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Abstract

We provide the proof of convergence of the directional diffusion
splitting scheme for two-dimensional parabolic and elliptic advection-
diffusion-reaction problems with certain restrictions on problem data.

1 Introduction

In the article [3] we introduced directional diffusion splitting scheme for two-
dimensional advection-diffusion-reaction (ADR) problems of parabolic and
elliptic type. This scheme allow us to parallelize computations by decom-
posing the each time integration step from two-dimensional problem into
the set of one-dimensional ADR problems.

In this article we provide the proof of convergence of the mentioned
method for parabolic problems on bounded time domain as time step goes
to zero. In the same time we provide proof of convergence of the iterative
process with application of the method using fixed time step as the number
of steps go to infinity. In both cases there are some natural considerations
on the problem data and scheme parameter choice. Also we need certain
restrictions on advection field for those proofs.

The paper is structured as follows: first we define model ADR problem;
then we describe the algorithm from [3]; after that we present mentioned
proofs.
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2 Advection-diffusion-reaction problem

Let us consider the following two-dimensional Dirichlet problem for the sta-
tionary (elliptic) advection-diffusion-reaction equation:

find function u : Ω̄ → R such that:

− µ∆u+ β⃗ · ∇u+ σu = f in Ω ⊂ R2,

u = 0 on Γ = ∂Ω

(2.1)

and a corresponding non-stationary problem for parabolic equation:
find function u = u(x, t) : Ω̄× [0, T ] → R such that:

u′t − µ∆xu+ β⃗ · ∇xu+ σu = f in Ω× (0, T ],

u(x, t) = 0, (x, t) ∈ Γ× [0, T ], Γ := ∂Ω

u(x, 0) = u0(x), x ∈ Ω̄,

(2.2)

where Ω is a bounded domain with a Lipschitz boundary Γ = ∂Ω, µ =
const > 0 and σ = const > 0 are coefficients of diffusion and reaction
respectively, function f = f(x) and vector β⃗ = (β1(x), β2(x)) represent
the sources and advection flow velocity respectively. We will consider non-
compressible flow, i.e., ∇ · β⃗ = 0 and β⃗ ̸= 0 in Ω. Also we consider the
case, when vector field β⃗ does not have closed integral curves completely
contained in Ω̄.

When we let the time T = +∞ it can be shown, that the concentration
u stabilizes in time, i.e. we will have dynamic equilibrium, u′t → 0 as
t → +∞. In other words, we will have the degeneration of the problem
(2.2) to stationary problem (2.1).

3 Variational formulation

The boundary value problem (2.1) admits the following variational formu-
lation: {

find u ∈ V := H1
0 (Ω) such that,

a(u, v) = ⟨l, v⟩ ∀v ∈ V,
(3.3)

where:
a(u, v) =

∫
Ω

(µ∇xu · ∇xv + β⃗v · ∇xu+ σuv)dx ∀u, v ∈ V,

⟨l, v⟩ =
∫
Ω

fvdx ∀v ∈ V.

(3.4)
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Consider standard Lebesque scalar product (w, q) :=
∫
Ωwqdx. Using com-

ponents from (3.4) we can write the variational formulation for parabolic
problem (2.2): {

find u ∈ L2(0, T ;V ) such that,

(u′t, v) + a(u, v) = ⟨l, v⟩ ∀v ∈ V,
(3.5)

Below, in this paper we will use standard L2 norm of functions everywhere,
unless otherwise specified. Also we consider standard Euclidean vector norm
everywhere, when vector value is under the norm (if it is function, then we
treat the norm of that vector-valued function as a scalar function itself).

4 Semi-discretized directional diffusion splitting
scheme

Let us consider the normalized advection vector field b⃗(x) = (b1(x), b2(x)) :=
β⃗/∥β⃗∥. Consider also orthogonal vector field γ⃗(x) = (β2(x),−β1(x)) and
corresponding normalized field p⃗ = γ⃗/∥γ⃗∥.

Let us define time step ∆t and a fixed parameter θ ∈ (0, 1). Let us
denote by uj (for integer j) an approximation to the function u(x, tj) in the
time moment tj = j∆t.

In [3] we propose to decompose the bilinear form of the problem into two
terms

a(u, v) := s(u, v) +m(u, v), (4.6)

where
s(u, v) :=

∫
Ω

(µ(⃗bT∇xu)(⃗b
T∇xv) + v∥β⃗∥⃗bT∇xu+ σuv)dx

m(u, v) :=

∫
Ω

µ(p⃗T∇xu)(p⃗
T∇xv)dx

(4.7)

and use the following two-step scheme:

(u̇j+ 1
4
, v) + θ∆ts(u̇j+ 1

4
, v) = ⟨l, v⟩ − s(uj , v)

uj+ 1
2
= uj +∆tu̇j+ 1

4
,

(u̇j+ 3
4
, v) + θ∆tm(u̇j+ 3

4
, v) = −m(uj+ 1

2
, v)

uj+1 = uj+ 1
2
+∆tu̇j+ 3

4
, ∀v ∈ V, j = 0, 1, ...,

(4.8)
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for obtaining approximate solution to problem (2.2). As a limit case, we
also can use the procedure (4.8) as an iterative algorithm for solving (3.3).
The difference is in the usage of time step ∆t. For parabolic problem we
need to decrease it, while keeping T fixed and finite. For elliptic problems
we fix ∆t and pass j to infinity.

If we wish to solve original stationary problem with dominated advection,
we should consider corresponding non-stationary counterpart with u0 ∈ V
calculated as a solution of the following equation:

s(u0, v) = ⟨l, v⟩ ∀v ∈ V (4.9)

since in that way we will obtain ”from start” good approximation to the
initial equation, since the dynamic of the processes will be mainly directed
by advection in that case.

In [3] we provide parallelizable algorithm for approximate solving of each
of the variational problems from the steps (4.8), and this algorithm is the
key reason of possible practical usage of the scheme (4.8).

5 Convergence study

In this section we consider two convergence theorems: for parabolic and
elliptic problems respectively. For the beginning we need one simple lemma:

Lemma 5.1. Consider scalar function w : Ω → R: w(x) := ∥β⃗(x)∥. If
β⃗ ̸= 0, ∇ · β⃗ = 0 and ∇ · b⃗ ≥ 0 in Ω, then w′

β⃗
≤ 0 in Ω.

Proof. Consider Fig. 5.1.

Figure 5.1: Flow diagram for lemma 5.1.
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We have there curvilinear domain ω := ABCD, spanning on the seg-
ments of flow lines of vector field β⃗ and the orthogonal field γ⃗ (segments
AB and CD). Using Gauss-Ostrogradsky and mean value theorems with
the above conditions, we get:

0 =

∫
ω

∇ · β⃗dx =

∫
∂ω

n⃗ · β⃗dl =

∫
CD

−
∫
AB

 ∥β⃗∥dl =

= ∥β⃗(ξ)∥|CD| − ∥β⃗(η)∥|AB|,

(5.10)

where ξ ∈ CD, η ∈ AB and n⃗ is a unit outward normal vector to the domain
ω.

In the same manner, taking into account that ∥⃗b∥ = 1 in Ω:

0 ≤
∫
ω

∇ · b⃗dx =

∫
∂ω

n⃗ · b⃗dl =

∫
CD

−
∫
AB

 dl =

= |CD| − |AB|.

(5.11)

By combining (5.10) and (5.11), we obtain:

∥β⃗(ξ)∥
∥β⃗(η)∥

=
|AB|
|CD|

≤ 1. (5.12)

Passing to the limit in (5.12) with |CD| → 0, pulling the segments AB and
CD to the single points P and Q respectively, we get

∥β⃗(Q)∥ ≤ ∥β⃗(P )∥. (5.13)

Since P and Q are arbitrary points on the selected flow line of the vector
field β⃗, we see, that the function w(x) = ∥β⃗(x)∥ is not ascending along the
integral curve defined by the β⃗, i.e. w′

β⃗
≤ 0.

Theorem 5.1. Suppose, that advection field is ”divergent” in the following
sense: ∇ · β⃗ = 0 and ∇ · b⃗ ≥ 0. If the problem data (β⃗, f , u0) and domain
boundary ∂Ω are sufficiently smooth, that the classic solutions of (3.5) and
variational problems from (4.8) exists and parameter θ ≥ 1

2 , then the ap-
proximations uj defined by (4.8) converge to the solution u of (3.5) in L2

norm as ∆t → 0. (i.e. ∆t
∑

0≤j≤T/∆t ∥uj − u(·, tj)∥2 → 0 as ∆t → 0).

Proof. As we will see in the proof, without loss of generality, we can consider
the case when β⃗(x, y) = (β(x, y), 0) and Ω = [0, 1]2. To transform the generic
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β⃗ we need to change coordinate system to other orthogonal system, when
X axis is going along the direction of β⃗.

From the lemma 5.1 we conclude, that for our setting we will have β′
x ≤ 0.

Let us rewrite steps of (4.8) by excluding intermediate values u̇j+ 1
4
and

u̇j+ 3
4
. We will obtain:


(uj+ 1

2
, v) + θ∆ts(uj+ 1

2
, v) = ∆t⟨l, v⟩+ (uj , v) + ∆t(θ − 1)s(uj , v),

(uj+1, v) + θ∆tm(uj+1, v) = (uj+ 1
2
, v) + ∆t(θ − 1)m(uj+ 1

2
, v),

∀v ∈ V, 0 ≤ j ≤ T/∆t
(5.14)

Let us define operators acting on C2(Ω):

Bθ := −θ∆tµ
∂2

∂x2
+ θ∆tβ(x, y)

∂

∂x
+ (1 + θ∆tσ),

Rθ := −θ∆tµ
∂2

∂y2
+ 1.

(5.15)

In scope of our assumption on regularity, we can rewrite (5.14) in strong
form: {

Bθuj+ 1
2
= Bθ−1uj +∆tf,

Rθuj+1 = Rθ−1uj+ 1
2
.

(5.16)

By excluding fractional step value uj+ 1
2
we can rewrite (5.16) in the

following way:

uj+1 = R−1
θ Rθ−1B

−1
θ Bθ−1uj +∆tR−1

θ Rθ−1B
−1
θ f. (5.17)

To prove stability let us estimate the norm of the operator T :=
R−1

θ Rθ−1B
−1
θ Bθ−1 under L2 norm of the argument on the space C2

0 (Ω).
We can write:

∥T∥2 ≤ ∥R−1
θ Rθ−1∥2∥B−1

θ Bθ−1∥2 (5.18)

Note, that each pair of the operators Rθ, Rθ−1, Bθ, Bθ−1 commute. Let
us define space H := {u ∈ C2

0 (Ω)|Rθu ∈ C2
0 (Ω)}. Note also, that for each

v ∈ C2
0 (Ω) we can find unique u ∈ H, such that v = Rθu. For the first norm,

taking into account commutativity, we have:
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∥R−1
θ Rθ−1∥2 = sup

v∈C2
0 (Ω)

∥R−1
θ Rθ−1v∥2

∥v∥2
= sup

u∈H

∥R−1
θ Rθ−1Rθu∥2

∥Rθu∥2
=

= sup
u∈H

∥R−1
θ RθRθ−1u∥2

∥Rθu∥2
= sup

u∈H

∥Rθ−1u∥2

∥Rθu∥2
=

= sup
u∈H

∥ − (θ − 1)∆tµu′′yy + u∥2

∥ − θ∆tµu′′yy + u∥2
=

= sup
u∈H

∥u∥2 − 2(θ − 1)∆tµ(u, u′′yy) + (θ − 1)2∆t2µ2∥u′′yy∥2

∥u∥2 − 2θ∆tµ(u, u′′yy) + θ2∆t2µ2∥u′′yy∥2
=

= sup
u∈H

∥u∥2 + 2(θ − 1)∆tµ∥u′y∥2 + (θ − 1)2∆t2µ2∥u′′yy∥2

∥u∥2 + 2θ∆tµ∥u′y∥2 + θ2∆t2µ2∥u′′yy∥2
.

(5.19)

Let us assume that the last expression is less than or equal to some
number ρ ∈ (0, 1). We get

∥u∥2 + 2(θ − 1)∆tµ∥u′y∥2 + (θ − 1)2∆t2µ2∥u′′yy∥2 ≤
≤ ρ(∥u∥2 + 2θ∆tµ∥u′y∥2 + θ2∆t2µ2∥u′′yy∥2)

(5.20)

We can regroup the last inequality in the following way:

(1− ρ)∥u∥2 + (θ − 1)2∆t2µ2∥u′′yy∥2 ≤
≤ 2∆tµ(1− θ(1− ρ))∥u′y∥2 + ρθ2∆t2µ2∥u′′yy∥2

(5.21)

Taking into account Friedrichs inequality which we can write for our
domain in the following form:

∥u∥2 ≤ 1

2
∥u′y∥2, (5.22)

we can see, that (5.21) will be satisfied if

1

2
≤ 2∆tµ(1− θ(1− ρ))

1− ρ
(5.23)

and

(1− θ)2 ≤ ρθ2. (5.24)

Note, that (5.22) and (5.23) will have different coefficient than 1/2, if we
suppose the Ω (here we denote by Ω the resulting domain after trans-
formation of coordinate system) has more general structure and does not
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equal to unit square. More precisely, it will be d2/2, where d = max{y2 −
y1|(x, y1), (x, y2) ∈ Ω}. Obviously, this will not take any effect on a further
considerations.

The last inequality can be rewritten as:

θ ≥ 1

1 +
√
ρ

(5.25)

From (5.23) and (5.25) we see, that for any ∆t if θ > 1/2, then
∥R−1

θ Rθ−1∥ < 1. If θ = 1/2, than it is not hard to see that ∥R−1
θ Rθ−1∥ ≤ 1.

Let us estimate now ∥B−1
θ Bθ−1∥ in the similar way as in (5.19). Define

space G := {u ∈ C2
0 (Ω)|Bθu ∈ C2

0 (Ω)}. We have:

∥B−1
θ Bθ−1∥2 = sup

u∈G

∥Bθ−1u∥2

∥Bθu∥2
=

= sup
u∈G

∥ − (θ − 1)∆tµu′′xx + (θ − 1)∆tβu′x + (1 + (θ − 1)∆tσ)u∥2

∥ − θ∆tµu′′xx + θ∆tβu′x + (1 + θ∆tσ)u∥2
.

(5.26)

By comparing numerator and denominator, supposing the last expression
is ≤ 1, with expanding the squares of the norms and using integration by
parts, we can obtain the following inequality:

−(2θ−1)∆t∥µu′′xx−βu′x∥2−(2+(2θ−1)∆tσ)

[
µ∥u′x∥2 + σ∥u∥2 − 1

2
(β′

x, u
2)

]
≤ 0,

(5.27)
which is always true for θ ≥ 1/2 and condition β′

x ≤ 0, showing that
∥B−1

θ Bθ−1∥ ≤ 1. Taking into account (5.18), we have that:{
∥T∥ < 1, if θ > 1/2,

∥T∥ ≤ 1, if θ = 1/2.
(5.28)

Now, using (5.28) and the same considerations as in [2] for the repre-
sentation of type (5.17), it is not hard to see that the scheme is stable for
θ ≥ 1/2.

To prove that the scheme is approximative we should note, that for some
starting value uj each of the variational problems on single step defined by
(5.14) approximates the value of corresponding function in the time tj +∆t,
i.e. value of uj+1 will be approximation to some function w, defined in scaled
domain, i.e. in point tj + 2∆t.
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Let us consider Taylor expansions for the exact solution u(x, t) as a
function of t around the point t = tj with fixed x:

u

(
x, tj +

∆t

2

)
= u(x, tj) +

∆t

2
u′t(x, tj) +

∆t2

8
u′′tt(x, ξ(x)),

u(x, tj +∆t) = u(x, tj) + ∆tu′t(x, tj) +
∆t2

2
u′′tt(x, η(x)),

(5.29)

where ξ(x) ∈ [tj , tj+∆t/2], η(x) ∈ [tj , tj+∆t]. By formally substituting
(5.29) into the scheme (5.14) and considering u as a function of t (after
substitution we will have integration over x) we obtain:

1

2
(u′t(tj), v) + s(u(tj), v) = ⟨l, v⟩+O(∆t),

1

2
(u′t(tj), v) +m(u(tj), v) = O(∆t),

(5.30)

By summing up two last equations and taking into account (4.6) we
obtain:

(u′t(tj), v) + a(u(tj), v) = ⟨l, v⟩+O(∆t), (5.31)

as ∆t → 0. Note that we denoted by O(∆t) some linear functional which
has norm bounded with respect to ∆t as ∆t → 0

Comparing (5.31) with exact problem (3.5) we see that the scheme (5.14)
is approximative. Note, that in scope of our regularity assumptions (5.31)
can be rewritten in strong form, thus showing approximativity also in L2

norm.
Now, since our scheme is approximative and stable, from the Lax equiv-

alence theorem [1, 2, 4] we get that it is convergent.

Theorem 5.2. Suppose, that advection field is ”divergent” in the following
sense: ∇ · β⃗ = 0 and ∇ · b⃗ ≥ 0. If the problem data (β⃗, f , u0) and domain
boundary ∂Ω are sufficiently smooth, that the classic solutions of (3.5) and
variational problems from (4.8) exists, parameter θ > 1

2 and step ∆t is
fixed, then the approximation uj defined by (4.8) converges to u ∈ L2(Ω) as
j → ∞. If the limit function u ∈ V , then it is a solution of the following
problem: {

find u ∈ V := H1
0 (Ω) such that,

a(u, v) = ⟨l, v⟩+ ⟨r, v⟩ ∀v ∈ V,
(5.32)

where ∥r∥ = O(∆t) as ∆t → 0.
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Proof. Let us consider some fixed ∆t. Using results from the previous proof,
for θ > 1/2 we have γ := ∥T∥ < 1. For that case for our assumptions for
the process (5.17) we have ∥Tuk − Tup∥ ≤ γ∥uk − up∥ for k, p = 0, 1, ....
Note, that in the standard proof of Banach fixed-point theorem for checking
existence of the limit function, we calculate distance only between sequence
elements. In that way, we can omit requirement on T to be contraction on
the entire definition domain, but keep it only for the set of sequence elements.
Thus we will be able to proof that the sequence {uj} is fundamental in L2

norm, and thus we have, that there exists a limit function u ∈ L2(Ω). So,
by passing to limit as j → ∞ in (5.14), in the case when u ∈ V , we see, that
there exists also function ũ ∈ V , such that:{

(ũ, v) + θ∆ts(ũ, v) = ∆t⟨l, v⟩+ (u, v) + ∆t(θ − 1)s(u, v),

(u, v) + θ∆tm(u, v) = (ũ, v) + ∆t(θ − 1)m(ũ, v).
(5.33)

First equation of the scheme can be considered as a one-∆t time step
for the initial function u. Taking into account convergence of such scheme
with bilinear form s(u, v) as ∆t → 0, we conclude that ũ = u + κ(∆t)∆t,
where κ(∆t) is bounded as ∆t → 0. By substituting this into two equations
of (5.33) with summing them up (taking into account (4.6)) and regrouping
terms we get:

a(u, v) = ⟨l, v⟩+∆t[(θ − 1)m(κ, v)− θs(κ, v)]. (5.34)

By taking ⟨r, v⟩ := ∆t[(θ − 1)m(κ, v)− θs(κ, v)] we finish the proof.

Remark. From the last theorem we see, that even for stationary case we
should set the ∆t parameter of the iteration process sufficiently small to
make final approximation matching exact stationary problem more accurate.
That is why for advection-dominated problems it is naturally to choose initial
approximation u0 as a solution of (4.9).

Note, that we supposed, that the problem data is smooth enough to
have existing smooth solution (which is logically to conclude after reducing
problem into the set of one-dimensional problems as in [3]). From the nature
of the processes it is reasonable also to have smooth f , such that f |∂Ω =
0. It is a question, in which most general class solutions uj lies. Note,
that diffusion matrix in the variational forms s(u, v) and m(u, v) is actually
projection matrix and it is in general not positive-definite, making standard
proof of solution existence using Lax-Milgram lemma not possible.
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Note also, that we may use a different approach to show stability. It
is based on so-called energy equations [2, 4] and it can be applied to more
weakened assumptions on the solutions, but, from the other hand, it imposes
some limitations on scheme coefficient θ. For example, let us consider fully
implicit scheme, i.e. θ = 1. In (5.14) take v = uj+ 1

2
in the first equation

and v = uj+1 in the second one. We will obtain:

{
∥uj+ 1

2
∥2 +∆ts(uj+ 1

2
, uj+ 1

2
) = ∆t⟨l, uj+ 1

2
⟩+ (uj , uj+ 1

2
),

∥uj+1∥2 +∆tm(uj+1, uj+1) = (uj+ 1
2
, uj+1).

(5.35)

It is not hard to see that s(v, v) ≥ σ∥v∥2 and m(v, v) ≥ 0. Taking this into
account and also Cauchy–Schwarz inequality, we obtain:{

(1 + σ∆t)∥uj+ 1
2
∥2 ≤ ∆t∥f∥∥uj+ 1

2
∥+ ∥uj∥∥uj+ 1

2
∥,

∥uj+1∥2 ≤ ∥uj+ 1
2
∥∥uj+1∥,

(5.36)

or {
(1 + σ∆t)∥uj+ 1

2
∥ ≤ ∆t∥f∥+ ∥uj∥,

∥uj+1∥ ≤ ∥uj+ 1
2
∥.

(5.37)

By combining inequalities from (5.37) we get:

∥uj+1∥ ≤ 1

1 + σ∆t
∥uj∥+

∆t

1 + σ∆t
∥f∥. (5.38)

Since α := 1/(1 + σ∆t) ≤ 1 we get stability. To be more precise, we can
recursively apply the (5.38) and obtain:

∥uj∥ ≤ αj∥u0∥+ (1 + α+ α2 + ...+ αj−1)α∆t∥f∥. (5.39)

For finite T (i.e. 0 ≤ j ≤ T/∆t) from (5.39) we have:

∥uj∥ ≤ ∥u0∥+ T∥f∥. (5.40)

For the case when σ > 0:

∥uj∥ ≤ αj∥u0∥+
α∆t

1− α
∥f∥. (5.41)

For fixed ∆t and uj → u as j → ∞ from (5.41) we have:

∥u∥ ≤ α∆t

1− α
∥f∥. (5.42)
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Remark. Note, that we provided proof for the splitting scheme itself, i.e.
for semi-discretized scheme, in which we do not considered discretization in
spatial dimensions and how it is affecting the computational process. For
the fully-discretized scheme we will have iterations on finite- dimensional
spaces. To study that probably we can apply known von Neumann spectral
stability analysis by studying appropriate eigenvalues of matrices obtained
from, for example, finite element method. In general, suppose, that we have
some ”projection-like” operator Dh, mapping exact solutions uj to appro-
priate discrete approximation uhj . Note, that such operator gives us result
of application of spatial discretization two times, since we have two sub-
steps on each time step. It is natural to assume, that ∥I − Dh∥ ≤ Ch,
where h is some characteristic discretization parameter (like finite ele-
ment diameter). In that case ∥Dh∥ = 1 + O(h). If we rewrite (5.17) as
uj+1 = Tuj+∆tLf and use D to that scheme, we will build fully discretized
variant uhj+1 = DhTu

h
j +∆tDhLf . If showing approximativity can be done

in the usual way, for stability we need to have ∥DhT∥ = ∥Dh∥∥T∥ ≤ 1.
In scope of (5.28), if θ > 1/2, we need to choose h small enough, to have
∥Dh∥ ≤ 1/∥T∥.

6 Conclusions

In this paper under certain natural assumptions we provide the proof of
convergence of the directional diffusion splitting scheme for two-dimensional
parabolic and elliptic advection-diffusion-reaction problems. Several ques-
tions are open for now. First: how the error from intermediate interpolation
(technically used to re-map solutions between the two substeps of the scheme
in [3] and is not encountered in this article, as it is possible to avoid it) is
propagated through the time? Second question: how to proof the conver-
gence in the case when advection speed is variable along the flow line? Third
question: how to proof convergence or apply the method in the case advec-
tion field has more complex structure or the space dimension number is
greater than 2? Fourth question: how the discretization in spatial variables
will affect the convergence properties (since we proved convergence of split-
ting procedure itself, i.e. semi-discretized approximations in time, without
considering spatial discretization which can be done by different ways)?
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