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A new class of shell models is proposed, where the shell variables are defined on a recurrent
sequence of integer wave-numbers such as the Fibonacci or the Padovan series, or their variations
including a sequence made of square roots of Fibonacci numbers rounded to the nearest integer.
Considering the simplest model, which involves only local interactions, the interaction coefficients
can be generalized in such a way that the inviscid invariants, such as energy and helicity, can be
conserved even though there is no exact self-similarity. It is shown that these models basically
have identical features with standard shell models, and produce the same power law spectra, similar
spectral fluxes and analogous deviation from self-similar scaling of the structure functions implying
comparable levels of turbulent intermittency. Such a formulation potentially opens up the possibility
of using shell models, or their generalizations along with discretized regular grids, such as those found
in direct numerical simulations, either as diagnostic tools, or subgrid models. It also allows to develop
models where the wave-number shells can be interpreted as sparsely decimated sets of wave-numbers
over an initially regular grid. In addition to conventional shell models with local interactions that
result in forward cascade, a particular helical shell model with long range interactions is considered
on a similarly recurrent sequence of wave numbers, corresponding to the Fibonacci series, and found
to result in the usual inverse cascade.

I. INTRODUCTION

Turbulence represents one of the most challenging
problems in nonlinear physics, with applications ranging
from fluid dynamics and plasma physics to ocean currents
and atmospheric dynamics. One of its key intrigues is
that despite the presence of spatio-temporal chaos across
a wide range of scales it nonetheless exhibits order, specif-
ically in the form of self-similarity of its hierarchy of spa-
tial structures, encapsulating the concept of restored sta-
tistical symmetry [1, 2]. Consequently, one of the main
lines of inquiry in turbulence research, is that of the study
of the turbulent fluid as a non-equilibrium steady state
with energy injection and dissipation at well separated
scales and a nonlinear transfer in between those, in a so-
called inertial range, resulting in power law solutions for
the turbulent spectra and intermittency of the statistics
of its fluctuations [1, 3].

One of the main branches of academic research on tur-
bulence is dedicated to development of reduced models
[4], focused on various reduction strategies hoping to
find one that reduces the system to a tractable prob-
lem without loosing any essential features. In this con-
text, shell models [5–9] appear as one of the simplest yet
most prominent examples of such models. Notably, shell
models have been used for understanding certain com-
plex aspects of turbulence, such as multifractality [10–
13], which are too difficult to tackle using the full Navier-
Stokes equations. Additionally, these low-dimensional
dynamical systems have shown their versatility in mod-
eling other systems like rotating turbulence [14], passive
scalar advection [15] and convection [16]. Beyond fluid
turbulence, shell models has been used to study the na-
ture of cascades in magnetohydrodynamic (MHD) tur-
bulence [17, 18], including the transition from weak to
strong cascade in reduced MHD [19]. In the context of

fusion plasma, they have also been applied to study the
L-H transition using multi-shell models [20].

In their general form, shell models consist of a set of
ordinary differential equations for a set of variables cor-
responding to a group of wave-numbers that retain only
the essential characteristics of the original equations—
namely, the quadratic nonlinearity, the scale invariance,
and a resulting set of quadratic conserved quantities.
These models can reproduce some of the key features of
fully developed 3D turbulence, such as the power law ex-
ponents of the turbulent cascades and the intermittency
of their fluctuations [21, 22]. They are usually written in
a desired form where the coefficients are computed using
the constraints imposed by the conservation laws instead
of being derived from the original system of equations.

Alternatively, shell models can be seen as a simulta-
neous reduction of the wave-number domain using a set
of logarithmically spaced wave-numbers kn ∼ k0g

n , and
the nonlinear interaction operator by reducing the num-
ber of possible interactions in the convolution integral to
a finite set of -usually local- interactions. Historically,
a complex variable un is used to represent the Fourier
modes in the shell n which contains the wave-numbers
between kn and kn+1 with a constant inter-shell ratio g, -
usually chosen to be equal to 2, which would interact non-
linearly with the two neighboring shells on both sides.
However choosing g = 2 is somewhat problematic, be-
cause since it is impossible to have kn+kn+1+kn+2 = 0
with g = 2, which means that the cell centers do not in-
teract, and the interactions that are described in such a
shell model come only from the parts of the shells that are
close to the boundaries between the consecutive shells.
In other words g = 2 produces shells that are in fact too
large to keep track of where the energy actually goes.

This is also not ideal for establishing the connection
between the shell model and Fourier space decimation
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as in the case of spiral chain models for example [23],
which incidentally gives exactly the same equations as
shell models, but only with g values that permit triadic
interactions, such as g =

√
φ where φ is the golden ra-

tio. Note that g=φ is the largest possible value for shell
spacing if one wants to use Fourier space decimation with
actual triadic interaction between cell elements.

More generally, the use of logarithmic discretization,
used in shell models, but also in other reduced descrip-
tions such as logarithmically discretized models [24], log-
lattice models [25–27] or spiral chains [23], allows cover-
ing a large range of scales using a small number of degrees
of freedom, providing an important advantage over di-
rect numerical simulations on regular Fourier space grids,
such as those in pseudo-spectral codes. However apart
from g = 2, which we argue to be dubious, the discretized
wave-numbers kn, do not fall on regular grid elements.
This means that if we start from a regular Fourier space
grid, and construct a reduced model of this type, which
has the mathematical form of a shell model (including
log-lattice models), the shell elements which would have
ki =

{
1, φ, φ2, φ3, · · ·

}
etc. do not fall on regular grid

points. In order to remedy this, here we propose a shell
model like discretization, but on a set of wave-numbers
that follow a recurrent sequence such as the Fibonacci
series (skipping the first two elements in order to have
the same structure as a shell model): k = {1, 2, 3, 5, · · · }.
Note that eventually the Fibonacci sequence converges to
the above geometric sequence, and we get the usual pro-
gression with spacing approximately equal to the golden
ratio g ≈ φ for large values of n.

Even though the Fibonacci series allows each wave-
vector in a sequence to be the sum of the two precedent
wave-vectors, and as such it allows each shell to interact
with every part of the two consecutive shells as opposed
to the g = 2 case, it does not really allow triadic in-
teractions between cell centers since the area of such a
triad and thus its interaction coefficient vanishes. In or-
der to remedy this, we have also considered the Padovan
sequence. Three consecutive wave-numbers that follow a
Padovan sequence can actually form triads, (asymptot-
ically with the angles, θkp ≈ 97.04

◦
, θkq ≈ 34.44

◦
and

θpq ≈ 48.52
◦
), even though a chain of such triads does

not a priori fall on regular grid points, since it is the
absolute values of the wave-numbers that are integers.
Note that if one generalizes this idea to two or three di-
mensions for example using log-lattice models or spiral
chains, the wave-number sequences would represent sep-
arate components k(x,y,z)n (or k(r,θ)n etc.). For example,
in the case of log-lattices, such wave-number sequences
would naturally form triads since it is the components
that satisfy the recurrence relations. In this sense, even
though we focus on shell models here, the idea of using
recurrent sequences to replace logarithmic scaling is very
general and applicable to all kinds of models and sys-
tems, including log-lattices [26] where the components
can be written as gn where g is a special ratio such as
the golden ratio, or the plastic ratio (by the way, one

can add the supergolden ratio to that list) or the nested
polyhedra models [28, 29] where the x, y, z components of
the vertex positions of the initial regular polyhedra can
be rearranged to be written in terms of various combi-
nations of 0, 1,±φ, ±φ2 so that exact triadic interactions
are possible. In all these cases, considering a recurrent
sequence will transform the logarithmic scaling to the
corresponding recurrent series, while keeping the triadic
interactions intact.

We observe that a scaling of g =
√
φ also allows to

form actual triangles, with a non-zero area, leading us to
also consider the sequence of numbers that consist of the
square roots of the Fibonacci numbers rounded to the
nearest integer as an alternative sequence. In contrast
to those series that satisfy additive recurrence relations,
this series satisfy a recurrence relation for the squares of
the wave-number magnitudes. As such this series would
be more suitable for a logarithmically discretized model
(where the discretization is logarithmic in k and linear in
θ in polar coordinates) as opposed to a log-lattice where
the discretization is logarithmic in Cartesian coordinates.

We further considered variations and combinations of
these sequences, and generally observed that shell mod-
els on recurrent integer sequences behave virtually identi-
cally to conventional shell models. Some of the proposed
sequences may be linked to particular elements of a reg-
ular grid based on different geometric constructions. For
example, the Fibonacci spiral can be used to span a 2D
Fourier space in a particular way, by sequentially adding
squares whose sides are represented by Fibonacci num-
bers. Likewise, we can construct a similar spiral in 3D
Fourier space, the Padovan cuboid spiral, based on a se-
quence of cuboids, with integer dimensions. Thus, it is
possible to establish different connections between a shell
model, defined by such a recurrent sequence of vectors kn
and a regular Cartesian grid.

The rest of the paper is organized as follows: In Sec.
II, we present the GOY model revisited in order to con-
serve the inviscid invariants on an arbitrary wave-number
sequence. In Sec. II A, we introduce various asymp-
totically self-similar sequences and discuss their corre-
sponding geometric properties. Sec. II B compares the
results between asymptotically self-similar sequences and
respective self-similar ones. An intermittency analysis is
conducted in Sec. II C demonstrating its dependence on
inter-shell spacing. Additionally, Sec. IID presents a
further test of the model implemented on a wave-number
sequence that is not asymptotically self-similar, i.e. a se-
quence compound in which the ratio between two con-
secutive term alternates. In Sec. III , we introduce
the helically decomposed shell model, implemented on a
generic wave-number sequence. Finally, conclusions are
presented in Sec. IV.
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II. GOY MODEL ON A RECURRENT
SEQUENCE

Let us consider a generic, shell model:

dun
dt

= i
∑
△

Λnmℓu
∗
mu

∗
ℓ − dnun + fn , (1)

where un is a complex variable representing the dynam-
ics of the velocity field at a given wavelength kn, fn
represents external forcing and dn = νk2pn + µk−2q

n is
the general form of (hyper/hypo)-viscosity. The forc-
ing is usually taken to be localized to a given shell
n = nf or a few shells around it, whereas the nonlinear
term

∑
△ Λnmℓu

∗
mu

∗
ℓ models the nonlinear interactions

between shell variables, representing a reduced subset of
all the triadic interactions in Fourier space. As a particu-
lar example that retains only local interactions the GOY
model [30] can be written as:

∑
△

Λnmℓu
∗
mu

∗
ℓ =

[
(kn+2 + kn+1)u

∗
n+2u

∗
n+1+

+(kn−1 − kn+1)u
∗
n−1u

∗
n+1 − (kn−1 + kn−2)u

∗
n−1u

∗
n−2

]
,

(2)
where the coefficients are chosen such that the nonlinear
term conserves the usual quadratic quantities without
any assumptions regarding the self-similar nature of the
shell variables. The conserved quantities in question, are
the two inviscid invariants that characterize 3D Navier-
Stokes turbulence, namely energy and helicity, defined as
follows:

E =
∑
n

|un|2, H =
∑
n

(−1)nkn|un|2 . (3)

In this formulation, similar to the original GOY model,
the shell variables, carry either positive or negative he-
licity, depending on whether n is even or odd. It can
be shown that in the limit of constant shell spacing
kn = k0g

n , the present model reduces to the usual form
of the GOY model [30] of 3D turbulence. Choosing the
phase relation typical of the Sabra model, we can also
obtain the Sabra [7] version of this model. The premise
of this paper is that, since Eqs. (1) and (2) work on any
sequence of wave-numbers, we can use them on a series
of wave-numbers that are on an arbitrary sequence of in-
tegers, focusing in particular on recurrent sequences (i.e.
the sequences that we can obtain from a recurrence rela-
tion). We can then study the spectra obtained from shell
models on these recurrent sequences in order to charac-
terize the effects of non-exact self-similarity on the result-
ing wave-number spectra, spectral fluxes and intermit-
tency. One can imagine a scenario, for example, where
the breaking of the exact self-similarity symmetry of the

system would result in a different kind of multifractality.
In the article “Shell Model Intermittency as Hidden Self-
Similarity” [31], Mailybaev asserts that intermittency is
related to hidden self-similarity, while Aumaître et al.
[32] present intermittency as a consequence of a station-
arity constraint on energy flux, demonstrating that under
this assumption, the fluctuations of the energy flux are
characterized by scaling exponents consistent with the
She-Leveque formula [33]. The shell model presented in
this article can be implemented on a self-similar grid,
an asymptotically self-similar grid, or a non-self-similar
sequence of wave numbers, providing a potential frame-
work to test these ideas by relaxing explicit, built-in self-
similarity of the conventional shell models.

A. Recurrent Sequences

Since the primary goal of this paper is to demonstrate
how the proposed model can reproduce standard shell
model features without strict self-similarity, we follow
the approach of selecting different integer sequences, rep-
resenting shell elements that lie on a regular grid and
approach a constant inter-shell spacing. In order to
achieve an asymptotic ratio between consecutive terms,
we choose sequences defined through recurrence relations.
Note that the asymptotic ratio is entirely determined by
the solution of the characteristic equation derived from
the recurrence relation (e.g., x2 = x+1 for the Fibonacci
sequence), rather than by the initial terms. This ap-
proach provides us with a variety of sequences on which
the model can be implemented and compared with their
corresponding self-similar counterparts. Below, we list
the various asymptotically self-similar sequences that we
have used.

Note also that, using recurrent sequences also have ap-
plications in the context of anisotropic shell models, in-
cluding multi-branch shell models [23], and in the recent
work of Ref. [34] that introduce a shell model for reso-
nant wave interactions where the frequencies follow the
Fibonacci sequence: the resonant manifold condition is
ensured by the recurrence relation, i.e. involving reso-
nances between three consecutive modes. In addition to
all the specific choices presented below, which we will in-
vestigate numerically, it is worth mentioning that given
any desired inter-shell spacing g, it is also always possible
to construct an asymptotically self-similar sequence of in-
tegers defined by kn = ⌊k0gn⌉, which rapidly converges
to constant inter-shell spacing.

Another point is that the conventional GOY model
with g = 2, also happens to be an integer sequence that
one can call the “powers of two” sequence. It is immedi-
ately self-similar and can be viewed as a recurrent series
with the recurrence kn = 2kn−1. In this sense, one may
argue that the natural generalization of the GOY model
with g = 2, is to recurrent series instead of non-integer g
values.
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1. Fibonacci and Lucas sequences

Starting with k0 = 0 and k1 = 1, and constructing the
rest of the sequence using the Fibonacci recurrence rela-
tion kn = kn−1+kn−2, we obtain the Fibonacci numbers.
Alternatively, starting with k0 = 2 and k1 = 1, with the
same recurrence relation, we get the Lucas numbers. The
asymptotic inter-shell spacing of both sequences is deter-
mined by the characteristic polynomial, whose solution
gives us the asymptotic inter-shell ratio as the golden
ratio φ.

Since φ is the maximum possible value for kn that
forms a triangle with kn−1 and kn−2, (albeit a flat one),
it can be used as a natural boundary for the shells, where
the shell centers barely interact. It also works nicely for
components of a log-lattice, which can be seen as a multi-
dimensional generalizations of shell models. Given this
recurrence relation, it is also possible to assign a geo-
metric significance to the sequence. For instance, the
Fibonacci and Lucas spirals can be constructed simply
by adding a series of squares recursively, representing a
specific partition of the 2D Fourier space on a regular
grid. More generally, using an integer sequence guaran-
tees that the the shell boundaries, or centers as one may
choose coincide with grid points on each of the axes.

2. Narayana sequence

The Narayana sequence is defined by the third-order
recurrence relation, kn = kn−1 + kn−3, The first few
terms are k0 = k1 = k2 = 1. thereby the asymp-
totic inter-shell spacing is represented by the real root
of the equation x3 = x2 + 1, yields the supergolden ra-
tio ψ ≃ 1.46557 . . . .From a geometric perspective, un-
like the Fibonacci series, this sequence allows the exis-
tence of genuine triads between shell centers. Specifi-
cally, the sides of the triangle formed by these centers
have lengths 1, 1/ψ, and ψ, representing a triangle with
an obtuse angle θkp of 120 degrees (with θkq = 23.78

◦
and

θpq = 36.22
◦

using the convention p < k < q). The shell
model implemented on this sequence can also be inter-
preted as a chain of interacting modes, connected by tri-
ads that follow this shape. Even though here we propose
a local shell model for this sequence, the generalization to
log-lattices would involve non-local interactions between
the wave-numbers that satisfy the recurrence relations.

3. Padovan and Perrin sequences

Considering the recurrence relation kn = kn−2 + kn−3,
which corresponds to the characteristic equation x3 =
x+1, we obtain sequences that asymptotically approach
a spacing with the plastic ratio ρ ≈ 1.324718, which is
the real root of the characteristic equation. Starting with
k0 = k1 = k2 = 1 we obtain the so-called Padovan

sequence. Alternatively starting with k0 = 3, k1 =
0, k2 = 2, one obtains the Perrin sequence. As in the
case of Narayana sequence, the log-lattice generalization
would involve using the recurrence relation at each di-
rection, where the triadic interactions would be between
those wave-numbers that satisfy the recurrence relation
for their components.

Similar to the Fibonacci spiral, there exists a spi-
ral construction for the Padovan numbers, which con-
sists of equilateral triangles whose side lengths follow the
Padovan sequence. Alternatively, in 3D Fourier space, a
spiral structure can be constructed by joining the diago-
nals of the faces of successive cuboids added to an initial
unit cuboid, which is called the Padovan cuboid spiral.
In this, the third dimension of each cuboid corresponds
to a successive term in the Padovan sequence, while the
other two dimensions match the length and width of the
face being extended. The sequence starts with a 1×1×1
cuboid, followed by another 1 × 1 × 1 cuboid, then a
1× 1× 2, and next a 2× 2× 3 cuboid. Similar to the Fi-
bonacci spiral for the 2D grid, the Padovan cuboid spiral
can be considered as a specific partition of the 3D Fourier
space, whose the elements lie on a regular grid, forming a
chain of interacting nodes. This construction also results
in a series of triangles, each defined by two sides of suc-
cessive Padovan numbers with the angles θkp ≈ 97.04

◦
,

θkq ≈ 34.44
◦

and θpq ≈ 48.52
◦

between these sides (with
the convention that p < k < q).

4. Square root of the Fibonacci sequence

As we have noted, the Fibonacci series can be used as
shells in k-space, but if one wants to consider them as
Fourier space decimations with kn representing magni-
tudes, they basically form only flat triangles. In order
to generate self-similar spiral-like structures, one can in-
stead consider a right angled triangle with two legs of
length 1 and √

φ, so that the hypotenuse would be φ.
Repeating this procedure, we can obtain a model where
the shell spacing is the square root of the golden ratio.

In order to force such a construction on an inte-
ger sequence, we consider the square roots of Fibonacci
numbers, where a recurrence relation can be defined as
kn =

⌊√
k2n−1 + k2n−2

⌉
, starting with k0 = 1, and k1 = 2.

Since the recurrence relation involves rounding, this is
more like a numerical integer sequence. Nonetheless it
is fundamentally different from simply kn = ⌊k0gn⌉ with
g =

√
φ, even though both converge to the same asymp-

totic ratio.

B. Self-similar vs. Recurrent Sequences

The model presented above, givenN shells correspond-
ing to a sequence of wave-numbers kn, represents a sys-
tem of N coupled ordinary differential equations (ODEs).
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kn N

Fn kn = kn−1 + kn−2 {0, 1 . . . } 36

Ln kn = kn−1 + kn−2 {2, 1, . . . } 36

g = φ kn = φn 36

Nn kn = kn−1 + kn−3 {1, 1, 1 . . . } 46

g = ψ kn = ψn 46

P a
n kn = kn−2 + kn−3 {1, 1, 1, . . . } 59

P e
n kn = kn−2 + kn−3 {2, 0, 1, . . . } 59

g = ρ kn = ρn 60

F s
n kn =

⌊√
k2n−1 + k2n−2

⌉
{1, 2, . . . } 67

g =
√
φ kn =

√
φn 67

Cn Fn ∪ Ln 68

Table I. The table sums up various integer wave-number se-
quences used in the numerical integrations, where the recur-
rence relation and the initial values are shown, as well as the
scaling factors for their self-similar counterparts. In prac-
tice, the first elements of the series are regularized, meaning
zeros are skipped and repetitions are avoided. The number
of shells reported in the last column are chosen in order to
have roughly the same range of wave-numbers with a con-
stant value of ν = 5 · 10−10 across all the models.

In accordance with the literature on the standard GOY
model and the goal of estimating the intermittency cor-
rections, we drive the system with a constant large-scale
forcing fn = (1 + i

√
5) · 10−1 acting on the fourth shell

(i.e. nf = 4), and a small scale dissipation of the form
dn = νk2n, with a small enough viscosity to dissipate en-
ergy only in the last few shells. Although not explicitly
discussed in this section, the implementation of a forcing
that is delta-correlated in time is straightforward, and
does not alter the results presented here qualitatively. In
order to integrate the system numerically we used a 4th
order Implicit-Explicit (IMEX) solver [35, 36] in Julia
[37], which allows for efficient separation of the stiff and
non-stiff components of the equations.

We choose our sequences of wave-numbers so that they
span seven decades in k. This allows for sufficient exten-
sion of the inertial range and is consistent with previous
studies [7, 21, 22]. This corresponds to N = 36 shells for
the Fibonacci sequence, while for the Padovan and the
square root of Fibonacci numbers sequences, this corre-
sponds to N = 60 and N = 67 shells respectively. In
contrast, the conventional inter-shell ratio g = 2, covers
seven decades with N = 25 shells. The parameters for all
other sequences considered are summarized in the table
I. We also chose to fix the dissipation at ν = 5 · 10−10.

The system was integrated until its total energy
reached a steady state, from an initial condition of small
amplitude (10−8) white noise, and then continued over
approximately 2,000 eddy turnover times (τ−1

E ∼ knun)
of the largest scale after reaching steady state. The sam-
pling time is set to δt = 10−4, ensuring a sufficiently high

sampling rate to resolve the temporal dynamics within
the inertial range. All spectral quantities are averaged
over this steady state time window, as represented by
⟨·⟩. Recall that, since the spectral energy is defined as
E(kn) = k−1

n |un|2 for shell models, a scaling of the form
|un|2 ∼ k−2/3 is consistent with the Kolmogorov spec-
trum for the forward energy cascade.

101 103 105 107

kn

10−1

10−3

10−5

10−7

〈|u
n
|2 〉

kn = Ln
kn = Fn
kn = ϕn

103 1070.
0

0.
5

1.
0

〈Π
E n
〉

×10−1

k−2/3

Figure 1. Log-log plot of the spectral energy for each shell
⟨|un|2⟩ as a function of the wave-number kn, with the wave-
numbers corresponding to the Fibonacci numbers, Lucas
numbers and the respective self-similar spacing kn ∝ φn. In
the inset, a semi-log plot shows the spectral energy flux ⟨ΠE

n ⟩,
defined in Eq. (4), as a function of the wavenumber kn (log.
scale).

In Figure 1, the shell energy |un|2 for the shell model
implemented on the Fibonacci and Lucas sequence is
compared to the respective self-similar model (i.e. with
kn = φn). We note that the spectrum exhibited by the
two asymptotically self-similar sequences is in very good
agreement with the Kolmogorov scaling and that of a
GOY model with g = φ.

Following the standard GOY model definition, the
spectral energy flux at a given shell kn can be written
as:

ΠE
n = 2Im((kn+2 + kn+1)u

∗
nu

∗
n+1u

∗
n+2+

+(kn + kn−1)u
∗
n−1u

∗
nu

∗
n+1)

(4)

Note that the spectral energy flux, shown in the inset
plot of Figure 1, remains perfectly constant in the inertial
range both for the GOY model with g = φ and the shell
model on the Fibonacci and Lucas sequences. We observe
that the level or energy flux is slightly different between
the three sequences. This is because of the fact that since
we force the 4-th shell in each case, which corresponds to
a different wave-number in each sequence, which results
in different levels of energy injection.
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101 103 105 107

kn

10−1

10−3

10−5

10−7

〈|u
n
|2 〉

kn = P a
n

kn = P e
n

kn = ρn

103 107
0

1

2

〈Π
E n
〉

×10−1

k−2/3

Figure 2. Log-log plot of the spectral energy for each shell
⟨|un|2⟩ as a function of the wave-number kn, for a wave-
number sequences corresponding to the Padovan numbers,
Perrin numbers and the respective self-similar spacing kn ∝
ρn. The inset semi-log plot displays the spectral energy flux
as a function of the wave-number kn (log. scale).

As we can see in Fig. 2, the same is true also for
the shell models with g = ρ (i.e. the plastic ratio)
and the corresponding integer sequences that approach
this scaling. For the sake of brevity, we do not present
the comparison between the self-similar sequence corre-
sponding to g = ψ (i.e. the supergolden ratio) and the
Narayana sequence, which exhibit behavior similar to the
other cases presented.

The same comparison can be repeated between the
GOY model with g =

√
φ, and the associated sequence

made of square roots of Fibonacci numbers rounded to
the nearest integers. Again, the conclusion is that the
two models behave very similar to one another, as can be
seen from the plot of the spectral energy (Fig. 3). One
notable observation is that the amplitude of the oscilla-
tions at the forcing scale seems to be larger, for smaller
spacing, i.e. Plastic ratio and square root of golden ratio,
compared to the Fibonacci case, before eventually reach-
ing a specific scaling corresponding to a constant flux in
the inertial range, as illustrated in the Figure 3. At the
Kolmogorov scale, for smaller spacing, the flux presents
some oscillations compared to the Fibonacci case. We
also observe that the energy spectrum starts to shows
slight deviations from the Kolmogorov scaling, suggest-
ing the presence of higher-order corrections.

101 103 105 107

kn

10−1

10−3

10−5

10−7

〈|u
n
|2 〉

kn = F s
n

kn =
√
ϕn

103 107
0

1

2

〈Π
E n
〉

×10−1

k−2/3

Figure 3. Log-log plot of the energy spectra for the square
root of the Fibonacci sequence and the corresponding self-
similar sequence. The inset semi-log plot displays the spectral
energy flux as a function of the wave-number kn (log. scale).

C. Intermittency analysis

It is well-known that the higher order structure func-
tions computed from shell models (i.e. Sp ≡ ⟨|un|p⟩),
with the usual value of g = 2, exhibit deviations from
the Kolmogorov scaling of Sp ∝ k

−p/3
n , demonstrating

intermittency [21, 22, 38, 39], somehow consistent with
the intermittency in realistic flows.

It is also well-known that the GOY model exhibits a
static solution consisting of cyclic oscillations involving
three consecutive shells with respect to the shell index
(as shown in [40]), which overlap with the scaling of the
structure function, making the estimation of scaling laws
less accurate. It is possible to filter out these oscillations
[21], by studying the scaling behavior of the quantity con-
structed in terms of three point correlations as follows:

Σn,p =
〈∣∣Im (

u∗n−1u
∗
nu

∗
n+1

)∣∣p/3〉
We can characterize the intermittency the same way

in our model, and compare it with the intermittency in
the standard GOY case. Note that this is a more strin-
gent test, and a potentially more interesting comparison
since the Fibonacci sequence shell model breaks the ex-
act self-similar structure of the GOY model. As can be
seen in the inset plot of Figure 4, the scaling of Σp is not
affected by these three-point oscillations, therefore it al-
lows for a slightly more accurate estimation of the scaling
exponents.

The scaling exponent ξ(p) of the structure function of
order p can also be estimated via an extended self simi-



7

101 103 105 107

kn

10−17

10−14

10−11

10−8

10−5

10−2

〈|u
n
|p 〉

kn = Ln
kn = Fn
kn = ϕn

101 103 105 107

kn

kn = F s
n

kn =
√
ϕn

Σ
p

k−2/3k−2/3

p = 2

p = 8

p = 2

p = 8

Figure 4. Log-log plot of the structure functions of order p (from two to eight, top to bottom), defined as Sp(kn) = ⟨|u(kn)|p⟩
as a function of the wave-number kn, for both the self similar spaced model and the asymptotically self similar one in two
different spacing considered, the golden ratio and the square root of the golden ratio. The inset plot indicates the structure
function after eliminating the periodic three oscillations, showing the scaling of the quantity Σp.

larity (ESS) procedure [41] that allows an improved de-
termination of the intermittency, due to the reduction
of eventual subdominant contributions to the scaling:
through a linear fit of the ordinate as a function of the
abscissa in a log-log plot of the structure function Sp or
Σp as a function of the third order structure function
Sp=3 (Σp=3 ), assuming a power law scaling of the form
Sp(kn) ∼ S

−ξ(p)
3 (Σp(kn) ∼ Σ

−ξ(p)
3 ) in the inertial range,

selecting a range of shells that correspond to a perfectly
constant flux, as can be seen for different values of p in
Figure 5.

As previously noted, spacings smaller than the golden
ratio, where actual triadic interactions are possible with
the shell centers, such as the square root of golden ratio
spacing or the plastic ratio spacing, be it on an exactly or
asymptotically self-similar model, appear to exhibit be-
havior that does not align perfectly with the Kolmogorov
scaling, suggesting higher-order corrections. First, the
quantities ⟨|un|p⟩ are shown in Figure 4 for shell mod-
els with golden ratio and the square root of golden ratio
spacings. This demonstrates that the scaling behavior
for these two different types of spacing is significantly
different, while indicating no substantial differences from
a given integer sequence and their corresponding self-
similar counterpart.

The scaling factors ξ(p) that are estimated through an
ESS procedure are plotted in Figure 6 as a function of p,
the order of the structure function, in order to quantify
the intermittency corrections for all the sequences that

have been studied. As usual, the deviation from the lin-
ear scaling serves as a measure of intermittency. Note
that we have also performed the simpler procedure of fit-
ting the structure functions directly and the results were
essentially the same.

First, we note that all the curves clearly exhibit very
high deviations from what would be a mono-fractal scal-
ing, which may be interpreted as extremely high levels of
intermittency. In addition, for each family of curves, i.e.,
for every asymptotic scaling ratio, we can observe that
the intermittency of the integer sequences follows closely
the GOY version with that scaling, within the error bars
of the fitting procedure and the slight differences in in-
jection and dissipation. However, we note an interesting,
and somewhat unexpected result: for each family of se-
ries, intermittency follows a different trend, suggesting
that smaller shell spacing corresponds to larger intermit-
tency corrections.

Additionally, we perform an analysis of intermittency
over time, following the approach outlined in Ref. [13,
42, 43], which we do not present here, but which shows
similar trends. We find that the presented results are
relatively robust with clear scaling laws demonstrated by
the structure functions, having tested three different se-
ries for each asymptotic scaling factors. These results are
non-trivial and quite novel, considering that Sabra and
shell models have traditionally been explored numerically
with an inter-shell spacing of g = 2, φ, and that smaller
shell spacing have been examined only in a few examples
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Σ
n
,p

p = 1

p = 10

Figure 5. In the figure, for the Fibonacci sequence case, we
illustrate the procedure for estimating the scaling exponents
ξ(p) following the ESS method. The scalings of the quan-
tity Σp are plotted as a function of Σ3. The structure func-
tion p = 1, 2, . . . , 10 are displayed from top to bottom. The
dots represent the set of points used for the fitting procedure,
corresponding to approximately four decades in the inertial
range, which aligns with the constant flux window.

([21, 44, 45]). An in-depth characterization of the in-
termittency dependence on varying inter-shell spacing of
standard shell models is beyond the scope of the present
paper, whose primary goal is to demonstrate the robust-
ness of the implementation of shell models on recurrent
sequences, leaving a more thorough investigation of the
former for a future publication.

D. A two sequence compound example

In this section, we demonstrate the behavior of the pro-
posed model on a two-sequence compound constructed
by merging two sequences. As a particular example, we
consider the compound formed by the union of the Fi-
bonacci and Lucas numbers. These two sequences share
the same recurrence relations, and the same asymptotic
scaling factor, the golden ratio. The Fibonacci and Lu-
cas sequences are complementary, and one can construct
similar spirals that rotate in co and counter-clockwise
directions from them respectively, which for large num-
bers, approximate golden spirals common also in pat-
tern formation in plants such as phyllotaxis [46]. In this
sense, it is a compound sequence: and the two sequences
asymptotically share the same self-similar spacing, i.e.
the golden number, they begin with slightly different

1 2 3 4 5 6 7 8 9 10
p

0.5
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3.5

ξ(
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Fn
Ln
ψ

Nn

ρ

P a
n

P e
n

Fn√
φ
n

Cn

ξ(p) = p/3

Figure 6. Plot of the scaling exponent ξ(p) as a function
of the order of the structure function estimated via the ESS
procedure for all the sequences and corresponding self simi-
lar sequences studied, the parameters utilized corresponds to
what displayed in table I. The dashed line correspond to the
Kolmogorov scaling ξ(p) = p/3.

numbers but grow with the same scaling factor, thus not
overlapping but forming a new sequence that can be ex-
pressed as:

{. . . Fn, Ln−1, Fn+1, Ln, Fn+2, Ln+2, . . . }
Consequently, the shell model constructed in the

asymptotic limit does not converge to a constant inter-
shell ratio. Instead, the inter-shell ratio alternates be-
tween two values:

kn+1

kn
=

{
Fn+2

Ln
= φ2

√
5
≃ 1.171

Ln

Fn+1
=

√
5

φ ≃ 1.382

Considering two consecutive shells lumped together as
one, the inter-shell spacing would approach the golden
ratio. Note also that there are two kinds of triads in the
compound. The first triad with Ln as the central node
is an acute triangle with the asymptotic angles θkq =
37.92◦, θkp = 83.94◦ and θpq = 58.14◦, and the second
one with Fn as the central node is an obtuse one with
the angles θkq = 37.92◦, θkp = 96.06◦ and θpq = 46.02◦.

We note that this type of construction has emerged in
previous results [28], which developed a model based on
a decimation of Fourier space using the vertices of nested
polyhedra, allowing for the existence of genuine triad con-
ditions among three modes belonging to three consecu-
tive “shells”: the compound in this case was formed by a
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sequence of consecutive dodecahedron-icosahedron struc-
tures, scaled by the golden ratio. In this type of decima-
tion, the inter-shell ratio alternates due to the differing
scaling factors between the icosahedron and the dodeca-
hedron.

Remarkably, in this particular type of Fourier space
decimation, the nested polyhedra model shows no sign
of intermittency. Therefore, implementing a compound
sequence in a 1D chain is intriguing, especially given the
trends observed in the previous section on asymptotically
self-similar sequences: smaller spacing tends to indicate
an increase in intermittency corrections. A priori, it is
unclear whether the model will exhibit a level of inter-
mittency comparable to that observed in the Fibonacci
sequence or similar to the one found in sequences with
smaller inter-shell spacing, or have no intermittency as
in the case of nested polyhedra models.

As shown in Figure 7, the model implemented on the
compound sequence reproduces results consistent with
Kolmogorov scaling. The spectrum shows the same fea-
tures observed in other cases, such as oscillations at the
forcing scale and smaller in the inertial range. These os-
cillations are analogous to the period-three oscillations of
the standard GOY model. However, we note that the 1D
map that generates the stationary inviscid solution [40] is
modified by the fact that the shell wave-numbers are not
asymptotically regular. The energy flux remains remark-
ably constant in the inertial range, which also serves to
demonstrate that the proposed nonlinear term (2) gen-
eralize the usual GOY model on arbitrary sequences of
wave-numbers.

Regarding the intermittency, it is interesting to note
that the scaling of ξ(p), as shown in Figure 6, displays
a scaling behavior very similar to that observed for the
two series with a spacing of the square root of the golden
ratio (exactly or asymptotically). Actually, if we take the
geometric mean of the two inter-shell ratios, we obtain
the square root of the golden ratio. Therefore, we hy-
pothesize that, also in the compound sequence case, the
level of intermittency is determined merely by the spac-
ing. Specifically, in the sense that it is the average spac-
ing of the sequence of shells that determines the level of
intermittency. It is puzzling however, how one goes from
that, to “no intermittency” in the case of the nested poly-
hedra model, suggesting that the phase dynamics on the
constrained 1D chain structure of the shell model has
something to do with the observed dependency of the
intermittency to shell spacing. Again a detailed explo-
ration of this observation, is left to a future publication.

Note finally that the compound, which we argue to cor-
respond to an integer series version of the nested polyhe-
dra with its alternating triads, can also be used to con-
struct a recurrent series version of the log-lattice. Given
that Ln = Fn−1 + Fn+1 and 5Fn = Ln+1 − Ln−1, this
results in more triads per node (i.e. 18 for Fibonacci,
to 32 and 50 for the compound), and more “non-local”
interactions.
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E n
〉
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Figure 7. Log-log plot of the energy spectra as function of the
wave-number kn for the compound sequence case. The inset
semi-log plot represents the spectral energy flux.

III. HELICAL SHELL MODELS ON A
RECURRENT SEQUENCE

In the previous section, a generalization of the conven-
tional GOY model to generic wave-number sequences,
which are in practice obtained from recurrence relations
and have asymptotically self-similar structures is pro-
posed. It is demonstrated that shell models on such
recurrent sequences exhibit standard features of conven-
tional shell models such as power law spectra, constant
spectral flux, and intermittency. A particular form of the
interaction coefficients were used for this purpose, which
guarantees conservation of energy and helicity as in the
original equations.

However, in line with the usual convention in shell
models, the helicity in this picture was defined as H =∑

n(−1)nkn|un|2, which allows one to enforce the con-
servation of a non-positive defined invariant that scales
as helicity, but does not in fact correspond to it in any
meaningful sense. Therefore, if we want to to account
for the complex role played by helicity in turbulent cas-
cade [47–51], it is necessary to generalize the model to
include a conserved non-positive defined invariant that is
closer to the usual definition of helicity, as derived from
the Navier-Stokes equations.

In order to achieve this, we can use the so called he-
lical decomposition [52], and following De Pietro et al.
[53], write a set of arbitrarily elongated shell models, but
on a recurrent sequence in accordance with the models
considered above. The resulting model evolves two shell
variables u+n and u−n , with respectively positive and neg-
ative helicities and allows us to define energy and helicity
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as follows:

E =
∑
n

|u+n |2 + |u−n |2, H =
∑
n

kn(|u+n |2 − |u−n |2) (5)

The general form of the shell model, omitting the dis-
sipative and forcing terms, with arbitrary elongation can
be written in compact form as:

dus0n
dt

= s0
(
anu

s3∗
n+ℓ+mu

s1∗
n+ℓ + bnu

s1∗
n−ℓu

s2∗
n+m + cnu

s2∗
n−mu

s3∗
n−ℓ−m

)
with

an = Q
s1
s0

(
s2
s0
kn+ℓ+m − kn+ℓ

)
bn = Q

(
s1
s0
kn−ℓ −

s2
s0
kn+m

)
cn = Q

s2
s0

(
kn−m − s1

s0
kn−ℓ−m

)
s3 ≡ s0s1s2, and where Q = Qℓm (s1/s0, s2/s0) is the ge-
ometric factor of the triad class that is considered. The
four triad classes can be defined as the 4 possible com-
binations of the signs of s1/s0 and s2/s0. In practice for
a given set of wave-vectors p < k < q which in this case
corresponds to p = kn−ℓ and q = kn+m, it can be written
as:

Q ≡ Qs0s1s2
kpq = Q

(
p

k
,
s1
s0

;
q

k
,
s2
s0

)
=
s1
s0

s2
s0

sin (α+ β)

(
1 +

s1
s0

p

k
+
s2
s0

q

k

)
where α and β are the angles between k and p and k and
q respectively, which can be written as usual as:

α = arccos

(
q2 − k2 − p2

2kp

)
β = arccos

(
p2 − k2 − q2

2qk

)
Notice that, by choosing g = 2, ℓ = 1, m = 1, we obtain
the simple helical shell model discussed by Benzi et al.
[45]. However the general form of the model allows all
kinds of models with non-local interactions.

It can be shown that the proposed form of the helical
shell model, conserves energy and helicity. One can also
put all the 4 classes of interactions together by consider-
ing a sum over triad classes on the right hand side, with
the corresponding geometric factors for each class as dis-
cussed in Ref. [54] for local interactions. Note that even
though, on a recurrent sequence, the actual geometric
factors are not exactly the same, and in the above form
we take them to be the same, the energy and helicity are
still properly conserved. This is non-trivial if one thinks

in terms of conventional shell models and self-similarity.
However it becomes trivial if one thinks in terms of a
chain of triads, each triad conserves energy separately
regardless of the exact geometric factor, so as long as
one keeps all the nodes of each triad that is considered
and all the geometric factors of a triad remain the same
(it doesn’t matter if the actual value of the geometric
factor may be a bit off), all the conservation laws of the
original system will continue to be respected.

Note that here, we presented a general helical shell
model based on the symmetries of the helically decom-
posed turbulence. Below we will consider a particular
class and range of interactions and show that in a partic-
ular configuration, such a model can give rise to inverse
cascade. However, in order to make connection to the
GOY model, consider alternatively the class 4, which is
defined by the relations s1/s0 = s2/s0 = −1. This means
that the middle wave-number is of opposite chirality to
the other two, and therefore we can setup two chains of
nodes with alternating chiralities that never interact. In
the first chain, the even nodes would + and odd ones
would be −, in the second chain the odd nodes would be
+ and even ones would be −. This explains the usual
interpretation of the helicities carried by shell variables
in the GOY model.

A. Inverse cascade on a recurrent sequence

In this section, we present the numerical implementa-
tion of the helical shell model on a recurrent wave-number
sequence, in order to demonstrate that the agreement
between the recurrent and self-similar shell model is not
model dependent.

Helically decomposed shells model have been studied in
the case of local interactions, both in a 1D chain of inter-
acting modes and in hierarchical trees in Ref. [45, 55]. It
is also interesting to note, in accordance with the results
of the previous section, that in Ref. [44], a particular
class of helical shell model shows that a decrease in the
inter-shell spacing leads to a reduction in intermittency
corrections.

More recently non-local interactions have been in-
cluded in the shell model formulation in Ref. [53, 54].
The nontrivial aspect of including non-local couplings,
arises from a class of heterochiral interactions, namely
s1/s0 = −1, s2/s0 = +1, which for sufficiently elongated
triads drive an inverse cascade. The transition from di-
rect to inverse cascade was first predicted by Waleffe
[47, 52] at the threshold value p/k < 0.278 (assuming
p < k < q ) in the shape of the triad interaction, and nu-
merically confirmed by De Pietro et al. [53]. The inverse
cascade the helical shell model represents an anomaly, as
it is well known that constructing a shell model that con-
serves the inviscid invariants of 2D turbulence, namely
energy and enstrophy, the inverse cascade range is typ-
ically dominated by an equipartition spectrum as ob-
served in Ref. [56–58]. The interplay between equilib-
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rium and cascades solutions as been further investigated
by Ditlevsen and Mogensen [57], Gilbert et al. [59], Tom
and Ray [60].

We implement the helical shell model formulation on
Lucas and Fibonacci sequences and the corresponding
self similar spaced model, in a numerical setup capable of
demonstrating an inverse energy cascade. Thus, we cover
seven decades with N = 36 shells, and in order to drive
an inverse cascade s1/s0 = −1, s2/s0 = +1 and , l = 3 ,
m = 1, resulting asymptotically in p/k ≈ 1/φ3 ≈ 0.236,
which satisfies the inequality predicted by Waleffe.

The system is driven by small scale random forcing
acting on two consecutive shells, nf = 32, 33. The
forcing amplitude is unbalanced between the shells car-
rying positive and negative helicities, with f+ = f ,
f− = 1/2f , where we set f = 0.8. The dissipative term
dn = νk2pn + µk−2q

n , has the form of a small scale dis-
sipation, with ν = 4 · 10−12, p = 1, and a large scale
hypo-viscosity with µ = 1, q = 2 , in order to prevent
energy accumulation on the first shells.

As shown in Fig. 8, by forcing the system at small
scales an inverse energy cascade develops for sufficiently
elongated triads. We observe how the energy spectrum is
in good agreement with the inverse energy cascade pre-
diction for both Lucas and Fibonacci sequences and the
corresponding self-similar sequence, with three models
overlapping in the inertial range. However the energy of
the first few shells differ, mainly due to the role played by
hypoviscosity : variations in the first wave numbers be-
tween the sequences, result in different damping effects.

The flux due to nonlinear terms across the n-th shell
can be defined by as:

ΠE
n =

n∑
j=1

2Im

(
u+∗
j

d

dt
u+∗
j

∣∣∣∣
nl

+ u−∗
j

d

dt
u−∗
j

∣∣∣∣
nl

)
, (6)

where the subscript nl denote the nonlinear terms. The
spectral fluxes for the inverse cascade on the different se-
quences that are considered are shown in the inset plot
of Fig. 8. We note that the negative flux remains per-
fectly constant within the inertial range, as obtained for
the GOY model implementation. The magnitude of the
flux differs slightly between the Fibonacci and the other
two sequences coincide, as the energy injection varies due
to the differences in the shell wave numbers: asymptot-
ically, the wave numbers kn = φn align with the Lucas
sequence, but is shifted with respect to the Fibonacci se-
quence, even though all sequences converge to the same
inter-shell spacing. The negative flux exhibits a cusp in
all three models around the fourth shell, where do to the
elongation of the triad l = 3 the term n − l reach the
boundary.

We conclude that, also for the helically decomposed
shell model, the behavior on the recurrent integer se-
quences shows no significant differences compared to that
on the corresponding self-similar scaling.
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Figure 8. Log-log plot of the spectral energy for each shell
⟨|u+

n |2 + |u−
n |2⟩ as a function of the wave-number kn, for a

wave-number sequences corresponding to the Fibonacci num-
bers, Lucas numbers and the respective self-similar spacing
kn ∝ φn. For each sequence the two shells where the forcing
acts are marked with a red circle. In the inset, a semi-log plot
shows the spectral energy flux ⟨ΠE

n ⟩ due to nonlinear terms
defined in Eq. (6), as a function of the wave-number kn (log.
scale).

IV. CONCLUSION

Considering shell models as prototypes or building
blocks of a whole host of reduced models, we propose
a natural generalization of the GOY model (i.e. with
g = 2, hence on a recurrent sequence of powers of two),
into other recurrent sequences, including Fibonacci, Lu-
cas, Padovan and Narayana series and their combina-
tions, which can be constructed from simple additive re-
currence relations (such as kn = kn−1 + kn−2 ). Such
series tend to generate integer numbers that are asymp-
totically self-similar (i.e. kn+1/kn ≈ kn/kn−1 ≈ g for
n≫ 1).

Considering a particular form of the interaction coef-
ficients, a model can be constructed that respects the
conservation laws of the original system regardless of the
shell spacing. This allows the implementation of shell
models on recurrent sequences characterized by different
asymptotic inter-shell spacing, and their comparison to
the conventional shell models with a constant g equal to
the asymptotic ratio showed no substantial differences.
In particular, the intermittency analysis on various se-
quences show how the deviation from the Kolmogorov
scaling are determined by the inter shell spacing rather
than whether or not the model is on a recurrent sequence
or have constant logarithmic spacing. It was observed
in particular that smaller spacings lead to higher appar-
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ent intermittency as defined in the usual way. Suggest-
ing that burst-like solutions, to which the GOY model is
prone in the continuum limit [61], may be an explanation
of the apparent high intermittency with small inter-shell
spacing.

The particular case of the compound sequence, clearly
demonstrates how the proposed model is robust, show-
ing a spectral behavior in accordance with the regular
GOY model, even though the inter-shell spacing in such
a model alternates even for large n. The intermittency
corrections are comparable to those obtained for a self-
similar model with a spacing equal to the geometric mean
of the two alternating spacings, suggesting again that in
a constrained 1D chain of interacting modes, phase dy-
namics approaching the continuum limit is the key mech-
anism of intermittency in shell models.

In addition to these additive recurrence relations, we
have also considered what we call the square root of Fi-
bonacci numbers sequence, which follows a recurrence
that one obtains by rounding the squares of the sums of
the last two elements to the nearest integer (i.e. kn =⌊√

k2n−1 + k2n−2

⌉
). Like the other series with g < φ,

such series allow actual triads, and hence can be used for
example to construct logarithmically discretized models,
where the discretization in the magnitude would be con-
structed from the recurrence relations, while the angular
discretization would be linear.

Finally, with the same objective, we presented the for-
mulation of a helically decomposed shell model on a re-
current wave-number sequence with generic elongations
and helical interactions classes, generalizing the work of
[53, 54]. We tested this construction by demonstrating
an inverse energy cascade on a recurrent sequence, which
validates the previous observation that shell models on
recurrent sequences display the same characteristics as
standard shell models.

It is also worth re-iterating that the primary motiva-
tion of this work has been to make the connection be-
tween regular and logarithmic discretization used in tur-
bulence modeling. By showing that this can be achieved
by recurrent sequences in shell models, paves the way
to applying the same principle to other logarithmically
discretized systems, such as log-lattices, LDM models,
nested-polyhedra models etc. It can be shown for ex-

ample that using the Fibonacci or the Lucas sequences,
a log-lattice formulation would result in 18 triads per
wave-number element (at least two of which are flat tri-
ads), whereas if one used the compound sequence made
up of both Lucas and Fibonacci numbers, the number
of triads goes up to 32 for Fibonacci nodes, and 50
for Lucas nodes. Note that recurrent sequences would
also allow a nice transition from a regular grid, kxi =
2π
Lx

[1, 2, 3, 4, 5, nx − 2, nx − 1] to an asymptotically loga-
rithmic one, using the recurrence relation on the last few
nodes of the grid elements, (e.g. knx = knx−1 + knx−2).
Unfortunately the details of such an implementation is
out of scope of the current paper and is left to a future
publication.

Also, the application of the idea to other models, such
as the nested polyhedra model, where one “shell” is repre-
sented by an icosahedron-dodecahedron compound whose
vertices have x, y, z components which can be written
basically using combinations of 1,±φ, ±φ2 so that ex-
act triadic interactions are possible among them, can be
replaced by versions of these objects where each compo-
nents can be constructed using recurrent series, such as
the Fibonacci series, which would approach asymptoti-
cally to perfect icosahedron-dodecahedron compounds.
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