CLASSIFICATION OF THREEFOLD CANONICAL THRESHOLDS

JHENG-JIE CHEN, JIUN-CHENG CHEN, AND HUNG-YI WU

ABSTRACT. We show that the set $\mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}$ of smooth threefold canonical thresholds coincides with $\mathcal{T}_{2,\mathrm{sm}}^{\mathrm{lc}} = \mathcal{HT}_2$, where \mathcal{HT}_2 is the 2-dimensional hypersurface log canonical thresholds characterized by Kuwata [Kuw99a, Kuw99b]. We classify the set $\mathcal{T}_3^{\mathrm{can}}$ of threefold canonical thresholds. More precisely, we prove $\mathcal{T}_3^{\mathrm{can}} = \{0\} \cup \{\frac{4}{5}\} \cup \mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}$.

1. INTRODUCTION

We work over the complex number field \mathbb{C} . For a log canonical pair (X, S), the log canonical threshold

 $lct(X, S) := \sup\{t \in \mathbb{R} \mid (X, tS) \text{ is log canonical}\}\$

is a natural and fundamental invariant which measures the complexity of singularities in algebraic geometry (see [Kol97, Kol08]). The set of n-dimensional log canonical thresholds

$$\mathcal{T}_n^{\mathrm{lc}} := \{ \mathrm{lct}(X, S) | \dim X = n \}$$

has very interesting properties related to the minimal model program (cf. [Sho93, MP04, Bir07, HMX14, LMX24]). Note that it is an interesting and very hard question to describe the set $\mathcal{T}_n^{\text{lc}}$ explicitly. Certain classifications in $n \leq 3$ were investigated (cf. [Ale93, Sho93, Kuw99a, Kuw99b, Kol08]).

We consider an analogous notion. Let $X \ni P$ be a germ of complex algebraic variety with at worst canonical singularities and $S \ni P$ be a prime \mathbb{Q} -Cartier divisor. The canonical threshold of the pair (X, S) is defined as

 $ct(X, S) := \sup\{t \in \mathbb{R} \mid \text{the pair } (X, tS) \text{ is canonical}\}.$

For every natural number n, the set of canonical thresholds is defined by

$$\mathcal{T}_n^{\operatorname{can}} := \{ \operatorname{ct}(X, S) | \dim X = n \}.$$

It is known that $\mathcal{T}_2^{\operatorname{can}} = \{0\} \cup \{\frac{1}{k}\}_{k \in \mathbb{N}}$ where \mathbb{N} denotes the set of positive integers. In this paper, we focus on the classifications in the case n = 3.

Canonical thresholds appear naturally and play crucial roles in the Sarkisov program. Recall that every canonical threshold $\operatorname{ct}(X,S) \in \mathcal{T}_3^{\operatorname{can}}$ is computed by some divisorial contraction $\sigma \colon Y \to X$ (cf. [Cor95] or [Mat02]). As the remarkable works of classifications of threefold divisorial contractions to points are completely investigated by Hayakawa, Kawakita, Kawamata, Mori, Yamamoto, and many others (cf. [Mor82, Kaw96, Hay99, Hay00, Kwk01, Kwk02, Kwk05, Yam18]), it is then a natural question to describe the set $\mathcal{T}_3^{\operatorname{can}}$ explicitly. We collect some known results toward the description of the set $\mathcal{T}_3^{\text{can}}$ as follows. Note that certain numbers are in this set, e.g. $\min\{\frac{1}{\alpha} + \frac{1}{\beta}, 1\}$ (by a result of Stepanov [Ste11]) for all positive integers α and β . It is also known that $\frac{4}{5} \in \mathcal{T}_3^{\text{can}}$ [Pro08]. Consider the subset

$$\mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}} := \{ \mathrm{ct}(X, S) \mid \dim X = 3, X \text{ is smooth} \} \subseteq \mathcal{T}_{3}^{\mathrm{can}}.$$

Prokhorov proves that $\mathcal{T}_3^{\operatorname{can}} \cap (\frac{5}{6}, 1) = \emptyset$ as well as $\operatorname{ct}(X, S) \leq \frac{4}{5}$ when X is singular [Pro08]. Stepanov proves that $\mathcal{T}_3^{\operatorname{can}} \cap (\frac{4}{5}, \frac{5}{6}) = \emptyset$ [Ste11]. Another interesting question concerning the set $\mathcal{T}_3^{\operatorname{can}}$ is to determine if it satisfies the ACC. Stepanov obtains that $\mathcal{T}_{3,\mathrm{sm}}^{\operatorname{can}}$ satisfies the ACC and establishes the explicit formula for $\operatorname{ct}_P(X, S)$ when $P \in S$ is a Brieskorn singularity in [Ste11]. Applying Stepanov's argument, the first named author proves the ACC for $\mathcal{T}_3^{\operatorname{can}}$ [Che22]. He also shows that $\mathcal{T}_3^{\operatorname{can}} \cap (\frac{1}{2}, 1)$ coincides with $\{\frac{1}{2} + \frac{1}{p}\}_{p \in \mathbb{Z}_{\geq 3}} \cup \{\frac{4}{5}\}$. Moreover, Han, Liu and Luo and the first named author independently prove that the accumulation points of $\mathcal{T}_3^{\operatorname{can}}$ coincides with $\mathcal{T}_2^{\operatorname{can}} \setminus \{1\}$ and generalized the ACC to pairs in [HLL22, Che22].

We now state the main results of this paper. The first result is an explicit description of the set $\mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}$ of threefold canonical thresholds. We also discover $\mathcal{T}_{2,\mathrm{sm}}^{\mathrm{lc}} = \mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}$. It is interesting to compare this with the well-known theorem that the set of limit points of $\mathcal{T}_{n+1,\mathrm{sm}}^{\mathrm{lc}}$ is $\mathcal{T}_{n,\mathrm{sm}}^{\mathrm{lc}}$ [dFM09] [Kol08].

Theorem 1.1. (= Theorem 2.2) The set $\mathcal{T}_{3,sm}^{can}$ consists of $C \cap [0,1]$ where C is the following set

$$\left\{ \frac{\alpha+\beta}{p_1\alpha+p_2\beta} \middle| \begin{array}{l} \alpha,\beta,p_2\in\mathbb{N} \text{ and } p_1\in\mathbb{Z}_{\geq 0} \text{ such that } \alpha\leq\beta,\\ \gcd(\alpha,\beta)=1 \text{ and either } p_2\geq\max\{\alpha,p_1\} \text{ or } p_2=p_1 \end{array} \right\}.$$

In particular, we have

$$\mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}} = \mathcal{T}_{2,\mathrm{sm}}^{\mathrm{lc}} (= \mathcal{HT}_2).$$

The next result characterizes the set of 3-dimensional canonical thresholds $\mathcal{T}_3^{\text{can}}$. It is plausible that most of the canonical thresholds should come form the smooth case already. We show that $\frac{4}{5}$ is the only non-trivial exception.

Theorem 1.2. (=Theorem 3.15) We have $\mathcal{T}_{3}^{can} = \{0\} \cup \{\frac{4}{5}\} \cup \mathcal{T}_{3,sm}^{can}$

In what follows, we explain the proof of Theorems 1.1. Suppose that $\operatorname{ct}(X,S) \in \mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}$ is a canonical threshold. It is known that $\operatorname{ct}(X,S) \leq 1$ and $\operatorname{ct}(X,S)$ can be computed as a weighted blow up $Y \to X = \hat{\mathbb{C}}^3$ at the origin of $\hat{\mathbb{C}}^3$ with weights $w := (1, \alpha, \beta)$ for some positive relative prime integers α and β by Kawakita [Kwk01] such that $\operatorname{ct}(X,S) = \frac{\alpha+\beta}{m}$ where m = w(f) is the weighted multiplicity of the defining convergent power series f of the prime divisor S. For simplicity, we assume that $1 < \alpha < \beta$. Y is then a union of three affine open subsets U_1, U_2 and U_3 such that U_1 is smooth,

$$U_2 \simeq \hat{\mathbb{C}}^3 / \frac{1}{\alpha} (-s, s, 1) \text{ and } U_3 \simeq \hat{\mathbb{C}}^3 / \frac{1}{\beta} (t, 1, -t),$$

where s and t are the positive integers with $\alpha t = \beta s + 1$. Denote by $\bar{s} := \alpha - s$ and $\bar{t} := \beta - t$ so that $\alpha \bar{t} = \beta \bar{s} - 1$. Note that there are two weights $w_2 = (1, s, t)$ and $w_3 = (1, \overline{s}, \overline{t})$ over X corresponding to Kawamata blow ups at the origins of U_2 and U_3 respectively. Comparing w with two auxiliary weights w_2 and w_3 , [Che22, Lemma 2.1] yields that

(1)
$$\left\lfloor \frac{s+t}{\alpha+\beta}m \right\rfloor \ge \left\lceil \frac{s}{\alpha}m \right\rceil \text{ and } \left\lfloor \frac{\bar{s}+\bar{t}}{\alpha+\beta}m \right\rfloor \ge \left\lceil \frac{\bar{t}}{\beta}m \right\rceil$$

By [Che22, Proposition 3.3], we have $m \ge \alpha\beta$. In particular, there exist non-negative integers p_1 and p_2 with $m = p_1\alpha + p_2\beta$ and $p_1 < \beta$. From the inequalities in (1) and the above identities $\alpha t = \beta s + 1$ and $\alpha \bar{t} = \beta \bar{s} - 1$, we obtain $p_2 \ge p_1$ (resp. $p_2 \ge \alpha$ if $p_1 \ne p_2$). Thus, $\operatorname{ct}(X, S) \in C \cap [0, 1]$. Conversely, given a number $\frac{\alpha+\beta}{p_1\alpha+p_2\beta} \in C \cap [0,1]$ where α, β, p_2 are positive integers and p_1 is a non-negative integer with $\alpha \le \beta$ and $\operatorname{gcd}(\alpha, \beta) = 1$ such that either $p_2 \ge \max\{\alpha, p_1\}$ or $p_1 = p_2$. We assume $\alpha > 1$ for simplicity. Denote by $m = p_1\alpha + p_2\beta$ and weights $w = (1, \alpha, \beta), w_2 = (1, s, t)$ and $w_3 = (1, \bar{s}, \bar{t})$. We are able to construct a prime divisor $S := \{f = 0\}$ (near the origin of $\hat{\mathbb{C}}^3$) satisfying the following two conditions:

- the proper transform S_Y of S in Y is smooth except probably the origins of U_2 and U_3 (near the exceptional divisor of weighted blow up $\sigma: Y \to X = \hat{\mathbb{C}}^3$ with weights w);
- we have the inequalities

$$\frac{s+t}{\alpha+\beta}m \ge w_2(f)$$
 and $\frac{\bar{s}+\bar{t}}{\alpha+\beta}m \ge w_3(f)$

where $m = w(f), w_2(f)$ and $w_3(f)$ are the weighted multiplicities.

Thanks to computations of canonical thresholds for terminal cyclic quotient singularities studied by Kawamata [Kaw96, Lemma 7], it follows that $\frac{\alpha+\beta}{p_1\alpha+p_2\beta} \in \mathcal{T}_{3,\text{sm}}^{\text{can}}$ (see Lemma 2.1). Therefore, we have established $\mathcal{T}_{3,\text{sm}}^{\text{can}} = C \cap [0, 1]$. It is then straightforward to check that $C \cap [0, 1]$ coincides with \mathcal{HT}_2 where \mathcal{HT}_2 is the set of 2-dimensional hypersurface log canonical thresholds explicitly classified by Kuwata [Kuw99a, Kuw99b]. Thus, Theorem 1.1 follows.

Theorem 1.2 is basically derived from the argument of Theorem 1.1 and the classifications of divisorial contractions by Kawakita [Kwk05] which we explain as follows. Recall that for every projective threefold X with at worst \mathbb{Q} -factorial terminal singularities, $\operatorname{ct}(X, S) \in \mathcal{T}_3^{\operatorname{can}}$ is obtained as $\operatorname{ct}(X, S) = \frac{a}{m}$ for some divisorial extraction $\sigma: Y \to X$ extracting only one irreducible divisor E and

$$K_Y = \sigma^* K_X + \frac{a}{n} E$$
 and $S_Y = \sigma^* S - \frac{m}{n} E$

where $\frac{a}{n}$ (resp. $\frac{m}{n}$) is the discrepancy (resp. multiplicity) and n is the index of the center $\sigma(E)$ (cf [Cor95] or [Mat02]). We say that ct(X, S) is computed by σ and denote the weighted discrepancy and weighted discrepancy by aand m, respectively. As in [Che22], consider

$$\mathcal{T}_{3,*,\geq 5}^{\operatorname{can}} := \left\{ \operatorname{ct}(X,S) \mid \begin{array}{c} \operatorname{ct}(X,S) \text{ is computed by } \sigma: Y \to X \text{ with weighted} \\ \operatorname{discrepancy} a \geq 5 \text{ contracting a divisor } E \\ \operatorname{to a closed point } \sigma(E) = P \in X \text{ of type } * \end{array} \right\}$$

where the type * can be cA (resp. cA/m, cD or cD/2) if $P \in X$ is a singular point of type cA (resp. cA/m, cD or cD/2). According to classifications of threefold divisorial contractions by Kawakita in [Kwk05], we have the following decomposition :

$$\mathcal{T}_{3}^{\operatorname{can}} = \{0\} \cup \aleph_{4} \cup \mathcal{T}_{3,\operatorname{sm}}^{\operatorname{can}} \cup \mathcal{T}_{3,cA,\geq 5}^{\operatorname{can}} \cup \mathcal{T}_{3,cA/m,\geq 5}^{\operatorname{can}} \cup \mathcal{T}_{3,cD,\geq 5}^{\operatorname{can}} \cup \mathcal{T}_{3,cD/2,\geq 5}^{\operatorname{can}} \quad (2)$$

where $\aleph_4 := \mathcal{T}_3^{\operatorname{can}} \cap \{\frac{a}{m}\}_{a,m \in \mathbb{N}, a \leq \max\{4,m\}}$. From Theorem 1.1 and a computation of Prokhorov [Pro08], one has $\aleph_4 \cup \mathcal{T}_{3,\operatorname{sm}}^{\operatorname{can}} = \{\frac{4}{5}\} \cup \mathcal{T}_{3,\operatorname{sm}}^{\operatorname{can}}$ (see Remark 2.5). Theorem 1.2 then follows from the inclusions $\mathcal{T}_{3,\ast,\geq 5}^{\operatorname{can}} \subseteq C \cap [0, \frac{4}{5}]$ for $\ast = cA, cA/n, cD$ and cD/2 in Proposition 3.1, 3.3, 3.8 and 3.11. Those propositions utilize the argument of the inclusion $\mathcal{T}_{3,\operatorname{sm}}^{\operatorname{can}} \subseteq C \cap [0, 1]$ in Theorem 1.1 with more careful considerations.

1.1. Acknowledgement. The first named author was partially supported by the National Science and Technology Council of Taiwan (Grant Numbers: 112-2115-M-008 -006 -MY2 and 113-2123-M-002-019-). We would like to thank Professors Jungkai Chen, Hsueh-Yung Lin, Jihao Liu, and Dr. Iacopo Brivio for some helpful conversations and encouragement.

2. Classification of $\mathcal{T}_{3,\text{sm}}^{\text{can}}$

The aim of this section is to classify the set $\mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}$ of smooth threefold canonical thresholds. We begin with the following lemma using the computation of canonical threshold for terminal cyclic quotient singularity by Kawamata in [Kaw96].

Lemma 2.1. Let $\mu_1: Y \to X = \hat{\mathbb{C}}^3 \ni P$ be a weighted blow up with weights $w = (1, \alpha, \beta)$ and exceptional divisor E_1 where $\beta > 1$. Let S be a prime divisor of X defined by a power series f. Let \bar{s} and \bar{t} be positive integers with $\alpha \bar{t} = \beta \bar{s} - 1$ (resp. s and t positive integers with $\alpha t = \beta s + 1$ if $\alpha > 1$). Define m = w(f) and $m_3 := w_3(f)$ where $w_3 = (1, \bar{s}, \bar{t})$ (resp. $m_2 := w_2(f)$ where $w_2 = (1, s, t)$). Suppose that $\frac{\bar{s} + \bar{t}}{\alpha + \beta} m \ge m_3$ (resp. $\frac{s + t}{\alpha + \beta} m \ge m_2$ if $\alpha > 1$) and the proper transform S_Y is non-singular on Y near E_1 except probably the origin of U_3 (resp. U_2 if $\alpha > 1$). Then $\operatorname{ct}_P(X, S) = \min\{\frac{\alpha + \beta}{m}, 1\}$.

Proof. The proof actually follows from [Kaw96, Lemma 6 and argument of Lemma 7].

Since $\operatorname{ct}(X,S) \in [0,1]$, we may assume $\frac{\alpha+\beta}{m} < 1$. Suppose that $\alpha > 1$. Recall that Y is a union of three open charts $U_1 \simeq \hat{\mathbb{C}}^3$, $U_2 \simeq \mathbb{C}^3/\frac{1}{\alpha}(-1,1,-\beta)$ and $U_3 \simeq \mathbb{C}^3/\frac{1}{\beta}(-1,-\alpha,1)$. Let $\mu_2 : Y_2 \to Y$ be the Kawamata blow up (with weights $v_2 = \frac{1}{\alpha}(\bar{s},s,1)$) at the origin of U_2 with exceptional divisor E_2 . Let $\mu_3 : Y_3 \to Y_2$ be the Kawamata blow up at the origin of U_3 with weights $v_3 = \frac{1}{\beta}(t,1,\bar{t})$ and exceptional divisor E_3 . Let $n \ge n_0 \ge 1$ be integers such that $\mu_i : Y_i \to Y_{i-1}$ are Kawamata blow ups for $i = 1, 2, ..., n_0$ (resp. usual blow up at smooth point or along smooth curve for $i = n_0 + 1, ..., n$), Y_{n_0} is non-singular and the composition $\sigma := \mu_n \circ \cdots \circ \mu_2 \circ \mu_1 \colon Y_n \to X$ is a log resolution of (X, S) near $P \in X$. Note that we set $Y_1 := Y$ and $Y_0 := X$. Write $K_{Y_n} = \sigma^* K_X + \sum_{j=1}^n a_j E_j$ and $\sigma^* S = S_{Y_n} + \sum_{j=1}^n m_j E_j$

with exceptional divisor E_j of $\mu_j : Y_j \to Y_{j-1}$ where $m_1 := m = w(f)$. For every j = 1, ..., n, denote by $\sigma_j := \mu_n \circ \cdots \circ \mu_{j+1} : Y_n \to Y_j$ the induced morphism and write

$$K_{Y_j} = \mu_j^* K_{Y_{j-1}} + \bar{a}_j E_j, \ \ \mu_j^* S_{Y_{j-1}} = S_{Y_j} + \bar{m}_j E_j \text{ and } \sigma_j^* E_j = E_j + \sum_{j < k} \alpha_{jk} E_k$$

for non-negative rational numbers α_{jk} . Then we have $a_j = \bar{a}_j + \sum_{i < j} a_i \alpha_{ij}$ and $m_j = \bar{m}_j + \sum_{i < j} m_i \alpha_{ij}$.

As $\mu_3 : Y_3 \to Y_2$ is a weighted blow up with weights $v_3 = \frac{1}{\beta}(t, 1, \bar{t})$ and $w_3 = \frac{\bar{t}}{\beta}w + \frac{1}{\beta}(t, 1, 0)$, we see $\alpha_{13} = \frac{\bar{t}}{\beta}$ and $\bar{a}_3 = \frac{1}{\beta}$. From

$$\frac{\bar{s} + \bar{t}}{m_3} = \frac{a_3}{m_3} = \frac{\bar{a}_3 + \alpha_{13}a_1}{\bar{m}_3 + \alpha_{13}m} = \frac{\bar{a}_3 + \alpha_{13}(\alpha + \beta)}{\bar{m}_3 + \alpha_{13}m}$$

and $\alpha_{13} \ge 0$, it is easy to see that the assumption $\frac{\bar{s}+\bar{t}}{\alpha+\beta}m \ge m_3$ is equivalent to $\frac{\bar{a}_3}{\bar{m}_3} \ge \frac{\alpha+\beta}{m} = \frac{a_1}{m_1}$. Similarly, the assumption $\frac{s+t}{\alpha+\beta}m \ge m_2$ is equivalent to $\frac{\bar{a}_2}{\bar{m}_2} \ge \frac{\alpha+\beta}{m} = \frac{a_1}{m_1}$.

 $\begin{array}{l} \frac{\bar{a}_2}{\bar{m}_2} \geq \frac{\alpha+\beta}{m} = \frac{a_1}{m_1}.\\ \text{It remains to show } \frac{a_j}{m_j} \geq \frac{a_1}{m_1} \text{ for every } j = 1, ..., n. \text{ It is obvious when } \\ j = 1. \text{ From the assumptions } \frac{\bar{s}+\bar{t}}{\alpha+\beta}m \geq m_3 \text{ and } \frac{s+t}{\alpha+\beta}m \geq m_2, \text{ we may } \\ \text{assume that } j \geq 4. \text{ By induction hypothesis, we assume that } \frac{a_k}{m_k} \geq \frac{a_1}{m_1} \text{ for } \\ k = 1, ..., j - 1. \text{ Denote by } \sigma_3(E_j) \text{ the center of } E_j \text{ on } Y_3. \end{array}$

Case 1: $\sigma_3(E_j)$ is contained in E_3 . By [Kaw96, Lemma 6], one has $\frac{\bar{a}_j}{\bar{m}_j} \geq \frac{\bar{a}_3}{\bar{m}_3}$. Thus, we see $\frac{\bar{a}_j}{\bar{m}_j} \geq \frac{\bar{a}_3}{\bar{m}_3} \geq \frac{a_1}{m_1}$. In particular, we observe

$$\frac{a_j}{m_j} = \frac{\bar{a}_j + \sum_{i < j} a_i \alpha_{ij}}{\bar{m}_j + \sum_{i < j} m_i \alpha_{ij}} \ge \frac{a_1 + \sum_{i < j} a_i \alpha_{ij}}{m_1 + \sum_{i < j} m_i \alpha_{ij}} \ge \frac{a_1 + \sum_{i < j} a_1 \alpha_{ij}}{m_1 + \sum_{i < j} m_1 \alpha_{ij}} = \frac{a_1}{m_1},$$

where the last inequality follows from induction hypothesis. **Case 2:** $\sigma_3(E_j)$ is contained in E_2 . We may apply the same argument in

Case 1 to obtain $\frac{a_j}{m_j} \ge \frac{a_1}{m_1}$.

Case 3: $\sigma_3(E_j)$ is contained in E_1 and not contained in $E_2 \cup E_3$. From the assumption that S_Y is non-singular on Y (near E_1) except the origins of U_2 and U_3 , we see that $\bar{m}_j \in \{1,0\}$ and $\bar{a}_j = 1$ or 2. Thus $\frac{\bar{a}_j}{\bar{m}_j} = \bar{a}_j \ge 1 > \frac{\alpha+\beta}{m} = \frac{a_1}{m_1}$ or $\bar{m}_j = 0$. In particular, $\frac{a_j}{m_j} \ge \frac{a_1}{m_1}$ by induction hypothesis.

Suppose that $\alpha = 1$. Then $U_2 \simeq \mathbb{C}^3$ is non-singular. Replacing j by j-1 for $j \geq 3$ above. We divide it into two cases that $\sigma_2(E_j)$ is contained in E_2 or $E_1 \setminus E_2$. The above arguments yield the same inequality $\frac{a_j}{m_j} \geq \frac{a_1}{m_1}$. We finish the proof of Lemma 2.1.

Let f be a non-zero holomorphic function near $0 \in \mathbb{C}^2$. Recall that $c_0(\mathbb{C}^2, f) := \sup\{c \mid |f|^{-c} \text{ is locally } L^2 \text{ near } 0\}$. Following Kuwata [Kuw99a] and [Kuw99b], we define

$$\mathcal{HT}_2 := \{ c_0(\mathbb{C}^2, f) : f \neq 0 \text{ is holomorphic near } 0 \in \mathbb{C}^2 \}.$$

Theorem 2.2. The set $\mathcal{T}_{3,sm}^{can}$ consists of $C \cap [0,1]$ where C is the following set

$$\left\{ \frac{\alpha+\beta}{p_1\alpha+p_2\beta} \middle| \begin{array}{l} \alpha,\beta,p_2\in\mathbb{N} \text{ and } p_1\in\mathbb{Z}_{\geq 0} \text{ such that } \alpha\leq\beta, \\ \gcd(\alpha,\beta)=1 \text{ and either } p_2\geq\max\{\alpha,p_1\} \text{ or } p_2=p_1 \end{array} \right\}.$$

In particular,

$$\mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}} = \mathcal{T}_{2,\mathrm{sm}}^{\mathrm{lc}} (= \mathcal{HT}_2).$$

Proof. We first show $\mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}} \subseteq C \cap [0,1]$. Suppose that $\mathrm{ct}(X,S) \in \mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}$. By [Cor95, (2.10) Proposition-definition] and [Kwk01], the canonical threshold $\mathrm{ct}(X,S) = \frac{\alpha+\beta}{m}$ is realized by a weighted blow up $\sigma : Y \to X = \hat{\mathbb{C}}^3$ with weights $w = (1, \alpha, \beta)$ where α and β are relative prime integers with $1 \leq \alpha \leq \beta$ and m is the weighted multiplicity of S with respect to σ .

In the case $\alpha = \beta = 1$, every positive integer is of the form $p_1\alpha + p_2\beta$ for some non-negative integers p_1 and p_2 . Thus, we may assume that $\alpha < \beta$. As $gcd(\alpha, \beta) = 1$, there exists positive integers \bar{s} and \bar{t} with $\alpha \bar{t} = \beta \bar{s} - 1$ (resp, positive integers s and t with $\alpha t = \beta s + 1$ if $\alpha > 1$). Define $w_3 = (1, \bar{s}, \bar{t})$ and σ_3 to be the weighted blow up at the origin of $X = \hat{\mathbb{C}}^3$ with the weights w_3 . Similarly, define $w_2 = (1, s, t)$ and σ_2 to be the weighted blow up at the origin of $X = \hat{\mathbb{C}}^3$ with the weights w_2 if $\alpha > 1$. Let m_3 (resp. m_2 if $\alpha > 1$) denote the weighted multiplicity of S with respect to σ_3 (resp. σ_2 if $\alpha > 1$). From [Che22, Lemma 2.1], one has

$$\lfloor \frac{\bar{s} + \bar{t}}{\alpha + \beta} m \rfloor \ge m_3 \ge \lceil \frac{\bar{t}}{\beta} m \rceil.$$

Similarly, in the case $\alpha > 1$, we have

$$\lfloor \frac{s+t}{\alpha+\beta}m \rfloor \ge m_2 \ge \lceil \frac{s}{\alpha}m \rceil.$$

By [Che22, Proposition 3.3] and $ct(X, S) \leq 1$, we see $m \geq \alpha\beta$. As m is an integer greater than $\alpha\beta - \alpha - \beta$, one may write $m = p_1\alpha + p_2\beta$ for some non-negative integers p_1 and p_2 . Rewriting

$$m = p_1 \alpha + p_2 \beta = (p_1 - \beta \lfloor \frac{p_1}{\beta} \rfloor) \alpha + (p_2 + \lfloor \frac{p_1}{\beta} \rfloor \alpha) \beta$$

one may assume that $p_1 < \beta$. It remains to show the following two claims.

Claim 2.3. We have $p_2 \ge p_1$.

Proof of the Claim. Since $\alpha \bar{t} = \beta \bar{s} - 1$ and we assume that $p_1 < \beta$, one has

$$\left\lceil \frac{t}{\beta}m\right\rceil = \left\lceil \frac{t}{\beta}(p_1\alpha + p_2\beta)\right\rceil = \left\lceil p_1\bar{s} + p_2\bar{t} - \frac{p_1}{\beta}\right\rceil = p_1\bar{s} + p_2\bar{t}.$$

As $\lfloor \frac{\bar{s} + \bar{t}}{\alpha + \beta} m \rfloor \ge m_3 \ge \lceil \frac{\bar{t}}{\beta} m \rceil$ where

$$\lfloor \frac{\bar{s} + \bar{t}}{\alpha + \beta} m \rfloor = \lfloor \frac{\bar{s} + \bar{t}}{\alpha + \beta} (p_1 \alpha + p_2 \beta) \rfloor = p_1 \bar{s} + p_2 \bar{t} + \lfloor \frac{p_2 - p_1}{\alpha + \beta} \rfloor,$$

we conclude $p_2 \ge p_1$.

Claim 2.4. Either $p_2 \ge \alpha$ or $p_1 = p_2$.

Proof of the Claim. The argument is similar to the claim above. We may assume that $\alpha > 1$. Since $\alpha t = \beta s + 1$, we have

$$\lfloor \frac{s+t}{\alpha+\beta}m \rfloor = \lfloor \frac{s+t}{\alpha+\beta}(p_1\alpha+p_2\beta) \rfloor = p_1s+p_2t-\lceil \frac{p_2-p_1}{\alpha+\beta} \rceil$$

and $\lceil \frac{s}{\alpha}m \rceil = \lceil \frac{s}{\alpha}(p_1\alpha+p_2\beta) \rceil = p_1s+p_2t-\lfloor \frac{p_2}{\alpha} \rfloor.$

As we have $\lfloor \frac{s+t}{\alpha+\beta}m \rfloor \ge m_2 \ge \lceil \frac{s}{\alpha}m \rceil$, one sees

$$\frac{p_2}{\alpha} \ge \lfloor \frac{p_2}{\alpha} \rfloor \ge \lceil \frac{p_2 - p_1}{\alpha + \beta} \rceil \ge 0,$$

where last inequality follows from Claim 2.3 above. Thus, we conclude $p_2 \ge \alpha$ or $p_1 = p_2$.

Conversely, suppose that we are given $\alpha, \beta, p_2 \in \mathbb{N}$ and $p_1 \in \mathbb{Z}_{\geq 0}$ with $\alpha \leq \beta$, $\gcd(\alpha, \beta) = 1$ satisfying either $p_2 \geq \max\{\alpha, p_1\}$ or $p_1 = p_2$. We shall show that $\frac{\alpha+\beta}{p_1\alpha+p_2\beta} \in \mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}$ if $\frac{\alpha+\beta}{p_1\alpha+p_2\beta} \leq 1$.

If $\alpha = \beta = 1$, we take $S = (x^m + y^m + z^m = 0)$ and $\sigma : Y \to X = \hat{\mathbb{C}}^3$ to be the smooth blow up at the origin where m is a positive integer. As (Y, S_Y) is log smooth for $m \ge 2$ (resp. $(\hat{\mathbb{C}}^3, S)$ is log smooth when m = 1), we see $\operatorname{ct}(X, S) = \min\{\frac{2}{m}, 1\}$ by [Ste11, Theorem 3.6].

From now on, we may assume $\beta > 1$. Let $\sigma: Y \to X = \hat{\mathbb{C}}^3$ be the weighted blow up with weights $w = (1, \alpha, \beta)$. Define \bar{s} and \bar{t} to be positive integers with $\alpha \bar{t} = \beta \bar{s} - 1$. Similarly, in the case $\alpha > 1$, we define positive integers $s = \alpha - \bar{s}$ and $t = \beta - \bar{t}$ so we have $\alpha t = \beta s + 1$. Note that Y is covered by three affine open subsets U_1, U_2, U_3 where $U_1 \simeq \hat{\mathbb{C}}^3$ and

$$U_3 \simeq \hat{\mathbb{C}}^3 / \frac{1}{\beta} (-1, -\alpha, 1) \simeq \hat{\mathbb{C}}^3 / \frac{1}{\beta} (t, 1, -t) \text{ and}$$
$$U_2 \simeq \hat{\mathbb{C}}^3 / \frac{1}{\alpha} (-1, 1, -\beta) \simeq \hat{\mathbb{C}}^3 / \frac{1}{\alpha} (-s, s, 1) \text{ if } \alpha > 1.$$

Define

$$v_2 = \frac{1}{\alpha}(\bar{s}, s, 1), \ v_3 = \frac{1}{\beta}(t, 1, \bar{t}), \ w_2 = \frac{s}{\alpha}w + \frac{1}{\alpha}(\bar{s}, 0, 1), \\ w_3 = \frac{t}{\beta}w + \frac{1}{\beta}(t, 1, 0).$$

Then $w_2 = (1, s, t)$, $w_3 = (1, \bar{s}, \bar{t})$ and the weighted blow up $\sigma'_3 : Z_3 \to U_3$ (resp. $\sigma'_2 : Z_2 \to U_2$) at the origin of U_3 (resp. U_2) with weights v_3 (resp. v_2 if $\alpha > 1$) is Kawamata blow up.

Define $m := p_1 \alpha + p_2 \beta$ and express

$$p_2 = \alpha \lfloor \frac{p_2}{\alpha} \rfloor + q$$

where $q \in [0, \alpha - 1]$ is an integer.

Case 1: $\alpha | p_2$. Define S to be the Cartier divisor f = 0 in $\hat{\mathbb{C}}^3$ where

$$f = x^m + y^{p_1} z^{p_2} + y^{\frac{p_2}{\alpha}\beta + p_1} + z^m$$

Note that m = w(f), and

$$w_3(f) = \min\{w_3(x^m), w_3(y^{p_1}z^{p_2}), w_3(y^{\frac{p_2}{\alpha}\beta + p_1}), w_3(z^m)\} = w_3(y^{p_1}z^{p_2}) = p_1\bar{s} + p_2\bar{t}$$

and S is only singular at the origin if $p_1 + p_2 \ge 2$. In particular, the divisor S is prime. In the open chart $U_1 \simeq \hat{\mathbb{C}}^3$ of Y, the proper transform S_Y of S in Y is defined by

$$1 + y^{p_1} z^{p_2} + y^{\frac{p_2}{\alpha}\beta + p_1} + x^{(\beta - 1)m} z^m = 0,$$

which is non-singular. Similarly, in the open chart $U_2 \simeq \hat{\mathbb{C}}^3 / \frac{1}{\alpha} (-1, 1, -\beta)$ if $\alpha > 1$ (resp. $U_2 \simeq \hat{\mathbb{C}}^3$ if $\alpha = 1$), S_Y is defined by

$$x^m + z^{p_2} + 1 + y^{(\beta - 1)m} z^m = 0,$$

which is non-singular. In the open chart $U_3 \simeq \hat{\mathbb{C}}^3/\frac{1}{\beta}(-1,-\alpha,1), S_Y$ is defined by

$$x^{m} + y^{p_{1}} + y^{\frac{p_{2}}{\alpha}\beta + p_{1}} + z^{(\beta-1)m} = 0,$$

which is only singular at the origin if $p_1 > 0$ (resp. is nonsingular if $p_1 = 0$). If $p_1 > 0$, then the weighted multiplicity of S_Y with respect to Kawamata blow up $\sigma'_3: Z_3 \to U_3$ is

$$\beta \cdot v_3(x^m + y^{p_1} + y^{\frac{p_2}{\alpha}\beta + p_1} + z^{(\beta - 1)m}) = p_1$$

By assumption that $p_2 \ge p_1$, we have

$$\frac{\alpha+\beta}{p_1\alpha+p_2\beta} \le \frac{1}{p_1},$$

where $\frac{1}{p_1}$ is the canonical threshold of $(U_3, S_Y|_{U_3})$ near the origin of U_3 if $p_1 > 0$ by [Kaw96]. Note that

$$\bar{s} + \bar{t} = \frac{1}{\beta} + \frac{\bar{t}}{\beta}(\alpha + \beta)$$
 and $w_3(f) = p_1\bar{s} + p_2\bar{t} = \frac{p_1}{\beta} + \frac{\bar{t}}{\beta}(p_1\alpha + p_2\beta).$

The above inequality $\frac{\alpha+\beta}{p_1\alpha+p_2\beta} \leq \frac{1}{p_1}$ gives $\frac{\alpha+\beta}{p_1\alpha+p_2\beta} \leq \frac{\bar{s}+\bar{t}}{w_3(f)}$. It is then easy to see $\operatorname{ct}(\hat{\mathbb{C}}^3, S) = \min\{\frac{\alpha+\beta}{p_1\alpha+p_2\beta}, 1\}$ by Lemma 2.1. **Case 2:** $\alpha \nmid p_2$ and $p_1 \neq p_2$. Define S to be the Cartier divisor f = 0 in

 $\hat{\mathbb{C}}^3$ where

$$f = x^m + y^{p_1} z^{p_2} + y^{\lfloor \frac{p_2}{\alpha} \rfloor \beta + p_1} z^q + y^m + z^m.$$

It's not hard to see that S has only isolated singularities, say $Q_1, ..., Q_n$. In particular, the divisor S is prime. Without loss of generality, we assume that Q_1 is the origin of $X = \hat{\mathbb{C}}^3$. Note that m = w(f) and

$$w_2(f) = w_2(y^{\lfloor \frac{p_2}{\alpha} \rfloor \beta + p_1} z^q) = s(\lfloor \frac{p_2}{\alpha} \rfloor \beta + p_1) + tq \text{ and } w_3(f) = w_3(y^{p_1} z^{p_2}) = p_1 \bar{s} + p_2 \bar{t}$$

As the above computation, outside the singular set $\{Q_2, ..., Q_n\}$, the proper transform S_Y of S in Y is non-singular in U_1 and is only singular at the origin U_3 (resp. U_2), where we have

$$\frac{\alpha+\beta}{p_1\alpha+p_2\beta} \le \frac{\bar{s}+\bar{t}}{w_3(f)}$$

In the open chart $U_2 \simeq \hat{\mathbb{C}}^3 / \frac{1}{\alpha} (-1, 1, -\beta)$, S_Y is defined by

$$x^{m} + z^{p_{2}} + z^{q} + y^{(\alpha-1)m} + y^{(\beta-1)m} z^{m} = 0,$$

which is only singular at the origin of U_2 and $Q_2, ..., Q_n$. Then the weighted multiplicity of S_Y with respect to Kawamata blow up $\sigma'_2 \colon Z_2 \to U_2$ is

$$\alpha \cdot v_2(x^m + z^{p_2} + z^q + y^{(\alpha - 1)m} + y^{(\beta - 1)m} z^m) = \alpha \cdot v_2(z^q) = q,$$

where $v_2 = \frac{1}{\alpha}(\alpha - s, s, 1)$ and $q \in (0, \alpha - 1]$ is an integer. Recall that $p_2 - q = \alpha \lfloor \frac{p_2}{\alpha} \rfloor$ is a multiple of α . As $p_1 \neq p_2$, we have $p_2 \geq \max\{\alpha, p_1\}$ by assumption. In particular, $p_2 - q = \alpha \lfloor \frac{p_2}{\alpha} \rfloor \geq \alpha$ and

$$(p_2 - q)\beta + p_1\alpha \ge \alpha\beta + p_1\alpha > q\alpha$$
 and thus $\frac{\alpha + \beta}{p_1\alpha + p_2\beta} < \frac{1}{q}$,

where $\frac{1}{q}$ is the canonical threshold of $(U_2, S_Y|_{U_2})$ near the origin of U_2 by [Kaw96]. Note that

$$s+t = \frac{1}{\alpha} + \frac{s}{\alpha}(\alpha+\beta)$$
 and $w_2(f) = s(\lfloor \frac{p_2}{\alpha} \rfloor \beta + p_1) + tq = \frac{q}{\alpha} + \frac{s}{\alpha}(p_1\alpha+p_2\beta),$

and the inequality $\frac{\alpha+\beta}{p_1\alpha+p_2\beta} < \frac{1}{q}$ implies $\frac{\alpha+\beta}{p_1\alpha+p_2\beta} < \frac{s+t}{w_2(f)}$. It is then easy to see $\operatorname{ct}(\hat{\mathbb{C}}^3, S) = \frac{\alpha + \beta}{p_1 \alpha + p_2 \beta}$ by Lemma 2.1.

Case 3: $\alpha \nmid p_2$ and $p_1 = p_2$. Define S to be the Cartier divisor f = 0 in $\hat{\mathbb{C}}^3$ where

$$f = x^m + y^{p_2} z^{p_2} + y^m + z^m$$

Similarly, S is only singular at the origin and thus is prime. Note that

$$m = w(f), w_2(f) = w_2(y^{p_2}z^{p_2}) = (s+t)p_2 \text{ and } w_3(f) = w_3(y^{p_2}z^{p_2}) = (\bar{s}+\bar{t})p_2.$$

Then the proper transform S_Y is non-singular in the open chart U_1 and is only singular at the origin of U_2 (resp. U_3). As $p_1 = p_2$, we have $\frac{\alpha + \beta}{p_1 \alpha + p_2 \beta} =$ $\frac{1}{p_2}$ where $\frac{1}{p_2}$ is the canonical threshold of (U_3, S') (resp. (U_2, S')) near the origin by [Kaw96]. It is then easy to see $\operatorname{ct}(\hat{\mathbb{C}}^3, S) = \frac{\alpha + \beta}{p_2 \alpha + p_2 \beta} = \frac{1}{p_2}$ by Lemma 2.1. Thus, we have proved $\mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}} = C \cap [0, 1]$.

It remains to show $C \cap [0,1] = \mathcal{HT}_2$. Recall that \mathcal{HT}_2 consists of 1 and

$$\frac{c_1 + c_2}{c_1 c_2 + a_1 c_2 + a_2 c_1}$$

for some non-negative integers a_1, a_2, c_1, c_2 with $a_1 + c_1 \ge \max\{2, a_2\}$ and

 $a_2 + c_2 \ge \max\{2, a_1\}$ by [Kol08, (3.2)] (cf. [Kuw99a, Theorem 7.1]). Suppose first that $1 > \frac{\alpha+\beta}{p_1\alpha+p_2\beta} \in \mathcal{T}_{3,\text{sm}}^{\text{can}}$. If $\alpha + \beta$ divides $p_1\alpha + p_2\beta$, we put $c_1 = c_2 = 1, a_1 = \frac{p_1\alpha+p_2\beta}{\alpha+\beta}, a_2 = a_1 - 1 \ge 1$. One sees $\frac{\alpha+\beta}{p_1\alpha+p_2\beta} = \frac{1+1}{2}$ $\frac{1+1}{1+a_1+(a_1-1)} \in \mathcal{HT}_2$. If $\alpha + \beta$ does not divide $p_1\alpha + p_2\beta$, one has $p_2 > p_1$ and $p_2 \geq \alpha$. Let l be the non-negative integer with

$$(\alpha + \beta)l < p_2 - p_1 < (\alpha + \beta)(l+1).$$

We put $c_1 = \alpha, c_2 = \beta, a_1 = p_2 - \alpha l - \alpha$ and $a_2 = p_1 + \beta l$. It is easy to see $a_1 + c_1 \ge \max\{2, a_2\}$ and $a_2 + c_2 \ge \max\{2, a_1\}$ and thus $\frac{\alpha + \beta}{p_1 \alpha + p_2 \beta} \in \mathcal{HT}_2$. Conversely, suppose that $0 \ne \frac{c_1 + c_2}{c_1 c_2 + a_1 c_2 + a_2 c_1} \in \mathcal{HT}_2$. If $c_i = 0$ for some i = 1, 2, we put $p_1 = p_2 = a_i$. Then $\frac{c_1 + c_2}{c_1 c_2 + a_1 c_2 + a_2 c_1} = \frac{1}{a_i} \in \mathcal{T}_{3,\text{sm}}^{\text{can}}$. Thus we may assume that both c_1 and c_2 are positive. Let $d = \gcd(c_1, c_2)$ and $\alpha = \frac{c_1}{d}$

and $\beta = \frac{c_2}{d}$. We put $\alpha = c_1, \beta = c_2, p_1 = a_2$ and $p_2 = c_1 + a_1$. Then we see $\frac{c_1+c_2}{c_1c_2+a_1c_2+a_2c_1} = \frac{\alpha+\beta}{p_1\alpha+p_2\beta} \in \mathcal{T}_{3,\text{sm}}^{\text{can}}$. This completes the proof of Theorem 2.2.

Remark 2.5. Suppose that α and β are two relative prime positive integers with $\alpha < \beta$. If *m* is an integer greater than $(\beta - 1)\alpha + (\beta - 2)\beta$, then $\frac{\alpha+\beta}{m} \in \mathcal{T}_{3,\text{sm}}^{\text{can}}$. Indeed, as $(\beta - 1)\alpha + (\beta - 2)\beta \ge \alpha\beta - \alpha - \beta$, there exist non-negative integers p_1 and p_2 satisfying $m = p_1\alpha + p_2\beta$ and $p_1 < \beta$. We have

$$p_2\beta = m - p_1\alpha > (\beta - 1)\alpha + (\beta - 2)\beta - p_1\alpha \ge \beta(\alpha + \beta - 2) - \beta\alpha = (\beta - 2)\beta,$$

whence $p_2 \ge \beta - 1 \ge \max\{p_1, \alpha\}$. Therefore, $\frac{\alpha + \beta}{m} \in \mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}$ by Theorem 2.2.
In particular, $\frac{3}{m} \in \mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}$ (resp. $\frac{4}{m} \in \mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}$) when $m \ge 3$ (resp. $m \ge 6$). It is
also easy to see $\frac{2}{m} = \operatorname{ct}(\hat{\mathbb{C}}^3, S) \in \mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}$ by considering $S := \{x^m + y^m + z^m = 0\}$ in \mathbb{C}^3 (see [Ste11, Theorem 3.6]) when $m \ge 2$. Therefore, every number
in \aleph_4 with the exception of $\frac{4}{5}$ is contained in $\mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}}(=C \cap [0,1])$. Recall that $\frac{4}{5}$
is a canonical threshold indicated in [Pro08, Example 3.11]. We can rewrite
decomposition in (2) as

$$\mathcal{T}_{3}^{\operatorname{can}} = \{0\} \cup \{\frac{4}{5}\} \cup \mathcal{T}_{3,sm}^{\operatorname{can}} \cup \mathcal{T}_{3,cA,\geq 5}^{\operatorname{can}} \cup \mathcal{T}_{3,cA/m,\geq 5}^{\operatorname{can}} \cup \mathcal{T}_{3,cD,\geq 5}^{\operatorname{can}} \cup \mathcal{T}_{3,cD/2,\geq 5}^{\operatorname{can}} (3).$$

3. Classification of \mathcal{T}_3^{can}

In this section, we shall establish the inclusion $\mathcal{T}_{3,*,\geq 5}^{\operatorname{can}} \subseteq C \cap [0, \frac{4}{5}]$ for each * = cA, cA/n, cD and cD/2 where

$$C = \left\{ \frac{\alpha + \beta}{p_1 \alpha + p_2 \beta} \middle| \begin{array}{l} \alpha, \beta, p_2 \in \mathbb{N} \text{ and } p_1 \in \mathbb{Z}_{\geq 0} \text{ such that } \alpha \leq \beta, \\ \gcd(\alpha, \beta) = 1 \text{ and either } p_2 \geq \max\{\alpha, p_1\} \text{ or } p_2 = p_1 \end{array} \right\}$$

in Propositions 3.1, 3.3, 3.8 and 3.11. The arguments are based on the idea of the inclusion $\mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}} \subseteq C \cap [0,1]$ in the proof of Theorem 2.2 and reducing to coprime weights. Moreover, we will need to consider semi-invariant conditions in the non-Gorenstein cases in Propositions 3.3 and 3.11.

Proposition 3.1. We have $\mathcal{T}_{3,cA,\geq 5}^{\operatorname{can}} \subseteq C \cap [0, \frac{4}{5}]$.

Proof. Let $\operatorname{ct}(X,S) \in \mathcal{T}_{3,cA}^{\operatorname{can}}$ be a canonical threshold. We have $\operatorname{ct}(X,S) \leq \frac{4}{5}$ by [Pro08]. By [Cor95, (2.10) Proposition-definition] and Theorem 1.2(i) in [Kwk05], there exists an analytical identification $P \in X \simeq o \in (\varphi = xy + g(z, u) = 0)$ in $\hat{\mathbb{C}}^4$ where o denotes the origin of $\hat{\mathbb{C}}^4$ such that the canonical threshold $\operatorname{ct}(X, S)$ is computed by a weighted blow up $\sigma : Y \to X$ of weights $w = wt(x, y, z, u) = (r_1, r_2, a, 1)$ satisfying the following:

- $w(g(z, u)) = r_1 + r_2 = ad$ where r_1, r_2, a, d are positive integers with $a \ge 5$;
- $z^{d} \in g(z, u)$ and hence $w(g(z, u)) = w(z^{d});$
- $gcd(r_1, a) = gcd(r_2, a) = 1;$

• $ct(X,S) = \frac{a}{m}$ where m = nw(f) and S is defined by the formal power series f = 0 analytically and locally.

We may assume $d \geq 2$ since otherwise $P \in X$ is nonsingular and is treated in the previous section. Without loss of generality, we may assume $r_1 \leq r_2$. As $gcd(a, r_1) = gcd(a, r_2) = 1$, there exist non-negative integers $s_i^* < r_i$ such that $1 + a_i r_i = a s_i^*$ for i = 1, 2. Note that $s_i^* = 0$ if and only if $r_i = 1$. From assumption that $a \ge 5$, we see $r_2 \ge (r_1 + r_2)/2 = ad/2 > 1$. Define

$$w_2 = (r_1 - a_2 d + s_2^*, r_2 - s_2^*, a_1, 1)$$
 (resp. $w_1 = (r_1 - s_1^*, r_2 - a_1 d + s_1^*, a_2, 1)$ if $r_1 > 1$)

Since $w_1 \succeq \frac{r_1 - s_1^*}{r_1} w$ and $w_2 \succeq \frac{r_2 - s_2^*}{r_2} w$, by [Che22, Lemmas 2.1 and 4.1], we see that

$$\lfloor \frac{a_1}{a}m \rfloor \ge \lceil \frac{r_2 - s_2^*}{r_2}m \rceil \text{ (resp. } \lfloor \frac{a_2}{a}m \rfloor \ge \lceil \frac{r_1 - s_1^*}{r_1}m \rceil \text{ if } r_1 > 1).$$

Denote by $h = \gcd(r_1, r_2)$. As the positive integer $r'_i = r_i/h$ has no common divisor with a, there exist non-negative integers $s_i^{*'} < r'_i$ and $a'_i < a$ such that $1 + a'_i r'_i = a s^{*'}_i$ for i = 1, 2. Again, it follows from the assumption $a \ge 5$ that $r'_2 > 1$. Note that $a_1 + a_2 = a$.

Claim 3.2.

$$\lfloor \frac{s_2^{*'}}{r_2'}m \rfloor \ge \lceil \frac{a_2'}{a}m \rceil \text{ (resp. } \lfloor \frac{s_1^{*'}}{r_1'}m \rfloor \ge \lceil \frac{a_1'}{a}m \rceil \text{ if } r_1 > 1 \text{)}.$$

Proof of Claim 3.2. It follows from

- $r_2 = hr'_2$, and $1 + a_2r_2 = as_2^*$ and $0 < a_2 < a$ and $0 < s_2^* < r_2$ and $1 + a'_2r'_2 = as_2^{*'}$ and $0 < a'_2 < a$ and $0 < s_2^{*'} < r'_2$

that there exists a non-negative integer b_2 with $s_2^* = b_2 r_2' + s_2^{*'}$ and thus

$$1 + a_2 r_2 = a s_2^* = a b_2 r_2' + a s_2^{*'} = a b_2 r_2' + 1 + a_2' r_2'.$$

This yields $a_2hr'_2 = a_2r_2 = r'_2(ab_2 + a'_2)$. In particular, $a'_2 = a_2h - ab_2$. From $\lfloor \frac{a_1}{a}m \rfloor \geq \lceil \frac{r_2 - s_2^*}{r_2}m \rceil$ and $a = a_1 + a_2$, one has $\lfloor \frac{s_2^*}{r_2}m \rfloor \geq \lceil \frac{a_2}{a}m \rceil$. Let η_2 be an integer with $\lfloor \frac{s_2^*}{r_2}m \rfloor \ge \eta_2 \ge \lceil \frac{a_2}{a}m \rceil$. Then we see

$$\frac{s_2^{*'}}{r_2'}m = \frac{s_2^* - b_2r_2'}{r_2'}m = \frac{s_2^*}{r_2'}m - b_2m = \frac{s_2^*}{r_2}mh - b_2m$$
$$\ge \eta_2h - b_2m \ge \frac{a_2}{a}mh - b_2m = \frac{a_2' + ab_2}{a}m - b_2m = \frac{a_2'}{a}m.$$

where $\eta_2 h - b_2 m$ is an integer. This gives the inequality $\lfloor \frac{s_2^{*'}}{r_2'}m \rfloor \geq \lceil \frac{a_2'}{a}m \rceil$.

Similarly, the above argument shows that the inequality $\lfloor \frac{a_2}{a}m \rfloor \geq \lceil \frac{r_1 - s_1^*}{r_1}m \rceil$ implies $\lfloor \frac{s_1^{*'}}{r_1'}m \rfloor \geq \lceil \frac{a_1'}{a}m \rceil$ if $r_1 > 1$. If $r_1' = 1$, then $a_1' = -1, s_1^{*'} = 0$ and thus $\lfloor \frac{s_1^{*'}}{r'_1} m \rfloor = 0 \ge \lceil \frac{a'_1}{a} m \rceil$. We complete the proof of Claim 3.2.

From [Che22, Proposition 4.2], we have $dm \ge r_1r_2$ if $r_1 > 1$. Note that $1 \ge \operatorname{ct} = \frac{a}{m} = \frac{r_1+r_2}{dm}$, we have $dm \ge r_2 = r_1r_2$ if $r_1 = 1$. Now dm is an integer greater than $r_1r_2 - r_1 - r_2$, so there exist non-negative integers p_1 and p_2 with $dm = p_1r_1 + p_2r_2$. Dividing $h = \operatorname{gcd}(r_1, r_2)$, we have

$$d'm = p_1r'_1 + p_2r'_2$$
 where $d' = \frac{d}{h}$.

Replacing $d'm = p_1r'_1 + p_2r'_2$ by $d'm = (p_1 - r'_2\lfloor\frac{p_1}{r'_2}\rfloor)r'_1 + (p_2 + \lfloor\frac{p_1}{r'_2}\rfloorr'_1)r'_2$, one may assume that $0 \le p_1 < r'_2$. From $r'_1 + r'_2 = ad'$, we rewrite $d'm = p_1ad' + k_1r'_2$ where $k_1 = p_2 - p_1$ is an integer. We have $d'|k_1r'_2$. Since $gcd(r'_1, r'_2) = 1$ and $r'_1 + r'_2 = ad'$, we observe $gcd(d', r'_2) = 1$ and hence $d'|k_1$. Now

$$\frac{a_2'}{a}m = \frac{a_2'}{ad'}(p_1ad' + k_1r_2') = a_2'p_1 + \frac{as_2^{*'} - 1}{ad'}k_1 = a_2'p_1 + \frac{s_2^{*'}k_1}{d'} - \frac{k_1}{ad'}k_1 = a_2'p_1 + \frac{s_2^{*'}k_1}{d'} - \frac{k_1}{ad'}k_1 = \frac{s_2''}{r_2'}m = \frac{as_2^{*'}}{ar_2'}p_1d' + \frac{s_2^{*'}k_1}{d'} = \frac{1 + a_2'r_2'}{r_2'}p_1 + \frac{s_2^{*'}k_1}{d'} = a_2'p_1 + \frac{p_1}{r_2'} + \frac{s_2^{*'}k_1}{d'}$$

and $d'|k_1$, one has

$$\lceil \frac{a_2'}{a}m \rceil = a_2'p_1 + \frac{s_2^{*'}k_1}{d'} + \lceil -\frac{k_1}{ad'} \rceil \text{ and } \lfloor \frac{s_2^{*'}}{r_2'}m \rfloor = a_2'p_1 + \frac{s_2^{*'}k_1}{d'} + \lfloor \frac{p_1}{r_2'} \rfloor$$

From Claim 3.2, we have $\lfloor \frac{s_2^{*'}}{r_2'}m \rfloor \geq \lceil \frac{a'_2}{a}m \rceil$. It is then the same to $\lfloor \frac{p_1}{r_2'} \rfloor \geq \lceil -\frac{k_1}{ad'} \rceil$. Since $p_1 < r'_2$, we see $k_1 \geq 0$ and hence $p_2 \geq p_1$.

Suppose that $r_1 > 1$. We rewrite $d'm = k_2r'_1 + p_2ad'$ where $k_2 = p_1 - p_2 = -k_1$ is a non-positive integer divisible by d'. Note that

$$\frac{a_1'}{a}m = \frac{a_1'}{ad'}(k_2r_1' + p_2ad') = \frac{as_1^{*'} - 1}{ad'}k_2 + a_1'p_2 = \frac{s_1^{*'}k_2}{d'} - \frac{k_2}{ad'} + a_1'p_2,$$

$$\frac{s_1^{*'}}{r_1'}m = \frac{s_1^{*'}k_2}{d'} + \frac{s_1^{*'}a}{d'r_1'}p_2d' = \frac{s_1^{*'}k_2}{d'} + \frac{1 + a_1'r_1'}{d'r_1'}p_2d' = \frac{s_1^{*'}k_2}{d'} + a_1'p_2 + \frac{p_2}{r_1'}$$

and $d'|k_2$, so

$$\lceil \frac{a_1'}{a}m \rceil = \frac{s_1^{*'}k_2}{d} + a_1'p_2 + \lceil -\frac{k_2}{ad'} \rceil \text{ and } \lfloor \frac{s_1^{*'}}{r_1'}m \rfloor = \frac{s_1^{*'}k_2}{d'} + a_1'p_2 + \lceil \frac{p_2}{r_1'} \rceil.$$

From Claim 3.2, we have $\lfloor \frac{s_1^{*'}}{r_1'}m \rfloor \geq \lceil \frac{a_1'}{a}m \rceil$. This is the same with

$$\lfloor \frac{p_2}{r_1'} \rfloor \ge \lceil -\frac{k_2}{ad'} \rceil = \lceil \frac{p_2 - p_1}{ad'} \rceil.$$

From the discussion above that $p_2 \ge p_1$, we conclude that either $p_1 = p_2$ or $p_2 \ge r'_1$ holds.

Suppose that $r_1 = 1$. As we have shown $p_2 \ge p_1$ is an integer where $d'm = p_1r'_1 + p_2r'_2$ is positive, we have $p_2 \ge 1 = r'_1$. The proof is completed. \Box

Proposition 3.3. We have $\mathcal{T}_{3,cA/n,\geq 5}^{\operatorname{can}} \subseteq C \cap [0, \frac{4}{5}].$

Proof. The argument is similar but more subtle than that of Proposition 3.1.

Let $\operatorname{ct}(X,S) \in \mathcal{T}_{3,cA/n}^{can}$ be a canonical threshold. We have $\operatorname{ct}(X,S) \leq \frac{4}{5}$ by [Pro08]. By [Cor95, (2.10) Proposition-definition] and Theorem 1.2(i) in [Kwk05], there exist an analytical identification

$$P \in X \simeq o \in (\varphi \colon xy + g(z^n, u) = 0) \subset \mathbb{C}^4 / \frac{1}{n} (1, -1, b, 0)$$

where o denotes the origin of $\mathbb{C}^4/\frac{1}{n}(1,-1,b,0)$ and a weighted blow up σ : $Y \to X$ of weights $w = wt(x, y, z, u) = \frac{1}{n}(r_1, r_2, a, n)$ at the origin satisfying the following:

- $nw(\varphi) = r_1 + r_2 = adn$ where r_1, r_2, a, d, n are positive integers with $\begin{array}{l} a \geq 5 \text{ and } n \geq 2; \\ \bullet \ z^{dn} \in g(z^n, u); \end{array}$
- $a \equiv br_1 \pmod{n}$ and 0 < b < n;
- $\operatorname{gcd}(b,n) = \operatorname{gcd}(\frac{a-br_1}{n},r_1) = \operatorname{gcd}(\frac{a+br_2}{n},r_2) = 1.$ $\operatorname{ct}(X,S) = \frac{a}{m}$ where m = nw(f) and S is defined by the formal power series f = 0 analytically and locally.

By interchanging r_1 and r_2 , one may assume $r_1 \leq r_2$. As $a \geq 5$ and $r_1 + r_2 = adn, r_2 > 1$. On the open subset $Y \cap \{\bar{y} \neq 0\}, Y$ is defined by

$$\bar{x} + g(\bar{z}^n \bar{y}^a, \bar{u}\bar{y})/\bar{y}^{ad} = 0 \subset \hat{\mathbb{C}}^4 / \frac{1}{r_2}(-r_1, n, -a, -n),$$

which is isomorphic to $\hat{\mathbb{C}}^3/\frac{1}{r_2}(n,-a,-n)$. By terminal lemma, one has

• $gcd(r_2, an) = 1$ and hence $gcd(r_1, an) = 1$.

The conditions $gcd(b, n) = gcd(r_1, an) = 1$ and $a \equiv br_1 \pmod{n}$ imply • gcd(a, n) = 1.

In what follows, we construct two auxiliary weights w_1 and w_2 (cf. [Che14, 3.5]). Put $s_1 := \frac{a-br_1}{n}$ and $s_2 := \frac{a+br_2}{n}$. As $gcd(r_i, s_i) = 1$ for i = 1, 2, we have:

$$\begin{cases} a = br_1 + ns_1; \\ 1 = q_1r_1 + s_1^*s_1; \\ a = -br_2 + ns_2; \\ 1 = q_2r_2 + s_2^*s_2 \end{cases}$$

for some integer $0 \le s_i^* < r_i$ and some integer q_i . Denote by

$$\delta_1 := -nq_1 + bs_1^*, \ \delta_2 := -nq_2 - bs_2^*.$$

Then we obtain the following useful identities

• $\delta_i r_i + n = a s_i^*$, for i = 1, 2, with each $\delta_i \neq 0$ by [Che14, Claims 1,2] in 3.5].

Since $5dn \leq adn = r_1 + r_2$ and we have assumed $r_1 \leq r_2$, one sees $\delta_2 > 0$. Define

$$w_2 = \frac{1}{n}(r_1 - \delta_2 dn + s_2^*, r_2 - s_2^*, a - \delta_2, n)$$

(resp. $w_1 = \frac{1}{n}(r_1 - s_1^*, r_2 - \delta_1 dn + s_1^*, a - \delta_1, n)$ if $\delta_1 > 0$).

Note that $w_1 \succeq \frac{r_1 - s_1^*}{r_1} w$ and $w_2 \succeq \frac{r_2 - s_2^*}{r_2} w$. By [Che22, Lemmas 2.1 and 5.1], we see that

$$\lfloor \frac{a-\delta_2}{a}m \rfloor \ge m_2 \ge \lceil \frac{r_2-s_2^*}{r_2}m \rceil \text{ (resp.} \lfloor \frac{a-\delta_1}{a}m \rfloor \ge m_1 \ge \lceil \frac{r_1-s_1^*}{r_1}m \rceil \text{ if } \delta_1 > 0).$$

where $m_2 := nw_2(\mathfrak{m}_2)$ (resp. $m_1 := nw_1(\mathfrak{m}_1)$) is a weighted multiplicity for some monomial $\mathfrak{m}_2 \in f$ (resp. $\mathfrak{m}_1 \in f$ if $\delta_1 > 0$). Note that

$$m_2 = nw_2(\mathfrak{m}_2) \equiv (r_2 - s_2^*)r_2^{-1}nw(\mathfrak{m}_2) \equiv (r_2 - s_2^*)r_2^{-1}nw(f)$$

$$\equiv (r_2 - s_2^*)r_2^{-1}m \equiv (a - \delta_2)a^{-1}m \pmod{n},$$

where a^{-1} (resp. r_2^{-1}) denotes the inverse of a (resp. r_2) modulo n. Similarly, $m_1 \equiv (r_1 - s_1^*)r_1^{-1}m \pmod{n}$ if $\delta_1 > 0$.

Claim 3.4. Suppose that $a \nmid m$. Then $m \geq r_2$.

Proof of Claim 3.4. Let $\xi := m - m_2$ where m_2 is an integer above with the properties that

$$\lfloor \frac{a-\delta_2}{a}m \rfloor \ge m_2 \ge \lceil \frac{r_2-s_2^*}{r_2}m \rceil \quad \text{and} \ m_2 \equiv (a-\delta_2)a^{-1}m \pmod{n}.$$

We have

$$\left\lfloor \frac{s_2^*}{r_2}m \right\rfloor \ge \xi \ge \left\lceil \frac{\delta_2}{a}m \right\rceil$$
 and $\xi \equiv \delta_2 a^{-1}m \pmod{n}$.

Suppose on the contrary that $a \nmid m$ and $m < r_2$. Denote by t_1 and t_2 the positive integers with $m = r_2t_1 - at_2$ and $a - 1 \ge t_1 \ge 1$. Note that t_1 is the smallest positive integer with $t_1 \equiv mr_2^{-1} \pmod{a}$ where r_2^{-1} denotes the inverse of r_2 modulo a. From the equation $r_2\delta_2 + n = as_2^*$, one sees

$$\frac{\delta_2}{a}m = \frac{\delta_2}{a}(r_2t_1 - at_2) = \frac{(as_2^* - n)t_1}{a} - \delta_2t_2 = s_2^*t_1 - \delta_2t_2 - \frac{nt_1}{a},$$

which implies

$$\xi \equiv \delta_2 a^{-1} m \equiv a^{-1} (a s_2^* t_1 - a \delta_2 t_2 - n t_1) \equiv s_2^* t_1 - \delta_2 t_2 \pmod{n}.$$

As $n > \frac{nt_1}{a} > 0$ and $\xi \ge \lfloor \frac{\delta_2}{a}m \rfloor$ where $\xi \equiv \delta_2 a^{-1}m \pmod{n}$, this gives $\xi \ge s_2^* t_1 - \delta_2 t_2$. On the other hand, we have

$$\frac{s_2^*}{r_2}m = \frac{s_2^*}{r_2}(r_2t_1 - at_2) = s_2^*t_1 - \frac{(r_2\delta_2 + n)t_2}{r_2} = s_2^*t_1 - \delta_2t_2 - \frac{nt_2}{r_2}$$
$$\leq \xi - \frac{nt_2}{r_2} < \xi,$$

where the last inequality holds as $r_2t_1 - at_2 = m < r_2$. This leads to a contradiction that $\lfloor \frac{s_2^*}{r_2}m \rfloor \ge \xi > \frac{s_2^*}{r_2}m \ge \lfloor \frac{s_2^*}{r_2}m \rfloor$. The proof of Claim 3.4 is finished.

Claim 3.5. Suppose that $a \nmid m$. Then $m \geq \frac{r_1 r_2}{dn}$.

Proof of Claim 3.5. Suppose that $\delta_1 < 0$. Then $r_1 \leq (-\delta_1)r_1 + as_1^* = n \leq dn$ and hence $dnm \geq r_1m \geq r_1r_2$ by Claim 3.4.

We may thus assume that $\delta_1 > 0$. It follows from [Che14, Remark 3.3] that $\delta_1 + \delta_2 = a$. Since gcd(b, n) = 1 and $a \nmid m$ where m is an integral combination of r_1, r_2, a, n , one has that $a \nmid \delta_1 m$. One sees that

$$\lfloor \frac{a-\delta_1}{a}m \rfloor + \lfloor \frac{a-\delta_2}{a}m \rfloor = \lfloor \frac{a-\delta_1}{a}m \rfloor + \lfloor \frac{\delta_1}{a}m \rfloor = m-1.$$

Recall that $m_i \equiv (r_i - s_i^*)r_i^{-1}m \equiv (a - \delta_i)a^{-1}m \pmod{n}$ for i = 1, 2. Therefore

$$m_1 + m_2 \equiv (2a - (\delta_1 + \delta_2))a^{-1}m \equiv aa^{-1}m \equiv m \pmod{n}.$$

Together with $m-1 = \lfloor \frac{a-\delta_1}{a}m \rfloor + \lfloor \frac{a-\delta_2}{a}m \rfloor \ge m_1 + m_2$, one observes

$$m-n \ge m_1 + m_2 \ge \lceil \frac{r_1 - s_1^*}{r_1} m \rceil + \lceil \frac{r_2 - s_2^*}{r_2} m \rceil.$$

Note that

$$r_1s_2^* + r_2s_1^* = \frac{a(r_1s_2^* + r_2s_1^*)}{a} = \frac{r_1(r_2\delta_2 + n) + r_2(r_1\delta_1 + n)}{a} = r_1r_2 + dn^2.$$

Suppose on the contrary that $m < \frac{r_1 r_2}{dn}$. Then we obtain

$$\lceil \frac{r_1 - s_1^*}{r_1} m \rceil + \lceil \frac{r_2 - s_2^*}{r_2} m \rceil \ge \lceil \frac{r_1 - s_1^*}{r_1} m + \frac{r_2 - s_2^*}{r_2} m \rceil$$

= $\lceil 2m - \frac{r_1 s_2^* + r_2 s_1^*}{r_1 r_2} m \rceil = \lceil m - \frac{dn^2}{r_1 r_2} m \rceil = m - \lfloor \frac{dnm}{r_1 r_2} n \rfloor \ge m - n + 1$

which contradicts to $m-n \ge \lceil \frac{r_1-s_1^*}{r_1}m \rceil + \lceil \frac{r_2-s_2^*}{r_2}m \rceil$. The proof of Claim 3.5 is finished.

Denote by $h := \gcd(r_1, r_2)$ and b' the smallest positive integer with $b' \equiv bh$ (mod n). Let d' and r'_i be positive integers with d = d'h and $r_i = r'_i h$ for i = 1, 2. Put $s'_1 = \frac{a - b' r'_1}{n}$ and $s'_2 = \frac{a + b' r'_2}{n}$. Since the integer *a* is relatively prime to $r_i = hr'_i$, we have the following:

$$\begin{cases} a = b'r'_1 + ns'_1; \\ 1 = q'_1r'_1 + s_1^{*'}s'_1; \\ a = -b'r'_2 + ns'_2; \\ 1 = q'_2r'_2 + s_2^{*'}s_2 \end{cases}$$

for some integer $0 \le s_i^{*'} < r_i'$ and some integer q_i' . Let

$$\delta'_i := -nq'_i + b's^{*'}_i$$
, for $i = 1, 2$.

As above, we observe the following

- $\delta'_i r'_i + n = a s_i^{*'}$ and $0 \neq \delta'_i < a$ for i = 1, 2. $\delta'_2 > 0$ and $a | \delta'_1 + \delta'_2$. if $\delta'_1 > 0$, then $a = \delta'_1 + \delta'_2$.

Claim 3.6. There exists an integer ξ_2 with

$$\lfloor \frac{s_2^{*'}}{r_2'}m \rfloor \ge \xi_2 \ge \lceil \frac{\delta_2'}{a}m \rceil \text{ and } \xi_2 \equiv s_2^{*'}(r_2'^{-1})m \pmod{n}.$$

Similarly, in the case $\delta_1 > 0$, there exists an integer ξ_1 with

$$\lfloor \frac{s_1^{*'}}{r_1'}m \rfloor \ge \xi_1 \ge \lceil \frac{\delta_1'}{a}m \rceil \text{ and } \xi_1 \equiv s_1^{*'}(r_1'^{-1})m \pmod{n}.$$

Proof of Claim 3.6. It follows from

- $r_2 = hr'_2$ and $gcd(a, r_2) = 1$ and
- $\delta_2 r_2 + \tilde{n} = a s_2^*$ and $0 < s_2^* < r_2$ and $\delta'_2 r'_2 + n = a s_2^{*'}$ and $0 < s_2^{*'} < r'_2$

that there exists an integer b_2 with $s_2^* = b_2 r_2' + s_2^{*'}$ and thus

$$\delta_2 r_2 + n = as_2^* = ab_2 r_2' + as_2^{*'} = ab_2 r_2' + \delta_2' r_2' + n$$

This yields $\delta_2 h r'_2 = \delta_2 r_2 = r'_2 (ab_2 + \delta'_2)$. In particular, $\delta_2 h = ab_2 + \delta'_2$. Recall that $\lfloor \frac{a-\delta_2}{a}m \rfloor \ge m_2 \ge \lceil \frac{r_2-s_2^*}{r_2}m \rceil$ where $m_2 \equiv (r_2 - s_2^*)r_2^{-1}m \pmod{\frac{a+\delta_2}{a}}$

n). Then we see

$$\frac{s_2^{*'}}{r_2'}m = \frac{s_2^* - b_2r_2'}{r_2'}m = \frac{s_2^*}{r_2'}m - b_2m = \frac{s_2^*}{r_2}mh - b_2m$$
$$\ge (m - m_2)h - b_2m \ge \frac{\delta_2}{a}mh - b_2m = \frac{\delta_2' + ab_2}{a}m - b_2m = \frac{\delta_2'}{a}m.$$

Denote by $\xi_2 = (m - m_2)h - b_2m$. Then

$$\xi_2 = (m - m_2)h - b_2m \equiv s_2^* r_2^{-1}mh - b_2m \equiv s_2^* r_2'^{-1}m - b_2m \equiv s_2^* r_2'^{-1}m \pmod{n}.$$

Suppose that $\delta_1 > 0$. The above argument works by interchanging indices 1 and 2. We complete the proof of Claim 3.6.

From Claim 3.5, we have $dmn \ge r_1r_2$. So there exist non-negative integers p_1 and p_2 with $dmn = p_1r_1 + p_2r_2$. Dividing $h = \gcd(r_1, r_2)$, we have

$$d'mn = p_1r_1' + p_2r_2'.$$

Replacing by $d'mn = (p_1 - r'_2 \lfloor \frac{p_1}{r'_2} \rfloor)r'_1 + (p_2 + \lfloor \frac{p_1}{r'_2} \rfloor r'_1)r'_2$, one may assume that $0 \leq p_1 < r'_2$. From $r'_1 + r'_2 = ad'n$, we rewrite $d'mn = p_1ad'n + k_1r'_2$ where $k_1 = p_2 - p_1$ is an integer. Note that

$$\frac{\delta_2'}{a}m = \frac{\delta_2'}{ad'n}(p_1ad'n + k_1r_2') = \delta_2'p_1 + \frac{r_2'\delta_2'k_1}{ad'n} = \delta_2'p_1 + \frac{k_1(as_2^{*'} - n)}{ad'n}$$
$$= \delta_2'p_1 + \frac{s_2^{*'}k_1}{d'n} - \frac{k_1}{ad'}$$
$$s_2^{*'} = s_2^{*'} + \frac{s_2^{*'}k_1}{ad'n} - \frac{k_1}{ad'}$$

and
$$\frac{s_2^{*'}}{r_2'}m = \frac{s_2^{*'}}{d'nr_2'}(p_1ad'n + k_1r_2') = \frac{as_2^{*'}p_1}{r_2'} + \frac{s_2^{*'}k_1}{d'n} = \frac{(\delta_2'r_2' + n)p_1}{r_2'} + \frac{s_2^{*'}k_1}{d'n}$$

= $\delta_2'p_1 + \frac{s_2^{*'}k_1}{d'n} + \frac{np_1}{r_2'}.$

Claim 3.7. $d'n|k_1$.

Proof of Claim 3.7. As $d'mn = p_1ad'n + k_1r'_2$, we have $d'n|k_1r'_2$. Since $\gcd(r_1',r_2')\,=\,1$ and $r_1'\,+\,r_2'\,=\,ad'n,$ it follows that $\gcd(d'n,r_2')\,=\,1$ and hence $d'\tilde{n}|k_1$ and the claim is verified.

From Claims 3.6 and 3.7, there exists an integer ξ_2 with

$$\xi_2 \equiv s_2^{*'}(r_2'^{-1})m \equiv r_2'^{-1}(r_2'(\delta_2'p_1 + \frac{s_2^{*'}k_1}{d'n} + \frac{np_1}{r_2'})) \equiv \delta_2'p_1 + \frac{s_2^{*'}k_1}{d'n} \pmod{n}.$$

Let l_2 be the integer with $\xi_2 = \delta'_2 p_1 + \frac{s_2^{*'} k_1}{d'n} + nl_2$. Then the inequalities $\lfloor \frac{s_2^{*'}}{r'_2}m \rfloor \ge \xi_2 \ge \lceil \frac{\delta'_2}{a}m \rceil$ in Claim 3.6 is then the same to $\lfloor \frac{np_1}{r'_2} \rfloor \ge nl_2 \ge \lceil -\frac{k_1}{ad'} \rceil$. As $p_1 < r'_2$, we see $k_1 \ge 0$ and hence $p_2 \ge p_1$.

Suppose that $\delta_1 < 0$. Then $r_1 \leq -\delta_1 r_1 = n - as_1^* \leq n$. If $p_2 \geq n$, then we get the desired inequalities $p_2 \geq n \geq r_1 \geq r'_1$. We shall rule out the case $p_1 < p_2 \leq n - 1$. By Claim 3.4, we have

$$dnr_2 \le dmn = p_1r_1 + p_2r_2 \le (n-1)(r_1 + r_2).$$

So $((d-1)n+1)r_2 \leq (n-1)r_1$. As we have assumed $r_1 \leq r_2$, one has d = 1. Thus, d' = 1 and $n|k_1 = p_2 - p_1$ by Claim 3.7. However, this leads to a contradiction $n \leq k_1 = p_2 - p_1 \leq n - 1 - p_1 \leq n - 1$ provided that $p_1 < p_2 \leq n - 1$.

Suppose that $\delta_1 > 0$. Write $d'nm = k_2r'_1 + p_2ad'n$ where $k_2 = -k_1 = p_1 - p_2$. Note that

$$\begin{aligned} \frac{\delta_1'}{a}m &= \frac{\delta_1'}{ad'n}(p_2ad'n + k_2r_1') = \delta_1'p_2 + \frac{r_1'\delta_1'k_2}{ad'n} = \delta_1'p_2 + \frac{(as_1^{*'} - n)k_2}{ad'n} \\ &= \delta_1'p_2 + \frac{s_1^{*'}k_2}{d'n} - \frac{k_2}{ad'} \\ \text{and } \frac{s_1^{*'}}{r_1'}m &= \frac{s_1^{*'}}{d'nr_1'}(p_2ad'n + k_2r_1') = \frac{as_1^{*'}p_2}{r_1'} + \frac{s_1^{*'}k_2}{d'n} = \frac{(\delta_1'r_1' + n)p_2}{r_1'} + \frac{s_1^{*'}k_2}{d'n} \\ &= \delta_1'p_2 + \frac{s_1^{*'}k_2}{d'n} + \frac{np_2}{r_1'}. \end{aligned}$$

From Claims 3.6 and 3.7, there exists an integer ξ_1 with

$$\xi_1 \equiv s_1^{*'}(r_1'^{-1})m \equiv r_1'^{-1}(r_1'(\delta_1'p_2 + \frac{s_1^{*'}k_2}{d'n} + \frac{np_2}{r_1'})) \equiv \delta_1'p_2 + \frac{s_1^{*'}k_2}{d'n} \pmod{n}.$$

Let l_1 be the integer with $\xi_1 = \delta'_1 p_2 + \frac{s_1^{*'} k_2}{d'n} + n l_1$. Then the inequalities $\lfloor \frac{s_1^{*'}}{r'_1}m \rfloor \geq \xi_1 \geq \lceil \frac{\delta'_1}{a}m \rceil$ in Claim 3.6 are then the same to $\lfloor \frac{np_2}{r'_1} \rfloor \geq n l_1 \geq \lceil -\frac{k_2}{ad'} \rceil$. As $-k_2 = k_1 \geq 0$, we see $np_2/r'_1 \geq n$ and hence $p_2 \geq r'_1$ provided that $p_2 > p_1$. We complete the argument of Proposition 3.3.

Proposition 3.8. we have $\mathcal{T}_{3,cD,>5}^{\operatorname{can}} \subseteq C \cap [0, \frac{4}{5}].$

Proof. Given a canonical threshold $\operatorname{ct}(X, S) \in \mathcal{T}_{3,cD,\geq 5}^{\operatorname{can}}$. By [Pro08], we see $\operatorname{ct}(X, S) \leq \frac{4}{5}$. By [Cor95, (2.10) Proposition-definition] and the classification of Kawakita [Kwk05, Theorem 1.2], one sees that $\operatorname{ct}(X, S)$ is realized by a divisorial contraction $\sigma: Y \to X$ classified in Case 1 and Case 2.

Case 1. There exists an analytical identification:

$$(P \in X) \simeq o \in (\varphi : x^2 + xq(z, u) + y^2u + \lambda yz^2 + \mu z^3 + p(y, z, u) = 0) \subset \widehat{\mathbb{C}}^4,$$

where o denotes the origin of $\hat{\mathbb{C}}^4$ such that $\sigma: Y \to X$ is a weighted blow up of weights w = wt(x, y, z, u) = (r + 1, r, a, 1) with center $P \in X$ and

- 2r + 1 = ad where $d \ge 3$ and the integer $a \ge 5$ is odd,
- $ct(X, S) = \frac{a}{m}$ where m = w(f) and S is defined by the formal power series f = 0 analytically and locally.

Let $\sigma_1: Y_1 \to X$ (resp. $\sigma_2: Y_2 \to X$) be the weighted blow up with weights $w_1 = (r+1-d, r-d, a-2, 1)$ (resp. $w_2 = (d, d, 2, 1)$) at the origin $P \in X$. By [Che22, Lemma 6.3] (see also [Che15, Case Ic]), the exceptional set of σ_1 is a prime divisor. From the computation in [Che22, Claim 6.6], the defining equation of the exceptional set of σ_2 is $x^2 + \eta z^d$ with odd integer $d \geq 3$ for some nonzero constant η and hence the exceptional set of σ_2 is a prime divisor. As 2r + 1 = ad, it yields

$$w_1 \succeq \frac{r-d}{r}w$$
 and $w_2 \succeq \frac{d}{r+1}w$.

It follows from [Che22, Lemma 2.1] that

$$\lfloor \frac{a-2}{a}m \rfloor \ge m_1 \ge \lceil \frac{r-d}{r}m \rceil \quad \text{and} \quad \lfloor \frac{2}{a}m \rfloor \ge m_2 \ge \lceil \frac{d}{r+1}m \rceil \qquad \dagger_1$$

where $m_1 := w_1(f)$ and $m_2 := w_2(f)$ denotes the corresponding weighted multiplicities.

Claim 3.9. ¹ If $a \nmid m$, then $dm \ge r(r+1)$.

Proof of Claim 3.9. Suppose on the contrary that dm < (r+1)r. We have

$$\lceil \frac{r-d}{r}m\rceil + \lceil \frac{d}{r+1}m\rceil \ge \lceil \frac{r-d}{r}m + \frac{d}{r+1}m\rceil = \lceil m - \frac{dm}{r(r+1)}\rceil = m.$$

However, a is odd and $a \nmid m$, hence $\frac{2m}{a}$ is not an integer. This implies

$$\lfloor \frac{a-2}{a}m \rfloor + \lfloor \frac{2}{a}m \rfloor = m - 1,$$

which contradicts to \dagger_1 . This verifies Claim 3.9.

From Claim 3.9, express $dm = p_1r + p_2(r+1)$ for some non-negative integers p_1 and p_2 with $p_1 < r+1$. Note that

$$\frac{2}{a}m = \frac{2dm}{ad} = \frac{2p_1r + 2p_2(r+1)}{2r+1} = p_1 + p_2 + \frac{p_2 - p_1}{2r+1}$$
$$\frac{d}{r+1}m = \frac{p_1r + p_2(r+1)}{r+1} = p_1 + p_2 - \frac{p_1}{r+1},$$
$$\frac{d}{r}m = \frac{p_1r + p_2(r+1)}{r} = p_1 + p_2 + \frac{p_2}{r}.$$

As p_1 and p_2 are integers, the inequality $\lfloor \frac{2}{a}m \rfloor \geq \lceil \frac{d}{r+1}m \rceil$ then implies $\lfloor \frac{p_2-p_1}{2r+1} \rfloor \geq \lceil -\frac{p_1}{r+1} \rceil = -\lfloor \frac{p_1}{r+1} \rfloor = 0$. In particular, $p_2 \geq p_1$. Similarly, the inequality $\lfloor \frac{a-2}{a}m \rfloor \geq \lceil \frac{r-d}{r}m \rceil$ gives

$$p_1 + p_2 + \lfloor \frac{p_2}{r} \rfloor = \lfloor \frac{d}{r}m \rfloor \ge \lceil \frac{2}{a}m \rceil = p_1 + p_2 + \lceil \frac{p_2 - p_1}{2r + 1} \rceil.$$

¹Claims 3.9 and 3.10 were first obtained in [HLL22].

In particular, $p_2 \ge r$ provided that $p_2 - p_1 > 0$. Case 2. There exists an analytical identification:

$$P \in X \simeq o \in \left(\begin{array}{c} \varphi_1 \colon x^2 + yt + p(y, z, u) = 0;\\ \varphi_2 \colon yu + z^d + q(z, u)u + t = 0 \end{array}\right) \subset \hat{\mathbb{C}}^5$$

where o denotes the origin of $\hat{\mathbb{C}}^5$ such that $\sigma: Y \to X$ is a weighted blow up of weights w = (r+1, r, a, 1, r+2) with center $P \in X$ and

- r+1 = ad where $d \ge 2$ and $a \ge 5$,
- $ct(X, S) = \frac{a}{m}$ where m = w(f) and S is defined by the formal power series f = 0 analytically and locally.

Compare the weights w with the weights $w_1 = (r - d + 1, r - d, a - 1, 1, r - d + 2)$ and $w_2 = (d, d, 1, 1, d)$. By [Che22, Lemma 2.1, Lemma 6.7 and Lemma 6.8], we have

$$\lfloor \frac{a-1}{a}m \rfloor \ge \lceil \frac{r-d}{r}m \rceil \text{ and } \lfloor \frac{1}{a}m \rfloor \ge \lceil \frac{d}{r+2}m \rceil. \qquad \dagger_2$$

Claim 3.10. If $a \nmid m$, then $2dm \ge (r+2)r$.

Proof of Claim 3.10. Suppose on the contrary that 2dm < (r+2)r. We have

$$\lceil \frac{r-d}{r}m\rceil + \lceil \frac{d}{r+2}m\rceil \ge \lceil \frac{r-d}{r}m + \frac{d}{r+2}m\rceil = \lceil m - \frac{2dm}{r(r+2)}\rceil = m.$$

However, $a \nmid m$, hence

$$\lfloor \frac{a-1}{a}m \rfloor + \lfloor \frac{1}{a}m \rfloor = m-1,$$

which contradicts to \dagger_2 . The proof of Claim 3.10 is complete.

From Claim 3.10, express $2dm = p_1r + p_2(r+2)$ for some non-negative integers p_1 and p_2 . Denote by $h := \gcd(r, r+2)$. We have

$$\frac{2dm}{h} = p_1 \frac{r}{h} + p_2 \frac{r+2}{h}.$$

By replacing p_2 by $p_2 + \lfloor \frac{p_1 h}{r+2} \rfloor \frac{r}{h}$ (resp. replacing p_1 by $p_1 - \lfloor \frac{p_1 h}{r+2} \rfloor \frac{r+2}{h}$), we may assume that $0 \le p_1 < \frac{r+2}{h}$. Note that

$$\frac{1}{a}m = \frac{2dm}{2ad} = \frac{p_1r + p_2(r+2)}{2(r+1)} = \frac{p_1 + p_2}{2} + \frac{p_2 - p_1}{2(r+1)},$$
$$\frac{d}{r+2}m = \frac{2dm}{2(r+2)} = \frac{p_1r + p_2(r+2)}{2(r+2)} = \frac{p_1 + p_2}{2} - \frac{p_1}{r+2},$$
$$\frac{d}{r}m = \frac{2dm}{2r} = \frac{p_1r + p_2(r+2)}{2r} = \frac{p_1 + p_2}{2} + \frac{p_2}{r}.$$

Suppose that the integer $p_1 + p_2$ is even. The inequality $\lfloor \frac{1}{a}m \rfloor \geq \lceil \frac{d}{r+2}m \rceil$ then implies $\lfloor \frac{p_2-p_1}{2(r+1)} \rfloor \geq \lceil -\frac{p_1}{r+2} \rceil = 0$. In particular, $p_2 \geq p_1$. Similarly, the inequality $\lfloor \frac{a-1}{a}m \rfloor \geq \lceil \frac{r-d}{r}m \rceil$ gives $\lfloor \frac{p_2}{r} \rfloor \geq \lceil \frac{p_2-p_1}{2(r+1)} \rceil$. In particular, $p_2 \geq r$ provided that $p_2 - p_1 > 0$.

Suppose next that the integer $p_1 + p_2$ is odd. Since $(p_1 + p_2)r = 2(dm - p_2)$, r is even and h = 2. The inequality $\lfloor \frac{1}{a}m \rfloor \geq \lceil \frac{d}{r+2}m \rceil$ implies $\lfloor \frac{1}{2} + \frac{p_2 - p_1}{2(r+1)} \rfloor \geq$

19

 $\lceil \frac{1}{2} - \frac{p_1}{r+2} \rceil = 1 \text{ as } p_1 < \frac{r+2}{h} = \frac{r+2}{2}. \text{ In particular, } p_2 \ge p_1 + r + 1. \text{ Similarly, } the inequality } \lfloor \frac{a-1}{a}m \rfloor \ge \lceil \frac{r-d}{r}m \rceil \text{ yields } \lfloor \frac{1}{2} + \frac{p_2}{r} \rfloor \ge \lceil \frac{1}{2} + \frac{p_2-p_1}{2(r+1)} \rceil \ge 1. \text{ In particular, } p_2 \ge \frac{r}{2}. \text{ The proof of Proposition 3.8 is complete.}$

Proposition 3.11. We have $\mathcal{T}_{3,cD/2,\geq 5}^{\operatorname{can}} \subseteq C \cap [0, \frac{4}{5}]$.

Proof. Given a canonical threshold $\operatorname{ct}(X, S) \in \mathcal{T}_{3,cD/2}^{\operatorname{can}}$. We have $\operatorname{ct}(X, S) \leq \frac{4}{5}$ by [Pro08]. By [Cor95, (2.10) Proposition-definition] and the classification of Kawakita [Kwk05, Theorem 1.2], one sees that $\operatorname{ct}(X, S)$ is realized by a divisorial contraction $\sigma: Y \to X$ given in Case 1 and Case 2. **Case 1.** There exists an analytical identification:

$$P \in X \simeq o \in (\varphi : x^2 + xzq(z^2, u) + y^2u + \lambda yz^{2\alpha - 1} + p(z^2, u) = 0) \subset \hat{\mathbb{C}}^4 / \frac{1}{2}(1, 1, 1, 0)$$

where o denotes the origin of $\hat{\mathbb{C}}^4/\frac{1}{2}(1,1,1,0)$ such that $\sigma: Y \to X$ is a weighted blow up of weights $w = \frac{1}{2}(r+2,r,a,2)$ with center $P \in X$ and

- r + 1 = ad where both $a \ge 5$ and r are odd;
- $ct(X, S) = \frac{a}{m}$ where m = w(f) and S is defined by the formal power series f = 0 analytically and locally.

Denote by $\sigma_1: Y_1 \to X$ and $\sigma_2: Y_2 \to X$ the weighted blow ups with weights $w_1 = \frac{1}{2}(r+2-2d, r-2d, a-2, 2)$ and $w_2 = \frac{1}{2}(2d, 2d, 2, 2)$ at the origin $P \in X$ and $m_1 := 2w_1(f)$ and $m_2 := 2w_2(f)$ the weighted multiplicities respectively. By [Che22, Lemma 7.3], the exceptional set of σ_1 is a prime divisor. Note that the exceptional set of σ_2 is a \mathbb{Z}_2 quotient of

$$\{x^2 + z^{2d} = 0\} \subset \mathbb{P}(2d, 2d, 2, 2).$$

It is a prime divisor. By [Che22, Lemma 2.1] and r + 1 = ad, we have

$$\lfloor \frac{a-2}{a}m \rfloor \ge m_1 \ge \lceil \frac{r-2d}{r}m \rceil \text{ and } \lfloor \frac{2}{a}m \rfloor \ge m_2 \ge \lceil \frac{2d}{r+2}m \rceil$$

with $m_1 \equiv (a-2)a^{-1}m \equiv m$ and $m_2 \equiv 2a^{-1}m \equiv 0 \pmod{2}$. See Remark 3.14 for an alternative explanation of the inequality $\lfloor \frac{2}{a}m \rfloor \geq m_2$.

Claim 3.12. If $a \nmid m$, then $2dm \ge r(r+2)$.

Proof of Claim 3.12. Since $a \nmid m$ and a is odd, we have $m - 1 = \lfloor \frac{a-2}{a}m \rfloor + \lfloor \frac{2m}{a} \rfloor \geq m_1 + m_2$. As $m_1 + m_2 \equiv m \pmod{2}$, one has $m - 2 \geq m_1 + m_2$. Suppose on the contrary that 2dm < r(r+2). We see

$$m_1 + m_2 \ge \lceil \frac{r-2d}{r}m \rceil + \lceil \frac{2d}{r+2}m \rceil \ge \lceil \frac{r-2d}{r}m + \frac{2d}{r+2}m \rceil$$
$$= m - \lfloor \frac{4d}{(r+2)r}m \rfloor \ge m - 1,$$

which leads to a contradiction that $m-2 \ge m_1 + m_2 \ge m-1$. This verifies Claim 3.12.

From Claim 3.12, express $2dm = p_1r + p_2(r+2)$ for some non-negative integers p_1 and p_2 with $p_1 < r+2$. Note that

$$\frac{2}{a}m = \frac{2dm}{ad} = \frac{p_1r + p_2(r+2)}{r+1} = p_1 + p_2 + \frac{p_2 - p_1}{r+1},$$
$$\frac{2d}{r+2}m = \frac{p_1r + p_2(r+2)}{r+2} = p_1 + p_2 - \frac{2p_1}{r+2},$$
$$\frac{2d}{r}m = \frac{p_1r + p_2(r+2)}{r} = p_1 + p_2 + \frac{2p_2}{r}.$$

Now the integer $(p_1 + p_2)r = 2dm - 2p_2$ is even where r is odd. This gives that $p_1 + p_2$ is even. The inequalities $\lfloor \frac{2}{a}m \rfloor \ge m_2 \ge \lceil \frac{2d}{r+2}m \rceil$ then imply $\lfloor \frac{p_2-p_1}{r+1} \rfloor \ge m_2 - (p_1 + p_2) \ge \lceil -\frac{2p_1}{r+2} \rceil$. From the assumption $p_1 < r+2$ and that $m_2 - (p_1 + p_2)$ is even, one sees $\lfloor \frac{p_2-p_1}{r+1} \rfloor \ge 0$. In particular, $p_2 \ge p_1$.

Similarly, the inequalities $\lfloor \frac{a-2}{a}m \rfloor \ge m_1 \ge \lceil \frac{r-2d}{r}m \rceil$ are equivalent to $\lfloor \frac{2d}{r}m \rfloor \ge m-m_1 \ge \lceil \frac{2}{a}m \rceil$. This implies $\lfloor \frac{2p_2}{r} \rfloor \ge m-m_1-(p_1+p_2) \ge \lceil \frac{p_2-p_1}{r+1} \rceil$ where the integer $m-m_1-(p_1+p_2)$ is even. In particular, $p_2 \ge r$ provided that $p_2 - p_1 > 0$.

Case 2. There exists an analytical identification:

$$P \in X \simeq o \in \left(\begin{array}{c} \varphi_1 := x^2 + yt + p(z^2, u) = 0\\ \varphi_2 := yu + z^{2d+1} + q(z^2, u)zu + t = 0 \end{array}\right)$$

in $\hat{\mathbb{C}}_{x,y,z,u,t}^5/\frac{1}{2}(1,1,1,0,1)$ where o denotes the origin of $\hat{\mathbb{C}}_{x,y,z,u,t}^5/\frac{1}{2}(1,1,1,0,1)$ such that $\sigma: Y \to X$ is a weighted blow up of weights $w = \frac{1}{2}(r+2,r,a,2,r+4)$ with center $P \in X$ and

- r + 2 = a(2d + 1) where d, r and $a \ge 5$ are positive integers;
- $ct(X, S) = \frac{a}{m}$ where m = w(f) and S is defined by the formal power series f = 0 analytically and locally.

On the open subset $U_2 = \{\overline{y} \neq 0\}$, Y is isomorphic to $\hat{\mathbb{C}}_{\overline{x},\overline{y},\overline{z}}^2/\frac{1}{r}(-(r+2),2,-a)$. It follows from terminal lemma that both integers a and r are odd. Denote by $\sigma_1: Y_1 \to X$ and $\sigma_2: Y_2 \to X$ the weighted blow up with weights $w_1 = \frac{1}{2}(r-2d+1, r-2d-1, a-1, 2, r-2d+3)$ and $w_2 = \frac{1}{2}(2d+1, 2d+1, 1, 2, 2d+1)$ at the origin $P \in X$ respectively. By [Che22, Lemma 2.1, Lemma 7.6 and Lemma 7.7], there exist two integers m_1 and m_2 satisfying

$$\lfloor \frac{a-1}{a}m \rfloor \ge m_1 \ge \lceil \frac{r-2d-1}{r}m \rceil \text{ and } \lfloor \frac{1}{a}m \rfloor \ge m_2 \ge \lceil \frac{2d+1}{r+4}m \rceil$$

and $m_1 \equiv (a-1)a^{-1}m$ and $m_2 \equiv a^{-1}m \pmod{2}$.

Claim 3.13. If $a \nmid m$, then $(4d+2)m \ge r(r+4)$.

Proof of Claim 3.13. Since $a \nmid m$, we have

$$m-1 = \lfloor \frac{1}{a}m \rfloor + \lfloor \frac{a-1}{a}m \rfloor \ge m_1 + m_2.$$

As $m_1 + m_2 \equiv m \pmod{2}$, one has $m - 2 \ge m_1 + m_2$.

Suppose on the contrary that (4d+2)m < r(r+4). We see

$$m_1 + m_2 \ge \lceil \frac{2d+1}{r+4}m \rceil + \lceil \frac{r-2d-1}{r}m \rceil \ge \lceil \frac{2d+1}{r+4}m + \frac{r-2d-1}{r}m \rceil$$
$$= m - \lfloor \frac{8d+4}{(r+4)r}m \rfloor \ge m - 1.$$

which leads to a contradiction that $m-2 \ge m_1 + m_2 \ge m-1$. This verifies the claim.

From Claim 3.13, express $(4d+2)m = p_1r+p_2(r+4)$ for some non-negative integers p_1 and p_2 with $p_1 < r + 4$. Note that

$$\frac{1}{a}m = \frac{(4d+2)m}{(4d+2)a} = \frac{p_1r + p_2(r+4)}{2(r+2)} = \frac{p_1 + p_2}{2} + \frac{p_2 - p_1}{r+2}$$
$$\frac{2d+1}{r+4}m = \frac{(4d+2)m}{2(r+4)} = \frac{p_1r + p_2(r+4)}{2(r+4)} = \frac{p_1 + p_2}{2} - \frac{2p_1}{r+4},$$
$$\frac{2d+1}{r}m = \frac{(4d+2)m}{2r} = \frac{p_1r + p_2(r+4)}{2r} = \frac{p_1 + p_2}{2} + \frac{2p_2}{r}.$$

Now the integer $(p_1 + p_2)r = (4d + 2)m - 4p_2$ is even where r is odd. In particular, two integers $p_1 + p_2$ and $p_2 - p_1$ are even. The inequalities $\lfloor \frac{1}{a}m \rfloor \ge m_2 \ge \lceil \frac{2d+1}{r+4}m \rceil$ then imply $\lfloor \frac{p_2 - p_1}{r+2} \rfloor \ge m_2 - \frac{p_1 + p_2}{2} \ge \lceil -\frac{2p_1}{r+4} \rceil$. From the assumption $p_1 < r + 4$ and that

$$m_2 - \frac{p_1 + p_2}{2} \equiv a^{-1}m - \frac{p_1 + p_2}{2} \equiv \frac{p_2 - p_1}{r + 2} \equiv p_2 - p_1 \equiv 0 \pmod{2},$$

one sees $\lfloor \frac{p_2 - p_1}{r+2} \rfloor \ge 0$. In particular, $p_2 \ge p_1$.

Similarly, the inequalities $\lfloor \frac{a-1}{a}m \rfloor \ge m_1 \ge \lceil \frac{r-2d-1}{r}m \rceil$ are equivalent to $\lfloor \frac{2d+1}{r}m \rfloor \ge m-m_1 \ge \lceil \frac{1}{a}m \rceil$. This implies $\lfloor \frac{2p_2}{r} \rfloor \ge m-m_1 - \frac{p_1+p_2}{2} \ge \lceil \frac{p_2-p_1}{r+2} \rceil$ where

$$m - m_1 - \frac{p_1 + p_2}{2} \equiv m - (a - 1)a^{-1}m - \frac{p_1 + p_2}{2} \equiv \frac{p_2 - p_1}{r + 2} \equiv 0 \pmod{2}.$$

In particular, $p_2 \ge r$ provided that $p_2 - p_1 > 0$. This completes the proof of Proposition 3.11.

Remark 3.14. We keep notions in Case 1 of the proof of Proposition 3.11. As $w_2 \geq \frac{2d}{r+2}w$, one sees $m_2 \geq \lceil \frac{2d}{r+2}m \rceil$. In what follows, we shall provide an alternative argument to establish the inequality $\lfloor \frac{2}{a}m \rfloor \geq m_2$. Let $\mathcal{X} = \mathbb{C}^4/\frac{1}{2}(1,1,1,0)$ and $\sigma_w : \mathcal{Y} \to \mathcal{X}$ be the weighted blow up with weights $w = \frac{1}{2}(r+2,r,a,2)$. Put $\overline{\varphi}_1 = \varphi(\overline{x}^{\frac{r+2}{2}}, \overline{x}^{\frac{r}{2}}\overline{y}, \overline{x}^{\frac{a}{2}}\overline{z}, \overline{xu})/\overline{x}^{r+1}$. As $w(x^2) = r+2$ and $w(\varphi) = r+1$, $\overline{x} \in \overline{\varphi}_1$ and hence

$$Y \cap U_1 \simeq (\overline{\varphi}_1 = 0) / \frac{1}{r+2} (2, -r, -a, -2) \simeq \mathbb{C}^3_{\overline{y}, \overline{z}, \overline{u}} / \frac{1}{r+2} (-r, -a, -2),$$

where $U_1 := \{\overline{x} \neq 0\} \simeq \mathbb{C}^4 / \frac{1}{r+2}(2, -r, -a, -2)$ is an open subset of \mathcal{Y} . Denote by $\sigma: Y \to X$ be the induced morphism with exceptional divisor E. Let $\mu: \mathcal{Z}_1 \to \mathcal{Y}$ be the weighted blow up (at the origin of U_1) with weights $w_2 = \frac{1}{r+2}(2d, 2d, 1, r+2-2d)$. Denote by $Z_1 = Y_{\mathcal{Z}_1}$ the proper transform. Then the induced map $\mu_1 = \mu|_{Z_1}: Z_1 \to Y$ is Kawamata blow up. In

particular, the exceptional set of μ_1 , denoted by E_1 , is a prime divisor of Z_1 . Then we see

$$K_Y = \sigma^* K_X + \frac{a}{2}E, \quad K_{Z_1} = \mu_1^* K_Y + \frac{1}{r+2}E_1,$$

$$S_Y = \sigma^* S - \frac{m}{2}E, \quad S_{Z_1} = \mu_1^* S_Y - \frac{m'}{r+2}E_1,$$

for some non-negative integer m'. Note that it follows from $w_2 = \frac{2d}{r+2}w + \frac{1}{r+2}(0, 2d, 1, r+2-2d)$ that $E_{Z_1} = \mu_1^* E - \frac{2d}{r+2}E_1$. By direct toric computations, one has

$$K_{Z_1} = \mu_1^* \sigma^* K_X + \frac{a}{2} E_{Z_1} + \left(\frac{2d}{r+2} \cdot \frac{a}{2} + \frac{1}{r+2}\right) E_1 = \mu_1^* \sigma^* K_X + \frac{a}{2} E_{Z_1} + \frac{2}{2} E_1$$
$$S_{Z_1} = \mu_1^* \sigma^* S - \frac{m}{2} E_{Z_1} - \left(\frac{2d}{r+2} \cdot \frac{m}{2} + \frac{m'}{r+2}\right) E_1 = \mu_1^* \sigma^* S - \frac{m}{2} E_{Z_1} - \frac{m_2}{2} E_1,$$

where $m_2 = 2w_2(f)$ and the divisor S is defined by the formal power series f = 0 analytically and locally. As $\operatorname{ct}(X, S)$ is the canonical threshold and E_1 is a prime divisor over $X, \frac{2}{m_2} \ge \operatorname{ct}(X, S) = \frac{a}{m}$. In particular, $\lfloor \frac{2}{a}m \rfloor \ge m_2$.

Theorem 3.15. We have $\mathcal{T}_3^{\operatorname{can}} = \{0\} \cup \{\frac{4}{5}\} \cup \mathcal{T}_{3,\operatorname{sm}}^{\operatorname{can}}$.

Proof. We show non-trivial inclusion $\mathcal{T}_3^{\operatorname{can}} \subseteq \{0\} \cup \{\frac{4}{5}\} \cup \mathcal{T}_{3,\operatorname{sm}}^{\operatorname{can}}$. Suppose that $\operatorname{ct}(X,S) \in \mathcal{T}_3^{\operatorname{can}}$ is non-zero. By taking Q-factorization, X can be assumed to have at worst Q-factorial terminal singularities. From the decomposition in (3) in Remark 2.5, we may assume $\operatorname{ct}(X,S) \in \mathcal{T}_{3,*,\geq 5}^{\operatorname{can}}$ for some singular type * = cA, cA/n, cD or cD/2. The rest follows from Theorem 2.2, Propositions 3.1, 3.3, 3.8 and 3.11.

Remark 3.16. It is known that the accumulation points of \mathcal{T}_3^{can} is the set $\{0\} \cup \{\frac{1}{k}\}_{k \in \mathbb{Z}_{\geq 2}}$ by [Che22a] and [HLL22] independently. This result can be recovered using Theorem 3.15. It is also interesting to study $(\frac{1}{k-1}, \frac{1}{k}) \cap C$ for any $k \in \mathbb{Z}_{\geq 2}$. The k = 2 case was explicitly characterized in [Che22]. The set $\mathcal{T}_{3,\text{sm}}^{can} \cap (\frac{1}{3}, \frac{1}{2})$ was studied by the third named author in his master thesis [Wu23] and listed in Table 1. These two cases can also be recovered by Theorems 2.2 and 3.15.

α	β	p_1	p_2	Remark
α	β	p_1	3	$ct = \frac{1}{3} + \frac{(3-p_1)\alpha}{3(p_1\alpha+3\beta)}$ with $0 \le p_1 \le 2$, $1 \le \alpha \le 3$, $(2-p_1)\alpha < \beta$, $gcd(\alpha, \beta) = 1$
1	1	1	4	ct = 2/5
1	1	0	5	ct = 2/5
1	2	0	4	ct = 3/8
2	3	0	4	ct = 5/12
2	3	1	4	ct = 5/14
2	5	0	4	ct = 7/20
3	4	0	4	ct = 7/16
3	4	1	4	ct = 7/19
3	4	0	5	ct = 7/20
3	5	0	4	ct = 2/5
3	5	1	4	ct = 8/23
3	7	0	4	ct = 5/14
3	8	0	4	ct = 11/32
4	5	0	4	ct = 9/20
4	5	1	4	ct = 3/8
4	5	0	5	ct = 9/25
4	7	0	4	ct = 11/28
4	7	1	4	ct = 11/32
4	9	0	4	ct = 13/36
4	11	0	4	ct = 15/44
5	6	0	5	ct = 11/30
5	7	0	5	ct = 12/35

TABLE 1. canonical thresholds in $\mathcal{T}_{3,\mathrm{sm}}^{\mathrm{can}} \cap (\frac{1}{3}, \frac{1}{2})$

References

- [Ale93] V. Alexeev, Two two-dimensional terminations, Duke Math. J.69(1993), no.3, 527-545.
- [Bir07] C. Birkar, Ascending chain condition for log canonical thresholds and termination of log flips, Duke Math. J. 136 (2007), 173–180.
- [Che14] J. A. Chen, Factoring threefold divisorial contractions to points, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V 13 (2014), no. 2, 435-463.
- [Che15] J. A. Chen, Birational maps of 3-folds, Taiwanese J. Math. 19 (2015), no. 6, 1619-1642.
- [Che22] J.-J. Chen, On threefold canonical thresholds, Adv. Math. 404 (2022), Paper No. 108447, 36 pp.
- [Che22a] J.-J. Chen, Accumulation points of 3-fold canonical thresholds, to appear in J. Math. Soc. Japan. arXiv: 2202.06230.
- [Cor95] A. Corti, Factoring birational maps of 3-folds after Sarkisov, J. algebraic Geom. 4 (1995), 223-254.

- [Cor00] A. Corti, Singularities of linear systems and 3-fold birational geometry, Explicit birational geometry of 3-folds, 259-312, London Math. Soc. Lecture Note Ser., 281, Cambridge Univ. Press, Cambridge, 2000.
- [dFM09] T. deFernex and M. Mustaţă, *Limits of log canonical thresholds*, Ann. Sci. Ec. Norm. Supér.(4) 42 (3), 491-515 (2009).
- [HMX14] C. D. Hacon, J. Mckernan and C. Y. Xu, ACC for log canonical thresholds, Annals of Math. (2014).
- [HLL22] J. Han, J. Liu and Y. Luo, ACC for minimal log discrepancies of terminal threefolds, arXiv: 2202.05287v2.
- [Hay99] T. Hayakawa, Blowing ups of 3-dimensional terminal singularities, Publ. Res. Inst. Math. Sci. 35 (1999), no. 3, 515-570.
- [Hay00] T. Hayakawa, Blowing ups of 3-dimensional terminal singularities II, Publ. Res. Inst. Math. Sci. 36 (2000), no. 3, 423-456.
- [Kwk01] M. Kawakita, Divisorial contractions in dimension three which contract divisors to smooth points, Invent. Math. 145 (2001), no. 1, 105-119.
- [Kwk02] M. Kawakita, Divisorial contractions in dimension three which contract divisors to compound A1 points, Compos. Math. 133 (2002), no. 1, 95-116.
- [Kwk05] M. Kawakita, Threefold divisorial contractions to singularities of higher indices, Duke Math. J. 130 (2005), no. 1, 57-126.
- [Kaw96] Y. Kawamata, Divisorial contractions to 3-dimensional terminal quotient singularities, Higher-dimensional complex varieties (Trento, 1994), 241-246, de Gruyter, Berlin 1996.
- [Kol97] J. Kollár, Singularities of pairs, Algebraic geometry-Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997. pp. 221-287.
- [Kol08] J. Kollár, Which powers of holomorphic functions are integrable? arXiv 0805. 0756.
- [Kuw99a] T. Kuwata, On log canonical thresholds of reducible plane curves, Amer. J. Math. 121 (1999), no. 4, 701-721.
- [Kuw99b] T. Kuwata, On Log Canonical Thresholds of Surfaces in \mathbb{C}^3 , Tokyo J. Math. **22(1)**: 245-251 (June 1999).
- [LMX24] J. Liu, , F. Meng; L. Xie, Infinitesimal structure of log canonical thresholds, Doc. Math.29(2024), no.3, 703-732.
- [Mat02] K. Matsuki, Introduction to the Mori program, Universitext. Springer-Verlag, New York, 2002. xxiv+478 pp.
- [MP04] J. M^cKernan and Y. Prokhorov, Threefold thresholds, Manuscripta Math., 114 (2004), no. 3, 281-304.
- [Mor82] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. (2)116(1982), no.1, 133-176.
- [Pro08] Y. Prokhorov, Gap conjecture for 3-dimensional canonical thresholds, J. Math. Sci. Univ. Tokyo 15 (2008), no. 4, 449-459.
- [Ste11] D. A. Stepanov, Smooth three-dimensional canonical thresholds, (Russian) Mat. Zametki 90 (2011), no. 2, 285-299; translation in Math. Notes 90 (2011), no. 1-2, 265-278.
- [Sho93] V. V. Shokurov, Three-dimensional log perestroikas. With an appendix in English by YujiroKawamata. Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), 105–203; translation in Russian Acad. Sci. Izv. Math. 40 (1993), 95–202.
- [Wu23] H.-Y. Wu, A survey on the conjecturally minimal volume of klt ample (resp. Fano) varieties and specific classification of 3-folds canonical thresholds in the open interval (1/3, 1/2), NCU master thesis in July 2023.
- [Yam18] Y. Yamamoto, Divisorial contractions to cDV points with discrepancy > 1, Kyoto J. Math. 58 (2018), 529-567.

Department of Mathematics, National Central University, Taoyuan City, 320, Taiwan *Email address*: jhengjie@math.ncu.edu.tw

Department of Mathematics, Third General Building, National Tsing Hua University, No. 101 Sec 2 Kuang Fu Road, Hsinchu, 30043, Taiwan

Email address: jcchen@math.nthu.edu.tw

Department of Mathematics, National Central University, Taoyuan City, 320, Taiwan *Email address:* 112281002@cc.ncu.edu.tw