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Abstract

This paper presents a generalized flux-corrected transport (FCT)
algorithm, which is shown to be total variation diminishing under
some conditions. The new algorithm has improved properties from
the standpoint of use and analysis. Results show that the new FCT
algorithm performs better than the older FCT algorithms and is com-
parable with other modern methods. This reformulation will also allow
the FCT to be used effectively with exact or approximate Riemann
solvers and as an implicit algorithm.

1 Introduction

Godunov [1] showed that the monotonic solution of first- order hyperbolic
conservation laws is at most first-order accurate for linear differencing schemes.
The first algorithm to successfully address this difficulty was the flux-corrected
transport (FCT) algorithm of Boris, Book, and Hain![2, 3, 4, 5] . This algo-
rithm performed quite well on linear advection problems and paved the way
for future developments in the field. It essentially consisted of computing
a solution with a nondiffusive transport method followed by a stabilizing
diffusive step. This monotone solution is then used to aid in the construc-
tion of an antidiffusive step in which the solution from the first part of the
algorithm is locally sampled and corrections are “patched” to it. This is
accomplished with a flux limiter that only applies the flux corrections in the
smooth part of the flow. As a result, the solution will be of a high-order in
smooth parts of the convected profile, but first-order near discontinuities and
steep gradients. Extension of the FCT algorithm to systems of conservation
laws, however, has proved less successful.
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Further developments on this topic were achieved by van Leer [6] in his
higher order extensions of Godunov’s method often referred to as MUSCL.
The prescription of slope-limiting used by van Leer has great similarity to
the flux-limiting used in the original FCT. The difficulties associated with
FCT with systems equations is not shared by MUSCL because an exact
or approximate solution to the local Riemann problem is used to construct
the convective fluxes. While this approach adds complexity and cost to
the solution procedure, the corresponding quality of the solution is greatly
improved. Recently, researchers have extended the ideas of van Leer to
arbitrarily high-order spatially or temporally and christened these methods
as uniformly [7] or essentially [8] nonoscillatory (UNO or ENO) schemes.

The effort to put the new modern algorithms on firmer theoretical foot-
ing resulted in the concept of total variation diminishing (TVD) methods [9],
which have a number of desirable properties. To be total variation dimin-
ishing, a scheme must satisfy the following inequalities,

TV
(

un+1
)

≤ TV (un) ,

where

TV (u) =
∞
∑

j=−∞

|uj+1 − uj| .

While these methods include classic monotone schemes, they can also be
extended to include methods that are second-order in the L1 norm. By
construction, these methods are still first-order at points of extrema (in
the L∞ norm). A second property of TVD schemes, which is both useful
and satisfying, is that they can be extended to include implicit temporal
differencing [10]. This generality is quite desirable as it allows a more general
use of TVD algorithms for a wide range of problems. It should be noted
that MUSCL schemes have also been extended to include implicit temporal
differencing [11, 12].

Zalesak [13] redefined the FCT in such a way as to make it more gen-
eral. A standard low-order solution, similar to that obtained by donor-cell
differencing, is used to define a monotonic solution. This solution is then
used to limit an antidiffusive flux, which is defined as the difference between
a high-order and low-order flux. As with the earlier versions of the FCT,
the limiter is designed to give no antidiffusive flux when an extrema or a
discontinuity is reached. This prescription of the FCT can allow the user to
specify a wide range of low-order fluxes as well as a large variety of high-order
fluxes. These have included central differencing of second or higher order,
Lax-Wendroff, and spectral fluxes [14]. Recently, several researchers [15]
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have introduced an implicit FCT algorithm; however, this algorithm is lim-
ited to small multiples of the Courant-Friedrichs-Lewy (CFL) number. This
is because the low-order solution is produced by multiple sub-cycles with an
explicit donor-cell (or other monotonic) solution and an implicit high-order
solution. The high-order solution is only stable for small multiples of the
CFL number, thus limiting the applicability of this algorithm. The FCT
has also been extended for use with a finite-element solution method with
great success [16].

The performance of the explicit FCT algorithm is the subject of this
paper. Several investigators [17] [18] have noted for the older FCT algorithm
that a lower CFL limit is required for stability. The FCT algorithm also
suffers from being overcompressive (as will be shown in Section 3). This was
shown in a test of the FCT on a shock tube problem [19], where even at a
CFL number of 0.1, the solution was of relatively poor quality. This probably
is due to the handling of the pressure-related terms in the momentum and
energy equations. This work aims to address these problems, first through
making several improvements to the FCT and then by showing the extension
of this modified FCT to systems of equations. In accomplishing this, we will
make extensive use of approximate Riemann solvers of the type introduced
by Roe [20].

We have several objectives to be addressed in this paper: the perfor-
mance of FCT on systems of equations, which needs to be improved in
terms of solution quality, and efficiency (the necessity of using small CFL
numbers), more direct ties to other modern algorithms (such as TVD al-
gorithms), and analysis of the potential TVD properties of FCT methods.
The first objective will follow the last two objectives in treatment. The first
two objectives are complementary in nature and should follow from one an-
other. In producing new FCT algorithms, we will seek one step methods,
not requiring the diffusive first step used in older FCT methods.

This paper is organized into four sections. The following section provides
an overview of the numerical solution of hyperbolic conservation laws. Later
in that section, the FCT method according to Zalesak is introduced. This
method is analyzed and suggestions for improvements are made including
the extension of FCT to systems of equations. This takes two forms: one
method is denoted as the “new FCT” method, and the second is denoted
as the “modified-flux FCT” method. The “new FCT” method is similar
to symmetric TVD methods, and the “modified-flux FCT” is similar to
Harten’s modified-flux TVD method. In the third section, results are pre-
sented for the methods discussed in the paper. These results are for a scalar
wave equation, Burgers’ equation and a shock tube problem for the Euler
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equations. Finally, some closing remarks will be made.

2 Method Development

Before describing the changes we will make in the FCT algorithm, we will
make several introductory points. Consider

∂u

∂t
+
∂f (u)

∂x
= 0 , (1)

which is a first-order hyperbolic transport equation for u where f is the flux
of u. Equation (1) can be written as

∂u

∂t
+ a

∂u

∂x
= 0 , (2)

where

a =
∂f

∂u
.

The characteristic speed, a, is particularly useful in defining finite-difference
solutions to Eq (1). A system of conservation laws can be similarly defined;
however, the construction of effective finite-difference solution for systems
of equations requires more care. Consider

∂U

∂t
+
∂F (U)

∂x
= 0 , (3)

which is a set of hyperbolic conservation laws where U is a column vec-
tor

(

u1, u2, . . . , um
)T

of conserved quantities and F (U) is a column vector
(

f1, f2, . . . , fm
)T

of fluxes of U. Equation (3) can be written as

∂U

∂t
+A

∂U

∂x
= 0 , (4)

where

A =
∂F (U)

∂U
=













∂f1/∂u1 . . . ∂f1/∂um

...
. . .

...

∂fm/∂u1 . . . ∂fm/∂um













.

The matrix A is the flux Jacobian for the system defined by Eq. (3), which
is quite useful in the construction of finite-difference solutions of this system
of equations, as will be shown in Section 2.4 of this paper.
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In general, equations of the type considered above can develop discon-
tinuous solutions even when the initial data is smooth. Because of this,
the solutions are not unique. To rectify this, the admissible solutions must
satisfy an entropy condition (for details on this see [21] [22]). It is the
formation of discontinuities in the solution that causes the difficulties for
finite-difference solutions of Eq. (1). At these discontinuities, the function
ceases to be smooth and the usual assumptions made in constructing finite-
difference approximations collapse. As a result, more physical information
needs to be incorporated into the solution procedure.

The FCT (and most other finite-difference methods) was constructed to
solve Eq. (1). This approach will be followed initially, but will eventually
be abandoned to some extent when systems of equations are considered.
First, the basics of Zalesak’s FCT will be reviewed, followed by several basic
suggestions for improvements in this algorithm. These improvements will
be discussed briefly with comparisons being drawn between these new FCT
methods and the symmetric TVD schemes [23]. Finally, the FCT will be
extended to systems of hyperbolic conservation laws using an approximate
Riemann solver.

For the remainder of the presentation, the following nomenclature will
be used: ∆j+ 1

2

u = uj+1−uj . A conservative finite-difference solution to Eq.

(1) using a simple forward Euler time discretization is

un+1

j = unj − λ
(

f̂j+ 1

2

− f̂j− 1

2

)

, (5)

where λ = ∆t/∆x. The temporal spacing is ∆t and ∆x is the spatial
mesh spacing that will be assumed constant for the remainder of the paper
(varying mesh widths will result is somewhat more complex expressions).
The superscript n refers to time, n + 1 refers to the time t + ∆t, and the
subscript j refers to space with j being a cell center and j± 1

2
being the cell

edges. The construction of the numerical fluxes f̂j± 1

2

will be the subject of

this section. The cell edge flux is defined as

f̂j+ 1

2

=
1

2
(fj + fj+1) + φj+ 1

2

, (6)

where φ is a numerical dissipation term. For a system of equations the flux
is written

F̂j+ 1

2

=
1

2
(Fj + Fj+1) + Φj+ 1

2

, (7)

where F and Φ are vectors, but are defined similarly to the single equation
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case. For instance, the first-order donor-cell flux is

f̂DC
j+ 1

2

=
1

2

(

fj + fj+1 −
∣

∣

∣aj+ 1

2

∣

∣

∣∆j+ 1

2

u
)

, (8)

thus

φDC
j+ 1

2

= −
1

2

∣

∣

∣aj+ 1

2

∣

∣

∣∆j+ 1

2

u .

For the remainder of the paper, the prescription of the numerical dissipation
term, φ or Φ, will be used to define algorithms. One slight modification of the
above methodology is used for nonlinear equations and systems; as suggested
by Yee [23] an entropy fix is implemented for the donor-cell differencing,
which modifies the use of the absolute value in donor-cell differencing of a
characteristic speed, by

ψ (z) =











|z| if |z| ≥ ǫ
(

z2 + ǫ2
)

/2ǫ if |z| < ǫ
, (9)

if one is dealing with a linear equation set ǫ = 0. The parameter ǫ is
determined by the following equation [24],

ǫ = max
[

0, aj+ 1

2

− aj , aj+1 − aj+ 1

2

]

.

Thus, the numerical diffusion term in the donor-cell flux becomes

φDC
j+ 1

2

= −
1

2
ψ
(

aj+ 1

2

)

∆j+ 1

2

u .

This description of the donor-cell method reduces to Roe’s method [20] for
scalar equations. The term donor-cell methods and Roe’s methods should
be viewed as equivalent in this sense.

2.1 Zalesak’s FCT Algorithm

Zalesak’s FCT has been classified as a hybrid method that is applied in two
steps. By being hybrid, the algorithm is based on the blending of high- and
low-order difference schemes together. Step one is accomplished with a first-
order monotonic solution such as donor-cell plus some additional diffusion
(the entropy fix discussed in the previous section adds such dissipation).
This could be accomplished with other first-order algorithms such as God-
unov’s [1] or Engquist and Osher’s [25]. These fluxes are used to produce a
transported diffused solution ũ as follows:

ũj = unj − λ

(

f̂DC
j+ 1

2

− f̂DC
j− 1

2

)

. (10)
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A high-order flux, fH , is defined in some way and then the low-order flux is
subtracted from the high-order flux to define the antidiffusive flux as

f̂AD
j+ 1

2

= f̂H
j+ 1

2

− f̂L
j+ 1

2

,

where in this paper, we have defined f̂L = f̂DC . The antidiffusive flux is
then limited with respect to the local gradients of the conserved variable
computed with the transported and diffused solution. Zalesak defined his
limiter as a prelude to a truly multidimensional limiter, but also defined an
equivalent limiter as

f̂C
j+ 1

2

= Sj+ 1

2

max

{

0,min

[

Sj+ 1

2

λ−1∆j− 1

2

ũ,

∣

∣

∣

∣

f̂AD
j+ 1

2

∣

∣

∣

∣

, Sj+ 1

2

λ−1∆ 3

2

ũ

]}

, (11)

where Sj+ 1

2

= f̂AD
j+ 1

2

/

∣

∣

∣

∣

f̂AD
j+ 1

2

∣

∣

∣

∣

is the sign of the conserved variable’s gradi-

ent spatially. This limiter is identical to the limiter defined by Boris and
Book [2], but with a different definition of f̂AD. The final cell-edge numerical
diffusion is defined by

φFCT
j+ 1

2

= f̂C
j+ 1

2

+ φDC
j+ 1

2

. (12)

The FCT generally carries a stability limit on its time step of

λ |a| ≤ 1 .

Before going further, several critical comments need to be made concern-
ing this algorithm. Despite the striking generality, which is driven by the
prescription of the antidiffusive fluxes, the algorithm has some deficiencies.
By its formulation as a two-step method it has some disadvantages in terms
of analytical analysis and efficiency of implementation. By the use of the in-
verse grid ratio λ−1 in the flux limiter, the algorithm is effectively limited to
explicit time discretization (as will be shown in the following section). The
use of a diffused solution in the limiter is important in stabilizing the solu-
tion, which could yield oscillatory solutions without this step. Under closer
examination, the use of a diffused solution acts as an upwind weighted ar-
tificial diffusion term. This sort of definition could lead to a fairly complex
one-step FCT algorithm, which has, at first glance similarity to UNO-type
schemes. The diffusive terms in the FCT algorithm’s limiter are upwind
weighted rather than centered as with UNO based algorithms. This can be
seen by direct substitution of the diffusive first step into the second step of
the algorithm. Additionally, numerical experiments with a scalar advection
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equation show that the total variation for the FCT solution can increase
with time for a CFL number less than one.

The use of higher order antidiffusive fluxes with this prescription of the
FCT also raises some questions about the actual order of the approximation.
The antidiffusive flux is of the higher order, but the local gradients in the
limiter are only accurate to second-order. This suggests that the solution
may actually be of only second-order spatially (in the L1 norm). This also
holds for temporal order as the local gradient terms are only first-order in
space, thus an antidiffusive flux based on a Lax-Wendroff flux may actually
yield a first-order accurate temporal approximation. Thus the form of the
local gradients used in the limiter may also need to be modified to accomplish
the goal of true higher order accuracy.

This seems to contradict results reported in [26, 27], but these results are
for a scalar wave equation where the solution is translated by the flow field.
With nonlinear equations or systems this may cause difficulties because of
the formation of shocks and discontinuities. This is explored further in
Section 3.2.

2.2 A New FCT Algorithm

The first and simplest change is to rewrite the flux limiter as

f̂C
j+ 1

2

= Sj+ 1

2

max
{

0,min
[

Sj+ 1

2

σ̃j− 1

2

∆j− 1

2

ũ,

∣

∣

∣

∣

f̂AD
j+ 1

2

∣

∣

∣

∣

, Sj+ 1

2

σ̃j+ 3

2

∆j+ 3

2

ũ
]}

,

(13)
where

σ̃j+ 1

2

= ψ
(

ãj+ 1

2

)

, (14)

or
σ̃j+ 1

2

= ψ
(

ãj+ 1

2

)

− λã2
j+ 1

2

, (15)

and Sj+ 1

2

has the same definition as before. The second choice for σ̃j+ 1

2

gives

second-order accuracy in both time and space if f̂AD
j+ 1

2

is of similar or higher

accuracy [9]. This relatively small change has a significant impact on the
FCT algorithm as will be shown later both analytically and computationally.
This form is also a great deal closer to the definition of limiters used in
TVD algorithms. However, this still leaves a two-step method which poses
some problems from the standpoint of efficiency and extension to systems
of conservation laws.

The similarities of this modification of the FCT with symmetric TVD
schemes [23] are quite strong. The necessary changes to convert this scheme
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into one equivalent to the one described by Yee are simple. This consists
of dividing the local gradient terms in the limiter by two and removing the
first step of the FCT. Yee writes the numerical flux for the symmetric TVD
method as

f̂j+ 1

2

=
1

2

[

aj+ 1

2

(uj + uj+1)− ψ
(

aj+ 1

2

)

∆j+ 1

2

u+Qj+ 1

2

]

. (16)

An example of the Qj+ 1

2

function would be

Qj+ 1

2

= Sj+ 1

2

max
{

0,min
[

Sj+ 1

2

ψ
(

aj+ 3

2

)

∆j+ 3

2

u, ψ
(

aj+ 1

2

)

∆j+ 1

2

u,

Sj+ 1

2

ψ
(

aj− 1

2

)

∆j− 1

2

u
]}

, (17)

which strikes a strong resemblance with Eq. (13) for an antidiffusive flux
defined with a second-order central difference. For ease of analysis, this
method is rewritten in the following form:

f̂j+ 1

2

=
1

2

[

aj+ 1

2

(uj + uj+1)− ψ
(

aj+ 1

2

) (

1−Qj+ 1

2

)

∆j+ 1

2

u
]

, (18)

where

Qj+ 1

2

= minmod

(

1, r+
j+ 1

2

, r−
j+ 1

2

)

,

with r+
j+ 1

2

= ∆j+ 3

2

u/∆j+ 1

2

u and r−
j+ 1

2

= ∆j− 1

2

u/∆j+ 1

2

u. The minmod lim-

iter used with symmetric TVD schemes is defined by Yee, but has the same
effect as Eq. (17).

Theorem 1 The new FCT algorithm without the monotone (TVD) first
step is TVD under the following conditions: for σ̃ = ψ (a)

λ |a| <
1

2 (1− θ)
, (19)

and for σ̃ = ψ (a)− λa2

λ |a| <
1

1− θ
. (20)

Here θ is an implicitness parameter (see Yee [23]) with θ = 1 the equation
is fully implicit, and with θ = 0 the equation is fully explicit. Without the
monotone first step, the fully explicit old FCT algorithm is not TVD for any
CFL number, but the implicit FCT algorithm is TVD under the condition

λ |a| <
θ

1− θ
. (21)
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Proof. The FCT cell-edge flux can be written in the same way as the
flux for a symmetric TVD scheme by defining

f̂C
j+ 1

2

=
1

2

∣

∣

∣aj+ 1

2

∣

∣

∣Qj+ 1

2

∆j+ 1

2

u , (22)

if Qj+ 1

2

is based on Eq. ( 14)

Qj+ 1

2

= minmod
(

1, 2r̃+, 2r̃−
)

,

and if Qj+ 1

2

is based on Eq. ( 15)

Qj+ 1

2

=
(

1− λ
∣

∣

∣aj+ 1

2

∣

∣

∣

)

minmod
(

1, 2r̃+, 2r̃−
)

,

and

r̃+ =
∆j+ 3

2

ũ

∆j+ 1

2

u
,

r̃− =
∆j− 1

2

ũ

∆j+ 1

2

u
.

In [23] the inequalities that need to be satisfied in order for a flux of the
form given in Eq. (16) to be TVD are

Qj+ 1

2

< 2 , (23)

and
Qj+ 1

2

r±
j+ 1

2

<
2

λ (1− θ)
∣

∣

∣aj+ 1

2

∣

∣

∣

− 2 , (24)

λ |a| <
1

1− θ
. (25)

The FCT limiter given in Eq. (13) satisfies the first and last of these relations,
but satisfaction of the other relation (24) in a rigorous manner has proved
to be more difficult. To establish some bounds on the properties of the
FCT solutions, the first step of the FCT will be ignored for the time being.
Given this, the worst cases for the limiter are Q = 2r± or 2 (1− λ |a|) r±.
Comparing the first of these cases with Eq. (24) gives

2 <
2

λ (1− θ) |a|
− 2 ,
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or

λ |a| <
1

2 (1− θ)
.

For the second of the two cases,

2 (1− λ |a|) <
2

λ |a| (1− θ)
− 2 ,

or

λ |a| <
1

1− θ
.

Remark 1 Thus, even without the first step, the new FCT algorithm is
TVD under some conditions (given above). Thus the implementations of this
method should not include the diffusive first step because it is not necessary.
It is also unconditionally stable for fully implicit temporal discretization.
The first step adds more dissipation into the algorithm, which should result
in higher CFL limits for the first case. Numerical experiments confirm this
and show that the new FCT is TVD for all CFL numbers less than one.

Zalesak’s FCT can be subjected to a similar test after a reformulation
of its limiter. Given the same definition as before for fC

j+ 1

2

,

Qj+ 1

2

= minmod

(

1,
2r̃+

λ |a|
,
2r̃−

λ |a|

)

, (26)

where r̃± are defined as before. Using Eq. (24), and again neglecting the
first step, one can show that

λ |a| <
θ

1− θ
. (27)

Remark 2 Thus, for a fully explicit approximation without the first step,
Zalesak’s FCT is never TVD. However, as the degree of implicitness in-
creases, the algorithm becomes TVD for some CFL numbers and eventually
becomes unconditionally TVD at θ = 1. If one looks at the form of the limiter
as the CFL number increases, the effective antidiffusive flux reduces in an
inversely proportional fashion. Therefore, at large CFL numbers, Zalesak’s
FCT is largely ineffective as a high-order implicit algorithm. Numerical ex-
periments have shown that with the first step, Zalesak’s FCT produces results
that diminish in total variation up to a CFL number of about 0.95.
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The new FCT method given above is an analog to the symmetric TVD
method. Another form of common TVD method is Harten’s modified flux
method. The next section describes a FCT method developed along those
lines.

2.3 A Modified-Flux FCT Algorithm

To attain these goals, the FCT will be recast in the form of Harten’s
modified-flux TVD scheme [9]. From this basis several FCT limiters can
be shown to be TVD by the criteria given by [28], and the FCT can be
written as a one-step method and extended to use as an implicit algorithm
in the same way as TVD methods are [10]. This will be examined in a future
paper.

The modified-flux TVD method is defined by computing cell-centered
modified fluxes and making the overall flux upwind with respect to both the
“physical” and modified fluxes. Formally, the modified-flux formulation has
a dissipation term,

φMF
j+ 1

2

=
1

2

[

gj + gj+1 − ψ
(

aj+ 1

2

+ γj+ 1

2

)

∆j+ 1

2

u
]

, (28)

where
gj = minmod

(

σj− 1

2

∆j− 1

2

u, σj+ 1

2

∆j+ 1

2

u
)

, (29)

and

γj+ 1

2

=















∆j+ 1

2

g

∆j+ 1

2

u if ∆j+ 1

2

u 6= 0

0 otherwise

. (30)

The minmod function of two arguments has the usual definition given in [29],
which gives the same effect as the FCT limiter for three arguments. A
general form of the minmod function for two arguments is

minmod (a, b;n) = sign (a)max [ 0, min (n |a| , sign (a) b) ,

min (|a| , n sign (a) b) ] , (31)

which for n = 2 gives the Superbee limiter developed by Roe [30]. The
function σj+ 1

2

can have several forms, including

σj+ 1

2

=
1

2
ψ
(

aj+ 1

2

)

, (32)
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or

σj+ 1

2

=
1

2

[

ψ
(

aj+ 1

2

)

− λa2
j+ 1

2

]

. (33)

For Eq. ( 32), the stability limit depends on the form of the limiter, for
instance the general minmod limiter yields a stability limit of

λ |a| ≤
2

(2 + n) (1− θ)

for n ≤ 2. The use of Eq. ( 33) gives a stability limit of

λ |a| ≤ 1

for all values of n ≤ 2. The second definition has been recommended for
explicit, time-accurate solutions [9, 10].

To formulate the FCT in a similar form, simply change the specification
of the limiter. The traditional limiter used with the FCT is effectively a cell-
edged flux rather than a cell-centered flux as needed for the modified-flux
formulation. The definition of the antidiffusive flux must also be changed to
a form more amenable to this formulation. This requires a more thoughtful
statement of the antidiffusive flux, which can be easily incorporated with the
type of formulation desired. For instance, the second-order central difference
antidiffusive flux is

f̂AD
j+ 1

2

=
1

2
ψ
(

aj+ 1

2

)

∆j+ 1

2

u , (34)

or a Lax-Wendroff flux

f̂AD
j+ 1

2

=
1

2

[

ψ
(

aj+ 1

2

)

− λa2
j+ 1

2

]

∆j+ 1

2

u , (35)

or a fourth-order central difference

f̂AD
j+ 1

2

=
1

2
ψ
(

aj+ 1

2

)

∆j+ 1

2

u+
1

12

(

∆j− 1

2

f −∆j+ 3

2

f
)

, (36)

which can be written

f̂AD
j+ 1

2

=
1

2
ψ
(

aj+ 1

2

)

∆j+ 1

2

u+
1

12

(

aj− 1

2

∆j− 1

2

u− aj+ 3

2

∆j+ 3

2

u
)

.

These forms can be incorporated with a new limiter that has the desired
properties. These properties are the centering of the flux about grid point
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j, and being TVD for second-order antidiffusive fluxes. This limiter has the
following form:

gj = minmod

(

f̂AD
j± 1

2

,∆j± 1

2

u;n

)

= Sj+ 1

2

max
[

0,min

(

1

2
n

∣

∣

∣

∣

f̂AD
j+ 1

2

∣

∣

∣

∣

, nSj+ 1

2

σj− 1

2

∆j− 1

2

u

)

,

min

(

nσj+ 1

2

∣

∣

∣∆j+ 1

2

u
∣

∣

∣ ,
1

2
nSj+ 1

2

f̂AD
j− 1

2

)

]

, (37)

where σj+ 1

2

is defined by Eq. (32) or Eq. (33). The function Sj+ 1

2

is set to

zero if the f̂j± 1

2

differ in sign.

Remark 3 It is important to note that this method does not require a dif-
fusive first step to be successful.

Analysis of this limiter for the second-order central-difference-based anti-
diffusive flux follows that of Sweby [28]. For the values of 0 ≤ n ≤ 2 in Eq.
(37), the resulting limiter is in the TVD region of the curves shown in Fig.
1. For the value of n = 2, the resulting limiter is identical to Roe’s Superbee
limiter [30]. Shown in this figure are the plots for n = 1 and n = 1.5; the
plot for n = 2 is identical to the upper boundary of the second-order TVD
region. The second-order TVD region is shown by the shaded region of the
figure. These limiters are second-order for all n for r ≤ 1/2 and also second-
order for r ≥ 2/n. The only limiter of this class that is always second-order
is the n = 2 limiter. In this figure the terms r and Q are defined

r =
∆j+ 1

2

u

∆j− 1

2

u
,

and
Q =

gj
∆j− 1

2

u
.

2.4 Extension of FCT to Systems of Equations

The extension of the previously described methods to systems of hyperbolic
conservation laws is no simple matter. We will consider the Euler equations
where the vectors

U =













u1

u2

u3













=













ρ

m

E













,
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and

F (U) =













f1

f2

f3













=













m

m2/ρ+ p

m (E + p) /ρ













,

are defined for Eq. (3). Here m = ρu where u is the fluid velocity. The
pressure, p, and density, ρ, are related to the energy by an equation of state
(for an ideal gas),

p = ρε (γ − 1) ,

where ε = E/ρ − 1/2u2 and γ is the ratio of specific heats for the gas in
question. This will serve as an example of the implementation, but the use of
the techniques discussed here is not limited to this equation set or equation
of state. The FCT currently is extended to systems in the simplest fashion.
Traditional implementations of the FCT take the pressure terms in F as
source terms and are handled with central differences. This leads to a poor
representation of the wave interactions and the results that follow are often
less than satisfactory.

The use of exact and approximate Riemann solvers offers a way through
which more of the physical nature of the solution can be integrated into
the solution procedure. To the authors’ knowledge no attempt has been
made to incorporate Riemann solvers with any of the previous FCT algo-
rithms. Using van Leer’s Riemann solver [6, 31], with Godunov’s first-order
method [1, 32] as the low-order method with the first modification of the
FCT limiter, was our first attempt to incorporate a Riemann solver with
FCT. While the results are better than the standard FCT implementation,
they are worse than Godunov’s method alone. A second approach is detailed
below using Roe’s approximate Riemann solver.

Roe’s approximate Riemann solver and its descendents use a decompo-
sition of the characteristic field for the system of conservation laws. Taking
the form of the system of hyperbolic conservation laws given in Eq. (4),
the flux Jacobian, A, is decomposed into right and left eigenvectors and
eigenvalues or characteristics as

A = RΛR−1 , (38)

where R is a matrix where the columns are the eigenvectors, rk, of the
eigenvalues, ak, which are the diagonal entries of Λ. The matrix R−1 is the
inverse of R whose rows will be denoted as lk, the left eigenvectors, where
the index k refers to the kth wave in the system.
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In Roe’s formulation it is required that the matrix A is averaged from
its neighboring states so that

(Fj+1 −Fj) = Aj+ 1

2

(Uj+1 −Uj) .

This averaging for the system in question requires that a parameter be
defined by

Dj+ 1

2

= (ρj+1/ρj)
1/2 , (39)

which is in turn used to define the following cell edge values:

uj+ 1

2

=
Dj+ 1

2

uj+1 + uj

Dj+ 1

2

+ 1
, (40)

Hj+ 1

2

=
Dj+ 1

2

Hj+1 +Hj

Dj+ 1

2

+ 1
, (41)

and

cj+ 1

2

=

[

(γ − 1)

(

Hj+ 1

2

−
1

2
u2
j+ 1

2

)]1/2

, (42)

where

H =
γp

(γ − 1) ρ
+

1

2
u2 . (43)

For the Euler equations, the eigenvalues of the flux Jacobian are

(

a1, a2, a3
)

= (u, u+ c, u− c) . (44)

The right eigenvectors form a matrix

R =
(

r1, r2, r3
)

=













1 1 1

u u+ c u− c

1

2
u2 H + uc H − uc













, (45)

and by using

z1 =
1

2
(γ − 1)

u2

c2
,

z2 =
γ − 1

c2
,
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the left eigenvectors form a matrix

R−1 =













l1

l2

l3













=













1− z1 z2u −z2

1
2
(

z1 −
u
c
)

−1
2

(

z2u− 1
c

)

1
2z2

1
2
(

z1 +
u
c
)

−1
2

(

z2u+ 1
c

)

1
2z2













. (46)

In the results presented in the next section, Roe’s [20] averaging procedure
was used.

The implementation of these Riemann solvers relies on the following
transformations:

∆j+ 1

2

uj =
∑

k

rk
j+ 1

2

αk
j+ 1

2

, (47)

where
αk
j+ 1

2

=
∑

j

lk
j+ 1

2

∆j+ 1

2

uj . (48)

The numerical dissipation terms are then written as

ΦDC
j+ 1

2

=
∑

k

1

2
rk
j+ 1

2

ψ

(

ak
j+ 1

2

)

αk
j+ 1

2

, (49)

ΦFCT
j+ 1

2

=
∑

k

rk
j+ 1

2

(

fC k
j+ 1

2

+ΦDC
j+ 1

2

)

, (50)

and

ΦMF
j+ 1

2

=
∑

k

1

2
rk
j+ 1

2

[

gkj + gkj+1 − ψ

(

ak
j+ 1

2

+ γk
j+ 1

2

)

αk
j+ 1

2

]

, (51)

where

gkj = minmod

(

σk
j− 1

2

αk
j− 1

2

, σk
j+ 1

2

αk
j+ 1

2

)

, (52)

and

γk
j+ 1

2

=



















∆j+ 1

2

gk

αk
j+ 1

2

if αj+ 1

2

6= 0

0 otherwise

. (53)

Given these expressions for the numerical dissipation, the flux limiters
used in the modified FCT (and for that matter classical FCT) Eqs. (11),(13),
and (37) are rewritten to take advantage of these forms. When a monotone
first step is required with the FCT, Roe’s first-order method [20] plus the
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entropy correction is used for the low- order method. The antidiffusive fluxes
for the kth wave are rewritten as

f̂AD
j+ 1

2

=
1

2
ψ

(

ak
j+ 1

2

)

αk
j+ 1

2

, (54)

or a Lax-Wendroff flux

f̂AD
j+ 1

2

=
1

2

[

ψ

(

ak
j+ 1

2

)

− λ

(

ak
j+ 1

2

)2
]

αk
j+ 1

2

, (55)

or a fourth-order central difference

f̂AD
j+ 1

2

=
1

2
ψ

(

ak
j+ 1

2

)

αk
j+ 1

2

+
1

12

(

ak
j− 1

2

αk
j− 1

2

− ak
j+ 3

2

αk
j+ 3

2

)

. (56)

For the classic FCT method, the flux limiter becomes

f̂C
j+ 1

2

= Sj+ 1

2

max

[

0,min

(

Sj+ 1

2

λ−1αk
j− 1

2

,

∣

∣

∣

∣

f̂AD
j+ 1

2

∣

∣

∣

∣

, Sj+ 1

2

λ−1αk
j+ 3

2

)]

. (57)

The new FCT limiter becomes

f̂C k
j+ 1

2

= Sj+ 1

2

max

[

0,min

(

Sj+ 1

2

σ̃k
j− 1

2

α̃k
j− 1

2

,

∣

∣

∣

∣

f̂AD
j+ 1

2

∣

∣

∣

∣

, Sj+ 1

2

σ̃k
j+ 3

2

α̃k
j+ 3

2

)]

,

(58)
where

σ̃k
j+ 1

2

= ψ

(

ãk
j+ 1

2

)

or

σ̃k
j+ 1

2

= ψ

(

ãk
j+ 1

2

)

− λ

(

ak
j+ 1

2

)2

.

The modified-flux FCT method becomes

gj = minmod

(

f̂AD
j± 1

2

,∆j± 1

2

α;n

)

= Sj+ 1

2

max
[

0,min

(

1

2
n

∣

∣

∣

∣

f̂AD
j+ 1

2

∣

∣

∣

∣

, nSj+ 1

2

σj− 1

2

αk
j− 1

2

)

,

min

(

nσj+ 1

2

∣

∣

∣

∣

αk
j+ 1

2

∣

∣

∣

∣

,
1

2
nSj+ 1

2

f̂AD
j− 1

2

)

]

, (59)

where

σk
j+ 1

2

=
1

2
ψ

(

ak
j+ 1

2

)

or

σk
j+ 1

2

=
1

2

[

ψ

(

ak
j+ 1

2

)

− λ

(

ak
j+ 1

2

)2
]

.

In the next section, we will discuss the quality of solutions using these
methods.
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3 Results

To gauge the capability of the methods discussed in the previous sections,
three test problems were solved with the FCT methods and several other
high-resolution finite-difference methods. The other methods used will not
be described in detail here. The first test problem will be to solve a scalar
advection equation, Eq. (1), on a uniform grid. Two problems will be
considered: a square wave and a sine wave over a complete period. Both
waves have an amplitude of one. The second problem will be the inviscid
Burger’s equation,

∂u

∂t
+

∂

∂x

(

1

2
u2
)

= 0 ,

with initial data of a sine wave on a periodic domain with an amplitude
of one. This solution will be compared with the exact solution and the
corresponding error norms will be used to show convergence and order of
approximation in these norms for the various methods. Finally, the shock
tube problem used by Sod [32] will be used as a vehicle for comparison of
these methods for their use with systems of hyperbolic conservation laws.

3.1 Scalar Advection Equation

For the scalar advection of a square wave with a uniform velocity, the FCT
performs quite well with very little numerical diffusion present in the solu-
tion. These solutions are obtained for a CFL number held constant at 1/2
after 80 time steps.

As shown in Fig. 2 (a), the square wave is captured quite well by the dif-
ference scheme, however, there is a distinct lack of symmetry in the solution.
This lack of symmetry is evident in this version of the FCT despite the choice
of the CFL number (which should lead to symmetric results, ideally because
of the phase error properties of upwind methods at a CFL number of 1

2
[33]).

The lack of symmetry can be attributed to the support of the limiter, which
can result in anti-upwind data being used in the flux definition [34]. This is
more evident in Fig. 2 (b), but also evident is the overcompressive nature
of the scheme. The sine wave is in the process of being compressed into
two square waves. This behavior is clearly unacceptable because the char-
acter of the waves is largely destroyed by this algorithm. Figure 3 shows
that the new FCT algorithm is somewhat more diffusive (less compressive)
and has the more of the expected symmetry in the solution. Figure 3 (b)
still shows that this algorithm remains too compressive despite being TVD.
One negative aspect of this calculation is the clipping of the extrema with
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respect to the previous figure, although overall this solution is superior in
most respects to Zalesak’s FCT.

By using the Lax-Wendroff fluxes as the base for the antidiffusive fluxes,
the problem of overcompression is eliminated from both algorithms. This is
at the cost of some clipping of the solution’s extrema. The clipping in Fig. 4
is less than that in Fig. 5, but at the cost of the symmetry of the solution.
The lack of symmetry is also present in these results.

Figures 6 and 7 show the impact of the choice of n in the modified-flux
FCT formulation (and for that matter other implementations of limiters).
Here the Lax-Wendroff based high-order fluxes are used. The lower value
of n results in solutions that exhibit a great deal of dissipation and clipping
of extrema. For the n = 2, solution is of high quality with the clipping
of extrema quite controlled. This solution nearly equals that of the other
FCT formulations for the square wave. For the sine wave, despite some
clipping, the overcompression has disappeared with the character of the
original profile well preserved.

The symmetric TVD algorithm (second-order in both time and space)
produces results similar to the new FCT, but with a lack of symmetry. This
can be cured with a predictive first step as with the FCT. As Fig. 8 shows,
both exhibit a fair amount of extrema clipping and lack of symmetry. These
are similar to the results obtained in Fig. 4 with Zalesak’s FCT, but are
more diffused.

3.2 Burger’s Equation

In all cases, the solutions obtained by using the high-resolution algorithms on
Burger’s equation are quite good in terms of quality. Little would be gained
by simply viewing their profiles (they are similar to the results in [10] for a
TVD algorithm). By nature these high-resolution methods produce results
that are first-order accurate in the L∞ norm and approach second-order
accuracy in the L1 norm. In the next four figures discussed, figure (a) will
be for time equal to 0.2 when the solution remains smooth, and (b) will
show the error norms (L1, L2 and L∞) at time equal 1.0 after a shock
has formed. For the methods used, each is second-order in time and space
with the exception of the fourth-order FCT method, which is fourth-order in
space. Second-order temporal accuracy is obtained by using a Lax-Wendroff
type formulation. These calculations are all done with λ held constant. The
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norms shown in the figures are defined as follows:

L1 =
N
∑

j

|ej |

N
,

L2 =





N
∑

j

e2j
N





1

2

,

L∞ = sup (|ej |) ,

where
ej = U exact

j − Uapprox.
j .

In Fig. 9 the solution for t = 0.2 converges in the expected fashion, but at
t = 1 problems are present with the convergence in the L∞ norm. As the grid
is refined, the L∞ norm error increases rather than decreases as expected.
As the grid size is further decreased convergence resumes, but is quite slow
(about order 1/4). Figure 10 shows that the convergence properties of the
fourth-order antidiffusive flux do not converge at a fourth-order rate and are
in fact worse than those shown in the previous figure. The nonconvergence
in the L∞ norm for intermediate grid sizes for the t = 1 case is comparable.
The new FCT algorithm shows slight improvements over both of these cases,
but still has the same difficulties after a shock has formed in the solution.
As shown by Fig. 11, the solutions converge faster than Zalesak’s FCT, but
are still plagued by some of the same problems. This behavior is also shared
by the symmetric TVD’s results in Fig. 12. The symmetric TVD does not
converge as well as the new FCT method, but the nonconvergence problem
is not as pronounced although it is clearly present.

The similarity of the solutions for the two FCT methods and the sym-
metric TVD algorithm, and the lack of such a problem in the modified-flux
FCT (or TVD) method points to the form of the limiter as being the prob-
lem. The FCT and symmetric TVD use cell-edged limiters rather than
cell-centered limiters. This difference requires that each limiter has a wider
spatial stencil than the cell-centered limiter, and as a result the resulting
algorithm is not as sensitive to the presence of a discontinuity. This lack of
sensitivity results in a poorer handling of shocks and discontinuities. The
FCT is less diffusive than the symmetric TVD method, and this lack of dif-
fusion increases the problem. The results for the fourth-order spatial limiter
point out two problems: because the fourth-order spatial difference is more
compressive than the second-order difference scheme, the convergence diffi-
culty in the L∞ norm at a shock is increased slightly. Experiments with a
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second-order Runge-Kutta time integration scheme show improvements in
the L1 convergence of the FCT.

3.3 Sod’s Shock Tube Problem

The third problem involves the solution of Sod’s test problem which tests
the mettle of each algorithm against a difficult physical problem. For the
FCT methods [in the modified-flux σ = 1/2

(

|a| − λa2
)

], the Lax-Wendroff
flux is used to define the antidiffusive flux. All results were produced for
∆t = 0.4∆x and shown for t = 0.24. The initial conditions are the same as
Sod uses, but are listed here for completeness, for X < 0.5,













ρl

ul

pl













=













1.0

0.0

1.0













,

and for X ≥ 0.5












ρr

ur

pr













=













0.125

0.0

0.1













,

with γ = 1.4.
Figure 13 shows that the results using Zalesak’s FCT are reasonable, but

are polluted with a fair number of nonlinear instabilities. These instabilities
are significantly worse if the limiter is based on a second-order central differ-
ences with numerous small expansion shocks present in the rarefaction fan.
Even with the extra diffusion produced by the Lax-Wendroff flux, an ex-
pansion shock is present in the rarefaction wave and oscillations are present
in the preshock region of the flow. The overall quality of this solution is
quite poor. The new FCT formulation produces qualitatively better results
that appear to be due to greater dissipation in the scheme. The expansion
shock is no longer present. The overall quality of this solution is not high
because of the considerable smearing of the features of the flow. In Fig. 14,
the results show that a great deal of smearing is present except at the shock
wave where the solution is very sharp. In both of these figures the pressure-
related terms in the momentum and energy equations are incorporated as
source terms rather than as convective fluxes, and are central differenced.
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By computing the first step of the new FCT with Roe’s first-order
scheme, and using an approximate Riemann solver to compute the flux cor-
rection, the results are extremely good. As Fig. 15 shows, the smearing of
a standard FCT implementation of the new FCT is gone, with the shock
being computed with the same crispness. The rarefaction fan is smooth and
in good agreement with the exact solution. The resolution of the contact
discontinuity is somewhat smeared but is acceptable.

The modified-flux FCT (Fig. 16) has slightly poorer resolution of the
contact discontinuity, but computes the shock in a sharper fashion. The
overall quality of the solution is nearly identical to the previous case. In
this case the value of n = 1.5 was used on all three fields. Better resolution
of the contact discontinuity could be obtained with the n = 2 limiter. The
use of the n = 2 limiter with the nonlinear fields is generally ill-advised [28].
The final two figures are shown for comparison with the previous figures.
The symmetric TVD method (Fig. 17), gives adequate solution although
the amount of smearing exceeds that of the other methods incorporating
Roe’s approximate Riemann solver. The UNO method (implemented with
a method similar to the modified-flux TVD algorithm [8, 35]) was used to
compute the solution shown in Fig. 18. This solution is of a quality similar to
that found in Fig. 16 with slightly better resolution of each of the features of
the flow. Issues related to limiter construction in FCT may need additional
work to improve the results found using new FCT algorithms. It is not clear
that simply using higher order antidiffusive fluxes will yield better results
near extrema and discontinuities in the solution without improvements in
the other terms in the limiter.

4 Concluding Remarks

A generalized FCT algorithm is shown to be TVD under certain conditions.
The method does not need the standard diffusive first step in older FCT
algorithms. The new algorithm has improved properties from the standpoint
of both use and analysis. Results show that the new FCT algorithms (both
“new FCT” and modified-flux FCT) perform better than the older FCT
algorithms, and are comparable with other modern methods. This is shown
to be especially important for systems of equations where the improvement
is greater than with the scalar wave equation. The new formulation allows
Riemann solvers to be used effectively with FCT methods. Additionally,
this paper has more clearly defined the link between FCT methods and
TVD methods. This will allow advances made with one method to more
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easily fertilize improvements in the other type of method.
The initial motivation of this work was to tie together in a more coherent

fashion the various modern high-resolution methods for numerically solving
hyperbolic conservation laws. This work should be considered a start, with
the advances mentioned above, as progress toward this goal.

Future work will include the modification of the FCT to include MUSCL-
type schemes as well as the appropriate generalization of Zalesak’s multi-
dimensional limiter to these types of methods. As mentioned earlier, these
methods, once cast in the appropriate form, can be used for implicit time in-
tegration where the necessary form is similar to that found in TVD implicit
formulations. Tests on simple test problems indicate that these methods are
unconditionally stable.

In the next paper of this series we will extend the current analysis to a
more geometric approach.
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Figure 2: Solution of the scalar advection equation with Zalesak’s FCT
with the high-order flux defined by second-order central differencing.
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Figure 3: Solution of the scalar advection equation with the new FCT with
the high-order flux defined by second-order central differencing.
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Solution of the scalar advection equation with Zalesak’s FCT with the high-
order flux defined by Lax-Wendroff differencing.

Figure 4:
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Figure 5: Solution of the scalar advection equation with the new FCT with
the high-order flux defined by Lax-Wendroff differencing.
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Figure 6: Solution of the scalar advection equation with the modified-flux
FCT (n = 1 limiter).
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Figure 7: Solution of the scalar advection equation with the modified-flux
FCT (n = 2 limiter).
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Figure 8: Solution of the scalar advection equation with a symmetric TVD
scheme.
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Figure 9: Convergence of error norms for Burger’s equation for Zalesak’s
FCT with the high-order flux defined by Lax-Wendroff differencing.
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Figure 10: Convergence of error norms for Burger’s equation for Zalesak’s
FCT with the high-order flux defined by fourth-order central differencing.
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Figure 11: Convergence of error norms for Burger’s equation for the new
FCT with the high-order flux defined by Lax-Wendroff differencing.
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Figure 12: Convergence of error norms for Burger’s equation for a sym-
metric TVD algorithm.
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Figure 13: Solution of Sod’s shock tube problem with Zalesak’s FCT.
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Figure 14: Solution of Sod’s shock tube problem with the new FCT.
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Figure 15: Solution of Sod’s shock tube problem with new FCT with Roe’s
approximate Riemann solver used to define both low- and high-order fluxes.
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Figure 16: Solution of Sod’s shock tube problem with the modified-flux
FCT and n = 1.5 limiters on all fields.
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Figure 17: Solution of Sod’s shock tube problem with a symmetric TVD
algorithm.
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Figure 18: Solution of Sod’s shock tube problem with a UNO limiter and
a modified-flux TVD algorithm.
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