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ABSTRACT
Digital libraries that maintain extensive textual collections may
want to further enrich their content for certain downstream appli-
cations, e.g., building knowledge graphs, semantic enrichment of
documents, or implementing novel access paths. All of these ap-
plications require some text processing, either to identify relevant
entities, extract semantic relationships between them, or to classify
documents into some categories. However, implementing reliable,
supervised workflows can become quite challenging for a digital
library because suitable training data must be crafted, and reliable
models must be trained. While many works focus on achieving the
highest accuracy on some benchmarks, we tackle the problem from
a digital library practitioner. In other words, we also consider trade-
offs between accuracy and application costs, dive into training data
generation through distant supervision and large language models
such as ChatGPT, LLama, and Olmo, and discuss how to design
final pipelines. Therefore, we focus on relation extraction and text
classification, using the showcase of eight biomedical benchmarks.
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1 INTRODUCTION
One way to explore a digital library’s content is to apply natural
language processing methods, e.g., identify central entities (e.g.,
the Person Albert Einstein), their relationships (e.g., Albert Ein-
stein was born in Ulm), and classify documents as belonging to
classes (e.g., descriptive articles). The extraction of semantic rela-
tionships between named entities is already used in several digital
library projects for different purposes, e.g., constructing a biomedi-
cal knowledge graph from scientific papers like SemMedDB [18],
harvesting leader boards of how computer science methods per-
form on benchmarks [17], harvesting scientific information as done
in SciGraph [44], enabling graph-based discovery systems in digital
libraries [20], or enriching library content like newspapers as done
in the Swiss-Luxembourgish impresso [10].

While we know that information extraction workflows can be
beneficial for a digital library, as the previous projects have suc-
cessfully demonstrated, the costs of designing such workflows are
typically high. One reason is that these workflows usually require
supervision. That is, system designers must know what they are
looking for in advance, and several examples must be given to train
supervised extraction methods. While alternatives like unsuper-
vised extraction workflows [21, 22] might be seen as a remedy here
because they bypass the need for training data in the extraction
step completely, they usually require extensive filtering and may
not achieve the best quality. So, supervision is typically required
when implementing high-quality, reliable workflows that result in
a canonicalized knowledge representation.

From a natural language processing perspective, several works
exist that propose advanced methods for extracting named enti-
ties and their semantic relationships or classifying texts in general;
see [8, 36, 42] to name just a few. When implementing extrac-
tion workflows in a digital library, questions beyond a benchmark-
centric evaluation arise, e.g., about trade-offs between costs and
quality. Regarding training and application costs, a cheaper model
might be favored over a complex model, achieving higher accuracy.
In brief, this work is written from the perspective of a digital library.
It differs from existing work in that we 1) compare the trade-off be-
tween extraction quality and costs, 2) dive into designing complete

ar
X

iv
:2

41
1.

12
75

2v
1 

 [
cs

.D
L

] 
 6

 N
ov

 2
02

4

https://orcid.org/0000-0001-9887-9276
https://orcid.org/0000-0002-5443-1215
https://doi.org/10.1145/3677389.3702557
https://doi.org/10.1145/3677389.3702557
https://doi.org/10.1145/3677389.3702557


JCDL ’24, December 16–20, 2024, Hong Kong, China Kroll et al.

end-to-end systems in contrast to benchmark-centric evaluations,
and 3) approach how we can generate/retrieve training data.

Our investigation is focused on the biomedical domain as a
showcase and centers around two example tasks: relation extraction
between named entities and text classification. For each task, we
experimented with four different benchmarks for generalizability.
For reproducibility, we share our code and data at our GitHub
repository1,2. We tackle three research questions in this work:

RQ1: Which model should we use in a digital library project? Can
we still rely on older models (e.g., SVMs and Random Forests), or must
we use the latest language models? If so, which one? The largest one?
A domain-specific one? Or a generic one? In brief, we investigate the
trade-off between quality and application costs.

RQ2: Another, often neglected, question is how to design a full
digital library pipeline. Should we train a single model that is capable
of doing multi-tasks simultaneously (e.g., extracting relationships
between drugs, diseases, and genes), or should we train models for
each task separately, e.g., one model to predict relationships between
drugs and diseases and one model for drugs and genes?

RQ3: How can we label training data? Do we still require experts
to annotate the data, or can we rely on methods like weak supervision?
Or can we completely rely on large language models like ChatGPT4o
and LLama 3 that annotate our data? What happens if our data
includes noise and thus may only have a moderate quality?

2 RELATEDWORK
Named Entity Recognition and Disambiguation. The first step

in extracting semantic relationships between named entities is
to identify these entities in the text. Usually, recognition tools
recognize entities within texts, and subsequent disambiguation tools
assign those text spans to precise identifiers to disambiguate them.
A comprehensive overview of possible detection methods is given
in [42]. A plethora of different tools exist to identify biomedical
entities in texts, e.g., PubTator [40], GNormPlus [41], GNorm2 [38],
TaggerOne [27], andmanymore.While entity detection is a relevant
topic in digital libraries, our work focuses on relation extraction
between them and thus assumes that the entities are given.

Relation Extraction. Relation extraction is a well-studied task
in natural language processing; see [8] for an overview of meth-
ods, [36] for a survey on distantly supervised methods, and [42] for
general strategies to create and curate knowledge bases.

Milosevic and Thielemann compared different biomedical rela-
tionship extraction methods and models for their applicability on
different benchmarks [32]. One of their findings was that BERT-
based models showed the highest performance, even when com-
pared to larger models like T5. Another finding involved high ex-
penses for training data generation. Another study focused on
whether we should use model tuning or prompt tuning for the rela-
tion extraction task [33]. Lai et al. [25] trained a single model, called
BioRex, on several biomedical relation extraction benchmarks. They,
therefore, integrated different benchmarks involving sentence-wide,
document-level-wide, and n-ary relation extraction. They showed
that their model achieved a high F1 score across all benchmarks.

1https://github.com/HermannKroll/SupervisedTextProcessing
2Software Heritage ID: swh:1:dir:047fbde2d12b0fd4a12f8fdc4ab5347a6744f893

Instead, our work is placed as a discussion and investigation of how
a digital library should approach supervised text processing.

Weakly supervised methods like Snorkel [34] have been intro-
duced to automatically generate training data by using some noisy
labeling functions, e.g., based on hand-crafted rules or by using ex-
isting knowledge bases. An application of Snorkel in the biomedical
domain can be found here [23]. Methods like Snorkel reduce the
costs of labeling data, and the idea is that if enough data is labeled
even in a noisy fashion, the models will have a similar quality com-
pared to models that are trained on high-quality but less training
data (labeled by experts). We will apply a similar strategy to create
noisy labels in our investigation.

Generating training data for LLMs has already been studied
recently; see [6, 16, 30]. Josifoski et al. [16] generated training data
by LLMs and used it to train another model, called SynthIE, for
the information extraction task. The authors demonstrated that
this model performed well on existing benchmarks but also noted
that generating training data via LLMs can introduce bias. Chia
et al. [6] introduced RelationPrompt and showed that language
models can effectively generate synthetic training data for unseen
relations. Li et al. [30] summarized the advantages and limitations
of generating training data by LLMs for the text classification task.
They found that models trained on synthetic data usually have a
decreased performance on tasks with higher levels of subjectivity.
More works focus on generating training data by LLMs for even
more tasks, e.g., for the retrieval task [37]. In contrast to these works,
our work explores the usage of LLMs for training data generation
in the biomedical domain and from a practitioner’s perspective.

Our study differs from existing ones by going beyond comparing
precision, recall, and F1. We also focus on: 1) different strategies to
generate training data with weak supervision and LLMs. 2) trade-
offs between accuracy vs. training and application costs, which is
especially relevant for digital libraries but rarely considered.

Text Classification. An overview of text classification methods
can be found in [29]. Again, our focus is on something other than
inventing a new text classification method in our paper. Instead,
we investigate which methods can be applied, how they differ in
accuracy and costs, and what happens if we introduce noise into
the training sets, i.e., how stable/robust different models are.

3 EXPERIMENTAL SETUP AND USED MODELS
In the following, we briefly describe our setup and environment.

3.1 Models and Vectorization
For our investigation, we compared traditional classification models
to language models. We selected the following traditional models:
1) SVC (Support Vector Classifier): An SVC provides high accu-
racy in classification tasks, effectively handles complex decision
boundaries and high-dimensional data, and, uses kernel functions to
capture non-linear relationships in the data. 2) XGBoost (Extreme
Gradient Boosting Classifier): XGBoost is known for its high
performance and efficiency in handling large datasets and missing
data. It utilizes regularization and gradient boosting, which sequen-
tially adds models to correct errors of previous models, leading to
improved accuracy. 3) Random Forest Classifier: A Random For-
est offers robustness against overfitting due to ensemble learning

https://github.com/HermannKroll/SupervisedTextProcessing
https://archive.softwareheritage.org/swh:1:dir:047fbde2d12b0fd4a12f8fdc4ab5347a6744f893
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Model Hyperparameter Grid
SVC C: {0.1, 1, 10, 100}, kernel: {poly, rbf, sigmoid},

degree: {1, 2, 3, 4, 5, 6}

XGBoost n_estimators: {50, 100}, max_depth: {3, 5},
learning_rate: {0.01, 0.1}, subsample: {0.8,
1.0}, colsample_bytree: {0.8, 1.0}

Random Forest n_estimators: {50, 100}, max_depth:
{None, 10, 20}, min_samples_split’: {2, 5},
min_samples_leaf: {1, 2}

Language Models learning_rate: {1e-3, 1e-4, 1e-5}, epochs: {1,
3, 5}, weight_decay: {0.0, 0.1, 0.2, 0.3}

Table 1: Set of tested hyperparameters for each model.

techniques. It is effective in capturing complex relationships by
building multiple decision trees.

These traditional classification models require the transforma-
tion of texts into a vector representation. Therefore, we used two
different strategies: tf-idf and sentence transformers. 1) tf-idf is a
traditional vectorization technique based on the frequency of words
in the document and across the corpus. It is a common method but
may lack the ability to capture semantic similarities and context,
especially in complex sentence structures. 2) Sentence transformers
allow us to derive a semantic representation of a text by utilizing
pre-trained transformer models like BERT to generate fixed-length
vector representations of sentences [35]. They capture semantic
meaning and context by considering the entire sentence rather
than individual words, which is ideal for tasks where understand-
ing the context and meaning of sentences is crucial. Thus, they
may perform better than tf-idf, especially in capturing semantic
similarities and nuances. We used the sBERT implementation with
the all-MiniLM-L6-v2 model.

Language Models do not require the transformation of texts
into a vector representation a-priori, as they come with built-in en-
coders/decoders. For our investigation, we used three generic mod-
els: BERT [9] (bert-base-uncased), RoBERTa [31] (roberta-base),
and XLNet [45] (xlnet-base-cased). We compared the generic mod-
els (not domain-specific) against three biomedical language models
that have been pre-trained on biomedical texts: BioBERT [28]
(dmis-lab/biobert-v1.1), BioLinkBERT [47] (michiyasunaga/Bio
LinkBERT-base), and PubMedBERT [12] (microsoft/BiomedNLP-
PubMedBERT-base-uncased-abstract).

Hyperparameter Tuning: GridSearch. Training amodel alsomeans
selecting some training parameters like the kernal type or a lerning
rate. However, testing different parameter combinations is usually
beneficial and may strongly affect the final classification accuracy.
That is why we used a grid search to find optimal parameters, i.e., a
model is trained on a train data set, parameters are optimized on a
development set, and the final model is evaluated on a test set. The
set of tested parameters for each model is listed in Table 1.

3.2 Hardware and Environment
We performed the experiments on our server, which has two Intel(R)
Xeon(R) Gold 6336Y CPU@ 2.40GHz (24 cores and 48 threads each),

Model CDR ChemProtC ChemProtE DDI
P R F1 P R F1 P R F1 P R F1

Traditional Classification Models

SVC + tfidf 0.49 0.58 0.53 0.38 0.75 0.51 0.46 0.59 0.46 0.22 0.81 0.35
SVC + sBERT 0.49 0.58 0.53 0.38 0.75 0.51 0.46 0.59 0.46 0.22 0.81 0.35
XGBoost + tfidf 0.45 0.63 0.53 0.36 0.57 0.44 0.45 0.53 0.45 0.21 0.78 0.34
XGBoost + sBERT 0.45 0.63 0.53 0.36 0.57 0.44 0.45 0.53 0.45 0.21 0.78 0.34
Random Forrest + tfidf 0.39 0.61 0.47 0.32 0.72 0.44 0.42 0.48 0.42 0.18 0.92 0.3
Random Forrest + sBERT 0.43 0.69 0.53 0.32 0.72 0.44 0.42 0.49 0.42 0.18 0.93 0.3

Language Models

BERT 0.57 0.7 0.63 0.56 0.74 0.59 0.47 0.83 0.6 0.56 0.93 0.7
RoBERTa 0.57 0.75 0.65 0.56 0.74 0.58 0.52 0.77 0.62 0.54 0.93 0.68
XLNet 0.54 0.55 0.55 0.56 0.74 0.58 0.48 0.81 0.6 0.59 0.88 0.71
BioLinkBERT 0.59 0.79 0.68 0.62 0.82 0.67 0.57 0.86 0.69 0.67 0.92 0.78
BioBERT 0.58 0.8 0.68 0.6 0.81 0.64 0.56 0.87 0.68 0.59 0.92 0.72
PubMedBERT 0.6 0.78 0.68 0.63 0.81 0.67 0.58 0.86 0.69 0.59 0.94 0.73

Table 2: Task 1 (RE). We report the relation extraction quality
(precision, recall, F1) when comparing several models on the
test data sets of the corresponding benchmarks.

2TB DDR4 main memory, and nine Nvidia A40 GPUs with 48GB
memory. We limited the number of parallel workers on the CPU to
32, as we observed a decrease when using toomany parallel workers
due to I/O and communication overhead. Moreover, we used only a
single GPU to train/apply language models and provide meaningful
runtime measurements. Our implementation is written in Python.
We used the default sklearn and hugging face implementation to
train our classification models. For details, see our repository.

4 TASK 1: RELATION EXTRACTION
Our first investigation focuses on the relation extraction task, i.e.,
extracting semantic relationships between named entities.

4.1 Data Sets
We used the following benchmarks: SemEval-2013 Task 9 [13] con-
taining drug-drug interactions (DDI), BioCreative V Track 3 [39],
containing chemical-disease relations (CDR), and BioCreative VI
Track 5 [19], containing chemical-protein interactions (ChemProt).

Drug-Drug-Interaction (DDI) [13]: The DDI benchmark is
divided into two subtasks from which we only used the relation
extraction part. The task is to find sentences containing two or
more drugs that influence each other in the body, i.e., the effect of
one drug is altered by the other or both cause some side effect. Only
training and test data sets are provided. We split the train data in
half to create a development set to optimize hyperparameters.

Chemical-Disease-Relation (CDR) [39]:We utilized the bench-
mark’s relation extraction subtask, asking specifically for chemical-
induced disease relations, i.e., a chemical induces a disease if it is
responsible for the appearance of the disease.

Chemical-Protein-Interaction (ChemProt) [19]: The dataset
is a pure relation extraction benchmark with annotated proteins,
genes, and chemicals. It asks for regulations between chemicals
and proteins. In contrast to the other benchmarks, which require a
binary classification, the ChemProt data is labeled into ten differ-
ent relation types, of which five are considered in the benchmark
evaluation (as denoted by the benchmark authors). A problem with
that benchmark is that for some relations, less than 174 examples
are given (CPR:5—Agonist), which makes it difficult to train reli-
able models. We followed ideas of related work like [25] that used
that benchmark but grouped some specific relations into more

https://huggingface.co/google-bert/bert-base-uncased
http://www.overleaf.com
https://huggingface.co/xlnet/xlnet-base-cased
https://huggingface.co/dmis-lab/biobert-v1.1
https://huggingface.co/michiyasunaga/BioLinkBERT-base
https://huggingface.co/michiyasunaga/BioLinkBERT-base
https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
https://huggingface.co/microsoft/BiomedNLP-BiomedBERT-base-uncased-abstract
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Benchmark #Train #Dev #Test

CDR [39] 500/4662 500/4651 500/4853
ChemProt [19] 1020/10311 612/6243 800/8140
DDI [13] 714/6976 -/- 191/1299

Table 3: Task 1 (RE). Benchmark doc./sent. distribution.

Negative Positive
Label

0

1000

2000

Sa
m

pl
e 

siz
e

CDR

Negative Up Down
Label

0

2500

5000

7500

10000

Sa
m

pl
e 

siz
e

ChemProtC

Negative Positive
Label

0

2500

5000

7500

10000

Sa
m

pl
e 

siz
e

ChemProtE

Negative Positive
Label

0

5000

10000

15000

20000

Sa
m

pl
e 

siz
e

DDI

Figure 1: Task 1 (RE). Label distribution of each benchmark.

general ones. We grouped the relations agonist-inhibitor, antago-
nist, indirect-downregulator, and inhibitor into down-regulation.
The relations activator, agonist, agonist-activator, and indirect-
upregulator are grouped into up-regulation. Every other relation is
grouped to no regulation. We called this benchmark ChemProtC
(C for complex), asking for up, down, and no regulations. We also
created an alternative version, called ChemProtE (E for easy), by
grouping the relations up/down regulations and substrates together.
This benchmark asks whether a chemical regulates a protein.

Setup. The number of documents and training sentences is listed
in Table 3. For the DDI benchmark, the sentences were already
given together with every possible drug-drug relation combination
and the correct label. Both the CDR and ChemProt datasets came
with full abstracts, which had to be processed first. Therefore, we
used the spaCy sentenciser to split the abstracts into sentences.
Next, if the benchmark states that a certain relation is expressed
in a document between entities a and b, we consider all sentences
that contain a and b as training examples. Sentences that contain
other entities are considered as negative examples. That is why the
number of labeled sentences (in combination with an entity pair)
in the datasets is much higher than the number of raw sentences.

For the training, hyper-parameter search, and evaluation, we
used an obfuscation technique to ensure that the models tried to
learn the sentence structure instead of the entity names if they oc-
curred more frequently. For that, we replaced the entities of a given
relation with the strings <entity1> and <entity2>, e.g., "Tomudex
(ZD1694) is a specific antifolate-based thymidylate synthase inhibitor
active in a variety of solid tumor malignancies." was changed to
"<entity1> (ZD1694) is a specific antifolate-based <entity2> inhibitor
active in a variety of solid tumor malignancies."

Model Training HS Application ET PubMed
Traditional Classification Models

SVC + tfidf 30 s 4 min 13 s 9.79e-04 s 4 d 0 h 51 min 34.51 s
SVC + sBERT 31 s 4 min 40 s 9.70e-04 s 3 d 23 h 54 min 19.56 s
XGBoost + tfidf 2 s 3 min 54 s 5.63e-05 s 5 h 33 min 56.68 s
XGBoost + sBERT 2 s 3 min 54 s 7.00e-05 s 6 h 55 min 27.09
Random Forest + tfidf 11 s 37 s 7.96e-05 s 7 h 52 min 5.52 s
Random Forest + sBERT 11 s 39 s 7.68e-05 s 7 h 35 min 55.17 s

Language Models on CPU

BERT 1 h 0 min 9 s 32 h 56 min 16 s 2.74e-02 s 112 d 18 h 40 min 20.45 s
RoBERTa 1 h 7 min 7 s 23 h 57 min 6 s 2.34e-02 s 96 d 12 h 10 min 48.29 s
XLNet 41 min 8 s 60 h 45 min 32 s 5.24e-02 s 216 d 0 h 6 min 58.48 s
BioBERT 23 min 5 s 38 h 2 min 8 s 3.09e-02 s 127 d 12 h 27 min 28.23 s
BioLinkBERT 5 min 58 s 10 h 50 min 2.36e-02 s 97 d 1 h 22 min 46.96 s
PubMedBERT 5 min 47 s 10 h 43 min 21 s 2.31e-02 s 95 d 6 h 30 min 3.06 s

Language Models on GPU

BERT 2 min 17 s 1 h 22 min 15 s 3.67e-03 s 15 d 2 h 34 min 48.94 s
RoBERTa 3 min 53 s 1 h 36 min 59 s 3.50e-03 s 14 d 10 h 28 min 32.65 s
XLNet 25 min 51 s 6 h 56 min 31 s 1.10e-02 s 45 d 5 h 1 min 54.96 s
BioBERT 50 s 1 h 30 min 11 s 3.64e-03 s 14 d 23 h 51 min 42.48 s
BioLinkBERT 1 min 28 s 52 min 32 s 3.38e-03 s 13 d 22 h 14 min 3.62 s
PubMedBERT 32 s 53 min 53 s 3.38e-03 s 13 d 22 h 37 min 51.36 s

Table 4: Task 1 (RE). Runtimes were measured on DDI (as
it was the largest benchmark). The training and HS time is
reported in total, whereas the application time is normalized
by the number of sentences in the test set. ET PubMed is the
estimated time when applying the model to 37M documents.

The label distribution for each benchmark is listed in Figure 1.
First, the negative class is dominant across all benchmarks. In brief,
CDR is the best-balanced dataset (2810 negative and 1785 positive
examples). For the remaining benchmarks, the negative class is
very dominant, which is why we used downsampling for training.

4.2 RQ1: Relation Extraction
We then trained our models on the train sets and optimized hy-
perparameters (see Table 1) via a grid search on validation. Before
training, we balanced the train sets using randomized downsam-
pling, ensuring that the number of samples in each class matched
that of the smallest class. This downsampling process was made
reproducible by setting a specific random seed, allowing for consis-
tent and repeatable results across different runs. We report the final
classification results on test sets. The results are listed in Table 2.

As expected, the language models result in better predictions
than the shallow models regarding the F1-score. The differences
between the shallow and language models (LM) having the maxi-
mum F1-scores are between 0.15 for CDR (0.53 - shallow, 0.68 - LM)
and 0.43 points for DDI (0.35 - shallow, 0.78 - LM). In terms of the
F1 scores, the SVC was the best shallow model, followed by the XG-
Boost models. BioLinkBERT and PubMedBERT achieved the best F1
scores across all benchmarks for the language models. We saw that
the language models offered the highest scores when classifying
semantic relationships between entities, which we expected.

Hyperparameter Search. Our next question was focused on the
influence of the hyperparameter selection. So, how many configu-
rations should be tested, and what can a digital library then expect?
Is it worth it, and how many configurations need to be explored?

To visualize the impact of hyperparameter selection, we present
box plots in Figure 2 for the top-performing models across the four
datasets. Each box plot shows the range of accuracy scores obtained
using a certain hyperparameter combination for training and test-
ing the trained model on a test set. The results indicate that the LMs
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Figure 2: Task 1 (RE). Hyperparameter search distribution
between the best and worst models for the two best shallow
models and language models comparing the accuracy score.

generally performed more robustly across various hyperparame-
ter settings. However, even these models, such as BioLinkBERT,
showed some sensitivity to hyperparameter choices, evident in the
range of accuracy scores on CDR. SVC showed greater variability
with lower median accuracy, suggesting a greater sensitivity to
hyperparameter choices. In contrast, the XGBoost model was very
robust to hyperparameter tuning. Notably, the ChemProtC dataset
reveals some anomalies, likely due to our re-grouping of the data.
This was particularly evident with the PubMedBERT model, which
had a wider range of performance scores, including some very low
values. Overall, our findings suggest that investing in extensive
hyperparameter search can be beneficial.

Application Costs. We measured the training, hyperparameter
search (HS), and application times of the best-performing models
on DDI. We selected DDI because it was the largest benchmark.
The results are listed in Table 4. For CPU application time, we eval-
uated the test set as a single batch. On GPU, we upsampled the
combined train, dev, and test sets to 1M balanced samples to also
measure the memory transfer overhead between main memory and
GPU memory, processing batches of 256 for precise runtime esti-
mation. Times were normalized by sample count for comparability
and allowing us to estimate the time required to process the entire
PubMed collection (∼37M documents, as of July 2024). The esti-
mated time (ET) is calculated by multiplying the time per sentence
with the number of documents on PubMed (36,555,430) with the
average sentences per document (9.74). The average sentences per
document is calculated by dividing the sum of all documents (4837)
of the used benchmarks divided by the sum of all sentences (47135)
retrieved with the SpaCy sentenciser. Note that this estimation is
somewhat an overestimation because it assumes that all documents
have a similar number of sentences and that each sentence contains
entities and are thus relevant to predict a relation.

Table 4 shows that language models (LMs) generally required
longer training and HS times compared to traditional models. How-
ever, applying LMs, especially on GPUs, was significantly faster.

Model CDR ChemProtC ChemProtE DDI
P R F1 P R F1 P R F1 P R F1

SingleTask Learning

SVC + tfidf 0.49 0.58 0.53 0.38 0.75 0.51 0.46 0.59 0.46 0.22 0.81 0.35
XGBoost + tfidf 0.45 0.63 0.53 0.36 0.57 0.44 0.45 0.53 0.45 0.21 0.78 0.34
BioLinkBERT 0.59 0.79 0.68 0.62 0.82 0.67 0.57 0.86 0.69 0.67 0.92 0.78
PubMedBERT 0.6 0.78 0.68 0.63 0.81 0.67 0.58 0.86 0.69 0.59 0.94 0.73

MultiTask Learning

SVC + tfidf 0.24 0.19 0.18 0.26 0.31 0.21 - - - 0.22 0.2 0.1
XGBoost + tfidf 0.03 0.0 0.0 0.03 0.0 0.0 - - - 0.02 0.0 0.0
BioLinkBERT 0.29 0.27 0.25 0.33 0.46 0.32 - - - 0.27 0.32 0.27
PubMedBERT 0.28 0.26 0.24 0.33 0.46 0.33 - - - 0.28 0.32 0.27

Table 5: Task 1 (RE). SingleTask vs. MultiTask learning eval-
uated on the test sets of the biomedical benchmarks.

Among LMs, XLNet was notably slower across all stages than BERT-
based models. This extended time could be attributed to XLNet’s
more complex architecture and different fine-tuning processes,
which involved segment-level recurrence and a bidirectional con-
text, leading to higher computational demands. In summary, while
traditional models offered quick training and tuning, language mod-
els, especially PubMedBERT, provided a better performance with
acceptable application times. Traditional models are ideal for tasks
where inference speed is crucial and GPUs are not available. The
choice of a model thus depends on an application’s requirements.

4.3 RQ2: System Architecture
Our second research question asked how to design an entire system
pipeline in a digital library. Basically, two setups are possible:

1) SingleTask Learning.We could train a model that predicts
relationships between certain entity-type combinations. Here, one
model for drug-disease relationships, one for drug-drug interac-
tions, and one for chemical-protein interactions. Deploying such
a model in a digital library then requires a pre-selection step that
works as follows: First, detect entities within a sentence. Compute
the set of all entity pairs in that sentence. Check the entities’ types
for each pair and select the corresponding prediction model.

2) MultiTask Learning. We could train a single model that
learns to predict all possible relations by combining the training
data from different benchmarks into a single training set. Thismodel
should then learn to extract every known relation in one step. We
combined DDI, ChemProtC, and CDR training data for our setup.
We ignored ChemPromtE here because it contains the same training
examples (but labeled differently), which would cause confusion
within themodel. The same sentence with the same entities requires
classifying an up-regulation as well as just a regulation.

The results of both setups are listed in Table 5. We compared
four models: the top two shallow architectures and the top two
language models, ranked by their classification quality. The Mul-
tiTask strategy results reveal problems in every of the evaluated
benchmarks. This might come due to the rather low-size downsam-
pling of the training data because of the ChemProtC Downregulator
subclass (with 936 samples). As expected, the LMs work better than
the shallow models. Surprisingly, the multiclass ChemProtC task
works the best, whereas the CDR task results are more than half
as good as those of the SingleTask strategy. In brief, the findings
support that SingleTask learning performs better here (or that more
sophisticated strategies for MultiTask learning are required).
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4.4 RQ3: Data Labeling
Our last research question concerns how digital libraries can/should
label their training data when relying on supervised classification
models. The advantages of asking experts are rather obvious: The
data will likely be of good quality, but costs are high, processes may
take time, and resulting data is usually limited.

Distantly-Supervised Labeling. The related work section describes
weak supervision as a possible remedy [34]. The central idea is that
external knowledge is used to label sentences. If some sentence
includes two entities and the entities have a relationship within the
given knowledge base, then we implicitly assume that the sentence
also expresses this relationship. In brief, distant supervision allows
fast and large data set generation. That is why we investigate it
here. However, it requires external knowledge bases that include
the relations someone is interested in, and it might also be limited
in precision, as sentences may be labeled in a noisy fashion.

We used simple string comparisons to check whether a relation
between two entities exists in such a knowledge base. Additionally,
the entities were expanded with their corresponding synonyms
to increase the chance of finding relations based on the different
writing styles of the entities. Because CDR contains additional
Medical Subject Headings (MeSH) information for each entity an
additional comparison based on the MeSH IDs was conducted.

The Comparative Toxigenomics Database [7] knowledge base was
used for the CDR and ChemProt data set. Specifically, the Chemical-
disease associations together with the chemical- and disease- vocab-
ularies for CDR and the Chemical-gene interactions together with
the chemical- and gene-vocabularies. The selection already reveals
some problems: A chemical-disease association does not directly
imply that a chemical induces a disease. Hence, the labeling will
be very noisy by design. For DDI, we used the latest release (14-03-
2024) of the DrugBank Database [43] together with the DrugBank
vocabulary. Please note that we did not find a suitable knowledge
base that expresses up and down regulations between chemicals
and proteins, so we could not use distant supervision to relabel the
ChemProtC data set, so we skipped the experiment.

Large Language Models (LLMs). LLMs like ChatGPT are trained
on large-scale data via an instruction-driven style. In other words,
we may assume that they have comprehensive real-world knowl-
edge contained inside them and that they understand task instruc-
tions, e.g., labeling a sentence based on some criterion. We expect
that the generation of training data via large language models is
thus less cost-intensive than asking human experts but likely more
cost-intensive than distant supervision due to high computational
costs (when executing the model on local hardware) or high costs
when using external APIs. So, can we use LLMs to label our data?

Consider the DDI benchmark. The benchmark asks to predict
whether a sentence describes an interaction between two drugs.
For each of our benchmarks, we created three different prompts
that follow a basic structure but differ in their description of an
interaction. One advantage is that the benchmark only asks whether
an interaction is described. In other words, we can prompt the
language model to only answer with yes or no.

Together with a pharmaceutical domain expert (PhD, years of
experience in pharmaceutical research), we created the following
prompts ({0} - sentence, {1} - drug 1, {2} - drug 2):

Prompt 1. Consider the following sentence: {0}. Does this sentence
describes the information that {1} interacts with {2}. Interacts describes
that {1} interacts with {2}, e.g., as a drug-drug interaction, via a shared
target or via some mechanism. Answer only with yes or no.

Prompt 2. Consider the following sentence: {0}. Does this sentence
describes the information that {1} interacts with {2}. Interacts means
that {1} has a reaction with {2}. Answer only with yes or no.

Similarly, we built prompts for CDR (chemical induces some
disease) and ChemProtE (chemical regulates some protein). For
ChemProtC, which asks for up/down/no regulations, we created
prompts like the following:

Chem.-Prot. Prompt 1. Consider the following sentence: {0}. Does
this sentence describe the information that {1} regulates {2}? We ask
for three kinds of regulations between {1} and {2}: (1) up regulation
means that {1} is an activator, agonist, agonist-activator or indirect-
upregulator of {2}. (2) down regulation means that {1} is an agonist-
inhibitor, antagonist, indirect-downregulator or inhibitor of {2}. (3) no
means that there is no regulation. Answer only with up, down, or no.

The other prompts can be found at our repository. Please note
that we did not perform any fine-tuning of the prompts. They were
created in a single two-hour session with one domain expert. Our
goal was to answer our research question by just building intuitive
prompts. Of course, someone could argue that tuning the prompts
would result in higher results, e.g., using few-shot prompting.While
we agree, the central problem is that this labeling strategy should
be applied when NO training data is available. Training prompts
then are unclear and would require human expert labeling again.

We compared the following LLMs: OlMo 7B [11] (allenai/OLMo-
7B-Instruct, open data, open model, open source), Llama 3 8B [2]
(meta-llama/Meta-Llama-3-8B-Instruct, open model, open source
and closed data, requires a usage verification), the biomedical LLM
BioMistral 7B [24] (BioMistral/BioMistral-7B, open model, trained
for biomedical purposes, open source and closed data) and ChatGPT-
4o [1] (everything closed). We downloaded the first three models
and performed the experiments. For GPT-4o [1], we used the official
API and spent about 130$ to relabel all four benchmarks. Note that
we only labeled the training sets. We tested four different strategies
to assign the final labels: 1) Use the first prompt and decide based
solely on that prompt (1P). Use all three prompts for a sentence
and perform a vote over the results. 2) 1-Yes is sufficient. (3P-1Y)
3) 2-Yes are sufficient. (3P-2Y) 4) 3-Yes are sufficient. (3P-3Y) For
2) and 3), we implemented early stopping, i.e., if the first prompts
are answered with yes (depending on whether one or two yes
are required), the remaining prompt(s) is not shown to reduce the
runtime. In the case of ChemProtC, the model must deliver the same
answer (up/down/no).We counted cases where an LLM replied with
an answer that did not correspond to one answer option.

Data Labeling Results. The results of our data relabeling are
shown in Table 6. The Table shows the precision (P), recall (R),
F1-score (F1), and not answered (NA) based on the original expert
labeling of the training sets of each benchmark. Note, that NA is
the sum of results of unrelated answers such as the for ChemProtC
instead of the expected classes (up, down, no) which counted as false
negative. Focusing on distant supervision (distantly supervised),
the strategy resulted in a high recall and an acceptable precision
for CDR whereas the other benchmarks (ChemProtE, DDI) resulted
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CDR ChemProtC ChemProtE DDI
Training Data Generation 𝑡𝑠𝑒𝑛↓ P R F1 NA P R F1 NA P R F1 NA P R F1 NA
Distantly-supervised < 0.1s 0.44 0.99 0.61 - - - - - 0.43 0.05 0.08 - 0.14 0.27 0.19 -

OlMo 7B (1-Prompt) 0.15s 0.52 0.95 0.67 1 0.14 0.01 0.02 7768 0.36 0.77 0.49 11 0.18 0.98 0.30 2
OlMo 7B (3-Prompt, 1-Yes) 0.26s 0.52 0.96 0.67 - 0.15 0.04 0.07 5273 0.35 0.89 0.50 5 0.17 0.99 0.29 -
OlMo 7B (3-Prompt, 2-Yes) 0.38s 0.60 0.89 0.71 - 0.14 0.02 0.03 5273 0.36 0.77 0.49 5 0.18 0.98 0.31 -
OlMo 7B (3-Prompt, 3-Yes) 0.45s 0.64 0.83 0.72 - 0.12 0.01 0.01 5273 0.37 0.61 0.46 5 0.22 0.94 0.35 -

Llama 3 8B (1-Prompt) 0.2s 0.74 0.42 0.54 - 0.05 0.20 0.08 1503 0.41 0.56 0.48 - 0.26 0.81 0.39 -
Llama 3 8B (3-Prompt, 1-Yes) 0.37s 0.74 0.65 0.69 - 0.04 0.62 0.08 246 0.41 0.70 0.52 - 0.24 0.91 0.38 -
Llama 3 8B (3-Prompt, 2-Yes) 0.51s 0.76 0.46 0.57 - 0.05 0.52 0.09 246 0.45 0.56 0.50 - 0.26 0.84 0.40 -
Llama 3 8B (3-Prompt, 3-Yes) 0.59s 0.73 0.26 0.39 - 0.05 0.29 0.08 246 0.50 0.43 0.47 - 0.28 0.72 0.41 -

BioMistral 7B (1-Prompt) 0.17s 0.55 0.44 0.49 418 0.18 0.02 0.03 7985 0.34 0.23 0.27 588 0.19 0.37 0.25 2278
BioMistral 7B (3-Prompt, 1-Yes) 0.43s 0.51 0.76 0.61 4 0.17 0.08 0.11 2426 0.32 0.61 0.42 1 0.17 0.91 0.29 19
BioMistral 7B (3-Prompt, 2-Yes) 0.54s 0.66 0.41 0.50 4 0.21 0.01 0.01 2426 0.37 0.25 0.30 1 0.21 0.64 0.31 19
BioMistral 7B (3-Prompt, 3-Yes) 0.56s 0.71 0.11 0.19 4 0.0 0.0 0.0 2426 0.42 0.06 0.10 1 0.25 0.24 0.24 19

GPT-4o (1-Prompt) - 0.77 0.59 0.67 - 0.03 0.04 0.03 2 0.50 0.55 0.52 - 0.55 0.88 0.67 -
GPT-4o (3-Prompt, 1-Yes) - 0.75 0.67 0.71 - 0.03 0.05 0.03 - 0.49 0.79 0.60 - 0.53 0.93 0.68 -
GPT-4o (3-Prompt, 2-Yes) - 0.77 0.59 0.67 - 0.03 0.03 0.03 - 0.54 0.57 0.56 - 0.55 0.89 0.68 -
GPT-4o (3-Prompt, 3-Yes) - 0.78 0.50 0.61 - 0.03 0.02 0.02 - 0.60 0.48 0.53 - 0.56 0.84 0.67 -

Table 6: Task 1 (RE). We report the relabeling quality (precision, recall, F1, not answered) of distant supervision and prompting
LLMs on each benchmark’s training set. The time is normalized to labeling one sentence (averaged over all benchmarks).

in low-quality results. There are noticeable differences between
the LLMs in the quality of answers. OlMo produced more than
adequate results but with many NAs (7768@1P 5273@any-3Y) at
ChemProtC. For ChemProtE and DDI, OlMo had the best recall
(but low precision) with the 3P-1Y strategy and, on the other hand,
good precision on average at CDR. The results of the LLama model
were mostly more precise at a lower recall (CDR, ChemProtE, DDI).
LLama had the lowest error on ChemProtC, resulting in a high recall
(0.62) but extremely low precision (0.04) compared to the other free-
to-use models. BioMistral, as the domain-specific model, however,
had difficulties answering any of the strategies without errors, and,
except for ChemProtC, the results were worse than those of other
LLMs at any benchmark. In other words, predicting yes and no is
much more reliable than asking for certain relations. This could
be caused by the lack of prompt optimization or the possibility
that the chosen LLMs cannot answer multiple-choice questions
for this specific task. GPT-4o resulted in the best results regarding
precision in the binary benchmarks but had issues at ChemProtC.
Surprisingly, the model answered with a not matching response
in only two cases (ChemProtC, 1P). Concerning the runtimes, the
LLMs labeled a sentence between 0.15 and 0.59s, which is reasonable.
The mean time to answer the 1P strategy was always the shortest
because only one prompt was evaluated. Looking at the recall, the
1P, the 3P-1Y, and the 3P-2Y strategies had the best results. For
precision, the 3P-3Y led to the best results.

Data Labeling Transfer Learning. The last experiment was de-
signed to show whether the noisy labeling via LLMs is sufficient to
train models. While the quality decreased compared to expert la-
beling, the question was whether this would have a strong effect in
the end. While the training data might get noisy, the models could
still minimize the problem in their learning phase. That is why we
trained our models on the noisily generated training data and tested
them on the original test set. We used the best-performing classifi-
cation models with their best hyperparameter settings (we did not

Model Labeling CDR ChemProtC ChemProtE DDI
P R F1 P R F1 P R F1 P R F1

SVC + tfidf Experts 0.49 0.58 0.53 0.38 0.75 0.51 0.46 0.59 0.46 0.22 0.81 0.35
XGBoost + tfidf Experts 0.45 0.63 0.53 0.36 0.57 0.44 0.45 0.53 0.45 0.21 0.78 0.34
BioLinkBERT Experts 0.59 0.79 0.68 0.62 0.82 0.67 0.57 0.86 0.69 0.67 0.92 0.78
PubMedBERT Experts 0.6 0.78 0.68 0.63 0.81 0.67 0.58 0.86 0.69 0.59 0.94 0.73

SVC + tfidf Distant. 0.39 0.79 0.53 - - - 0.29 0.03 0.05 0.21 0.22 0.22
XGBoost + tfidf Distant. 0.37 0.59 0.46 - - - 0.29 0.18 0.22 0.16 0.2 0.18
BioLinkBERT Distant. 0.41 0.78 0.53 - - - 0.34 0.43 0.38 0.17 0.39 0.23
PubMedBERT Distant. 0.41 0.73 0.53 - - - 0.33 0.4 0.36 0.17 0.39 0.23

SVC + tfidf LLama 3 (3Y) 0.47 0.27 0.34 0.25 0.18 0.16 0.3 0.54 0.39 0.27 0.46 0.34
XGBoost + tfidf LLama 3 (3Y) 0.44 0.31 0.36 0.24 0.17 0.14 0.27 0.45 0.34 0.23 0.5 0.31
BioLinkBERT LLama 3 (3Y) 0.51 0.49 0.5 0.26 0.16 0.14 0.42 0.52 0.46 0.34 0.77 0.47
PubMedBERT LLama 3 (3Y) 0.53 0.5 0.52 0.25 0.16 0.14 0.42 0.5 0.45 0.37 0.83 0.51

SVC + tfidf GPT-4o (2Y) 0.5 0.39 0.43 0.33 0.29 0.28 0.32 0.57 0.41 0.24 0.73 0.36
XGBoost + tfidf GPT-4o (2Y) 0.46 0.36 0.41 0.34 0.32 0.3 0.3 0.51 0.37 0.27 0.72 0.39
BioLinkBERT GPT-4o (2Y) 0.55 0.67 0.61 0.32 0.22 0.25 0.42 0.64 0.5 0.48 0.95 0.64
PubMedBERT GPT-4o (2Y) 0.62 0.56 0.59 0.31 0.25 0.27 0.44 0.49 0.46 0.48 0.95 0.64

Table 7: Task 1 (RE). We trained the classification models on
the noisy training data generated by distant supervision or
LLMs. LLama used the 3-Yes and GPT-4o the 2-Yes strategy.
We tested the trained models on the original test sets.

conduct a new search here). The results are shown in Table 7. For
CDR, the different labelingmethods seem to perform quite well. The
distantly supervised labeling method achieved a similar, but slightly
decreased, F1 score compared to the expert labeling. This suggests
that the Comparative Toxigenomics Database [7] knowledge base
used for distant labeling is reliable and provides high-quality data
for this task. On ChemProtC, the difference between the labeling
methods and expert labeling was more noticeable. The models’ per-
formance dropped significantly when trained on noisily generated
data, which could also be a cause of our re-grouping of the data.
Overall, GPT-4o mode performed the best across most tasks and
labeling methods. It consistently outperformed other models with
training on BERT models, demonstrating its robustness and effec-
tiveness even when trained on noisily labeled data. This highlights
the potential of advanced language models to handle noisy data
and achieve high performance without the need for perfect labeling.
In brief, LLMs labeled the training data sufficiently well for our
purposes and came with acceptable costs in the end.
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Benchmark #Train #Dev #Test

Hallmarks of cancer 12119 1798 3547
Ohsumed 5028 1258 7643
Long COVID 331 83 138
Pharm. Tech. 14000 3000 3000

Table 8: Task 2 (TC). Benchmark document distribution.

5 TASK 2: TEXT CLASSIFICATION
The text classification task can be formulated as follows: Given
some document, classify whether its text belongs to some class.

5.1 Benchmarks
We used four biomedical text classification benchmarks that provide
train, dev, and test data containing abstracts and their assigned
classes. For instance, one abstract may be classified as describing
information about Long COVID or as being about Pharmaceutical
Technology. The first three benchmarks are established benchmarks.
The fourth benchmark is a benchmark that we crafted.

Hallmarks of cancer. This dataset3 was created by Simon
Baker [4, 5]. He collected 1852 biomedical publication abstracts
using terms for the ten cancer hallmarks. This was further refined
by expanding the original ten Hallmarks of Cancer into a more
detailed taxonomy with 37 classes. Annotations were made on
sentence and abstract levels for texts showing clear evidence of
association with one or several hallmarks [3].

Ohsumed. The Ohsumed dataset4, created by William Hersh
and his colleagues [14], was formulated by extracting clinical paper
abstracts from the MEDLINE database, with a focus on 23 Medical
Subject Headings (MeSH) disease categories. This process yielded
13,929 unique abstracts [46]. A "positive abstract" is defined as one
that aligns with one of the 23 disease categories through its content
and indexing terms, while a "negative abstract" is identified as one
that either falls outside these categories or sufficiently relates to
the designated disease categories [15].

Long COVID. The Long COVID dataset was developed for
classifying documents related to the long-term effects of COVID-
19. It was compiled through manual curation and searches across
PubMed and other databases like LitCovid. This collection provides
a targeted benchmark for understanding the long-term impacts of
COVID-19 in scientific literature. [26]

Pharmaceutical Technology (our own). The objective of this
dataset is to classify whether an article belongs to "Pharmaceutical
Technology". We used a list of journals (see our repository) that
publish articles about Pharmaceutical Technology to derive docu-
ment abstracts as positive training examples. This mapping was
facilitated by utilizing the MEDLINE database, which contains a
list of all PubMed IDs and their corresponding journal information.
Articles from these journals were labeled as belonging to Phar-
maceutical Technology, while negative examples were randomly
sampled from other journals so that both classes were balanced.

3https://autonlp.ai/datasets/hoc-(hallmarks-of-cancer), last accessed: 07.2024
4https://disi.unitn.it/moschitti/corpora.htm, last accessed: 07.2024
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Figure 3: Task 2 (TC). Label distribution for each benchmark.

Model Hallmark Ohsumed Long COVID Pharm. Tech.
P R F1 P R F1 P R F1 P R F1

Traditional Classification Models

SVC + tfidf 0.36 0.67 0.44 0.31 0.39 0.33 0.92 0.90 0.91 0.87 0.89 0.88
SVC + sBERT 0.36 0.67 0.44 0.31 0.39 0.33 0.92 0.90 0.91 0.87 0.89 0.88
XGBoost + tfidf 0.27 0.57 0.31 0.25 0.29 0.24 0.88 0.94 0.91 0.86 0.84 0.85
XGBoost + sBERT 0.27 0.57 0.31 0.25 0.29 0.24 0.88 0.94 0.91 0.86 0.84 0.85
Random Forrest + tfidf 0.24 0.5 0.26 0.2 0.24 0.2 0.89 0.94 0.91 0.77 0.86 0.81
Random Forrest + sBERT 0.23 0.5 0.25 0.2 0.24 0.2 0.82 0.91 0.86 0.77 0.88 0.82

Language Models

BERT 0.36 0.76 0.44 0.24 0.33 0.22 0.92 0.90 0.91 0.89 0.90 0.89
RoBERTa 0.37 0.75 0.45 0.23 0.29 0.21 0.92 0.88 0.90 0.88 0.93 0.91
XLNet 0.27 0.64 0.31 0.33 0.45 0.36 0.94 0.85 0.89 0.90 0.90 0.90
BioBERT 0.44 0.8 0.54 0.38 0.51 0.41 0.90 0.88 0.89 0.91 0.93 0.92
BioLinkBERT 0.41 0.8 0.51 0.38 0.52 0.41 0.91 0.91 0.91 0.90 0.91 0.91
PubMedBERT 0.46 0.82 0.56 0.38 0.51 0.41 0.87 0.91 0.89 0.90 0.92 0.91

Table 9: Task 2 (TC). We report the text classification quality
(precision, recall, F1) when comparing several models on the
test data of the corresponding benchmarks.

The data set size is shown in Table 8. The assigned label dis-
tribution is shown in Figure 3. The Long COVID and Pharmaceu-
tical Technology benchmarks had an equal distribution of labels,
whereas the OHSUMED and Hallmarks of Cancer benchmarks had
an uneven distribution. We again down-sampled the training data
to the less frequent class to obtain a balanced training objective.
Again, we trained our models on train, optimized hyperparameters
(as listed in Table 1) on development and tested our models on test.

5.2 RQ1: Text Classification
Table 9 shows the classification quality of different models across
the four benchmarks described above. Among traditional models,
SVC with both tfidf and sBERT configurations performed best,
achieving F1 scores of 0.44 for Hallmarks of Cancer and 0.88 for
Pharmaceutical Technology. XGBoost models also did well, espe-
cially in the Long COVID benchmark, with an F1 score of 0.91,
while Random Forest models performed lower overall. Language
models (LMs) outperformed traditional ones, with BioBERT achiev-
ing an F1 score of 0.41 in Ohsumed and 0.92 in Pharmaceutical
Technology. PubMedBERT exceled with the highest F1 score of
0.56 in Hallmarks of Cancer and consistently high scores in other
benchmarks, such as 0.91 in Pharmaceutical Technology.

https://autonlp.ai/datasets/hoc-(hallmarks-of-cancer)
https://disi.unitn.it/moschitti/corpora.htm
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Figure 4: (TC). Hyperparameter search sistribution between
the best and worst models for the two best shallow models
and language models comparing the accuracy score.

Hyperparameter Search. The influence of hyperparameters is
again shown in Figure 4 as box plots: The x-axis contains the best-
performing models (two for each category) from Table 9. The y-axis
shows the accuracy score based on some selected hyperparameter
combinations. BioBERT showed significant sensitivity to hyperpa-
rameter choices, which is reflected in its wide range of accuracy
scores across the benchmarks. PubMedBERT delivered strong per-
formance with noticeable variability, especially in the Hallmarks
of Cancer benchmark, also indicating its sensitivity to hyperpa-
rameter settings. On the other hand, SVC + tfidf showed greater
variability in performance in OHSUMED and Hallmarks of Cancer
benchmarks, achieving higher median accuracy, which highlights
the impact of effective hyperparameter tuning. Like in the previous
experiment, XGBoost showed robustness to hyperparameter tuning,
achieving higher median accuracy in most cases, suggesting it is
less sensitive to changes in hyperparameter settings. In brief, our
findings indicate that hyperparameter search significantly impacts
model performance, especially for LMs.

Application Costs. Next, we measured the required time for train-
ing, hyperparameter search (HS), and application time normalized
by the number of documents in the test set. Again, we used the num-
ber of publications in PubMed (37M) to calculate the estimated time
(ET PubMed) for a model application to the whole PubMed collec-
tion. We measured the runtimes on the Pharmaceutical Technology
benchmark as it was the largest text classification benchmark in
our setup. The measured times are listed in Table 10. GPU appli-
cation times are again, similarly to relation extraction, measured
on an upscaled data set (1M abstracts) but still normalized. In the
Pharmaceutical Technology benchmark, XGBoost models were effi-
cient, with quick training times and moderate F1 scores, processing
PubMed relatively quickly. SVC models achieved slightly higher F1
scores but required significantly more time for PubMed processing.
Using our GPU, LMs like BioBERT and BioLinkBERT offered a suit-
able mixture of quality and efficiency, with higher F1 scores and
acceptable processing times. Again, XLNet was slower across all

Model Training HS Application ET PubMed
Traditional Classification Models

SVC + tfidf 57 min 28 s 42 h 41 min 7 s 9.79e-04 s 9 h 56 min 40.26 s
SVC + sBERT 1 h 0 min 5 s 53 h 17 min 10 s 9.70e-04 s 9 h 50 min 47.59 s
XGBoost + tfidf 9 s 6 min 51 s 5.63e-05 s 34 min 17.15 s
XGBoost + sBERT 9 s 6 min 37 s 7.00e-05 s 42 min 39.25 s
Random Forest + tfidf 2 min 51 s 7 min 38 s 7.96e-05 s 48 min 28.16 s
Random Forest + sBERT 3 min 27 s 8 min 24 s 7.68e-05 s 46 min 48.54 s

Language Models on GPU

BERT 27 min 24 s 12 h 14 min 4 s 4.02e-03 s 1 d 16 h 52 min 12.99 s
RoBERTa 9 min 48 s 8 h 40 min 25 s 3.92e-03 s 1 d 15 h 49 min 11.95 s
XLNet 12 min 12 s 22 h 6 min 47 s 1.15e-02 s 4 d 20 h 34 min 6.06 s
BioBERT 10 min 6 s 10 h 44 min 4 s 3.97e-03 s 1 d 16 h 18 min 5.54 s
BioLinkBERT 9 min 53 s 5 h 57 min 51 s 4.00e-03 s 1 d 16 h 34 min 23.02 s
PubMedBERT 28 min 29 s 9 h 30 min 4 s 3.99e-03 s 1 d 16 h 33 min 50.04 s

Table 10: Task 2 (TC). Runtimes were measured on the Phar-
maceutical Technology benchmark. The training and HS
time is reported in total, whereas the application time is
normalized by the number of sentences in the test set. ET
PubMed is the estimated time when applying the final model
to the PubMed collection (37M documents).

Model Hallmark Ohsumed Long COVID Pharm. Tech.
P R F1 P R F1 P R F1 P R F1

SingleTask Learning

SVC + tfidf 0.36 0.67 0.44 0.31 0.39 0.33 0.92 0.90 0.91 0.87 0.89 0.88
XGBoost + tfidf 0.27 0.57 0.31 0.25 0.29 0.24 0.88 0.94 0.91 0.86 0.84 0.85
PubMedBERT 0.46 0.82 0.56 0.38 0.51 0.41 0.87 0.91 0.89 0.90 0.92 0.91
BioBERT 0.44 0.8 0.54 0.38 0.51 0.41 0.90 0.88 0.89 0.91 0.93 0.92

MultiTask Learning

SVC + tfidf 0.08 0.0 0.0 0.0 0.0 0.0 0.25 0.5 0.33 0.0 0.0 0.0
XGBoost + tfidf 0.07 0.13 0.07 0.14 0.11 0.09 0.14 0.16 0.14 0.04 0.01 0.02
PubMedBERT 0.31 0.63 0.38 0.31 0.42 0.33 0.76 0.72 0.71 0.04 0.03 0.03
BioBERT 0.34 0.68 0.41 0.36 0.49 0.39 0.44 0.36 0.29 0.05 0.03 0.03

Table 11: Task 2 (TC). We compared precision, recall and F1
of SingleTask vs. MultiTask learning on the benchmarks.

stages than BERT-based models. Note that we skipped measuring
LMs on CPU here because times would be very high and similar to
the relation extraction task.

In summary, traditional models like XGBoost offered quick train-
ing, tuning and application times. However, LMs such as BioBERT
and PubMedBERT, when using GPUs, offered still acceptable ap-
plication times but achieved higher F1 scores. They still processed
large datasets like PubMed very fast, making them better suited for
tasks requiring high-quality classification.

5.3 RQ2: System Architecture
We again designed two system architectures: 1) SingleTask learning,
i.e., a model for each document classification system. 2) MultiTask
learning, i.e., combining the training data of every benchmark to
train a single model. Note that in practice, a document might have
several classes which is not reflected in our evaluation setup (single
class prediction). The comparison between both strategies is shown
in Table 11. Again, we compared the top two shallow models and
the top two LMs based on their classification quality. The MultiTask
Learning results showed issues across all four biomedical bench-
marks. It resulted in much lower F1 scores, with models struggling
to generalize across different datasets. Again, this is likely due to the
small size of the training data after down-sampling. As predicted,
LMs outperformed shallowmodels. Notably SingleTask strategy sig-
nificantly outperformedMultiTask Learning, withmodels achieving
better performance when trained individually.
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Figure 5: Task 2 (TC). Achieved F1 scores are shown for the test sets when training data is reduced.
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Figure 6: Task 2 (TC). Achieved F1 scores are shown for the test sets when flipping some training data.

5.4 RQ3: Data Labeling
Testing different strategies to label training data for the text classi-
fication task remains challenging: Distantly supervised approaches
do obviously not work (if a knowledge base would store classes for
documents, this would itself be a benchmark already). It was also
challenging to use LLMs to re-label training, similar to what we did
for the relation extraction task. How should we create sophisticated
prompts that tell an LLM whether an abstract should be about a
certain topic? Suitable examples must be found for each class when
restricting prompts to examples (as in few-show prompting). When
using example terms for each class in prompts, the LLM will very
likely decide whether some of the example terms are present. A
classification approach based on regular expression would then
be sufficient for this scenario. In brief, distant supervision and
LLM-driven labeling cannot be applied to the text classification
task without exhausting engineering (which was out of our scope).
However, we decided not to skip the experiment completely. Instead,
we tested two strategies to introduce noise in the training data set.
We assume that this noise could reflect some bad labeling strat-
egy. This assumption has problems as our noise will be introduced
randomly, not by some bias/systematic error in the labeling.

Our first strategy reduces the number of available training data
by random, i.e., we randomly sampled the training data down to
specific fractions of the original dataset, such as 100%, 75%, 50%, and
25%. We then trained our best-performing model configurations on
that reduced training data set and evaluated their F1 scores on the
original test data set. Figure 5 shows the impact of reducing training
data on model performance across different benchmarks. In the
Pharmaceutical Technology benchmark, all models showed stable
performance despite data reduction. However, in the Hallmarks of
Cancer and OHSUMED benchmarks, F1 scores increased signifi-
cantly with more training data, which shows a stronger dependence
on a larger dataset for improved performance. LMs benefit from

increased training data size, consistently outperforming traditional
models in these four benchmarks. Overall, LMs can manage data
scarcity better than traditional models.

The second strategy introduces noise into the training data by
randomly flipping a certain degree of labels. The flipping is done
by randomly sampling the balanced train set by a defined flip value
(e.g., 25 %) and shuffling the labels within this subset. The flipped
subset is then reintegratedwith the original dataset, maintaining the
overall data structure while introducing controlled label variability.

Again, we trained models on those data sets and measured their
performance based on the original test sets. Figure 6 visualize the
results. In all the benchmarks, all models experienced a decline in
F1 scores as the level of label noise increases. In the OHSUMED
benchmark, the LMs showed greater resilience to this noise, main-
taining higher performance than traditional models. However, in
the Hallmarks of Cancer benchmark, BioBERT performed worst
among all models when 75% of the data is flipped, indicating a
higher sensitivity to label noise in this specific scenario. This shows
that LMs can still be vulnerable under extreme noise conditions.

6 CONCLUSION
While some of our findings were expected, e.g., that LMs are more
robust and accurate on classification tasks, our paper contributes a
library perspective when applying them. First, we compared differ-
ent models in terms of their training and application times. GPUs
are a must-have when working with LMs. Shallow models like
SVC/XGBoost may still worth using. Second, LLMs can label train-
ing data with a moderate quality and costs. However, the overall
classification quality is then decreased. In conclusion, we examined
how to tackle supervised text processing within a digital library.
We shared our code so other libraries could build upon our findings.
Further investigation could shed more light on generating training
data or finding more reliable MultiTask learning setups.
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