ-sheaves on YFF and ϕ-modules. We will now describe the categoriesNuc(YFF,S)
ϕ

and Perf(YFF,S)
ϕ using complexes of (usual) solid modules.

Recall that the natural maps of analytic rings (BS,I ,Z)✷ → (BS,I ,B
+
S,I)✷ induce base change

functors

(2.7) (−)⊗L
(BS,I ,Z)✷

(BS,I ,B
+
S,I)✷ : D((BS,I ,Z)✷)→ D((BS,I ,B

+
S,I)✷).

By [6, (6.13)], the functors (2.7) induce equivalences on the full subcategories of nuclear and perfect
complexes:

Nuc(BS,I) := Nuc((BS,I ,Z)✷)
∼
→ Nuc((BS,I ,B

+
S,I)✷),(2.8)

Perf(BS,I) ≃ Perf((BS,I ,Z)✷)
∼
→ Perf((BS,I ,B

+
S,I)✷).

We define the category Nuc(BFF
S )ϕ (resp. Perf(BFF

S )ϕ) as the full ∞-subcategory of D(BFF
S )ϕ

spanned by the pairs (MS,[u,v], ϕM ), where MS,[u,v] is a nuclear (resp. perfect) complex over BS,[u,v].
That is, the ∞-category Nuc(BFF

S )ϕ of nuclear ϕ-complexes of BFF
S -modules, is defined as the

equalizer:

Nuc(BFF
S )ϕ := eq

(
Nuc(BS,[u,v]) can //

ϕ∗

//
Nuc(BS,[u,v/p])

)
.

Similarly, for the category Perf(BFF
S )ϕ of ϕ-complexes of perfect BFF

S -modules.
We have the following simple fact:

Lemma 2.9. The canonical functor

D(BFF
S )ϕ → QCoh(YFF,S)

induces equivalences of ∞-categories:

(2.10) Nuc(BFF
S )ϕ

∼
→ Nuc(YFF,S)

ϕ, Perf(BFF
S )ϕ

∼
→ Perf(YFF,S)

ϕ.
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Proof. Our claim follows from equivalences (2.8). �

The categories Nuc(BFF
S )ϕ, and Perf(BFF

S )ϕ are symmetric monoidal: the (derived) tensor
products (denoted by (−) ⊗L

B
FF
S

(−)) are inherited from the ones of the categories Nuc(BS,[u,v]),

and Perf(BS,[u,v]), respectively. The canonical functor to the category D(BFF
S )ϕ is symmetric

monoidal. The functors in Lemma 2.9 are compatible with these structures.

2.2.5. Quasi-coherent sheaves on XFF. The action of ϕ on YFF,S being free and totally discon-
tinuous, by the analytic descent for solid quasi-coherent sheaves, we obtain an equivalence of
∞-categories

EFF,S : QCoh(YFF,S)
ϕ ∼
→ QCoh(YFF,S/ϕ

Z) = QCoh(XFF,S).

Similarly, we get equivalences of closed symmetric monoidal ∞-categories

(2.11) Nuc(YFF,S)
ϕ ∼
→ Nuc(XFF,S), Perf(YFF,S)

ϕ ∼
→ Perf(XFF,S).

By Lemma 2.9, this yields a functor

(2.12) EFF,S : D(BFF
S )ϕ → QCoh(XFF,S).

We will often skip the subscript S from EFF,S if this does not cause confusion. Restricting to
nuclear or perfect complexes we get the following result (see [6, Th. 6.8] for a similar statement):

Lemma 2.13. (1) The functor EFF,S, from (2.12), induces equivalences of ∞-categories

(2.14) Nuc(BFF
S )ϕ

∼
→ Nuc(XFF,S), Perf(BS)

ϕ ∼
→ Perf(XFF,S).

(2) Let E ∈ Nuc(XFF,S). Let (M(E )[u,v], ϕM ) be the nuclear ϕ-complex of BFF
S -modules corre-

sponding to E via (2.14). Then, there is a natural quasi-isomorphism in D(Qp(S)✷)

RΓ(XFF,S , E ) ≃ [M(E )[u,v]
ϕ−1
−−→M(E )[u,v/p]].

Proof. The first claim is a combination of (2.10) and (2.11). For the second claim, we compute

RΓ(XFF,S , E ) ≃ RΓ(ϕZ,RΓ(YFF, E|YFF
)) ≃ [Γ(YFF,S,[u,v], E|YFF

)
ϕ−1
−−→Γ(YFF,S,[u,v/p], E|YFF

)]

≃ [M(E )[u,v]
ϕ−1
−−→M(E )[u,v/p]].

�

3. Syntomic complexes on the Fargues-Fontaine curve

In this section we define quasi-coherent sheaves on the Fargues-Fontaine curve representing
syntomic cohomology of smooth partially proper rigid analytic varieties.

3.1. Hyodo-Kato and de Rham cohomologies. We start with the cohomologies of de Rham
type. We use [1, Sec. 4, Sec. 5] as the basic reference.

3.1.1. De Rham cohomology. Let X be a partially proper rigid analytic variety over K. We have
the (filtered) de Rham complexes in D(K✷) and (filtered) B+

dR-cohomology complexes in D(B+
dR,✷),

respectively:
F rRΓdR,∗(X), F rRΓdR,∗(XC/B

+
dR), r ∈ N,

as well as the quotients

RΓdR,∗(XC , r) := RΓdR,∗(X/B+
dR)/F

r.

The latter complexes can be represented by quasi-coherent sheaves on XFF. For r ∈ N, we
define the de Rham modules

RΓ
B[u,v]

dR,∗ (XC , r) := RΓdR,∗(XC , r).
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Since B[u,v]/t
i = B+

dR/t
i, these are B[u,v]-modules. Since RΓ

B[u,v]

dR,∗ (XC , r)⊗
L✷

B[u,v]
B[u,v/p] = 0 (recall

that t is invertible in B[u,v/p]), these complexes taken as pairs RΓB

dR,∗(XC , r) = (RΓ
B[u,v]

dR,∗ (XC , r), 0)

define nuclear ϕ-complexes over BFF.
We denote by

EdR,∗(XC , r) := EFF(RΓ
B

dR,∗(XC , r))

the corresponding nuclear quasi-coherent sheaves on XFF. We will call them de Rham sheaves. We
record the following simple fact:

Lemma 3.1. Let r ∈ N. We have a natural quasi-isomorhism in QCoh(XFF)

EdR,∗(XC , r) ≃ i∞,∗RΓdR,∗(XC , r).

For S ∈ PerfC , by replacing B,B+
dR, XFF with BS♭ ,B+

dR(S), XFF,S♭ in the above, we obtain de
Rham modules and sheaves on XFF,S♭ : RΓB

dR,∗(XS , r), EdR,∗(XS , r). These are functors on PerfC .

3.1.2. De Rham cohomology – Stein case. Let X be a smooth Stein rigid analytic variety over K.
In this case the above cohomology complexes can be made more explicit.

(•) De Rham cohomology. Let r ∈ N. Since coherent cohomology of X is trivial in nonzero
degrees and we have Serre duality, the (filtered) de Rham cohomology of X can be computed by
the following complexes in D(K✷):

F rRΓdR(X) ≃ (Ωr(X)→ · · · → Ωd(X))[−r],

F rRΓdR,c(X) ≃ (Hd
c (X,Ωr)→ Hd

c (X,Ωr+1)→ · · · → Hd
c (X,Ωd))[−d− r].

The second quasi-isomorphism follows from the fact that Hi
c(X,Ωj) = 0, for i 6= d. The terms of

the first complex are nuclear Fréchet over K and those of the second complex are of compact type
over K (in classical terminology).

(•) B+
dR-cohomology. Let r ∈ N. The (filtered) B+

dR-cohomology of X can be computed by the
following complexes in D(B+

dR,✷):

F rRΓdR(XC/B
+
dR) ≃ O(X)⊗✷

K trB+
dR → Ω1(X)⊗✷

K tr−1B+
dR → · · · → Ωd(X)⊗✷

K tr−dB+
dR,

(3.2)

F rRΓdR,c(XC/B
+
dR) ≃ (Hd

c (X,O)⊗✷

K trB+
dR → Hd

c (X,Ω1)⊗✷

K tr−1B+
dR → · · · → Hd

c (X,Ωd)⊗✷

K tr−dB+
dR)[−d].

The tensor products are actually derived because B+
dR is Fréchet hence flat.

This yields the quasi-isomorphisms in D(B+
dR,✷):

RΓdR(XC , r) ≃ O(X)⊗✷

K (B+
dR/t

r)→ Ω1(X)⊗✷

K (B+
dR/t

r−1)→ · · · → Ωd(X)⊗✷

K (B+
dR/t

r−d),

(3.3)

RΓdR,c(XC , r) ≃ (Hd
c (X,O)⊗✷

K (B+
dR/t

r)→ Hd
c (X,Ω1)⊗✷

K (B+
dR/t

r−1)→ · · · → Hd
c (X,Ωd)⊗✷

K (B+
dR/t

r−d))[−d].

We will denote the respective cohomology groups by Hi
dR(X, r) and Hi

dR,c(X, r).
For i ≥ 0, we have short exact sequences in D(B+

dR,✷) (see [9, Example 3.30], [1, Lemma 4.15])

0→ Ωi(XC)/Im d→Hi
dR(XC , r)→ Hi

dR(X)⊗✷

K (B+
dR/F

r−i−1)→ 0,(3.4)

0→ (Hd
c (X,Ωi−d)/Im d)⊗✷

K grr−i+d−1
F B+

dR →Hi
dR,c(XC , r)→ Hi

dR,c(X)⊗✷

K (B+
dR/F

r−i+d−1)→ 0.

3.1.3. Hyodo-Kato cohomology. Let X be a smooth rigid analytic variety over C. Let RΓHK(X) ∈

Dϕ,N,GK (C̆✷) be the Hyodo-Kato cohomology defined in [13, Sec. 4] (see also [6, Sec. 3]). Here
Dϕ,N,GK (C̆✷) is the derived ∞-category of solid (ϕ,N,GK)-modules over C̆.

Let r ∈ Z. Consider the twisted Hyodo-Kato cohomology in Dϕ,GK (C̆✷)

RΓBI

HK(XC , r) := [RΓHK(XC){r} ⊗
L✷

C̆
BI,log]

N=0,
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where the twist {r} means Frobenius divided by pr and I ⊂ (0,∞) is a compact interval with
rational endpoints. We define RΓB

HK(XC , r) in a similar way. We claim that, for compact intervals
I ⊂ J ⊂ (0,∞) with rational endpoints, we have the canonical quasi-isomorphism

RΓBJ

HK(XC , r)⊗
L✷

BJ
BI

∼
→ RΓBI

HK(XC , r).

Indeed, for that, it suffices to show that the canonical map

RΓHK(XC){r} ⊗
L✷

C̆
BJ,log ⊗

L✷

BJ
BI → RΓHK(XC){r} ⊗

L✷

C̆
BI,log

is a quasi-isomorphism. But this is clear since the solid tensor product commutes with direct sums.
We define the pair4

RΓB

HK(XC , r) := (RΓ
B[u,v]

HK (XC , r), ϕ), ϕ : RΓ
B[u,v]

HK (XC , r)→ RΓ
B[u,v/p]

HK (XC , r),

where the Frobenius ϕ is induced from the Hyodo-Kato Frobenius and the Frobenius ϕ : B[u,v] →

B[u,v/p]. It yields a quasi-isomorphism in D(B[u,v/p],✷)

ϕ : RΓ
B[u,v]

HK (XC , r) ⊗
L✷

B[u,v],ϕ
B[u,v/p]

∼
→ RΓ

B[u,v/p]

HK (XC , r)

The pair RΓB

HK(XC , r) defines a nuclear ϕ-complex (actually (ϕ,GK)-complex) over BFF, which
we will call Hyodo-Kato module.

We define Hyodo-Kato sheaves on XFF as

EHK(XC , r) := EFF(RΓ
B

HK(XC , r)).

By Lemma 2.13, these are nuclear quasi-coherent sheaves on XFF. If the cohomology groups of
RΓHK(XC) are of finite rank over C̆ then the sheaf EHK(XC , r) is perfect. By Lemma 2.13 and [6,
Th. 6.3], we have natural quasi-isomorphisms in D(Qp,✷)

RΓ(XFF, EHK(XC , r)) ≃ [RΓHK(XC){r} ⊗
L✷

C̆
B[u,v],log]

N=0,ϕ=1(3.5)
∼
← [RΓHK(XC){r} ⊗

L✷

C̆
Blog]

N=0,ϕ=1,

where we set

[RΓHK(XC){r}⊗
L✷

C̆
B[u,v],log]

N=0,ϕ=1 :=




RΓHK(XC){r} ⊗
L✷

C̆
B[u,v],log

ϕ−1 //

N��

RΓHK(XC){r} ⊗
L✷

C̆
B[u,v/p],log

N��
RΓHK(XC){r} ⊗

L✷

C̆
B[u,v],log

pϕ−1 // RΓHK(XC){r} ⊗
L✷

C̆
B[u,v/p],log


 .

And similarly for [RΓHK(X){r} ⊗L✷

C̆
Blog]

N=0,ϕ=1.
For S ∈ PerfC , by changing B,BI ,BI,log to BS♭ ,BS♭,I ,BS♭,I,log, we obtain Hyodo-Kato mod-

ules and sheaves:

RΓB

HK(XS , r), EHK(XS , r).

These are functors on PerfC . In the caseX is partially proper, we have analogsRΓB

HK,c(XS , r), EHK,c(XS , r)

for Hyodo-Kato cohomology with compact support5 and the following analog of quasi-isomorphism
(3.5):

Lemma 3.6. Let r ∈ Z. We have a natural quasi-isomorphism in D(Qp(S)✷)

RΓ(XFF,S♭ , EHK,∗(XS , r)) ≃ [RΓB

HK,∗(XS , r)]
ϕ=1.

4There is a certain doubling of notation with the previous paragraph but we hope that this will not cause

confusion in what follows.
5See [1, Sec. 4, Sec. 5] for the definition and basic properties of compactly supported Hyodo-Kato cohomology.
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3.1.4. Hyodo-Kato map. Let X be a smooth partially proper rigid analytic variety over K. Recall
that we have the natural Hyodo-Kato maps (see [13, Sec. 4]) in D(C̆✷) and D(B+

dR,✷), respectively:

ιHK : RΓHK(XC)→ RΓdR(XC/B
+
dR), ιHK : RΓHK(XC)⊗

L✷

C̆
B+

dR
∼
→ RΓdR(XC/B

+
dR).

Combined with the canonical map ι : B[u,v],log → B[u,v]/t
i, it defines a map between complexes of

solid B[u,v]-modules:

(3.7) ιHK : RΓ
B[u,v]

HK (XC , r) = [RΓHK(XC){r} ⊗
L✷

C̆
B[u,v],log]

N=0 → RΓ
B[u,v]

dR (XC , r).

Since we have a commutative diagram

(3.8) RΓ
B[u,v]

HK (XC , r)

ιHK��

ϕ⊗ϕ // RΓ
B[u,v/p]

HK (XC , r)

��
RΓ

B[u,v]

dR (XC , r) // 0,

the map (3.7) clearly lifts to a map of ϕ-modules over BFF:

ιHK : RΓB

HK(XC , r)→ RΓB

dR(XC , r).

This Hyodo-Kato map descends to the level of nuclear quasi-coherent sheaves on XFF:

ιHK : EHK(XC , r)→ EdR(XC , r).

Everything above has a version for compactly supported cohomologies (see [1, Sec. 4.2.2] for
Hyodo-Kato morphisms), as well as for S-cohomologies, for S ∈ PerfC (varying functorially in S).

3.2. Syntomic cohomology. We pass now to syntomic cohomology.

3.2.1. Classical syntomic cohomology. Let X be a smooth partially proper rigid analytic variety
over K. Let r ∈ N. Consider the classical syntomic cohomology (ala Bloch-Kato) (see [13, Sec. 5.4])

RΓ
B

+
cr

syn,∗(XC ,Qp(r)) :=
[
[RΓHK,∗(XC)⊗

L✷

C̆
B+

st]
N=0,ϕ=pr ιHK⊗ι

−−→RΓdR,∗(XC/B
+
dR)/F

r
]
.

It satisfies the following comparison theorem:

Theorem 3.9. (Period isomorphism, [13, Th. 6.9]) Let r ∈ N. There is a natural quasi-isomorphism

in D(Qp,✷)

(3.10) αr : τ≤rRΓ
B

+
cr

syn,∗(XC ,Qp(r)) ≃ τ≤rRΓproét,∗(XC ,Qp(r)).

Moreover, it yields a natural quasi-isomorphism in D(Qp,✷)

αr : RΓ
B

+
cr

syn,∗(XC ,Qp(r)) ≃ RΓproét,∗(XC ,Qp(r)), r ≥ 2d.

Proof. Only the second claim requires justification. For the usual cohomology, this follows from
quasi-isomorphism (3.10) and the fact that the complexes RΓ

B
+
cr

syn (XC ,Qp(r)), RΓproét(XC ,Qp(r))

live in the [0, 2d]-range. To see the latter fact in the case X is Stein, note that using (3.3) we get

H
B

+
cr,i

syn (XC ,Qp(r)) = 0, for i ≥ d+1. From this and (3.10) we get that Hi
proét(XC ,Qp(d+ j)) = 0,

for d + j ≥ i ≥ d + 1, j ≥ 1, and then, by twisting, that Hi
proét(XC ,Qp(r)) = 0, for i ≥ d + 1,

as wanted. Now, for a general partially proper X , we need to add d for the analytic dimension of
cohomology yielding the range [0, 2d], as wanted.

For the cohomology with compact support, we argue similarly but using (3.4) instead of (3.3) in
the case X is Stein. The case of partially proper X follows from that by a (co)-Čech argument. �
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The above has a version in families. Let S ∈ PerfC and let r ∈ N. We have the classical
(crystalline) syntomic cohomology in D(Qp(S)✷):
(3.11)

RΓ
B

+
cr

syn,∗(XS ,Qp(r)) :=
[
[RΓHK,∗(XC)⊗

L✷

C̆
B+

st(S)]
N=0,ϕ=pr ιHK⊗ι

−−→RΓdR,∗(XC/B
+
dR(S))/F

r
]
.

It satisfies the following comparison theorem:

Theorem 3.12. (Period isomorphism in families, [13, Cor. 7.37], [1, Th. 7.11])Let r ∈ N. There

is a natural, functorial in S, quasi-isomorphism in D(Qp(S)✷)

(3.13) αr : τ≤rRΓ
B

+
cr

syn,∗(XS ,Qp(r)) ≃ τ≤rRΓproét,∗(XS ,Qp(r)).

Moreover, it yields a natural, functorial in S, quasi-isomorphism in D(Qp(S)✷)

αr : RΓ
B

+
cr

syn,∗(XS ,Qp(r)) ≃ RΓproét,∗(XS ,Qp(r)), r ≥ 2d.

Proof. The argument is analogous to the one used in the proof of Theorem 3.9. �

3.2.2. Variants of syntomic cohomology. We will need the following variant of syntomic cohomology
in D(Qp(S)✷):

(3.14) RΓ
B[u,v]
syn,∗ (XS ,Qp(r)) :=

[
[RΓ

B[u,v]

HK,∗ (XS , r)]
ϕ=1 ιHK−−→RΓ

B[u,v]

dR,∗ (XS , r)
]
, r ∈ N.

Lemma 3.15. Let r ∈ N. There is a natural, functorial in S, quasi-isomorphism in D(Qp(S)✷):

τ≤rRΓ
B[u,v]
syn,∗ (XS ,Qp(r)) ≃ τ≤rRΓ

B
+
cr

syn,∗(XS ,Qp(r)).(3.16)

Moreover, it yields a quasi-isomorphism in D(Qp(S)✷):

RΓ
B[u,v]
syn,∗ (XS ,Qp(r)) ≃ RΓ

B
+
cr

syn,∗(XS ,Qp(r)), r ≥ d.

Proof. Let BS♭,[u,∞] := W (R♭,+)〈|[p♭]/pu〉[1/p]. Define yet another variant of syntomic cohomology
in D(Qp(S)✷):

RΓ
B[u,∞]
syn,∗ (XS ,Qp(r)) :=

[
[RΓ

B[u,∞]

HK,∗ (XS , r)]
ϕ=1 ιHK−−→RΓdR,∗(XS , r)

]
.

The three different variants of syntomic cohomology introduced above are linked via maps

RΓ
B

+
cr

syn,∗(XS ,Qp(r))
f1 // RΓ

B[u,∞]
syn,∗ (XS ,Qp(r))

f2 // RΓ
B[u,v]
syn,∗ (XS ,Qp(r))

induced by canonical maps B+
cr(S)→ BS♭,[u,∞], BS♭,[u,∞] → BS♭,[u,v], and BS♭,[u,∞] → BS♭,[u,v/p]

(see [11, Sec. 2.4.2]). We claim that the map f1 is a quasi-isomorphism and the map f2 is a
quasi-isomorphisms after truncation τ≤r. To show that, it suffices to prove that the related maps

f ′
1 : [RΓHK,∗(XC)⊗

L✷

C̆
B+

st(S)]
N=0,ϕ=pr

→ [RΓ
B[u,∞]

HK,∗ (XS , r)]
ϕ=1,

f ′
2 : [RΓ

B[u,∞]

HK,∗ (XS , r)]
ϕ=1 → [RΓ

B[u,v]

HK,∗ (XS , r)]
ϕ=1

are quasi-isomorphisms in the wanted ranges. Or, first dropping (naively) N = 0 and then log on
both sides, that so are the maps

f ′
1 : [RΓHK,∗(XC)⊗

L✷

C̆
B+

cr(S)]
ϕ=pj

→ [RΓHK,∗(XC)⊗
L✷

C̆
BS♭,[u,∞]]

ϕ=pj

, j ∈ Z;

f ′
2 : τ≤r[RΓHK,∗(XC)⊗

L✷

C̆
BS♭,[u,∞]]

ϕ=ps

→ τ≤r[RΓHK,∗(XC)⊗
L✷

C̆
BS♭,[u,v]]

ϕ=ps

, s = r − 1, r.

Let us first look at the map f ′
1. Taking cohomologies in degree i ≥ 0, we get maps

f ′
1 : (Hi

HK,∗(XC)⊗
L✷

C̆
B+

cr(S))
ϕ=pj

→ (Hi
HK,∗(XC)⊗

L✷

C̆
BS♭,[u,∞])

ϕ=pj

.

We used here [13, Prop. 5.8]. Since Hi
HK(XC) and Hi

HK,c(XC) are a countable limit, resp. colimit,
of finite rank ϕ-isocrystals over C̆, we may assume that the Hyodo-Kato cohomology groups are
finite rank. But then, since ϕ(BS♭,[u,∞]) ⊂ B+

cr(S) ⊂ BS♭,[u,∞], it is clear that f ′
1 is an isomorphism,

as wanted.
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Concerning the map f ′
2, we first pass to cohomology in degree i and then assume that the

Hyodo-Kato cohomology has finite rank as above. Let j ∈ N. We then claim that the map

(3.17) Hi
HK(XC){j} ⊗

L✷

C̆
BS♭,[u,v]

1−ϕ
−−→Hi

HK(XC){j} ⊗
L✷

C̆
BS♭,[u,v/p]

is surjective for i ≤ j. Indeed, by Lemma 2.13, the complex (3.17) computes the cohomology of
the vector bundle Ei on XFF,S♭ associated to Hi

HK(XC){j}. Our claim now follows from the fact
that the slopes of Frobenius on Hi

HK(XC) are ≤ i (see [13, proof of Prop. 5.20]) hence the slopes
of Ei are ≥ 0 and H1(XFF,S♭ , Ei) = 0, as wanted.

Similarly, we see that the map

(3.18) Hi
HK,c(XC){j} ⊗

L✷

C̆
BS♭,[u,v]

1−ϕ
−−→Hi

HK,c(XC){j} ⊗
L✷

C̆
BS♭,[u,v/p]

is surjective for j ≥ d using the fact that the slopes of Frobenius on Hi
HK,c(XC) are in the [i− d, d]

range (use Poincaré duality for Hyodo-Kato cohomology to flip to the usual cohomology).
Now, it suffices to show that, for i ∈ N, j ≥ −1, the map

f ′
2 : (Hi

HK,∗(XC)⊗
L✷

C̆
BS♭,[u,∞])

ϕ=pj

→ (Hi
HK,∗(XC)⊗

L✷

C̆
BS♭,[u,v])

ϕ=pj

is an isomorphism. But in the case S = C this follows from [4, Prop. 3.2] and the general case
reduces to that one using the fact that all our algebras are spectral.

The above arguments prove the quasi-isomorphism in (3.16) for the usual cohomology and we
get the statement for the compactly supported cohomology from the case of usual cohomology by a
colim argument. Concerning the last sentence of our lemma, the above argument shows the case of
compactly supported cohomology. For the usual cohomology, since the complex RΓ

B
+
cr

syn (XS ,Qp(r))

lives in the [0, 2d] range (see the proof of Theorem 3.9) it suffices to show that so does the complex
RΓ

B[u,v]
syn (XS ,Qp(r)). But here we can use the same argument as in the proof of Theorem 3.9. �

Remark 3.19. Bosco in [6, Th. 6.3] considered the following variant of syntomic cohomology in
D(Qp(S)✷):

RΓFF
syn(XS ,Qp(r)) :=

[
[RΓB

HK(XS , r)]
ϕ=1 ιHK−−→RΓdR(XS , r)

]
, r ∈ N.

Lemma 3.20. The canonical map BS♭ → BS♭,[u,v] induces a morphism in D(Qp(S)✷)

RΓFF
syn(XS ,Qp(r))→ RΓ

B[u,v]
syn (XS ,Qp(r)).

This is a quasi-isomorphism.

Proof. Arguing as in the proof of Lemma 3.15, it suffices to show that the induced morphism

[Hi
HK(XC){r}⊗

L✷

C̆
BS♭

1−ϕ
−−→Hi

HK(XC){r}⊗
L✷

C̆
BS♭ ]→ [Hi

HK(XC){r}⊗
L✷

C̆
BS♭,[u,v]

1−ϕ
−−→Hi

HK(XC){r}⊗
L✷

C̆
BS♭,[u,v/p]]

is a quasi-isomorphism in the case Hi
HK(XC) is of finite rank. But this follows from Lemma 3.6. �

3.2.3. Syntomic ϕ-modules over BFF. Let X be a smooth partially proper rigid analytic variety
over K.

Definition 3.21. Let r ∈ N. Let S ∈ PerfC .

(1) Set
RΓB

syn,∗(XS ,Qp(r)) := [RΓB

HK,∗(XS , r)
ιHK−−→RΓB

dR,∗(XS , r)].

This is a nuclear ϕ-module over BFF
S♭ . We call it a syntomic module.

(2) The (nuclear) syntomic sheaves on XFF,S are defined by

Esyn,∗(XS ,Qp(r)) := EFF(RΓ
B

syn,∗(XS ,Qp(r))).

We have a distinguished triangle in QCoh(XFF,S♭)

(3.22) Esyn,∗(XS ,Qp(r))→ EHK,∗(XS , r)
ιHK−−→EdR,∗(XS , r).
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Lemma 3.23. Let r ≥ 2d. We have natural, functorial in S, quasi-isomorphisms in D(Qp(S)✷):

RΓ(XFF,S♭ , Esyn,∗(XS ,Qp(r))) ≃ RΓ
B[u,v]
syn,∗ (XS ,Qp(r)),

RΓ(XFF,S♭ , Esyn,∗(XS ,Qp(r)) ≃ RΓproét,∗(XS ,Qp(r)).

Proof. The first quasi-isomorphism follows from Lemma 2.13. The second quasi-isomorphism fol-
lows from the first one, the quasi-isomorphism (3.16), and Theorem 3.12. �

4. Pro-étale complexes on the Fargues-Fontaine curve

In this section we define quasi-coherent sheaves on the Fargues-Fontaine curve representing p-
adic (geometric) pro-étale cohomology of smooth partially proper rigid analytic varieties and prove
a comparison theorem with the quasi-coherent sheaves representing syntomic cohomology.

4.1. Definitions. We start with definitions.

4.1.1. Twisted coefficients. Let S ∈ PerfC . Let n, k ≥ 0. Define the line bundle O(n, k) on XFF,S♭

by the exact sequence of OFF,S♭-modules

0→ O(n, k)→ O(n)→ i∞,∗(O/tk)→ 0,

where the first map is an inclusion. The sheaf O(n, n) will be the target of our trace maps. Note that
O(n, k) is just O(n− k) with (Galois-)Tate twist k; in particular, we have H0(XFF,S♭ ,O(n, n)) =

Qp(S)(n).
On the level of ϕ-modules over BFF

S♭ , the sheaf O(n, k) is the module BS♭{n, k} represented by
the module BS♭,[u,v]{n, k} defined by the exact sequence

(4.1) 0→ BS♭,[u,v]{n, k} → BS♭,[u,v]{n} → BS♭,[u,v]{n}/t
k → 0,

where the first map is an inclusion. We have BS♭,[u,v]{n, k} ≃ BS♭,[u,v]{n− k}(k) as a Frobenius,
Galois module. Note that the Frobenius map:

ϕ : BS♭,[u,v]{n, k} ⊗
L✷

B
S♭,[u,v]

,ϕ BS♭,[u,v/p] → BS♭,[u,v]{n, k} ⊗
L✷

B
S♭,[u,v]

BS♭,[u,v/p]

is an isomorphism because it is isomorphic to the Frobenius on BS♭,[u,v/p]{n− k}.

4.1.2. Pro-étale modules and sheaves. Let X be a smooth partially proper dagger variety over K.
For r ∈ N, v′ = v, v/p, and S ∈ PerfC , we set

RΓ
B[u,v′]

proét,∗(XS ,Qp(r)) := RΓproét,∗(XS ,B[u,v′])(r),

where B[u,v′] denotes the relative period sheaf corresponding to B[u,v′] (see [6, Sec. 2.3.1] for a
description of condensed structure on these modules). We note that, by [6, Lemma 4.8], we have a
canonical quasi-isomorphism RΓproét,∗(XS ,B[u,v])⊗

L✷

B
S♭,[u,v/p]

BS♭,[u,v/p]
∼
→ RΓproét,∗(XS ,B[u,v/p]).

We define the pro-étale modules as the pairs

RΓB

proét,∗(XS ,Qp(r)) := (RΓ
B[u,v]

proét,∗(XS ,Qp(r)), ϕ),

ϕ : RΓ
B[u,v]

proét,∗(XS ,Qp(r))→ RΓ
B[u,v/p]

proét,∗ (XS ,Qp(r)),

where the Frobenius ϕ is induced by the Frobenius ϕ : B[u,v] → B[u,v/p]. It yields a quasi-
isomorphism in D(BS♭,[u,v/p],✷)

ϕ : RΓ
B[u,v]

proét,∗(XS ,Qp(r)) ⊗
L✷

B
S♭,[u,v]

,ϕ BS♭,[u,v/p]
∼
→ RΓ

B[u,v/p]

proét,∗ (XS ,Qp(r)).

Indeed, it suffices to show that the Frobenius map

ϕ : RΓproét,∗(XS ,B[u,v])⊗
L✷

B
S♭,[u,v]

,ϕ BS♭,[u,v/p]
∼
→ RΓproét,∗(XS ,B[u,v′])

is a quasi-isomorphism. But this follows directly from [6, Lemma 4.8].
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The pairs RΓB

proét,∗(XS ,Qp(r)) defines nuclear ϕ-complexes (actually (ϕ,GK)-complexes) over
BFF

S♭ , which we will call pro-étale modules. For the nuclear property see [6, Lemma 6.15]. We will
denote by

Eproét,∗(XS ,Qp(r)) := EFF(RΓ
B

proét,∗(XS ,Qp(r)))

the corresponding nuclear quasi-coherent sheaves on XFF,S♭ . We will call them pro-étale sheaves.
Pro-étale modules and sheaves are functors on PerfC .

Lemma 4.2. We have a natural, functorial in S, quasi-isomorphism in D(Qp(S)✷):

RΓ(XFF,S♭ , Eproét,∗(XS ,Qp(r))) ≃ RΓproét,∗(XS ,Qp(r)).

Proof. By Lemma 2.13 we have natural, functorial in S, quasi-isomorphisms

RΓ(XFF,S♭ , Eproét,∗(XS ,Qp(r))) ≃ [RΓ
B[u,v]

proét,∗(XS ,Qp(r))
ϕ−1
−−→RΓ

B[u,v/p]

proét,∗ (XS ,Qp(r))]

≃ [RΓproét,∗(XS ,B[u,v])(r)
ϕ−1
−−→RΓproét,∗(XS ,B[u,v/p])(r)]

∼
← RΓproét,∗(XS ,Qp(r)).

Here, in the last quasi-isomorphism, we have used the exact sequence (see [11, Lemma 2.23])

0→ Qp → B[u,v]
ϕ−1
−−→B[u,v/p] → 0

�

4.2. Comparison theorem on the Fargues-Fontaine curve. We move now to the comparison
theorem. Let X be a smooth partially proper variety over K, of dimension d.

Proposition 4.3. Let r ≥ 2d. There is a natural, functorial in S, quasi-isomorphism in QCoh(XFF,S♭):

(4.4) αr : Esyn,∗(XS ,Qp(r)) ≃ Eproét,∗(XS ,Qp(r)).

Proof. It suffices to construct a natural quasi-isomorphism of ϕ-modules over BFF
S♭

RΓB

syn,∗(XS ,Qp(r)) ≃ RΓB

proét,∗(XS ,Qp(r)).

That is, a natural quasi-isomorphism of pairs

(RΓ
B[u,v]
syn,∗ (XS ,Qp(r)), ϕ) ≃ (RΓ

B[u,v]

proét,∗(XS ,Qp(r)), ϕ).

But this follows from a "Frobenius untwisted" version of Theorem 3.12 presented in Theorem 4.6
below. We just have to argue that we can drop truncations in 4.7: but this follows from the fact
that both sides live in degrees [0, 2d], which can be seen as in the proof of Theorem (3.9)). �

Remark 4.5. We did not list the truncated version of Theorem 3.12 in Proposition 4.3 because
the issue of truncation vis a vis localization is a subtle one.

Theorem 4.6. (Comparison theorem on the YFF-curve) Let X be a smooth partially proper variety

over K. We have natural, functorial in S, and compatible with Frobenius quasi-isomorphisms in

D(BS♭,[u,v],✷) and D(BS♭,[u,v/p],✷) respectively:

τ≤rRΓproét,∗(XS ,B[u,v])(r) ≃ τ≤r[RΓ
B[u,v]

HK,∗ (XS , r)→ RΓ
B[u,v]

dR,∗ (XS , r)],(4.7)

RΓproét,∗(XS ,B[u,v/p])(r) ≃ RΓ
B[u,v/p]

HK,∗ (XS , r).

Proof. For v′ = v, v/p, we define F r
B[u,v′] := trB[u,v′]. We note that F r

B[u,v/p] ≃ B[u,v/p]. We
clearly have the isomorphism tr : B[u,v′](r)

∼
→ F r

B[u,v′]{r}. We want to construct natural, functorial
in S and compatible with Frobenius, quasi-isomorphisms in D(BS♭,[u,v],✷) and D(BS♭,[u,v/p],✷),
respectively:

τ≤rRΓproét,∗(XS , F
r
B[u,v]){r} ≃ τ≤r[RΓ

B[u,v]

HK,∗ (XS , r)→ RΓ
B[u,v]

dR,∗ (XS , r)],

RΓproét,∗(XS , F
r
B[u,v/p]){r} ≃ RΓ

B[u,v/p]

HK,∗ (XS , r).
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For the usual cohomology, these quasi-isomorphisms were constructed in [13, Sec. 7]. They
are not explicitly stated there because we almost always carry through the constructions the
eigenspaces of Frobenius but, in fact, the latter can be dropped as they are only used to pass
between various period rings and here we work with one fixed period ring. For the gist of the
construction the interested reader should consult the diagram (7.16) (with the top row moved
a step lower and with added [u, v]-decoration), its refinement (7.31), Section 7.4 in general, and
diagram (7.36) (with decoration changed again to [u, v]) in particular.

The case of compactly supported cohomology follows now easily from the case of usual coho-
mology by taking colimits and finite limits. �

5. Poincaré Dualities on the Fargues-Fontaine curve

We are now ready to state and prove pro-étale duality on the Fargues-Fontaine curve. The same
techniques allow us to prove also pro-étale Künneth formula.

5.1. Hyodo-Kato and de Rham dualities. Let X be a smooth partially proper rigid analytic
variety over K, of dimension d.

5.1.1. De Rham dualities. Recall the following dualities (see [1, Cor. 6.20, Th. 6.24, Cor. 6.26]).

Proposition 5.1. Let L = K,C.

(1) (Serre duality) There is a trace map of solid L-modules

trcoh : RΓc(XL,Ω
d)[d]→ L.

The pairing

RΓ(XL,Ω
j)⊗L✷

L RΓc(XL,Ω
d−j)[d]→ RΓc(XL,Ω

d)[d]
trcoh−−→L

is perfect, i.e., it yields the quasi-isomorphism in D(L✷):

RΓ(XL,Ω
j) ≃ RHomL✷

(RΓc(XL,Ω
d−j)[d], L).

(2) (Filtered de Rham duality) There are natural trace maps in D(L✷) and L✷, respectively:

trdR : RΓdR,c(XL)[2d]→ L, trdR : H2d
dR,c(XL)→ L.

(a) The pairing in D(L✷)

RΓdR(XL)⊗
L✷

L RΓdR,c(XL)[2d]→ RΓdR,c(XL)[2d]
trdR−−−→ L

is a perfect duality, i.e., we have induced quasi-isomorphism in D(L✷)

RΓdR(XL)
∼
→ RHomL✷

(RΓdR,c(XL)[2d], L).

(b) More generally, let r, r′ ∈ N, r + r′ = d. The pairing in D(L✷)

(RΓdR(XL)/F
r′+1)⊗L✷

L F rRΓdR,c(XL)[2d]→ RΓdR,c(XL)[2d]
trdR−−−→ L

is a perfect duality, i.e., we have induced quasi-isomorphisms in D(L✷)

RΓdR(XL)/F
r′+1 ∼
→ RHomL✷

(F rRΓdR,c(X)[2d], L),

F r′+1RΓdR(XL)
∼
→ RHomL✷

(RΓdR,c(X)/F r[2d], L).
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5.1.2. B+
dR-dualities. The duality for B+

dR-cohomology has a slightly different form. For r ≥ d, a
natural trace map in D(B+

dR,✷) can be defined by the composition

tr
B

+
dR

: F rRΓdR(XC/B
+
dR)[2d]→ RΓc(X,Ωd)⊗L✷

K F r−dB+
dR

trcoh⊗Id
−−−−→F r−dB+

dR.

Corollary 5.2. (Filtered B+
dR-duality [1, Cor. 6.28]) Let r, r′ ≥ d, s = r + r′ − d. The pairing in

D(B+
dR,✷)

F r′RΓdR(XC/B
+
dR)⊗

L✷

B
+
dR

F rRΓdR,c(XC/B
+
dR)[2d]→ F r′+rRΓdR,c(XC/B

+
dR)[2d]

tr
B

+
dR−−−−→ F sB+

dR

is a perfect duality, i.e., we have an induced quasi-isomorphism in D(B+
dR,✷)

F r′RΓdR(XC/B
+
dR)

∼
→ RHom

B
+
dR,✷

(F rRΓdR,c(XC/B
+
dR)[2d], F

sB+
dR).

We will need a version of the above result. To state it, take r, r′ ≥ d, s = r+ r′− d and consider
the pairing in D(B+

dR,✷)

(5.3) (RΓdR(XC/B
+
dR)/F

r′)⊗L✷

B
+
dR

(F rRΓdR,c(XC/B
+
dR)/t

s)[2d− 1]→ F sB+
dR

defined as the composition

(RΓdR(XC/B
+
dR)/F

r′)⊗L✷

B
+
dR

(F rRΓdR,c(XC/B
+
dR)/t

s)[2d− 1]
∪
→ F rRΓdR,c(XC/B

+
dR)/t

s[2d− 1]

→ RΓc(XC ,Ω
d)⊗L✷

K (F r−dB+
dR/t

s)[−1]
∂
→ RΓc(XC ,Ω

d)⊗L✷

K F sB+
dR

trcoh⊗Id
−−−−→F sB+

dR

Here the third morphism is the boundary map induced by the exact sequence

0→ F sB+
dR

can
−−→F r−dB+

dR → F r−dB+
dR/t

s → 0

Corollary 5.4. The pairing (5.3) is a perfect duality, i.e., we have an induced quasi-isomorphism

in D(B+
dR,✷)

γ : RΓdR(XC/B
+
dR)/F

r′ ∼
→ RHom

B
+
dR,✷

(F rRΓdR,c(XC/B
+
dR)/t

s[2d− 1], F sB+
dR).(5.5)

Proof. Consider the following map of distinguished triangles

F r′RΓdR(XC/B
+
dR)

��

∼ // RHom
B

+
dR,✷

(F rRΓdR,c(XC/B
+
dR)[2d], F

sB+
dR)

��
RΓdR(XC/B

+
dR)

��

∼ // RHom
B

+
dR,✷

(tsRΓdR,c(XC/B
+
dR)[2d], F

sB+
dR)

��
RΓdR(XC/B

+
dR)/F

r′ γ // RHom
B

+
dR,✷

(F rRΓdR,c(XC/B
+
dR)/t

s[2d− 1], F sB+
dR),

where the middle arrow is the de Rham duality map (B+
dR-linearized) and the top arrow is the

B+
dR-duality map from Corollary 5.2. Both are quasi-isomorphisms (see Proposition 5.1). Hence

so is the bottom duality map, as wanted. �

The duality map (5.5) can be lifted to the Fargues-Fontaine curve: the pairing (5.3) induces a
pairing of BS♭,[u,v]-modules

RΓ
B[u,v]

dR (XS , r)⊗
L✷

B
S♭,[u,v]

(F r′RΓ
B[u,v]

dR,c (XS)/t
s)→ BS♭,[u,v]{s, s}[−2d+ 1],

which, in turn, induces a pairing of nuclear ϕ-modules over BFF
S♭

RΓB

dR(XS , r)⊗
L
B

FF

S♭
(F r′RΓB

dR,c(XS)/t
s)→ BS♭{s, s}[−2d+ 1],

where we set F r′RΓB

dR,c(XS)/t
s := (F r′RΓ

B[u,v]

dR,c (XS)/t
s, 0). This descends to a pairing on XFF,S♭ :

(5.6) EdR(XS , r)⊗
L
O i∞,∗(F

r′RΓdR,c(XS/B
+
dR)/t

s)→ O(s, s)[−2d+ 1],
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where we set RΓdR,c(XS/B
+
dR) := RΓdR,c(XK) ⊗L✷

K B+
dR(S). The pairing (5.6) induces a duality

map in QCoh(XFF,S♭):

(5.7) γXS : EdR(XS , r)→D(i∞,∗(F
r′RΓdR,c(XS/B

+
dR)/t

s)[2d− 1],O(s, s)),

where we set D(−,−) := RH omQCoh(X
FF,S♭)(−,−).

Lemma 5.8. The duality map (5.7) is a quasi-isomorphism.

Proof. We need to show that the duality map

γFF
XS

: RΓB

dR(XS , r)→RHom
B

FF

S♭
(F r′RΓB

dR,c(XS)/t
s[2d− 1],BS♭{s, s}).

is a quasi-isomorphism in D(BFF
S♭ ). Or, passing to solid B′ := BS♭,[u,v]-modules, that the duality

map

(5.9) γXS : RΓ
B[u,v]

dR (XS , r)→RHom
B′

✷

(F r′RΓ
B[u,v]

dR,c (XS)/t
s[2d− 1],B′)

is a quasi-isomorphism in D(B′
✷
). But this is Corollary 5.4 (strictly speaking, its S-version but it

holds by the same arguments). �

5.1.3. Hyodo-Kato duality. This is based on [1, Sec. 6.4.2]. There exists a natural trace map in
Dϕ,N,GK (C̆✷):

TrX : RΓHK,c(XC)→ C̆{−d}[−2d].

The pairing in Dϕ,N,GK (C̆✷) (s = r + r′ − d)

(5.10) RΓHK(XC){r} ⊗
L✷

C̆
RΓHK,c(XC){r

′} → RΓHK,c(XC){r + r′}
TrX−−→C̆{s}[−2d]

is perfect, i.e., it induces a quasi-isomorphism in Dϕ,N,GK (C̆✷)

(5.11) RΓHK(XC){r} ≃ RH om
Dϕ,N,GK

(C̆✷)(RΓHK,c(XC){r
′}, C̆{s}[−2d]),

where the internal Hom is just RH omC̆✷

(RΓHK,c(XC), C̆[−2d]) – the internal Hom in D(C̆✷) –
equipped with (ϕ,N,GK)-actions via RΓHK,c(XC){r

′ − s}.
The above duality can be lifted to the Fargues-Fontaine curve: the pairing (5.10) induces a

pairing of BS♭,[u,v]-modules

RΓ
B[u,v]

HK (XS , r)⊗
L✷

B
S♭,[u,v]

RΓ
B[u,v]

HK,c (XS , r
′)→ C̆{s} ⊗L✷

C̆
BS♭,[u,v][−2d],

which, in turn, induces a pairing of nuclear ϕ-modules over BFF
S♭

RΓB

HK(XS , r)⊗
L
B

FF

S♭
RΓB

HK,c(XS , r
′)→ BS♭{s}[−2d].

This descends to a pairing on XFF,S♭ :

EHK(XS , r) ⊗
L
O EHK(XS , r

′)→ O(s)[−2d],

which induces a duality map in QCoh(XFF,S♭):

(5.12) γXS : EHK(XS , r)→D(EHK,c(XS , r
′)[2d],O(s)).

Lemma 5.13. The map γXS above is a quasi-isomorphism in QCoh(XFF,S♭).

Proof. Since BS♭,[u,v] is Ban
S♭,[u,v],✷

-complete (see [2, Lemma 3.24]), by Remark 2.6, we may pass

from B+
S♭,[u,v]

to Z, i.e., to BFF
S♭ -modules. Hence we need to show that the duality map

γFF
XS

: RΓB

HK(XS , r)→RHom
B

FF

S♭
(RΓB

HK,c(XS , r
′)[2d],BS♭{s}).

is a quasi-isomorphism in D(BFF
S♭ ). Or, passing to solid B′ := BS♭,[u,v]-modules, that the duality

map

(5.14) γXS : RΓ
B[u,v]

HK (XS , r)→RHom
B′

✷

(RΓ
B[u,v]

HK,c (XS , r
′)[2d],B′)
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is a quasi-isomorphism in D(B′
✷
). We claim that, for that, it suffices to check that, for j ∈ N, the

duality map on cohomology groups level

(5.15) γj
XS

: H
B[u,v],j

HK (XS , r)→Hom
B′

✷

(H
B[u,v],2d−j

HK,c (XS , r
′),B′)

is an isomorphism in B′
✷
. Indeed, passing to cohomology in (5.14), we need to check that the

duality map
γj
XS

: H
B[u,v],j

HK (XS , r)→Hj(RHom
B′

✷

(RΓ
B[u,v]

HK,c (XS , r
′)[2d],B′))

is an isomorphism in B′
✷
. But Hi

HK,c(XC) is a direct sum of copies of C̆ hence we have

Hj(RHom
B′

✷

(RΓ
B[u,v]

HK,c (XS , r
′)[2d],B′)) ≃ Hom

B′

✷

(H
B[u,v],2d−j

HK,c (XS , r
′),B′),

as wanted.
To prove (5.15), we observe that, for i ∈ Z, we have the natural isomorphisms6

(5.16) H
B[u,v],j

HK,∗ (XS , i) ≃ (Hj
HK,∗(XC){i} ⊗

✷

C̆
B′

log)
N=0 ∼

← Hj
HK,∗(XC){i} ⊗

✷

C̆
B′.

Here the second quasi-isomorphism is defined by the map exp(NU) (this makes sense because
the monodromy operator on the Hyodo-Kato cohomology Hj

HK,∗(XC) is nilpotent). For the first
quasi-isomorphism

H
B[u,v],j

HK,∗ (XS , i) = Hj([RΓHK,∗(XC){i} ⊗
L✷

C̆
B′

log]
N=0) ≃ (Hj

HK,∗(XC){i} ⊗
✷

C̆
B′

log)
N=0

we used the fact that

Hj(RΓ
B[u,v]

HK,∗ (XC){i} ⊗
L✷

C̆
B′

log) ≃ H
B[u,v],j

HK,∗ (XC){i} ⊗
✷

C̆
B′

log,

that N is nilpotent on H
B[u,v],j

HK,∗ (XC) (so we can do devissage by the kernels of the action of N),
and that B′ ∼

→ [B′
log]

N=0.
It is easy to check that the maps in (5.16) are compatible with products. Hence we can write

the duality map (5.15) as the Hyodo-Kato pairing

γj
XS

: Hj
HK(XC)⊗

✷

C̆
B′→Hom

B′

✷

(H2d−j
HK,c (XC)⊗

✷

C̆
B′,B′).

To show that it is an isomorphism in B′
✷

it suffices thus to evoke the Hyodo-Kato duality (5.11)
and to show that the natural map

HomC̆✷

(H2d−j
HK,c (XC), C̆)⊗✷

C̆
B′→HomC̆✷

(H2d−j
HK,c (XC),B

′)

is an isomorphism in B′
✷
. But this is an isomorphism by [16, Th. 3.40] since B′ is a Banach space

over C̆. �

5.2. Syntomic duality. Let X be a smooth partially proper rigid analytic variety over K of
dimension d. Let S ∈ PerfC . Recall that syntomic ϕ-modules over BFF

S♭ are defined as (see Sec.
3.2.3)

RΓB

syn,∗(XS ,Qp(r)) := [RΓB

HK,∗(XS , r)
ιHK−−→RΓB

dR,∗(XS , r)],

where the Hyodo-Kato map is described by diagram (3.8). The Hyodo-Kato and de Rham cup
products are compatible with this diagram hence yield a cup product on the syntomic ϕ-modules:

RΓB

syn(XS ,Qp(r)) ⊗
L✷

B
FF

S♭

RΓB

syn,c(XS ,Qp(r
′))→ RΓB

syn,c(XS ,Qp(r + r′)).

This product can be described by an analogous product on the B′ := BS♭,[u,v]-chart:

(5.17) RΓ[u,v]
syn (XS ,Qp(r)) ⊗

L✷

B′ RΓ
[u,v]
syn,c(XS ,Qp(r

′))→ RΓ[u,v]
syn,c(XS ,Qp(r + r′)),

where we set

(5.18) RΓ
[u,v]
syn,∗(XS ,Qp(i)) := [RΓ

B[u,v]

HK,∗ (XS , i)
ιHK−−→RΓ

B[u,v]

dR,∗ (XS , i)].

6We can ignore the Galois action here.
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It is compatible with the products on RΓ
B[u,v]

HK,∗ (XS , i) and F iRΓB

dR,∗(XS/B
′). Here we defined

F iRΓdR,∗(XS/B
′) as F iRΓdR,∗(XC/B

+
dR) with B+

dR replaced by B′.
Let s ≥ d. There is a trace map

TrX : RΓB

syn,c(XS ,Qp(s))→ BFF
S♭ {s− d, s− d}[−2d]

defined on the B′-chart via the trace map

(5.19) Tr
[u,v]
X : RΓ[u,v]

syn,c(XS ,Qp(s))→ B′{s− d, s− d}[−2d],

which is compatible with the Hyodo-Kato and de Rham trace maps. The map Tr
[u,v]
X is defined

using the exact sequence

H [u,v],2d
syn,c (XS ,Qp(s))→ H2d

HK,c(XS , s)
ιHK−−→H2d

dR,c(XS , s),

which can be written more explicitly as the exact sequence

(5.20) H [u,v],2d
syn,c (XS ,Qp(s))→ (H2d

HK,c(XC){s}⊗
L✷

C̆
B′

log)
N=0 ιHK−−→H2d

dR,c(X)⊗L✷

K (B′{s−d}/F s−d).

Using the (compatible) Hyodo-Kato and de Rham trace maps

TrX : H2d
HK,c(XC){s}

∼
→ C̆{s− d}, TrX : H2d

dR,c(X)
∼
→ K,

(5.20) yields a map

H [u,v],2d
syn,c (XS ,Qp(s− d))→ Ker(B′{s− d} → B′{s− d}/F s−d) = B′{s− d, s− d},

hence the trace (5.19), as wanted.
For s := r + r′ − d, the above can be lifted to the Fargues-Fontaine curve: the cup product

(5.17) and trace map (5.19) induce a pairing of B′-modules

RΓ[u,v]
syn (XS ,Qp(r)) ⊗

L✷

B′ RΓ
[u,v]
syn,c(XS ,Qp(r

′))
∪
−−→RΓ[u,v]

syn,c(XS ,Qp(r + r′))
Tr

[u,v]
X−−→B′{s, s}[−2d],

which, in turn, induces a pairing of nuclear ϕ-modules over BFF
S♭

RΓB

syn(XS ,Qp(r)) ⊗
L
B

FF

S♭
RΓB

syn,c(XS ,Qp(r
′))

∪
−−→RΓB

syn,c(XS ,Qp(r + r′))
TrX−−→BS♭{s, s}[−2d].

This descends to a pairing in QCoh(XFF,S♭):

Esyn(XS ,Qp(r)) ⊗
L
O Esyn,c(XS ,Qp(r

′))
∪
−−→Esyn,c(XS ,Qp(r + r′))

TrX−−→O(s, s)[−2d],

which induces a natural map QCoh(XFF,S♭)

(5.21) γXS : Esyn(XS ,Qp(r))→ D(Esyn,c(XS ,Qp(r
′))[2d],O(s, s)).

Theorem 5.22. (Syntomic Poincaré duality on the Fargues-Fontaine curve)
Let r, r′ ≥ 2d, s := r + r′ − d. The map γXS is a quasi-isomorphism in QCoh(XFF,S♭).

Proof. It is enough to show this in ϕ-modules over BFF
S♭ for the corresponding map

(5.23) γXS : RΓB

syn(XS ,Qp(r))→ RHom
B

FF

S♭
(RΓB

syn,c(XS ,Qp(r
′))[2d],BS♭{s, s}).

Or in D(BS♭,[u,v],✷) for the induced map

γ
[u,v]
XS

: RΓ[u,v]
syn (XS ,Qp(r))→ RHom

B′

✷

(RΓ[u,v]
syn,c(XS ,Qp(r

′))[2d],B′(s)).

But for that, it is enough to check that base changes of γ[u,v]
XS

to both B′[1/t] and B′/t are quasi-
isomorphisms in D(B′

✷
). This last claim requires a bit of justification. We have the exact sequence

of solid B′-modules
0→ B′ → B′[1/t]→ B′[1/t]/B′→ 0.

Hence it suffices to check that base changes of γ
[u,v]
XS

to both B′[1/t] and B′[1/t]/B′ are quasi-
isomorphisms. Writing B′[1/t]/B′ = colimn(B

′/tn) and using the fact that the tensor products
commute with filtered colimits, we see that it suffices to check that base changes of γ[u,v]

XS
to both

B′[1/t] and B′[1/t]/ti are quasi-isomorphisms. Finally, by devissage, we can drop i to 1, as wanted.
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For the first base change, we have quasi-isomorphisms in D(B′
✷
)

RΓ[u,v]
syn (XS ,Qp(r))[1/t]

∼
→ RΓ

B[u,v]

HK (XS , r)[1/t],

RHom
B′

✷

(RΓ[u,v]
syn,c(XS ,Qp(r

′))[2d],B′)[1/t]
∼
← RHom

B′

✷

(RΓ
B[u,v]

HK,c (XS , r
′)[2d],B′(s))[1/t].

And γ
[u,v]
XS

is just the canonical map

γXS : RΓ
B[u,v]

HK (XS , r)[1/t]→ RHom
B′

✷

(RΓ
B[u,v]

HK,c (XS , r
′),B′)[1/t]

induced by the Hyodo-Kato pairing (5.10). Since it is compatible with t-action, it suffices to show
that the canonical map

γXS : RΓ
B[u,v]

HK (XS , r)→ RHom
B′

✷

(RΓ
B[u,v]

HK,c (XS , r
′),B′)

is a quasi-isomorphism in D(B′
✷
). But this was shown in (5.14), in the proof of Lemma 5.13.

For the base change to B′/t, write S = Spa(R,R+); then B′/t = R. We claim that we have a
compatible with product quasi-isomorphism in D(B′

✷
)

RΓ
[u,v]
syn,∗(XS ,Qp(r)) ⊗

L✷

B′ R ≃ F rRΓdR,∗(XS/B
′)⊗L✷

B′ R.(5.24)

To show (5.24) we compute:

RΓ
[u,v]
syn,∗(XS ,Qp(r)) ⊗

L✷

B′ R = [RΓ
B[u,v]

HK,∗ (XS , r)
ιHK−−→RΓ

B[u,v]

dR,∗ (XS , r)]⊗
L✷

B′ R

∼
→ [RΓ

B[u,v]

HK,∗ (XS , r)⊗
L✷

B′ R
ιHK⊗Id
−−−−→RΓ

B[u,v]

dR,∗ (XS , r)⊗
L✷

B′ R]

Then we use the following commutative diagram

RΓ
B[u,v]

HK,∗ (XS , r) ⊗
L✷

B′ R //

ιHK≀ ��

RΓ
B[u,v]

dR,∗ (XS , r) ⊗
L✷

B′ R

RΓdR,∗(XS/B
′)⊗L✷

B′ R // RΓ
B[u,v]

dR,∗ (XS , r) ⊗
L✷

B′ R

F rRΓdR,∗(XS/B
′)⊗L✷

B′ R //

OO

0

OO

It defines quasi-isomorphisms between the mapping fibers of the rows yielding (5.24). The quasi-
isomorphism in the above diagram needs a justification: take the composition

(RΓ
B[u,v]

HK,∗ (XC){s} ⊗
L✷

C̆
B′)⊗L✷

B′ R
∼
→ RΓ

B[u,v]

HK,∗ (XS , r) ⊗
L✷

B′ R
ιHK−−→RΓdR,∗(XS/B

′)⊗L✷

B′ R

It is equal to ιHK hence a quasi-isomorphism, as wanted.
From (5.24), we get the quasi-isomorphisms in D(B′

✷
)

RHom
B′

✷

(RΓ[u,v]
syn,c(XS ,Qp(r

′))[2d],B′)⊗L✷

B′ R ≃ RHom
B′

✷

(RΓ[u,v]
syn,c(XS ,Qp(r

′))[2d], R)

≃ RHom
B′

✷

(F r′RΓdR,c(XS/B
′)[2d], R).

We have, compatible with products, quasi-isomorphisms in D(B′
✷
) (see [1, Prop. 4.7, Prop.

4.11])

F rRΓdR(XS/B
′)⊗L✷

B′ R
∼
−−→
βX

⊕d
i=0RΓ(X,Ωi)⊗L✷

K R(r − i)[−i],(5.25)

F r′RΓdR,c(XS/B
′)⊗L✷

B′ R
∼
−−→
βX

⊕d
i=0RΓc(X,Ωi)⊗✷

K R(r′ − i)[−i].

Putting (5.24) and (5.25) together, we get, compatible with products, quasi-isomorphisms in D(B′
✷
)

RΓ[u,v]
syn (XS ,Qp(r)) ⊗

L✷

B′ R ≃ ⊕
d
i=0RΓ(X,Ωi)⊗L✷

K R(r − i)[−i],

RHom
B′

✷

(RΓ[u,v]
syn,c(XS ,Qp(r

′))[2d],B′)⊗L✷

B′ R ≃ RHomR✷
(⊕d

i=0RΓc(X,Ωi)⊗L✷

K R(r′ − i)[2d− i], R).



22 PIERRE COLMEZ, SALLY GILLES, AND WIESŁAWA NIZIOŁ

And our result follows from Serre duality7 (see Proposition 5.1) which yields the quasi-isomorphisms
in D(R✷).

RΓ(X,Ωi)⊗L✷

K R
∼
→ RHomK✷

(RΓc(X,Ωd−i)[d],K)⊗L✷

K R
∼
→ RHomR✷

(RΓc(X,Ωd−i)⊗L✷

K R[d], R).

The second quasi-isomorphism holds by the same argument as the one used at the end of the proof
of Lemma 5.13.

�

5.3. Syntomic duality: an alternative argument. We present here an alternative proof of
Theorem 5.22 (conditional on the compatibilities in Lemma 5.29 below). It uses dual modifications
to inverse the arrows in the defining syntomic distinguished triangles (3.22).

More precisely, let j ≥ i ≥ 0. We will construct a distinguished triangle in QCoh(XFF,S♭)

(5.26) EHK,c(XS , i)⊗
L
O O(0, j)→ Esyn,c(XS ,Qp(i))→ i∞,∗F

iRΓdR,c(XS/B
+
dR)/t

j ,

which is a twisted version of (3.22). To do that, consider the following map of distinguished
triangles

(5.27) EHK,c(XS , i)⊗
L
O

O(0, j) //

��✤
✤

EHK,c(XS , i)
ιHK // i∞,∗RΓdR,c(XS/B

+
dR)/t

j

can��
Esyn,c(XS ,Qp(i)) // EHK,c(XS , i)

ιHK // EdR,c(XS , i)

Here, the bottom distinguished triangle is (3.22); the top one is induced from the distinguished
triangle

RΓ
B[u,v]

HK (XS , i)⊗
L✷

B
S♭,[u,v]

BS♭,[u,v]{0, j} → RΓ
B[u,v]

HK (XS , i)
ιHK−−→RΓ

B[u,v]

dR (XS , i)/t
j

obtained by tensoring the exact sequence (4.1) for 0, j with RΓ
B[u,v]

HK (XS , i). (Recall that RΓ
B[u,v]

HK (XC , r) =

[RΓHK(XC){r} ⊗
L✷

C̆
BS♭,[u,v],log]

N=0). The dashed arrow in diagram (5.27) is defined to make the
diagram a map of distinguished triangles. The diagram yields quasi-isomorphisms

[EHK,c(XS , i)⊗
L
O O(0, j)→ Esyn,c(XS ,Qp(i))][1]

∼
← [i∞,∗RΓdR,c(XS/B

+
dR)/t

j → EdR,c(XS , i)]

∼
→ i∞,∗F

iRΓdR,c(XS/B
+
dR)/t

j .

That is, we get a distinguished triangle (5.26), as wanted.
Now, let r, r′ ≥ 2d, s = r + r′ − d. Consider the following diagram in QCoh(XFF,S♭) (note that

s ≥ r′)

(5.28) Esyn(XS ,Qp(r))
γsyn
XS //

��

D(Esyn,c(XS ,Qp(r
′))[2d],O(s, s))

��
EHK(XS , r)

��

γHK
XS

∼
// // D(EHK,c(XS , r

′)⊗L
O

O(0, s)[2d],O(s, s))

��
EdR(XS , r)

γdR
XS

∼
// D(i∞,∗F

r′RΓdR,c(XS/B
+
dR)/t

s[2d− 1],O(s, s)),

where the horizontal maps are defined by the syntomic, Hyodo-Kato, and B+
dR-pairings, respectively

(see (5.21), (5.12), (5.7)).
Let us assume Lemma 5.29 below. To prove that the top horizontal arrow in diagram 5.28 is

a quasi-isomorphism it suffices to show that so are the two lower arrows. But this follows from
Lemma 5.13 (we used the isomorphism O(0, s)⊗L

O
O(s) ≃ O(s, s)) and Lemma 5.8. It remains to

prove:

Lemma 5.29. Diagram (5.28) above is a map of distinguished triangles.

7Apply it in degree i.
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5.4. Pro-étale duality. Let X be a smooth partially proper rigid analytic variety over K of
dimension d. Let S ∈ PerfC . We define a cup product on the pro-étale ϕ-modules:

(5.30) RΓB

proét(XS ,Qp(r)) ⊗
L✷

B
FF

S♭

RΓB

proét,c(XS ,Qp(r
′))→ RΓB

proét,c(XS ,Qp(r + r′))

via the cup product on the B′ := BS♭,[u,v]-charts:

RΓproét(XS ,B[u,v](r)) ⊗
L✷

B′ RΓproét,c(XS ,B[u,v](r
′))→ RΓproét,c(XS ,B[u,v](r + r′))

induced by the cup product on pro-étale cohomology. This product is compatible with the syntomic
product (via the comparison quasi-isomorphism from Theorem 4.6): to see this it suffices to argue
for the usual cohomology and locally, where the comparison map is known to be compatible with
products.

Let s ≥ 2d. We define a trace map

(5.31) TrX : RΓB

proét,c(XS ,Qp(s))→ BFF
S♭ {s− d, s− d}[−2d]

as the composition

RΓB

proét,c(XS ,Qp(s)) ≃ RΓB

syn,c(XS ,Qp(s))
TrX−−→BFF

S♭ {s− d, s− d}[−2d].

By [1, Sec. 8.3.3], for S = Spa(C,OC), this map is compatible with Huber’s trace map.
For r, r′ ≥ d, s := r + r′ − d, the above can be lifted to the Fargues-Fontaine curve: the cup

product (5.30) and trace map (5.31) induce a pairing of nuclear ϕ-modules over BFF
S♭

RΓB

proét(XS ,Qp(r))⊗
L
B

FF

S♭
RΓB

proét,c(XS ,Qp(r
′))

∪
−−→RΓB

proét,c(XS ,Qp(r+ r′))
TrX−−→BS♭{s, s}[−2d].

This descends to a pairing in QCoh(XFF,S♭):

Eproét(XS ,Qp(r)) ⊗
L
O Eproét,c(XS ,Qp(r

′))
∪
−−→Eproét,c(XS ,Qp(r + r′))

TrX−−→O(s, s)[−2d],

which induces a natural map QCoh(XFF,S♭)

(5.32) γXS : Eproét(XS ,Qp(r))→ D(Eproét,c(XS ,Qp(r
′))[2d],O(s, s)).

By an abuse of notation, we will write

(5.33) γXS : Eproét(XS ,Qp)→ D(Eproét,c(XS ,Qp(d))[2d],O).

for the Tate-untwisted version of the map (5.32).

Corollary 5.34. (Pro-étale Poincaré duality on the Fargues-Fontaine curve) The map γXS from

(5.33) is a quasi-isomorphism in QCoh(XFF,S♭).

Proof. Choose r, r′ ≥ 2d and set s := r + r′ − d. It suffices to prove that the Tate twisted map
(5.32) is a quasi-isomorphism. This follows immediately from the syntomic duality from Theorem
5.22 and the comparison result from Proposition 4.3. �

5.5. Künneth formula. Let X,Y be smooth Stein rigid analytic varieties over K. The simple
observation that we have a quasi-isomorphism in D(K✷)

(5.35) Ω(X)⊗L✷

K O(Y )⊕ O(X)⊗L✷

K Ω(Y )
∼
→ Ω(X ×K Y ),

which implies the Künneth formula for de Rham cohomology

RΓdR(X)⊗L✷

K RΓdR(Y )
∼
→ RΓdR(X ×K Y )

leads to the syntomic Künneth formula in QCoh(XFF) and hence the pro-étale as well:
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Theorem 5.36. (Künneth formula) Let X,Y be smooth partially proper rigid analytic varieties

over K. Let d be larger than the dimension of X ×K Y and let r, r′ ≥ 2d. Let S ∈ PerfC . The

natural maps

κ : Esyn(XS ,Qp(r)) ⊗
L
O Esyn(YS ,Qp(r

′))→ Esyn((X ×K Y )S ,Qp(r + r′)),

κ : Eproét(XS ,Qp)⊗
L
O Eproét(YS ,Qp)→ Eproét((X ×K Y )S ,Qp)

are quasi-isomorphisms in QCoh(XFF,S♭).

Proof. The pro-étale case follows from the syntomic one via the comparison quasi-isomorphism
from Proposition 4.3.

For the syntomic case, it is enough to show that on the level of ϕ-modules over BFF
S♭ the

corresponding map

κ : RΓB

syn(XS ,Qp(r)) ⊗
L
B

FF

S♭
RΓB

syn(YS ,Qp(r
′))→ RΓB

syn((X ×K Y )S ,Qp(r + r′))

is a quasi-isomorphism. Or that in D(B′
✷
), for B′ := BS♭,[u,v], the induced map

κ[u,v] : RΓ[u,v]
syn (XS ,Qp(r)) ⊗

L✷

B′ RΓ
[u,v]
syn (YS ,Qp(r

′))→ RΓ[u,v]
syn ((X × Y )S ,Qp(r + r′))

is a quasi-isomorphism. See (5.18) for the definition of the individual terms. But for that, as in
the proof of Theorem 5.22, it is enough to check that the base changes of κ[u,v] to B′[1/t] and to
B′/t are quasi-isomorphisms.

For the first base change, we use the quasi-isomorphism in D(B′
✷
)

RΓ[u,v]
syn (XS ,Qp(r))[1/t]

∼
→ RΓ

B[u,v]

HK (XS , r)[1/t]

to write

κ[u,v][1/t] : (RΓ
B[u,v]

HK (XS , r) ⊗
L✷

B′ RΓ
B[u,v]

HK (YS , r
′))[1/t]→ RΓ

B[u,v]

HK ((X ×K Y )S , r + r′)[1/t].

This map is induced by the Hyodo-Kato pairing

κ
[u,v]
HK : RΓ

B[u,v]

HK (XS , r)⊗
L✷

B′ RΓ
B[u,v]

HK (YS , r
′)→ RΓ

B[u,v]

HK ((X ×K Y )S , r + r′).

To check that this is a quasi-isomorphism we may pass to cohomology. Since Hj
HK(XC) is Fréchet

(hence flat for the solid tensor product over C̆), this reduces to checking that the pairing
(5.37)
⊕b

a=0(H
a
HK(XC)⊗

L✷

C̆
B′

log)
N=0 ⊗L✷

B′ (H
j−a
HK (YC)⊗

L✷

C̆
B′

log)
N=0 → (Hj

HK((X ×K Y )C)⊗
L✷

C̆
B′

log)
N=0

is an isomorphism in B′
✷
.

Now, using the exponential map as in the proof of Lemma 5.13, we can reduce to proving that
the pairing

⊕b
a=0H

a
HK(XC)⊗

L✷

C̆
B′ ⊗L✷

B′ H
j−a
HK (XC)⊗

L✷

C̆
B′ → Hj

HK(XC ×C YC)⊗
L✷

C̆
B′

is an isomorphism in B′
✷
. Or, that so is the pairing in C̆✷

⊕b
a=0H

a
HK(XC)⊗

L✷

C̆
Hj−a

HK (YC)→ Hj
HK(XC ×C YC).

But this follows from the following:

Lemma 5.38. (Hyodo-Kato Künneth formula) Let X,Y be smooth partially proper rigid analytic

varieties over C. Then the canonical pairing

κHK : RΓHK(X)⊗L✷

C̆
RΓHK(Y )→ RΓHK(X ×C Y ).

is a quasi-isomorphism in Dϕ,N,GK (C̆✷).
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Proof. This follows from the comparison (via the Hyodo-Kato morphism) with the Künneth for-
mula for de Rham cohomology

κdR : RΓdR(X)⊗L✷

C RΓdR(Y )
∼
→ RΓdR(X ×C Y ).

The latter clearly holds if both X and Y are Stein. For a general partially proper X and Y , we
use coverings by a countable number (!) of Stein varieties, the fact that all the complexes in sight
are bounded complexes of Fréchet spaces, [5, Prop. 8.33], and the Stein case. �

For the base change to R = B′/t, we get from the proof of Theorem 5.22, compatible with
products, quasi-isomorphisms in D(B′

✷
) (T = X,Y , s ≥ 0)

RΓ[u,v]
syn (TS ,Qp(s))⊗

L✷

B′ R ≃ F sRΓdR(TS/B
′)⊗L✷

B′ R

≃ ⊕dT

i=0RΓ(T,Ω
i)⊗L✷

K R(s− i)[−i].

And the map κ[u,v] can be identified with the map

(⊕dX

i=0RΓ(X,Ωi)⊗L✷

K R(r − i)[−i])⊗L✷

R (⊕dY

i=0RΓ(Y,Ω
i)⊗L✷

K R(r′ − i)[−i])

→ ⊕dX+dY

i=0 RΓ(X ×K Y,Ωi)⊗L✷

K R(r + r′ − i)[−i].

If X,Y are Stein, this map in degree i is represented by the map

⊕dX+dY
a=0 Ωa(X)⊗L✷

K R(r − a)⊗L✷

R Ωi−a(Y )⊗L✷

K R(r′ − i+ a)→ Ωi(X ×K Y )⊗L✷

K R(r + r′ − i).

And the latter map is a quasi-isomorphism in R✷ by (5.35). If X,Y are general smooth partially
proper rigid analytic varieties, we can reduce to the Stein case as in the proof of Lemma 5.38. �
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