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Weak pseudo-inverses and the associativity of

two-place functions generated by left continuous

monotone functions∗
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Abstract This article introduces a weak pseudo-inverse of a monotone function, which is
applied to prove that the associativity of a two-place function T : [0, 1]2 → [0, 1] defined
by T (x, y) = t[−1](F (t(x), t(y))) where F : [0,∞]2 → [0,∞] is an associative function with
neutral element in [0,∞], t : [0, 1] → [0,∞] is a left continuous monotone function and
t[−1] : [0,∞] → [0, 1] is the weak pseudo-inverse of t depends only on properties of the range
of t.

Keywords: Monotone function; Weak pseudo-inverse; Left continuous function; Associative
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1 Introduction

In 1826, Abel [1] obtained the easily checking result: Let t : Dom(t) → R with Dom(t) ⊆ R be a
continuous strictly monotone function whose range is closed under addition. Then the two-place function
T : (Dom(t))2 → Dom(t) defined by

T (x, y) = g(t(x) + t(y)), (1)

where Dom(t) is the domain of t, g : Dom(t) → Dom(t) is the inverse function of t and R is the set of all
real numbers, is associative. This result can be seen as the starting point of constructing a two-place real
function that has nice algebraic properties through a monotone one-place real function. Following this
idea, Schweizer and Sklar [5] and Ling [4] constructed triangular norms (t-norms for short) by continuous
strictly decreasing functions, respectively. In particular, Klement, Mesiar and Pap [3] defined an additive
generator of a t-norm T as a strictly decreasing function t : [0, 1] → [0,∞] that is right continuous at 0
with t(1) = 0 such that for all (x, y) ∈ [0, 1]2,

t(x) + t(y) ∈ Ran(t) ∪ [f(0),∞], (2)

and
T (x, y) = g(t(x) + t(y)) (3)

where g is a pseudo-inverse of t and Ran(t) is a range of t, and they further pointed out that we can
generalize the additive generator of a t-norm T as it just satisfies (3). This idea was identified by
Viceńık [8] when t is a strictly monotone function. The related work can refer to [6, 7, 9] also. Recently,
Zhang and Wang [10] also proved that a right continuous monotone function may be an additive generator
of an associative two-place function (see Corollaries 5.2 and 5.3 of [10]). One naturally wishes that a
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left continuous monotone function can also be a additive generator of an associative two-place function.
However, Remark 4.1 of Zhang and Wang [10] showed that generally, (3) is not associative when t is a left
continuous monotone function and g is a pseudo-inverse of t. In this article, we consider two problems:
when can a left continuous monotone function t : [0, 1] → [0,∞] be an additive generator of an associative
two-place function like the function T : [0, 1]2 → [0, 1] given by (3) and what is the characterization of
such left continuous monotone functions?

The rest of this article is organized as follows. In Section 2, we mainly recall some basic concepts.
In Section 3, we define a weak pseudo-inverse of a monotone function, and develop its properties. In
Section 4, we give a representation of the range Ran(t) of a left continuous non-decreasing function t. In
Section 5, we first define an operation ⊗ on the Ran(t), and then investigate some necessary and sufficient
conditions for the operation ⊗ being associative. In Section 6, we characterize what properties of Ran(t)
are equivalent to the associativity of a function generated by a left continuous non-decreasing function t.
A conclusion is drawn in Section 7.

2 Preliminaries

In this section, we recall some known basic concepts and results that will be used latter.

Definition 2.1 ( [3]) A t-norm is a binary operator T : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1]
the following conditions are satisfied:

(T 1) T (x, y) = T (y, x),
(T 2) T (T (x, y), z) = T (x, T (y, z)),
(T 3) T (x, y) ≤ T (x, z) whenever y ≤ z,
(T 4) T (x, 1) = x.

A binary operator T : [0, 1]2 → [0, 1] is called a t-subnorm if it satisfies (T 1), (T 2), (T 3), and
T (x, y) ≤ min{x, y} for all x, y ∈ [0, 1].

Definition 2.2 ( [3]) A t-conorm is a binary operator S : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1]
the following conditions are satisfied:

(S1) S(x, y) = S(y, x),
(S2) S(S(x, y), z) = S(x, S(y, z)),
(S3) S(x, y) ≤ S(x, z) whenever y ≤ z,
(S4) S(x, 0) = x.

A binary operator S : [0, 1]2 → [0, 1] is called a t-supconorm if it satisfies (S1), (S2), (S3), and
S(x, y) ≥ max{x, y} for all x, y ∈ [0, 1].

Definition 2.3 ( [3, 8]) Let a, b,m, n ∈ [−∞,∞] with a < b,m < n and t : [a, b] → [m,n] be a monotone
function. Then the function t(−1) : [m,n] → [a, b] defined by

t(−1)(y) = sup{x ∈ [a, b] | (t(x)− y)(t(b)− t(a)) < 0}

is called a pseudo-inverse of the monotone function t.

Let [a, b] ⊆ [−∞,∞] with a ≤ b. Then by convention, sup ∅ = a and inf ∅ = b.

Definition 2.4 ( [2]) Let a, b,m, n ∈ [−∞,∞] with a < b,m < n and t : [a, b] → [m,n] be a monotone
non-decreasing function. Then each function t∗ : [m,n] → [a, b] satisfying

(i) t ◦ t∗ ◦ t = t,

(ii) t∧ ≤ t∗ ≤ t∨,

is called a quasi-inverse of t, where functions t∧ : [m,n] → [a, b] and t∨ : [m,n] → [a, b] are defined by,
respectively, t∧(y) = sup t−1([m, y)), t∨(y) = inf t−1((y, n]) in which t−1 is an inverse function of t.
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Theorem 2.1 ( [3]) Let t : [0, 1] → [0,∞] be a strictly decreasing function with t(1) = 0 such that

t(x) + t(y) ∈ Ran(t) ∪ [t(0+),∞]

for all (x, y) ∈ [0, 1]2. Then the function T : [0, 1]2 → [0, 1] given by

T (x, y) = t(−1)(t(x) + t(y))

is a t-norm.

3 Weak pseudo-inverses of monotone functions

This section first introduces a weak pseudo-inverse of a monotone function, and then discuss the
properties of the weak pseudo-inverses. We also use the weak pseudo-inverse of a monotone function to
construct a t-norm and a t-supconorm, respectively.

Definition 3.1 Let a, b,m, n ∈ [−∞,∞] with a < b,m < n and t : [a, b] → [m,n] be a monotone
function. Then the function t[−1] : [m,n] → [a, b] defined by

t[−1](y) = sup{x ∈ [a, b] | (t(x)− y)(t(b)− t(a)) ≤ 0}

is called a weak pseudo-inverse of the monotone function t.

As an immediate consequence of Definition 3.1, we get the following corollary.

Corollary 3.1 Let a, b,m, n ∈ [−∞,∞] with a < b,m < n and t : [a, b] → [m,n] be a monotone function

(i) If t is non-decreasing and non-constant, then for all y ∈ [m,n] we obtain the simpler formula

t[−1](y) = sup{x ∈ [a, b] | t(x) ≤ y}.

(ii) If f is non-increasing and non-constant, then for all y ∈ [m,n] we obtain the simpler formula

t[−1](y) = sup{x ∈ [a, b] | t(x) ≥ y}.

(iii) If t is a constant function, then for all y ∈ [m,n] we have t[−1](y) = b.

Remark 3.1 Let a, b,m, n ∈ [−∞,∞] with a < b,m < n and t : [a, b] → [m,n] be a monotone function,
and let t[−1] be its weak pseudo-inverse.

(i) If t is non-decreasing, then the function t[−1] is right continuous and non-decreasing, and for all
y ∈ [m, t(a)) we get t[−1](y) = a, and for all y ∈ (t(b), n] we have t[−1](y) = b.

(ii) If t is non-increasing, then the function t[−1] is left continuous and non-increasing, and for all
y ∈ [m, t(b)) we get t[−1](y) = b, and for all y ∈ (t(a), n] we have t[−1](y) = a.

Example 3.1 Let the function t : [0, 1] → [0,∞] be defined by

t(x) =































x if x ∈ [0, 14 ],
1
4 if x ∈ (14 ,

1
2 ],

x+ 1
2 if x ∈ (12 ,

3
4 ),

2 if x ∈ [ 34 ,
7
8 ),

x+ 5
4 if x ∈ [ 78 , 1].
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Then

t(−1)(x) =















































x if x ∈ [0, 14 ],
1
2 if x ∈ (14 , 1],

x− 1
2 if x ∈ (1, 54 ),

3
4 if x ∈ [ 54 , 2],
7
8 if x ∈ (2, 178 ),

x− 5
4 if x ∈ [ 178 , 9

4 ),

1 if x ∈ [ 94 ,∞].

t[−1](x) =















































x if x ∈ [0, 1
4 ),

1
2 if x ∈ [ 14 , 1],

x− 1
2 if x ∈ (1, 5

4 ),
3
4 if x ∈ [ 54 , 2),
7
8 if x ∈ [2, 17

8 ),

x− 5
4 if x ∈ [ 178 , 9

4 ),

1 if x ∈ [ 94 ,∞].

Obviously, t(−1) ≤ t[−1] and t∗ ≤ t[−1]. If x ∈ [0, 14 ) ∪ (12 ,
3
4 ) ∪ [ 78 , 1], then t(−1)(t(x)) = t[−1](t(x)). If

x ∈ [0, 3
4 ) ∪ [ 78 , 1], then t[−1](t(x)) = t∗(t(x)).

Lemma 3.1 Let t : [a, b] → [m,n] be a non-decreasing (resp. non-increasing) function and t[−1] be its
weak pseudo-inverse. Then for all x ∈ [a, b],

t(t[−1](t(x))) ≥ t(x) (resp. t(t[−1](t(x))) ≤ t(x)).

Proof. If t is non-decreasing and x ∈ [a, b] then

t[−1](t(x)) = sup{y ∈ [a, b] | t(y) ≤ t(x)} ≥ x,

thus,
t(t[−1](t(x))) = t(sup{y ∈ [a, b] | t(y) ≤ t(x)}) ≥ t(x).

The case that t is non-increasing is completely analogous.

Lemma 3.2 Let t : [a, b] → [m,n] be a non-decreasing (resp. non-increasing) function, let t[−1] be its
weak pseudo-inverse and x0 ∈ [a, b]. Then t(t[−1](t(x0))) > t(x0) (resp. t(t[−1](t(x0))) < t(x0)) if and
only if there exists a δx0

> 0 such that t(x) = t(x0) for all x ∈ [x0, x0 + δx0
) and t(x0) < t(x0 + δx0

)
(resp. t(x0) > t(x0 + δx0

)).

Proof. (⇐). Let t be a non-decreasing function and x0 ∈ [a, b). If there is a δx0
> 0 such that

t(x) = t(x0) for all x ∈ [x0, x0 + δx0
) and t(x0) < t(x0 + δx0

), then

t[−1](t(x0)) = sup{y ∈ [a, b] | t(y) ≤ t(x0)} = x0 + δx0
,

thus
t(t[−1](t(x0))) = t(sup{y ∈ [a, b] | t(y) ≤ t(x0)}) = t(x0 + δx0

) > t(x0).

(⇒). Suppose that t(t[−1](t(x0))) > t(x0). Let x0 ∈ [a, b) and α = t[−1](t(x0)). Then t(α) > t(x0).
Using the monotonicity of t we have α > x0. Take δx0

= α − x0. Then from the monotonicity of t
and α = sup{y ∈ [a, b] | t(y) ≤ t(x0)}, we immediately have t(x) = t(x0) for all x ∈ [x0, x0 + δx0

) and
t(x0) < t(x0 + δx0

).
The case that t is non-increasing is completely analogous.
From Lemmas 3.1 and 3.2 we easily get the following theorem.

Theorem 3.1 Let t : [a, b] → [m,n] be a non-decreasing (resp. non-increasing) function and t[−1] be its
weak pseudo-inverse. Then the following are equivalent:
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(i) {x0 ∈ [a, b) | there is a δx0
> 0 such that t(x) = t(x0) for all x ∈ [x0, x0 + δx0

) and t(x0) <
t(x0 + δx0

) (resp. t(x0) > t(x0 + δx0
))} = ∅;

(ii) t(t[−1](t(x0))) = t(x0) for all x0 ∈ [a, b].

From Definitions 2.3 and 3.1, Lemma 3.1 and Theorem 3.1, we easily deduce the following properties
of a weak pseudo-inverse of a monotone function.

Proposition 3.1 Let a, b,m, n ∈ [−∞,∞] with a < b,m < n and t : [a, b] → [m,n] be a monotone
function and t[−1] be its weak pseudo-inverse.

(i) t[−1] coincides with t(−1) if and only if t is strictly monotone. Moreover, t[−1] coincides with t−1 if
and only if t is a bijection.

(ii) t[−1] is continuous if and only if t is strictly monotone on the set t[−1]([m,n)).

(iii) t[−1] ◦ t ≥ id[a,b].

(iv) If t is either left continuous or strictly monotone then t ◦ t[−1] ◦ t = t.

(v) If t is strictly monotone then so is t[−1] |Ran(t). Further, we have

t ◦ t[−1] |Ran(t)= idRan(t), t[−1] ◦ t = id[a,b].

(vi) If t is surjective then t ◦ t[−1] = id[m,n].

(vii) If both µ : [a, b] → [a, b] and ν : [m,n] → [m,n] are monotone bijections then

(t ◦ µ)[−1] = µ−1 ◦ t[−1], (ν ◦ t)[−1] = t[−1] ◦ ν−1.

From Proposition 3.1 (i) and Theorem 2.1, we have the following corollary.

Corollary 3.2 Let t : [0, 1] → [0,∞] be a strictly decreasing function with t(1) = 0 such that

t(x) + t(y) ∈ Ran(t) ∪ [t(0+),∞]

for all (x, y) ∈ [0, 1]2. Then the function T : [0, 1]2 → [0, 1] given by

T (x, y) = t[−1](t(x) + t(y))

is a t-norm.

Proposition 3.2 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function such that

t(x) + t(y) ∈ Ran(t) ∪ [t(1−),∞] (4)

for all (x, y) ∈ [0, 1]2. Then the function T : [0, 1]2 → [0, 1] given by

T (x, y) = t[−1](t(x) + t(y))

is a t-supconorm.

Proof. Replacing f (−1) by t[−1], in completely analogous to the proof of Theorem 3.23 in [3] we
can show the monotonicity, the associativity and the commutativity of T , respectively. On the other
hand, T (x, y) = t[−1](t(x) + t(y)) ≥ t[−1](t(x)) ≥ x for all x, y ∈ [0, 1], analogously, T (x, y) ≥ y. Thus
T (x, y) ≥ max{x, y}. Therefore, by Definition 2.2 T is a t-supconorm.

Note that if t : [0, 1] → [0,∞] is a left continuous non-decreasing function but not strictly increasing
and satisfies (4) then one easily check that the function T : [0, 1]2 → [0, 1] given by T (x, y) = t(−1)(t(x)+
t(y)) isn’t a t-supconorm.

Generally, we can prove the following result through a analogous way to the proof of Proposition
3.2.
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Proposition 3.3 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function and F : [0,∞]2 →
[0,∞] be such that ([0,∞], F,≤) is a fully ordered Abel semigroup with F (x, 0) ≥ x for all x ∈ [0,∞]. If

F (t(x), t(y)) ∈ Ran(t) ∪ [t(1−),∞] (5)

for all (x, y) ∈ [0, 1]2. Then the function T : [0, 1]2 → [0, 1] given by

T (x, y) = t[−1]F (t(x), t(y)) (6)

is a t-supconorm.

In what follows, we consider what is a characterization of left continuous non-decreasing functions
t : [0, 1] → [0,∞] such that the function T : [0, 1]2 → [0, 1] given by

T (x, y) = t[−1](F (t(x), t(y))) (7)

is associative, where F : [0,∞]2 → [0,∞] is an associative function and t[−1] : [0,∞] → [0, 1] is the weak
pseudo-inverse of t.

4 The range of a left continuous non-decreasing function

In this section we give a representation of the range of a left continuous non-decreasing function.
Let t : [0, 1] → [0,∞] be a function. We write t(a−) = limx→a− t(x) for each a ∈ (0, 1] and

t(a+) = limx→a+ t(x) for each a ∈ [0, 1). Define t(1+) = ∞ whenever t is non-decreasing. Further, let

A = {M | there is a left continuous non-decreasing function t : [0, 1] → [0,∞] such that Ran(t) = M}

and denoted by A \ B = {x ∈ A | x /∈ B} for two sets A and B. Then the following lemma presents the
range of a left continuous non-decreasing function.

Lemma 4.1 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function and M ∈ A with M 6=
[t(0),∞]. Then there exist a uniquely determined non-empty countable system U = {[bk, dk] ⊆ [0,∞] | k ∈
K} of closed intervals of a positive length which satisfy that for all [bk, dk], [bl, dl] ∈ U , [bk, dk]∩ [bl, dl] = ∅
or [bk, dk] ∩ [bl, dl] = {dk} when dk ≤ bl, and a uniquely determined non-empty countable set V = {ck ∈
[0,∞] | k ∈ K} such that [bk, dk] ∩ V = {bk} or [bk, dk] ∩ V = {bk, dk} for all k ∈ K and

M = {ck ∈ [0,∞] | k ∈ K} ∪

(

[t(0),∞] \

(

⋃

k∈K

[bk, dk]

))

where |K| ≤ |K|.

Proof. We first prove the existence of both U and V . Take U = {[t(x), t(x+)] | x ∈ [0, 1], t(x) < t(x+)}
and V = {t(x) | x ∈ [0, 1], t(x) < t(x+)} ∪ {t(x+) | x ∈ [0, 1], t(x) < t(x+), t(x+) ∈ M}. It is easy
to see that U is countable. Let K be a countable index set and |K| = |U|. We can rewrite U as
U = {[bk, dk] ⊆ [0,∞] | k ∈ K} in which bk = f(k), dk = f(k+) for each k ∈ K. Clearly, V is also
countable. Now, let K be a countable index set and |K| = |V|. Obviously, |K| ≤ |K|. Rearrange V
from small to large and assign its every element an index k ∈ K, for example, the k-th element in the
rearranged set V is denoted by ck with k ∈ K. Then V = {ck ∈ [0,∞] | k ∈ K}. Notice that for every
k ∈ K, there are two elements m,n ∈ K with m+ 1 = n such that dk = t(k+) = cn and bk = t(k) = cm
when t(k+) ∈ M , and there exits a j ∈ K such that bk = cj when t(k+) /∈ M . Obviously, U and V have
all required properties, respectively.

Now, we prove the uniqueness of both U and V . Suppose that both the system U1 = {[ul, vl] ⊆
[0,∞] | l ∈ L} and the set V1 = {cl ∈ [0,∞] | l ∈ L} also have all required properties. Below, we prove
that U = U1. Fix an arbitrary interval [bk, dk] ∈ U . Choose a ∈ [bk, dk] such that a /∈ M . Then there
exists a [ul, vl] ∈ U1 such that a ∈ [ul, vl] where [ul, vl] ∩M = {ul} or [ul, vl] ∩M = {ul, vl}. Next, we
prove that [bk, dk] = [ul, vl] by distinguishing two steps.
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Supposing that dk ≤ ul < vl, this contradicts the fact that a ∈ [bk, dk] and a ∈ [ul, vl] with a /∈ M .
Now, assume ul < dk < vl. If dk ∈ M , then dk ∈ [ul, vl]∩M , contrary to [ul, vl]∩M ∈ {{ul}, {ul, vl}}. If
dk /∈ M , then the set [ul, vl]∩M is infinite, a contradiction since [ul, vl]∩M ∈ {{ul}, {ul, vl}}. Therefore,
ul < vl ≤ dk. In a completely analogous way, we have bk ≤ ul < vl. Thus bk ≤ ul < vl ≤ dk.

Suppose that bk < ul. Then ul ∈ [bk, dk] since ul ∈ M , contrary to [bk, dk] ∩M ∈ {{bk}, {bk, dk}}.
Consequently, bk = ul < vl ≤ dk. In the following, we prove that vl = dk. Suppose that vl < dk. Then
vl ∈ [bk, dk]. If vl ∈ M , then vl ∈ [bk, dk]∩M , contrary to [bk, dk]∩M ∈ {{bk}, {bk, dk}}. If vl /∈ M , then
the set [bk, dk] ∩M is infinite, a contradiction since [bk, dk] ∩M ∈ {{bk}, {bk, dk}}. Therefore, vl = dk.

We finally come to [bk, dk] = [ul, vl]. From the arbitrariness of [bk, dk], we have U ⊆ U1. The case
U ⊇ U1 is completely analogous. Therefore, U = U1. This follows that V = V1. In particular, both U and
V are independent of a choice of t.

Definition 4.1 Let M ∈ A. A pair (U ,V) is said to be associated with M 6= [t(0),∞] if U = {[bk, dk] ⊆
[0,∞] | k ∈ K} is a non-empty countable system of closed intervals of a positive length which satisfy that
for all [bk, dk], [bl, dl] ∈ U , [bk, dk] ∩ [bl, dl] = ∅ or [bk, dk] ∩ [bl, dl] = {dk} when dk ≤ bl, and V = {ck ∈
[0,∞] | k ∈ K} is a non-empty countable set such that [bk, dk] ∩ V = {bk} or [bk, dk] ∩ V = {bk, dk} for
all k ∈ K and

M = {ck ∈ [0,∞] | k ∈ K} ∪

(

[t(0),∞] \

(

⋃

k∈K

[bk, dk]

))

.

A pair (U ,V) is said to be associated with M = [t(0),∞] if U = {[∞,∞]} and V = {∞}.

We briefly write (U ,V) = ({[bk, dk] | k ∈ K}, {ck | k ∈ K}) instead of (U ,V) = ({[bk, dk] ⊆ [0,∞] |
k ∈ K}, {ck ∈ [0,∞] | k ∈ K}).

Example 4.1

(i) Let the function t1 : [0, 1] → [0,∞] be defined by

t1(x) =











1
2x if x ∈ [0, 1

2 ],
1
2 if x ∈ (12 ,

3
4 ],

x if x ∈ (34 , 1].

Then the pair ({[ 14 ,
1
2 ], [

1
2 ,

3
4 ], [1,∞]}, { 1

4 ,
1
2 , 1}) is associated with [0, 14 ] ∪ { 1

2} ∪ (34 , 1] ∈ A.

(ii) Let the function t2 : [0, 1] → [0,∞] be defined by

t2(x) =







































1 + x if x ∈ [0, 1
5 ],

6
5 if x ∈ (15 ,

1
4 ],

3
2 if x ∈ (14 ,

1
2 ],

2 + x if x ∈ (12 ,
3
4 ],

1
1−x

if x ∈ (34 , 1),

∞ otherwise .

Then the pair ({[ 65 ,
3
2 ], [

3
2 ,

5
2 ], [

11
4 , 4]}, { 6

5 ,
3
2 ,

11
4 }) is associated with [1, 65 ]∪{ 3

2}∪ [ 52 ,
11
4 ]∪ [4,∞] ∈ A.

5 An operation on Ran(t) and its properties

In this section we first define an operation ⊗ on Ran(t) with t a left continuous non-decreasing
function, and then establish some necessary and sufficient conditions for the operation⊗ being associative.

Definition 5.1 Let M ∈ A. Define a function GM : [0,∞] → M by

GM (x) = min{M ∩ [sup([0, x] ∩M), inf([x,∞] ∩M)]}

for all x ∈ [0,∞].
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The next proposition describes the relationship between M and GM .

Proposition 5.1 Let M ∈ A and (U ,V) = ({[bk, dk] | k ∈ K}, {ck | k ∈ K}) be associated with M .
Then for all x ∈ [0,∞] and k ∈ K,

(i) If x ∈ [0, t(0)] then GM (x) = t(0).

(ii) GM (x) = x if and only if x ∈ M .

(iii) If x /∈ M and x > t(0) then GM (x) = bk if and only if x ∈ [bk, dk] \ {ck}.

(iv) GM is a non-decreasing function.

Proof. From Definition 5.1, (i), (ii) and (iv) are immediate.
(iii) Let x /∈ M and x > t(0). Then there is a k ∈ K such that x ∈ [bk, dk] \ {ck}. Conversely, let

x > t(0) and x ∈ [bk, dk]\{ck}. Then sup([0, x]∩M) = bk and inf([x, 1]∩M) = dk. Thus from Definition
5.1, GM (x) = bk.

Example 5.1 In Example 3.1,

(i)

GM (x) =











1
4 if x ∈ (14 ,

1
2 ),

1
2 if x ∈ (12 ,

3
4 ],

x otherwise.

(ii)

GM (x) =



















6
5 if x ∈ (65 ,

3
2 ),

3
2 if x ∈ (32 ,

5
2 ),

11
4 if x ∈ (114 , 4],

x otherwise.

In what follows, we always suppose that F : [0,∞]2 → [0,∞] is an associative function. We need the
following definition.

Definition 5.2 Let M ∈ A and GM be determined by M . Define an operation ⊗ : M2 → M by

x⊗ y = GM (F (x, y)).

Example 5.2 In Example 5.1,

(i)

x⊗ y =











1
4 if F (x, y) ∈ (14 ,

1
2 ),

1
2 if F (x, y) ∈ (12 ,

3
4 ],

F (x, y) otherwise.

(ii)

x⊗ y =



















6
5 if F (x, y) ∈ (65 ,

3
2 ),

3
2 if F (x, y) ∈ (32 ,

5
2 ),

11
4 if F (x, y) ∈ (114 , 4],

F (x, y) otherwise.

Proposition 5.2 Let M ∈ A and (U ,V) = ({[bk, dk] | k ∈ K}, {ck | k ∈ K}) be associated with M .
Then for all x, y ∈ M and k ∈ K,

(i) If F (x, y) ∈ [0, t(0)], then x⊗ y = t(0).
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(ii) x⊗ y = F (x, y) if and only if F (x, y) ∈ M .

(iii) If F (x, y) /∈ M and F (x, y) > t(0) then x⊗ y = bk if and only if F (x, y) ∈ [bk, dk] \ {ck}.

(iv) ⊗ is a non-decreasing function.

Proof. It is an immediate matter of Proposition 5.1 and Definition 5.2.

Proposition 5.3 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function with Ran(t) = M
and M ∈ A, (U ,V) = ({[bk, dk] | k ∈ K}, {ck | k ∈ K}) be associated with M . Then GM (x) = t(t[−1](x))
for all x ∈ [0,∞].

Proof. If x ∈ Ran(t) then, from Proposition 3.1 (iv), we have t(t[−1](x)) = x. Thus, in the case of
x /∈ M and x < t(0), by Remark 3.1 we have t[−1](x) = 0, hence t(t[−1](x)) = t(0); in the case of x /∈ M
and x > t(0), there is k ∈ K such that x ∈ [bk, dk] \ {ck} with bk ∈ M . Consequently,

t(t[−1](x)) = t(sup{y ∈ [0,∞] | t(y) ≤ x})

= sup{t(y) ∈ [0,∞] | t(y) ≤ x}

= bk.

Therefore, by Proposition 5.1, we get GM (x) = t(t[−1](x)).
Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function with Ran(t) = M and (U ,V) =

({[bk, dk] | k ∈ K}, {ck | k ∈ K}) be associated with M . Denote

H = {c | there are an x0 ∈ [0, 1] and ε > 0 such that t|[x0,x0+ε] = c},

N = {sup{x ∈ [0, 1] | t(x) = y} | y ∈ H}, W = {x ∈ [0, 1] | t(x) ∈ M \H},

D = N ∪W.

In particular, t[−1](x) ∈ D for all x ∈ [0,∞], and we have the following definition.

Definition 5.3 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function. Define a function
t⋆ : D → [0,∞] by

t⋆(x) = t(x) for all x ∈ D,

and a two-place function F ⋆ : D2 → D by

F ⋆(x, y) = t[−1](F (t⋆(x), t⋆(y)))

for all x, y ∈ D, respectively.
Then we immediately have the following remark.

Remark 5.1 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function. Then

(i) t⋆ is a strictly increasing function.

(ii) t[−1](t⋆(x)) = x for all x ∈ D.

(iii) t⋆(t[−1](x)) = x for all x ∈ [0,∞].

Lemma 5.1 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function. Then

x⊗ y = t⋆(F ⋆(t[−1](x), t[−1](y)))

for all x, y ∈ M and
F ⋆(x, y) = t[−1](t⋆(x)⊗ t⋆(y))

for all x, y ∈ D.
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Proof. From Definitions 5.2 and 5.3, Remark 5.1 and Proposition 5.3, for all x, y ∈ M we get

x⊗ y = GM (F (x, y))

= t(t[−1](F (x, y)))

= t⋆(t[−1](F (x, y)))

= t⋆(t[−1](F (t⋆(t[−1](x)), t⋆(t[−1](y)))))

= t⋆(F ⋆(t[−1](x), t[−1](y))).

Because of x, y ∈ M , there exist two elements u, v ∈ D such that t⋆(u) = x, t⋆(v) = y. Thus, from
Remark 5.1, we have

t⋆(u)⊗ t⋆(v) = x⊗ y = t⋆(F ⋆(t[−1](x), t[−1](y))) = t⋆(F ⋆(u, v)).

This follows that t[−1](t⋆(u)⊗ t⋆(v)) = t[−1](t⋆(F ⋆(u, v)) = F ⋆(u, v).
Furthermore, we have the following proposition.

Proposition 5.4 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function. Then the following
are equivalent:

(i) ⊗ is associative.

(ii) F ⋆ is associative.

Proof. Let ⊗ be associative. Then, by Lemma 5.1, for all x, y, z ∈ D we have

F ⋆(F ⋆(x, y), z) = t[−1](t⋆(F ⋆(x, y))⊗ t⋆(z))

= t[−1](t⋆ ◦ t[−1](t⋆(x)⊗ t⋆(y))⊗ t⋆(z))

= t[−1](t⋆(x) ⊗ t⋆(y)⊗ t⋆(z))

= t[−1](t⋆(x) ⊗ t⋆ ◦ t[−1](t⋆(y)⊗ t⋆(z)))

= t[−1](t⋆(x) ⊗ t⋆(F ∗(y, z)))

= F ⋆(x, F ⋆(y, z)).

Let F ⋆ be associative. Then, by Lemma 5.1, for all x, y, z ∈ M we have

(x⊗ y)⊗ z = t⋆(F ⋆(t[−1](x⊗ y), t[−1](z)))

= t⋆(F ⋆(t[−1] ◦ t⋆(F ⋆(t[−1](x), t[−1](y))), t[−1](z)))

= t⋆(F ⋆((F ⋆(t[−1](x), t[−1](y))), t[−1](z)))

= t⋆(F ⋆(t[−1](x), F ⋆(t[−1](y), t[−1](z)))

= t⋆(F ⋆(t[−1](x), t[−1] ◦ t⋆(F ⋆(t[−1](y), t[−1](z))))

= t⋆(F ⋆(t[−1](x), t[−1](y ⊗ z))

= x⊗ (y ⊗ z).

Lemma 5.2 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function and T : [0, 1]2 → [0, 1]
be a function defined by Eq.(7). Then, for each x, y ∈ [0, 1], there are two elements m,n ∈ D such that
t⋆(m) = f(x), t⋆(n) = f(y) and T (x, y) = F ⋆(m,n). In particular, T (x, y) = F ⋆(x, y) for all x, y ∈ D.

Proof. If x, y ∈ D then from Definition 5.3 we have t⋆(x) = t(x) and t⋆(y) = t(y). If x /∈ D, then
t(x) ∈ H. Let m = max{s ∈ [0, 1] | t(s) = t(x), t(x) ∈ H}. Obviously, m ∈ D and t⋆(m) = t(x).
Analogously, if y /∈ D then there is an n ∈ D such that t⋆(n) = t(y).

Therefore, from Definition 5.3 we have

T (x, y) = t[−1](F (t(x), t(y)))

= t[−1](F (t⋆(m), t⋆(n)))

= F ⋆(m,n)

for arbitrarily x, y ∈ [0, 1].
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The next proposition describes the relation between T and F ⋆.

Proposition 5.5 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function and T : [0, 1]2 →
[0, 1] be a function defined by Eq.(7). Then the following are equivalent:

(i) T is associative.

(ii) F ⋆ is associative.

Proof. Suppose that F ⋆ is associative. Let us prove that T (T (x, y), z) = T (x, T (y, z)) for all x, y, z ∈
[0, 1]. Let x, y, z ∈ [0, 1]. Then by Lemma 5.2, there exist m,n, v ∈ D such that t⋆(m) = t(x), t⋆(n) = t(y)
and t⋆(v) = t(z), respectively, and T (x, y) = F ⋆(m,n), T (x, z) = F ⋆(m, v) and T (y, z) = F ⋆(n, v),
respectively. Therefore,

T (T (x, y), z) = T (F ⋆(m,n), z)

= F ⋆(F ⋆(m,n), v)

= F ⋆(m,F ⋆(n, v))

= F ⋆(m,T (y, z))

= T (x, T (y, z)).

Conversely, if T is associative, i,e., T (T (x, y), z) = T (x, T (y, z) for all x, y, z ∈ [0, 1], then by Eq.(7),
we have

t[−1](F (t ◦ t[−1](F (t(x), t(y))), t(z))) = t[−1](F (t(x), t ◦ t[−1](F (t(x), t(y))))).

So that

t[−1](F (t⋆ ◦ t[−1](F (t⋆(x), t⋆(y))), t∗(z))) = t[−1](F (t⋆(x), t⋆ ◦ t[−1](F (t⋆(x), t⋆(y)))))

for all x, y, z ∈ D. Thus from Definition 5.3, F ⋆(F ⋆(x, y), z) = F ⋆(x, F ⋆(y, z)), therefore, F ⋆ is associative.

The following is an immediate consequence of Propositions 5.4 and 5.5.

Theorem 5.1 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function and T : [0, 1]2 → [0, 1]
be a function defined by Eq.(7). Then T is associative if and only if ⊗ is associative.

6 Associativity of the operation ⊗

This section devotes to exploring some necessary and sufficient conditions for the operation ⊗ being
associative, which answer what properties of M are equivalent to the associativity of ⊗.

Let M ⊆ [0,∞]. Define O(M) =
⋃

x,y∈M (min{x, y},max{x, y}] when M 6= ∅ (where (x, x] = ∅), and
O(M) = ∅ when M = ∅. Let ∅ 6= A,B ⊆ [0,∞] and c ∈ [0,∞]. Denote F (A,B) = {F (x, y) | x ∈ A, y ∈
B} and F (∅, A) = ∅ = F (A, ∅). It is clear that F (c, O(M)) = O(F (c,M)) and F (O(M), c) = O(F (M, c)).

Definition 6.1 Let M ∈ A and (U ,V) = ({[bk, dk] | k ∈ K}, {ck | k ∈ K}) be associated with M . For
all y ∈ M and k, l ∈ K, set K∗ = K ∪ {τ} where τ /∈ K. Define

My
k = {x ∈ M | F (x, y) ∈ [bk, dk] \ {ck}},M

k
y = {x ∈ M | F (y, x) ∈ [bk, dk] \ {ck}},

My
τ = {x ∈ M | F (x, y) < t(0)},M τ

y = {x ∈ M | F (y, x) < t(0)},

My = {x ∈ M | F (x, y) ∈ M},My = {x ∈ M | F (y, x) ∈ M},

Hy
k = O({bk} ∪ F (My

k , y)), H
y
τ = O({t(0)} ∪ F (My

τ , y)),

Hk
y = O({bk} ∪ F (y,Mk

y )), H
τ
y = O({t(0)} ∪ F (y,M τ

y )),

Jy
k,l =

{

O(F (My
k , bl) ∪ F (bk,M

l
y)), if My

k 6= ∅,M l
y 6= ∅,

∅, otherwise.
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Jy
τ,l =

{

O(F (My
τ , bl) ∪ F (t(0),M l

y)), if My
τ 6= ∅,M l

y 6= ∅,

∅, otherwise.

Jy
k,τ =

{

O(F (My
k , t(0)) ∪ F (bk,M

τ
y )), if My

k 6= ∅,M τ
y 6= ∅,

∅, otherwise.

Jy
τ,τ =

{

O(F (My
τ , t(0)) ∪ F (t(0),M τ

y )), if My
τ 6= ∅,M τ

y 6= ∅,

∅, otherwise.

Put T1(M) =
⋃

y∈M

⋃

k∈K∗ F (Hy
k ,My),T2(M) =

⋃

y∈M

⋃

k∈K∗ F (My, Hk
y ),T3(M) =

⋃

y∈M

⋃

k,l∈K∗ J
y
k,l

and T(M) = T1(M) ∪ T2(M) ∪ T3(M).

In the following, we further suppose that F : [0,∞]2 → [0,∞] is a monotone and associative function
with neutral element in [0,∞]. We have the following two lemmas.

Lemma 6.1 Let M ∈ A and (U ,V) = ({[bk, dk] | k ∈ K}, {ck | k ∈ K}) be associated with M . Then for
any x, y ∈ [0, 1], GM (x) = GM (y) if and only if (min{x, y},max{x, y}] ∩ (M \ t(0)) = ∅.

Proof. Let GM (x) = GM (y). If (min{x, y},max{x, y}] ∩ (M \ t(0)) 6= ∅, then x 6= y, without loss of
generality, say x < y, thus there is an a ∈ (x, y] ∩ (M \ t(0)). By Proposition 5.1, GM (a) = a > t(0).
If x ∈ M , then by Proposition 5.1 GM (x) = x, thus GM (x) < GM (a). If x /∈ M , then x ∈ [0, t(0))
or there is a k ∈ K such that x ∈ [bk, dk] \ {ck}. In the case x ∈ [0, t(0)), by Proposition 5.1 we have
GM (x) = t(0) < GM (a). In the case x ∈ [bk, dk] \ {ck}, by Proposition 5.1 we have GM (x) = bk, thus
GM (x) < x < a = GM (a). In summary, we always have GM (x) < GM (a) ≤ GM (y), a contradiction.

Conversely, if (min{x, y},max{x, y}] ∩ (M \ t(0)) = ∅, without loss of generality, say x < y, then
(x, y] ⊆ (0, t(0)] or there is a k ∈ K such that (x, y] ⊆ [bk, dk] \ {ck}. If (x, y] ⊆ (0, t(0)] then, from
Proposition 5.1,GM (x) = 0 = GM (y). If (x, y] ⊆ [bk, dk]\{ck} then, from Proposition 5.1, GM (x) = bk =
GM (y).

Lemma 6.2 Let M ∈ A and (U ,V) = ({[bk, dk] | k ∈ K}, {ck | k ∈ K}) be associated with M . Let
M1,M2 ⊆ [0,∞] be two non-empty sets and c ∈ [0,∞]. Then
(1) F (O(M1 ∪M2), c) ∩ (M \ {t(0)}) 6= ∅ if and only if there exist x ∈ M1 and y ∈ M2 such that

(min{F (x, c), F (y, c)},max{F (x, c), F (y, c)}] ∩ (M \ {t(0)}) 6= ∅.

(2) F (c, O(M1 ∪M2)) ∩ (M \ {t(0)}) 6= ∅ if and only if there exist x ∈ M1 and y ∈ M2 such that

(min{F (c, x), F (c, y)},max{F (c, x), F (c, y)}] ∩ (M \ {t(0)}) 6= ∅.

Proof. In a completely analogous to the proof of Lemma 5.3 in [10].
The following theorem characterizes what properties of M are equivalent to the associativity of ⊗.

Theorem 6.1 Let M ∈ A and (U ,V) = ({[bk, dk] | k ∈ K}, {ck | k ∈ K}) be associated with M . Then
the operation ⊗ on M is associative if and only if T(M) ∩ (M \ {t(0)}) = ∅.

Proof. Let (U ,V) = ({[bk, dk] | k ∈ K}, {ck | k ∈ K}) be associated with M ∈ A. We prove that the
operation ⊗ on M is not associative if and only if T(M) ∩ (M \ {t(0)}) 6= ∅.

Suppose that the operation ⊗ is not associative, i.e., there exist three elements x, y, z ∈ M such that
(x⊗ y)⊗ z 6= x⊗ (y⊗ z). Then we claim that F (x, y) /∈ M or F (y, z) /∈ M . Otherwise, from Proposition
5.2, F (x, y) ∈ M and F (y, z) ∈ M would imply (x⊗ y)⊗ z = GM (F (F (x, y), z)) = GM (F (x, F (y, z))) =
x⊗ (y ⊗ z), a contradiction. We consider three cases as below.

(i) Let F (x, y) /∈ M and F (y, z) ∈ M . Then y ⊗ z = F (y, z) and either F (x, y) ∈ [0, t(0)) or there
exists a k ∈ K such that F (x, y) ∈ [bk, dk]\{ck}. If F (x, y) ∈ [0, t(0)) then, by Proposition 5.2, x⊗y = t(0).
It follows from Definition 5.2 that GM (F (t(0), z)) = (x ⊗ y) ⊗ z 6= x ⊗ (y ⊗ z) = GM (F (x, F (y, z))).
On the other hand, by the associativity of F , we have GM (F (x, F (y, z))) = GM (F (F (x, y), z)). Thus
GM (F (t(0), z)) 6= GM (F (F (x, y), z)). Therefore, by Lemma 6.1,

(min{F (t(0), z), F (F (x, y), z)},max{F (t(0), z), F (F (x, y), z)}] ∩ (M \ {t(0)}) 6= ∅.
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Obviously, Hy
τ = O({t(0)} ∪ F (My

k , y)), z ∈ My and x ∈ My
k , so that

(min{F (t(0), z), F (F (x, y), z)},max{F (t(0), z), F (F (x, y), z)}] ⊆ F (Hy
τ ,My),

which implies F (Hy
τ ,My) ∩ (M \ {t(0)}) 6= ∅.

If F (x, y) ∈ [bk, dk] \ {ck}, then x ⊗ y = bk. It follows from Definition 5.1 that GM (F (bk, z)) =
(x ⊗ y) ⊗ z 6= x ⊗ (y ⊗ z) = GM (F (x, F (y, z))). On the other hand, by the associativity of F , we
have GM (F (x, F (y, z))) = GM (F (F (x, y), z)). Thus GM (F (bk, z)) 6= GM (F (F (x, y), z)). Therefore, by
Lemma 6.1,

(min{F (bk, z), F (F (x, y), z)},max{F (bk, z), F (F (x, y), z)}] ∩ (M \ {t(0)}) 6= ∅.

Obviously, Hy
k = O({bk} ∪ F (My

k , y)), z ∈ My, and x ∈ My
k . So that

(min{F (bk, z), F (F (x, y), z)},max{F (bk, z), F (F (x, y), z)}] ⊆ F (Hy
k ,My),

which implies F (Hy
k ,My) ∩ (M \ {t(0)}) 6= ∅.

(ii) Let F (x, y) ∈ M and F (y, z) /∈ M . In completely analogous to (i), F (My, Hk
y )∩ (M \{t(0)}) 6= ∅

where k ∈ K∗.
(iii) Let F (x, y) /∈ M and F (y, z) /∈ M . Then from F (x, y) /∈ M , we have F (x, y) ∈ [0, t(0)) or there

exists a k ∈ K such that F (x, y) ∈ [bk, dk] \ {ck}. In the case F (x, y) ∈ [0, t(0)), from Proposition 5.2
we have x ⊗ y = t(0). In the case F (x, y) ∈ [bk, dk] \ {ck}, we have x ⊗ y = bk. Hence (x ⊗ y) ⊗ z =
GM (F (t(0), z)) or (x ⊗ y) ⊗ z = GM (F (bk, z)). From F (y, z) /∈ M , we have F (y, z) ∈ [0, t(0)) or
there exists an l ∈ K such that F (y, z) ∈ [bl, dl] \ {cl}. If F (y, z) ∈ [0, t(0)) then, from Proposition
5.2, y ⊗ z = t(0). If F (y, z) ∈ [bl, dl] \ {cl} then y ⊗ z = bl. Thus x ⊗ (y ⊗ z) = GM (F (x, t(0))) or
x⊗ (y ⊗ z) = GM (F (x, bl)).

Since (x⊗ y)⊗ z 6= x⊗ (y ⊗ z), by Lemma 6.1 there are four cases as follows.
Case (1). (min{F (t(0), z), F (x, t(0))},max{F (t(0), z), F (x, t(0))}] ∩ (M \ {t(0)}) 6= ∅. Obviously,

x ∈ My
k and F (x, t(0)) ∈ F (My

k , t(0)). Similarly, z ∈ M l
y and F (t(0), z) ∈ F (t(0),M l

y). Therefore,

(min{F (t(0), z), F (x, t(0))},max{F (t(0), z), F (x, t(0))}] ⊆ Jy
τ,τ .

This follows Jy
τ,τ ∩ (M \ {t(0)}) 6= ∅.

Case (2). (min{F (t(0), z), F (x, bl)},max{F (t(0), z), F (x, bl)}]∩(M \{t(0)}) 6= ∅. Obviously, x ∈ My
k

and F (x, bl) ∈ F (My
k , bl). Similarly, z ∈ M l

y and F (t(0), z) ∈ F (t(0),M l
y). Therefore,

(min{F (t(0), z), F (x, bl)},max{F (t(0), z), F (x, bl)}] ⊆ Jy
τ,l.

This follows Jy
τ,l ∩ (M \ {t(0)}) 6= ∅.

Case (3). (min{F (bk, z), F (x, t(0))},max{F (bk, z), F (x, t(0))}]∩(M\{t(0)}) 6= ∅. Obviously, x ∈ My
k

and F (x, t(0)) ∈ F (My
k , t(0)). Similarly, z ∈ M l

y and F (bk, z) ∈ F (bk,M
l
y). Therefore,

(min{F (bk, z), F (x, t(0))},max{F (bk, z), F (x, t(0))}] ⊆ Jy
k,τ .

This follows Jy
k,τ ∩ (M \ {t(0)}) 6= ∅.

Case (4). (min{F (bk, z), F (x, bl)},max{F (bk, z), F (x, bl)}] ∩ (M \ {t(0)}) 6= ∅. Obviously, x ∈ My
k

and F (x, bl) ∈ F (My
k , bl). Similarly, z ∈ M l

y and F (bk, z) ∈ F (bk,M
l
y). Therefore,

(min{F (bk, z), F (x, bl)},max{F (bk, z), F (x, bl)}] ⊆ Jy
k,l.

This follows Jy
k,l ∩ (M \ {t(0)}) 6= ∅.

(i), (ii) and (iii) mean that we finally have T(M) ∩ (M \ {t(0)}) 6= ∅.
Conversely, suppose T(M)∩ (M \ {t(0)}) 6= ∅. Then there exist a y ∈ M and two elements k, l ∈ K∗

such that F (Hy
k ,My)∩ (M \ {t(0)}) 6= ∅ or H(My, Hk

y )∩ (M \ {t(0)}) 6= ∅ or Jy
k,l ∩ (M \ {t(0)}) 6= ∅. We

distinguish three cases as follows.
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(i) Let F (Hy
k ,My)∩(M \{t(0)}) 6= ∅. If k ∈ K∗, then there exists a z ∈ My such that F (Hy

k , z)∩(M \
{t(0)}) 6= ∅. Thus by the definition of Hy

k , F (My
k , y) 6= ∅. Applying Lemma 6.2, there exist u ∈ {t(0), bk}

and v ∈ F (My
k , y) such that

(min{F (u, z), F (v, z)},max{F (u, z), F (v, z)}] ∩ (M \ {t(0)}) 6= ∅.

Because of v ∈ F (My
k , y), there exists an x ∈ My

k such that F (x, y) = v. Therefore, there exist two
elements u ∈ {t(0), bk} and x ∈ My

k such that

(min{F (u, z), F (F (x, y), z)},max{F (u, z), F (F (x, y), z)}] ∩ (M \ {t(0)}) 6= ∅.

Consequently, from Lemma 6.1 we have GM (F (u, z)) 6= GM (F (F (x, y), z)). On the other hand, from
z ∈ My, we have F (y, z) ∈ M . This follows y ⊗ z = F (y, z). From x ∈ My

k we have F (x, y) ∈ [0, t(0)) or
F (x, y) ∈ [bk, dk]\{ck}. If F (x, y) ∈ [0, t(0)) then x⊗y = t(0). Therefore, (x⊗y)⊗z = GM (F (t(0), z)) 6=
GM (F (F (x, y), z)) = GM (F (x, F (y, z))) = x ⊗ (y ⊗ z). If F (x, y) ∈ [bk, dk] \ {ck} then x ⊗ y = bk.
Therefore, (x⊗ y)⊗ z = GM (F (bk, z)) 6= GM (F (F (x, y), z)) = GM (F (x, F (y, z))) = x⊗ (y ⊗ z).

(ii) Let F (My, Hk
y ) ∩ (M \ {t(0)}) 6= ∅. Then in complete analogy to (i), (x⊗ y)⊗ z 6= x⊗ (y ⊗ z).

(iii) Let Jy
k,l∩(M \{t(0)}) 6= ∅. Then Jy

k,l 6= ∅. Thus by the definition of Jy
k,l, we have F (O(F (My

k , a)∪

F (b,M l
y)), e)∩ (M \ {t(0)}) 6= ∅ where a ∈ {t(0), bl}, b ∈ {t(0), bk} and e is a neutral element of F , which

means F (My
k , a) 6= ∅ and F (b,M l

y) 6= ∅. Applying Lemma 6.2, there exist two elements u ∈ F (b,M l
y)

and v ∈ F (My
k , a) such that

(min{F (u, e), F (v, e)},max{F (u, e), F (v, e)}] ∩ (M \ {t(0)}) 6= ∅.

Because u ∈ F (b,M l
y) and v ∈ F (My

k , a), there exist a z ∈ M l
y and an x ∈ My

k such that u = F (b, z),

v = F (x, a). Therefore, there exist an x ∈ My
k and a z ∈ M l

y such that

(min{F (b, z), F (x, a)},max{F (b, z), F (x, a)}] ∩ (M \ {t(0)}) 6= ∅

since e is a neutral element of F . Further, by Lemma 6.1 we have GM (F (b, z)) 6= GM (F (x, a)).
On the other hand, from x ∈ My

k we have F (x, y) ∈ [0, t(0)) or F (x, y) ∈ [bk, dk] \ {ck}. Thus
x ⊗ y = t(0) or x ⊗ y = bk. From z ∈ M l

y we have F (y, z) ∈ [0, t(0)) or F (y, z) ∈ [bl, dl] \ {cl}. Thus
y ⊗ z = t(0) or y ⊗ z = bl.

Therefore, (x⊗ y)⊗ z = GM (F (b, z)) 6= GM (F (x, a)) = x⊗ (y ⊗ z).
Further, from Theorems 5.1 and 6.1 we have the following one.

Theorem 6.2 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function and T : [0, 1]2 → [0, 1]
be a function defined by Eq.(7). Then the function T is associative if and only if T(M)∩(M \{t(0)}) = ∅.

From Definition 6.1, we have 0 /∈ T(M). Thus if t(0) = 0, then T(M) ∩ (M \ {t(0)}) = ∅ if and only
if T(M) ∩M = ∅. Therefore, we have the following corollary.

Corollary 6.1 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function with t(0) = 0 and
T : [0, 1]2 → [0, 1] be a function defined by Eq.(7). Then the function T is associative if and only if
T(M) ∩M = ∅.

From Proposition 3.3, we have the following corollary.

Corollary 6.2 Let t : [0, 1] → [0,∞] be a left continuous non-decreasing function and T : [0, 1]2 → [0, 1]
be a function defined by Eq.(7). If F : [0,∞]2 → [0,∞] is a function such that ([0,∞], F,≤) is a fully
ordered Abel semigroup with neutral element in [0,∞] and F (x, 0) ≥ x for all x ∈ [0,∞], then T is a
t-supconorm if and only if T(M) ∩ (M \ {t(0)}) = ∅.

In particular, we have the following remark.

Remark 6.1 Let t : [0, 1] → [0, 1] be a left continuous non-decreasing function and T : [0, 1]2 → [0, 1] be
a function defined by Eq.(7).
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(i) If F is a t-conorm, then T (x, 0) = t[−1](F (t(x), t(0))) ≥ t[−1](t(x)) ≥ x for all x ∈ [0, 1]. So, 0 isn’t
necessary a neutral element of T . Therefore, if T(M) ∩ (M \ {t(0)}) = ∅ then T isn’t necessary a
t-conorm. However, if t is further a strictly increasing function with t(0) = 0 then T is a t-conorm.
Another way is to slightly modify the function T as for all x, y ∈ [0, 1],

T (x, y) =

{

max{x, y} if min{x, y} = 0,
t(−1)(F (t(x), t(y))) otherwise.

Then one can check that T is a t-conorm.

(ii) If F is a t-norm, then T (x, 1) = t[−1](F (t(x), t(1))) ≤ t[−1](t(x)) and t[−1](t(x)) ≥ x for all x ∈ [0, 1].
So, 1 isn’t necessary a neutral element of T . Therefore, if T(M) ∩ (M \ {t(0)}) = ∅ then T isn’t
necessary a t-subnorm. However, if t is further a strictly increasing function with t(1) = 1 then T
is a t-norm.

Example 6.1 Let M ∈ A and (U ,V) = ({[bk, dk] | k ∈ K}, {ck | k ∈ K}) be associated with M .
(1) Let F (x, y) = max{x, y} for all x, y ∈ [0, 1]. In Example 4.1 (i), M = [0, 14 ]∪ { 1

2}∪ (34 , 1], and we
have T1(M) = T2(M) = ∅ and T3(M) = (12 ,

3
4 ]. So, T(M) ∩ (M \ {t(0)}) = ∅ and by Theorem 6.2, the

following function T : [0, 1]2 → [0, 1] given by Eq.(7) is associative:

T (x, y) =







3
4 if (x, y) ∈ [0, 3

4 ]× [ 12 ,
3
4 ] ∪ [ 12 ,

3
4 ]× [0, 3

4 ],

max{x, y} otherwise.

(2) Let F (x, y) = xy for all x, y ∈ [0, 1] and the function t : [0, 1] → [0,∞] be defined by

t(x) =

{

1 if x = 0,

∞ otherwise.

Then M = {1,∞}, and T(M) = ∅. So, T(M) ∩ (M \ {t(0)}) = ∅ and by Theorem 6.2, the following
function T : [0, 1]2 → [0, 1] given by Eq.(7) is associative:

T (x, y) =

{

1 if (x, y) ∈ (0, 1]2,
0 otherwise.

(3) Let F (x, y) = x+ y and the function t : [0, 1] → [0,∞] be defined by

t(x) =











x if x ∈ [0, 1
4 ],

1
4 if x ∈ (14 ,

1
2 ],

x if x ∈ (12 , 1]

Then M = [0, 14 ] ∪ (12 , 1], and we have T1(M) = T2(M) = (12 , 1]. So, T(M) ∩ (M \ {t(0)}) 6= ∅ and by
Theorem 6.2, the following function T : [0, 1]2 → [0, 1] given by Eq.(7) isn’t associative:

T (x, y) =







x+ y if 0 ≤ x+ y < 1
4 or 1

2 < x+ y ≤ 1,
1
2 if 1

4 ≤ x+ y ≤ 1
2 ,

1 otherwise.

Indeed, put x = 1
5 , y = 1

4 , z = 1
2 . Then T (T (x, y), z) = T (T (15 ,

1
4 ),

1
2 ) = T (12 ,

1
2 ) = 1, T (x, T (y, z)) =

T (15 , T (
1
4 ,

1
2 )) = T (15 ,

3
4 ) =

19
20 . Thus, T isn’t an associative function.
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7 Conclusions

One can easily check that our results are suitable for all left continuous non-increasing functions
also. So that the main contributions of this article conclude that we gave the concept of a weak pseudo-
inverse of a monotone function for overcoming the difficulty that a function T : [0, 1]2 → [0, 1] defined
by Eq.(3) isn’t associative when t is a left continuous monotone function, and we answered what is
the characterization of a left continuous monotone function t : [0, 1] → [0,∞] such that the function
T : [0, 1]2 → [0, 1] given by Eq.(7) is associative. It is regrettable that generally, our results aren’t true
when t is a right continuous monotone function. For instance, let F (x, y) = max{x, y} and the function
t : [0, 1] → [0, 1] be defined by

t(x) =











x if x ∈ [0, 12 ],
1
2 if x ∈ (12 ,

3
4 ),

3
4 if x ∈ [ 34 , 1].

It is easy to see that t is a right continuous non-decreasing function. Then M = [0, 12 ] ∪ { 3
4}. Thus from

Definition 5.2 of [10], we have I(M) = ∅, so that I(M) ∩ (M \ {t(1)}) = ∅. Therefore, by Corollary 5.3
of [10] we know that the following function T : [0, 1]2 → [0, 1] given by Eq.(6) of [10] is associative since
t(1) < 1:

T (x, y) =

{

max{x, y} if (x, y) ∈ [0, 12 )
2,

3
4 otherwise.

On the other hand, from Definition 6.1 we have T(M) = ∅. This follows that T(M)∩(M \{t(0)}) = ∅.
However, from Eq.(7),

T (x, y) =







max{x, y} if (x, y) ∈ [0, 1
2 )

2,
3
4 if (x, y) ∈ [0, 3

4 )
2 \ [0, 12 )

2,
1 otherwise.

Put x = 1
4 , y = 1

4 , z = 1
2 . Then T (T (x, y), z) = T (T (14 ,

1
4 ),

1
2 ) = T (14 ,

1
2 ) = 3

4 , T (x, T (y, z)) =
T (14 , T (

1
4 ,

1
2 )) = T (14 ,

3
4 ) = 1. Thus, T isn’t an associative function.
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