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Abstract

We study the Ollivier-Ricci curvature and its modification introduced by Lin, Lu,

and Yau on graphs. We provide a complete characterization of all graphs with Lin-Lu-

Yau curvature at least one. We then explore the relationship between the Lin-Lu-Yau

curvature and the Ollivier-Ricci curvature with vanishing idleness on regular graphs.

An exact formula for the difference between these two curvature notions is established,

along with an equality condition. This condition allows us to characterize edges that

are bone-idle in regular graphs. Furthermore, we demonstrate the non-existence of

3-regular bone-idle graphs and present a complete characterization of all 4-regular

bone-idle graphs. We also show that there exist no 5-regular bone-idle graphs that

are symmetric or a Cartesian product of a 3-regular and a 2-regular graph.
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1 Introduction and statement of results

Since the introduction of the geometric notion of curvature by Gauss and Riemann over 150
years ago, it has played a central role in differential geometry. Among the different types of
curvature, Ricci curvature is of particular importance, serving as a fundamental tool in the
study of Riemannian manifolds. Given its importance in differential geometry, it is natural
to seek extensions of Ricci curvature to broader classes of metric spaces beyond Riemannian
manifolds. This pursuit has led to the development of various generalized curvature notions
for non-smooth or discrete structures, see, e.g., Bakry-Émery [1], Erbar-Maas [2], Mielke
[3] and Forman [4].

In this work, we study a notion of Ricci-curvature introduced by Ollivier in 2009 [5].
Von Renesse and Sturm [6] established a connection between Ricci curvature and optimal
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transport on smooth Riemannian manifolds. Building upon their results, Ollivier developed
a discrete notion of Ricci curvature on metric spaces equipped with Markov chains or a
measure, known as the Ollivier-Ricci curvature. This approach leverages optimal transport
theory, as Ollivier’s definition of curvature is based on the Wasserstein distance.

In the context of locally finite graphs, Ollivier’s notion of Ricci curvature has recently
received considerable attention. In this setting, the Ollivier-Ricci curvature κα is defined
on the edges of the graph and depends on an idleness parameter α ∈ [0, 1]. Ollivier
considered idleness parameter α = 0 and α = 1

2 . In 2011, Lin, Lu, and Yau [7] introduced
a modification of the Ollivier-Ricci curvature, by computing the derivative of the curvature
with respect to the idleness parameter. We will refer to this modification as Lin-Lu-Yau
curvature and denote it by κ.

Our first result is a complete characterization of the graphs with Lin-Lu-Yau curvature
greater than or equal to one for every edge.

Theorem 1.1. Let G = (V,E) be a locally finite graph. Then κ(x, y) ≥ 1 for every edge
x ∼ y ∈ E if and only if the minimum degree δ(G) ≥ |V | − 2.

We then focus on the relationship between the 0-Ollivier-Ricci curvature κ0 and the Lin-
Lu-Yau curvature κ. For regular graphs, we derive an exact formula for the difference
between these two curvature notions.

Theorem 1.2. Let G = (V,E) be a locally finite graph. Let x, y ∈ V be of equal degree d
with x ∼ y. If |S1(x) ∩ S1(y)| < d− 1, then

κ(x, y)− κ0(x, y) =
1

d

(

3− sup
φ∈Oxy

sup
z∈S1(x)\B1(y)

d(z, φ(z))

)

,

where Oxy denotes the set of optimal assignments between S1(x)\B1(y) and S1(y)\B1(x).
If |S1(x) ∩ S1(y)| = d− 1, then

κ(x, y)− κ0(x, y) =
2

d
.

Finally, we study an analog of Ricci-flat manifolds. Ricci-flat Lorentzian manifolds play an
important role in theoretical physics as solutions to Einstein’s field equations in a vacuum
with vanishing cosmological constant. As an analog, one might consider graphs where the
Ollivier-Ricci curvature vanishes everywhere. In this work, we impose an even stronger
condition. Namely, that the Ollivier-Ricci curvature κα vanishes everywhere for every
idleness parameter α. We refer to such graphs as bone-idle. It turns out that bone-idleness
is equivalent to the vanishing of both the 0-Ollivier-Ricci curvature and the Lin-Lu-Yau
curvature κ everywhere. Therefore, we can apply our results on the relation between the
Ollivier-Ricci curvature and the Lin-Lu-Yau curvature. Using this, we characterize edges
that are bone-idle in regular graphs. Furthermore, we show that no 3-regular bone-idle
graph exists.

Theorem 1.3. Let G = (V,E) be a locally finite graph. Suppose that G is bone-idle, then
G is not 3-regular.
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We also provide a complete characterization of 4-regular bone-idle graphs in Section 5.3
and discuss the existence of 5-regular bone-idle graphs.

We conclude this introduction by providing an outline of the remainder of the paper. In
Section 2 we review the relevant concepts of Graph Theory and Optimal Transport Theory,
and introduce the Ollivier-Ricci curvature, as well as its modification by Lin, Lu, and Yau.
In Section 3 we provide a complete characterization of all graphs with Lin-Lu-Yau curvature
at least one. In Section 4 we explore the relationship between the Lin-Lu-Yau curvature
and the 0-Ollivier-Ricci curvature on regular graphs. Finally, in Section 5, we present our
findings on bone-idle graphs.

2 Definitions and notations

We begin by reviewing some fundamental concepts of Graph Theory and Optimal Trans-
port Theory. We then introduce Ollivier’s discrete notion of Ricci curvature on graphs, as
well as its modification by Lin, Lu, and Yau.

2.1 Graph Theory

A simple graph G = (V,E) is an unweighted, undirected graph that contains no multiple
edges or self-loops. For two vertices x, y ∈ V we denote the existence of an edge between
x and y by x ∼ y. For any two vertices x, y ∈ V , the shortest-path distance d(x, y) is the
number of edges in a shortest path connecting x and y. If no such path exists, d(x, y) is
defined to be infinity. The diameter of G is denoted by diam(G) = maxx,y∈V d(x, y). The
girth of G is the length of a shortest cycle contained in G. If G does not contain any cycles,
the girth is defined to be infinity.

For x ∈ V and r ∈ N we define the r-sphere centered at x as Sr(x) = {y ∈ V : d(x, y) = r}
and the r-ball centered at x as Br(x) = {y ∈ V : d(x, y) ≤ r}. For an edge x ∼ y, we
denote by Nxy = S1(x) ∩ S1(y) the set of common neighbors of x and y.

The degree of a vertex x ∈ V is denoted by dx = |S1(x)|. The minimum degree of a graph
G is denoted by δ(G) = minx∈V dx. The graph G is called locally finite if every vertex has
finite degree. The graph is said to be d-regular if every vertex has the same degree d.

An automorphism of a graph G = (V,E) is a permutation σ of the vertex set V such that
for any pair of vertices x, y ∈ V , x ∼ y if and only if σ(x) ∼ σ(y). In other words, an
automorphism is an isomorphism of G to itself. An edge automorphism of G = (V,E) is a
permutation of the edge set E that sends edges with a common endpoint into edges with
a common endpoint.

A graph is called vertex-transitive if, for any two vertices x, y ∈ V , there exists an auto-
morphism σ of the graph such that σ(x) = y. A graph is called edge-transitive if, for any
two edges e1, e2 ∈ E, there exists an edge automorphism γ such that γ(e1) = e2.

We call a graph symmetric if it is both vertex-transitive and edge-transitive.

We conclude this section by defining the Cartesian product of graphs. Given two graphs
G = (VG, EG) and H = (VH , EH), the Cartesian product G�H, is a graph with vertex

3



set VG × VH . Two vertices (x1, y1) and (x2, y2) are adjacent in G�H if and only if either
x1 = x2 and y1 ∼ y2 ∈ EH , or x1 ∼ x2 ∈ EG and y1 = y2.

2.2 Ollivier-Ricci curvature and its modification

The Wasserstein distance, a metric defined on the space of probability measures, is a
fundamental concept in optimal transport theory.

Definition 2.1 (Wasserstein distance). Let G = (V,E) be a locally finite graph. Let
µ1, µ2 be two probability measures on V . The Wasserstein distance between µ1 and µ2 is
defined as

W1(µ1, µ2) = inf
π∈Π(µ1,µ2)

∑

x∈V

∑

y∈V

d(x, y)π(x, y), (2.1)

where

Π(µ1, µ2) =







π : V × V → [0, 1] :
∑

y∈V

π(x, y) = µ1(x),
∑

x∈V

π(x, y) = µ2(y)







.

Intuitively, imagine two distributions given by µ1 and µ2 as piles of earth. The Wasserstein
distance measures the minimal effort required to transform one pile of earth into another.
We call π ∈ Π(µ1, µ2) a transport plan and if the infimum in 2.1 is attained, we call π an
optimal transport plan transporting µ1 to µ2.

It is a well-known fact in optimal transport theory that no mass needs to be moved when
it is shared between the two probability measures.

Lemma 2.2. Let G = (V,E) be a locally finite graph. Let µ1, µ2 be two probability measures
on V . Then there exists an optimal transport plan π transporting µ1 to µ2 satisfying

π(x, x) = min{µ1(x), µ2(x)}

for all x ∈ V .

To introduce Ollivier’s notion of Ricci curvature on graphs, we define the probability
measures µαx for x ∈ V and α ∈ [0, 1] by

µαx(y) =











α, if y = x;
1−α
dx
, if y ∼ x;

0, otherwise.

Then, the Ollivier-Ricci curvature is defined as follows.

Definition 2.3 (Ollivier-Ricci curvature). Let G = (V,E) be a locally finite graph. We
define the α-Ollivier-Ricci curvature of an edge x ∼ y by

κα(x, y) = 1−W1(µ
α
x , µ

α
y ).

The parameter α is called the idleness.
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We present a more intuitive formula for the Ollivier-Ricci curvature, as provided in [8]. Let
ναi be the mass transported with distance i under an optimal transport plan transporting
µαx to µαy . Then

3
∑

i=0

ναi = 1 and W1(µ
α
x , µ

α
y ) =

3
∑

i=1

iναi .

Therefore, we obtain
κα(x, y) = να0 − να2 − 2να3 .

Ollivier considered idleness parameters α = 0 and α = 1
2 . In [9], the authors study

the Ollivier-Ricci curvature as a function of the idleness parameter. To this end, they
introduced the Ollivier-Ricci idleness function α → κα(x, y). It was first shown by Lin,
Lu, and Yau in [7], that the idleness function is concave. Using that κ1(x, y) = 0, this
implies that the function h(α) = κα(x,y)

1−α is increasing over the interval [0, 1). They further
showed that h(α) is bounded and thus, the limit limα→1 h(α) exists. Lin, Lu, and Yau
used this result to introduce a modified version of the Ollivier-Ricci curvature that does
not depend on the idleness.

Definition 2.4 (Lin-Lu-Yau curvature). Let G = (V,E) be a locally finite graph. The
Lin-Lu-Yau curvature of an edge x ∼ y is defined as

κ(x, y) = lim
α→1

κα(x, y)

1− α
.

Remark 2.5. Observe that κ1(x, y) = 0 for any edge x ∼ y. Thus, κ(x, y) is the negative
of the derivative of κα(x, y) with respect to the idleness parameter in α = 1.

In what follows, we write Ric(G) ≥ k (Ric(G) = k) if κ(x, y) ≥ k (κ(x, y) = k) for all
edges x ∼ y in G.

Bourne et al. [9] showed that the idleness function is piecewise linear with at most 3 linear
parts. They also derived the length of the last linear part.

Theorem 2.6 ([9], Theorem 4.4). Let G = (V,E) be a locally finite graph and let x, y ∈ V

with x ∼ y and dx ≥ dy. Then α→ κα(x, y) is linear over
[

1
dx+1 , 1

]

.

Thus, we obtain the following relation between the α-Ollivier-Ricci curvature and its mod-
ification by Lin, Lu, and Yau as an immediate consequence of the mean value theorem.

Theorem 2.7. Let G = (V,E) be a locally finite graph and let x, y ∈ V with x ∼ y and
dx ≥ dy. Then

κα(x, y) = (1− α)κ(x, y)

for α ∈
[

1
dx+1 , 1

]

.

Hence, the Lin-Lu-Yau curvature coincides up to a scaling factor with the α-Ollivier-Ricci
curvature for large values of α.

For regular graphs, the optimal transport problem reduces to an optimal assignment prob-
lem between subsets of the 1-spheres. In [10], the author uses this observation to derive a
simplified formula for the Lin-Lu-Yau curvature. To formalize this approach, we introduce
the concept of an optimal assignment.
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Definition 2.8 (Optimal assignment). Let G = (V,E) be a locally finite graph. Let x, y ∈
V be of equal degree d with x ∼ y. We call a bijection φ : S1(x) \B1(y) → S1(y) \B1(x)
an assignment between S1(x) \B1(y) and S1(y) \B1(x). Denote by Axy the set of all such
assignments. We call φ ∈ Axy an optimal assignment if

∑

z∈S1(x)\B1(y)

d(z, φ(z)) = inf
ψ∈Axy

∑

z∈S1(x)\B1(y)

d(z, ψ(z)).

The set of all optimal assignments between S1(x) \B1(y) and S1(y) \B1(x) is denoted by
Oxy.

Remark 2.9. Observe that the condition that x and y have the same degree is necessary
to ensure that |S1(x) \B1(y)| = |S1(y) \B1(x)|.

Theorem 2.10 ([10], Theorem 4.3). Let G = (V,E) be a locally finite graph. Let x, y ∈ V

be of equal degree d with x ∼ y. Then the Lin-Lu-Yau curvature

κ(x, y) =
1

d

(

d+ 1− inf
φ∈Axy

∑

z∈S1(x)\B1(y)

d(z, φ(z))

)

,

A similar formula holds true for the Ollivier-Ricci curvature in the case of vanishing idle-
ness, i.e., α = 0.

Theorem 2.11 ([10], Theorem 4.8). Let G = (V,E) be a locally finite graph. Let x, y ∈ V

be of equal degree d with x ∼ y. Then

κ0(x, y) =
1

d

(

d− inf
φ

∑

z∈S1(x)\S1(y)

d(z, φ(z))

)

,

where the infimum is taken over all bijections φ between S1(x) \ S1(y) and S1(y) \ S1(x).

3 Lin-Lu-Yau curvature at least one

In this section, we characterize all graphs for which the Lin-Lu-Yau curvature is greater
than or equal to one. To this end, we first establish the following upper bound on the
Lin-Lu-Yau curvature.

Theorem 3.1. Let G = (V,E) be a locally finite graph and let x, y ∈ V with x ∼ y and
dx ≥ dy. Then

κ(x, y) ≤
|Nxy|+ 2

dx
.

Remark 3.2. In [11, Theorem 4], the authors establish a similar upper bound for the
0-Ollivier-Ricci curvature.
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Proof. If dx = dy, observe that d(i, j) ≥ 1 for every i ∈ S1(x)\B1(y) and j ∈ S1(y)\B1(x).
Using Theorem 2.10, we obtain

κ(x, y) =
1

dx

(

dx + 1− inf
φ∈Axy

∑

z∈S1(x)\B1(y)

d(z, φ(z))

)

≤
1

dx

(

dx + 1− |S1(x) \B1(y)|

)

=
|Nxy|+ 2

dx
.

Now, assume dx > dy and set α = 1
dy+1 . According to Lemma 2.2, there exists an optimal

transport plan π transporting µαx to µαy , such that π(j, j) = min{µαx(j), µ
α
y (j)} for all j ∈ V .

Therefore,

να0 = (|Nxy|+ 1)
1− α

dx
+

1− α

dy

where ναi denotes the mass transported with distance i under π.

Observe that the set I = {z ∈ B1(x)\{y} : π(z, y) > 0} is non-empty, as µαy (y)−π(y, y) >
0. Furthermore, I does not contain x and common neighbors of x and y. Therefore, every
vertex in I is at distance two of y. Hence,

να2 ≥ µαy (y)− π(y, y) = α−
1− α

dx
.

Using α = 1−α
dy

, we conclude that

κα(x, y) = να0 − να2 − 2να3

≤
|Nxy|+ 2

dx
(1− α).

Finally, we apply Theorem 2.7, and obtain

κ(x, y) =
1

1− α
κα(x, y) ≤

|Nxy|+ 2

dx
.

The following Bonnet-Myers type theorem on graphs will be of importance.

Theorem 3.3 (Discrete Bonnet-Myers Theorem [7]). Let G = (V,E) be a locally finite
graph. If Ric(G) ≥ k > 0, then the diameter of the graph G is bounded as follows:

diam(G) ≤
2

k
.

We are now prepared to prove the main result of this section.

Theorem 1.1. Let G = (V,E) be a locally finite graph. Then Ric(G) ≥ 1 if and only if
δ(G) ≥ |V | − 2.
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Proof. " ⇐= " Let x ∼ y be an arbitrary edge in G and assume, without loss of generality,
that dx ≥ dy. As δ(G) ≥ |V | − 2, we have V = S1(x) ∪ S1(y). Thus,

|V | = dx + dy − |Nxy|.

Using dy ≥ |V | − 2, we obtain |Nxy| ≥ dx − 2. If |Nxy| = dx − 1, then dx = dy must hold
and we can apply Theorem 2.10, yielding κ(x, y) = d+1

d
> 1.

If |Nxy| = dx − 2, then x has exactly one neighbor z that is not adjacent to y. As
δ(G) ≥ |V | − 2, z must be adjacent to every vertex in G besides y. Now, assume α = 1

dy+1
and let π be an optimal transport plan transporting µαx to µαy , satisfying the property
stated in Lemma 2.2. As z is adjacent to every vertex in G besides y, we obtain

να0 = (|Nxy|+ 1)
1− α

dx
+

1− α

dy
,

να2 =
1− α

dy
−

1− α

dx
,

να3 = 0.

Therefore,

κα(x, y) =
|Nxy|+ 2

dx
(1− α) = (1− α).

Using Theorem 2.7, we conclude κ(x, y) = 1.

" =⇒ " We show this by contradiction. Let G be a graph with δ(G) < |V | − 2 and
Ric(G) ≥ 1. Let x ∈ V such that dx = δ(G) and let y be an arbitrary neighbor of x.
Observe that |Nxy| ≤ dx − 1. If dy > dx + 1, then

κ(x, y) ≤
|Nxy|+ 2

dy
≤
dx + 1

dy
< 1,

contradicting our assumption.

Therefore, we now assume dx ≤ dy ≤ dx + 1. As

1 ≤ κ(x, y) ≤
|Nxy|+ 2

dy
,

we conclude |Nxy| ≥ dy − 2 ≥ dx − 2. First, assume |Nxy| = dx − 1. As dx < |V | − 2,
there exist two vertices i, j ∈ V such that x 6∼ i, j. According to Theorem 3.3, d(i, x) = 2
and d(j, x) = 2 must hold true. If both i and j are adjacent to y, then dy ≥ dx + 2,
which contradicts our assumption. Thus, there exists a z ∈ Nxy such that, without loss of
generality, i ∼ z and i 6∼ y, i 6∼ x. Therefore, |Niz| ≤ dz − 3, which leads to

κ(i, z) ≤
|Niz |+ 2

max{di, dz}
≤

dz − 1

max{di, dz}
< 1,

contradicting Ric(G) ≥ 1.

Finally, assume |Nxy| = dx − 2. Observe that, in this case, it is necessary for the equality
dy = dx to hold. Denote the vertex in S1(x) \B1(y) by z1 and the vertex in S1(y) \B1(x)
by z2. According to Theorem 2.10, we have

κ(x, y) =
1

d

(

d+ 1− d(z1, z2)
)

.
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Using κ(x, y) ≥ 1, we conclude d(z1, z2) = 1. As dx < |V | − 2, there exist two vertices
i, j ∈ V such that x 6∼ i, j. It is not possible for y to be adjacent to both i and j, as
this would contradict dy = dx. Therefore, without loss of generality, we can assume y 6∼ i.
Again, according to Theorem 3.3, we must have d(x, i) = 2. Thus, it exists a z ∈ S1(x)\{y}
such that z ∼ i. If z = z1, then |Nxz| ≤ dz − 3, because x 6∼ z2 and x 6∼ i. Therefore, we
conclude

κ(x, z) ≤
|Nxz|+ 2

dz
< 1,

contradicting out assumption. Hence, z ∈ Nxy must hold. As before, we obtain |Niz| ≤
dz − 3, because i 6∼ x and i 6∼ y, which leads to

κ(i, z) ≤
|Niz |+ 2

max{di, dz}
≤

dz − 1

max{di, dz}
< 1.

This contradiction concludes the proof.

Corollary 3.4. Let G = (V,E) be a regular graph with Ric(G) ≥ 1. Then G is isomorphic
to one of the following graphs:

(i) A complete graph, satisfying Ric(G) = |V |
|V |−1 ,

(i) a cocktail party graph, satisfying Ric(G) = 1.

Remark 3.5. A cocktail party graph G = (V,E) is a regular graph of degree d, where
d = |V | − 2.

Corollary 3.6. Let G = (V,E) be a locally finite graph with Ric(G) = 1. If |V | is even,
then G is a cocktail party graph. If |V | is odd, then G is the graph with degree sequence
(|V | − 1, |V | − 2, . . . , |V | − 2).

Proof. Assume G is a locally finite graph, satisfying Ric(G) = 1. If G is regular, then G

is a cocktail party graph, according to Corollary 3.4. Note that in this case, |V | must be
even.

Next, assume G is not regular. According to Theorem 1.1, we have δ(G) ≥ |V | − 2.
If there exist two vertices x, y with degree d > |V | − 2, then |Nxy| = d − 1, leading
to κ(x, y) = d+1

d
> 1, contradicting Ric(G) = 1. Therefore, G can only have degree

sequence (|V | − 1, |V | − 2, . . . , |V | − 2). It remains to show that the graph with this degree
sequence indeed satisfies Ric(G) = 1. To this end, let x ∼ y be an arbitrary edge in G. If
dx = |V | − 1 > dy = |V | − 2, then |Nxy| = dy − 1. This leads to

κ(x, y) ≤
|Nxy|+ 2

dx
= 1.

According to Theorem 1.1, we also have κ(x, y) ≥ 1, and therefore κ(x, y) = 1.

Finally, assume dx = dy = |V | − 2. If |Nxy| = dx − 1, then

|S1(x) ∪ S1(y)| = dx + 1 = |V | − 1.

Hence, there exists a vertex that is not adjacent to both x and y, resulting in a degree less
than |V |−2, which leads to a contradiction. Therefore, |Nxy| = dx−2 must hold, implying

9



that κ(x, y) ≤ 1. According to Theorem 1.1, we also have κ(x, y) ≥ 1, and therefore we
conclude κ(x, y) = 1. Finally, note that the graph with this degree sequence must contain
an odd number of vertices. This can be seen by observing that each vertex of degree |V |−2
is non-adjacent to exactly one other vertex of degree |V | − 2.

We also provide a complete characterization of all graphs with Lin-Lu-Yau curvature
greater than one, a result previously established in [12].

Corollary 3.7. Let G = (V,E) be a locally finite graph with Ric(G) > 1. Then G is a
complete.

Proof. According to Theorem 1.1, δ(G) ≥ |V | − 2 must hold true. If every vertex is of
degree |V | − 2, then G is a cocktail party graph and therefore Ric(G) = 1. Thus, there
exists at least one vertex x of degree |V | − 1. Assume there exists a vertex y of degree
|V | − 2. Then

κ(x, y) ≤
|Nxy|+ 2

dx
≤ 1,

contradicting Ric(G) > 1. Therefore, G must be the complete graph.

4 Relation between the two curvature notions

In this section, we derive an exact expression for the difference between the Lin-Lu-Yau
curvature and the 0-Ollivier-Ricci curvature on regular graphs. We begin with the fol-
lowing Lemma, which addresses certain assumptions that can be imposed on an optimal
assignment.

Lemma 4.1. Let G = (V,E) be a locally finite graph. Let x, y ∈ V be of equal degree d
with x ∼ y. Then there exists an optimal assignment φ between S1(x) and S1(y), such that
φ(i) = i for all i ∈ Nxy.

Furthermore, if |Nxy| < d − 1, there exists an optimal assignment φ, satisfying the afore-
mentioned property and φ(y) 6= x.

Proof. The first part of the Lemma is an immediate consequence of the triangle inequality.

For the second part of the proof, assume that |Nxy| < d − 1 and assume that φ(y) = x.
Choose an arbitrary i ∈ S1(x) \B1(y) and define a new assignment φ′ between S1(x) and
S1(y) by

φ′(z) =











φ(i), if z = y;

x, if z = i;

φ(z), otherwise.

Since i 6∈ Nxy, we have d(i, φ(i)) ≥ 1, leading to

d(y, φ′(y)) + d(i, φ′(i)) = 2 ≤ d(y, φ(y)) + d(i, φ(i)).

Hence, the new assignment φ′ is still optimal. Finally, note that φ′(i) = φ(i) = i for all
i ∈ Nxy. This concludes the proof.

10



We are now ready to prove the main theorem of this section.

Theorem 1.2. Let G = (V,E) be a locally finite graph. Let x, y ∈ V be of equal degree
d with x ∼ y. If |Nxy| < d− 1, then

κ(x, y)− κ0(x, y) =
1

d

(

3− sup
φ∈Oxy

sup
z∈S1(x)\B1(y)

d(z, φ(z))

)

.

If |Nxy| = d− 1, then

κ(x, y)− κ0(x, y) =
2

d
.

Proof. Case 1: |Nxy| = d − 1. According to Theorem 2.10, we have κ(x, y) = d+1
d

, while
Theorem 2.11 shows that κ0(x, y) = d−1

d
. Hence,

κ0(x, y) = κ(x, y)−
2

d
.

Case 2: |Nxy| < d− 1. Choose φ ∈ Oxy and j ∈ S1(x) \B1(y) such that

d(j, φ(j)) = sup
ψ∈Oxy

sup
z∈S1(x)\B1(y)

d(z, ψ(z)).

Next, we define an assignment ψ between S1(x) \ S1(y) and S1(y) \ S1(x) by

ψ(z) =











x, if z = j;

φ(j), if z = y;

φ(z), otherwise.

We claim that ψ is an optimal assignment between S1(x)\S1(y) and S1(y)\S1(x). Assume
this is not the case. Let ψ′ be an optimal assignment. According to Lemma 4.1, we can
assume that ψ′(y) 6= x. As ψ is not optimal,

∑

z∈S1(x)\S1(y)

d(z, ψ′(z)) <
∑

z∈S1(x)\S1(y)

d(z, ψ(z)) (4.1)

must hold. Using d(j, ψ(j)) = d(y, ψ(y)) = 1, we obtain
∑

z∈S1(x)\S1(y)

d(z, ψ(z)) =
∑

z∈S1(x)\B1(y),
z 6=j

d(z, φ(z)) + 2. (4.2)

On the other hand, by assumption, we have ψ′(y) 6= x. Denote by k the preimage of x
under ψ′. Then

∑

z∈S1(x)\S1(y)

d(z, ψ′(z)) =
∑

z∈S1(x)\B1(y),
z 6=k

d(z, ψ′(z)) + 2. (4.3)

Combining equations 4.1, 4.2 and 4.3 leads to
∑

z∈S1(x)\B1(y),
z 6=k

d(z, ψ′(z)) <
∑

z∈S1(x)\B1(y),
z 6=j

d(z, φ(z)). (4.4)
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Next, we define an assignment φ′ ∈ Axy between S1(x) \B1(y) and S1(y) \B1(x) by

φ′(z) =

{

ψ′(y), if z = k;

ψ′(z), if z ∈ S1(x) \B1(y) and z 6= k .

Due to the optimality of φ, we have
∑

z∈S1(x)\B1(y)

d(z, φ′(z)) ≥
∑

z∈S1(x)\B1(y)

d(z, φ(z)).

We now distinguish the following two cases:

Case 1:
∑

z∈S1(x)\B1(y)
d(z, φ′(z)) =

∑

z∈S1(x)\B1(y)
d(z, φ(z)). In this case, φ′ ∈ Oxy and

by our choice of φ and j, we have

d(k, φ′(k)) ≤ d(j, φ(j)),

leading to
∑

z∈S1(x)\B1(y),
z 6=k

d(z, φ′(z)) ≥
∑

z∈S1(x)\B1(y),
z 6=j

d(z, φ(z)).

contradicting equation 4.4.

Case 2:
∑

z∈S1(x)\B1(y)
d(z, φ′(z)) >

∑

z∈S1(x)\B1(y)
d(z, φ(z)). Due to equation 4.4, we

have
2 + d(j, φ(j)) ≤ d(k, φ′(k))).

As d(k, φ′(k)) ≤ 3 and 1 ≤ d(j, φ(j)), we must have d(j, φ(j)) = 1 and therefore

1 = d(j, φ(j)) ≥ d(z, φ(z)) ≥ 1

holds for any z ∈ S1(x) \B1(y), by the choice of j and φ. This contradicts equation 4.4, as

d(z, ψ′(z)) ≥ 1, ∀z ∈ S1(x) \B1(y).

Therefore our assumption was wrong and ψ is an optimal assignment between S1(x)\S1(y)
and S1(y) \ S1(x). Using Theorem 2.11, we obtain

κ0(x, y) =
1

d

(

d−
∑

z∈S1(x)\S1(y)

d(z, ψ(z))

)

=
1

d

(

d−
∑

z∈S1(x)\B1(y),
z 6=j

d(z, φ(z)) − 2

)

=
1

d

(

d+ 1−
∑

z∈S1(x)\B1(y)

d(z, φ(z))

)

−
1

d

(

3− d(j, φ(j))

)

,

where we used equation 4.2 for the second equality. Using the optimality of φ and Theo-
rem 2.10, we obtain

κ0(x, y) = κ(x, y)−
1

d

(

3− d(j, φ(j))

)

.

The choice of φ and j concludes the proof.
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The following result was previously established in [9] and is an immediate consequence of
Theorem 1.2.

Corollary 4.2. Let G = (V,E) be a locally finite graph. Let x, y ∈ V be of equal degree d
with x ∼ y. Then,

κ0(x, y) = κ(x, y)−
c

d
,

where c ∈ {0, 1, 2}.

The following result provides a necessary and sufficient condition for κ(x, y) = κ0(x, y) on
edges with endpoints of equal degree.

Corollary 4.3. Let G = (V,E) be a locally finite graph. Let x, y ∈ V be of equal degree d
with x ∼ y. Then

κ0(x, y) = κ(x, y)

if and only if there exists an optimal assignment φ ∈ Oxy between S1(x) \ B1(y) and
S1(y) \B1(x) such that

∃z ∈ S1(x) \B1(y) : d(z, φ(z)) = 3.

Remark 4.4. Therefore, in a regular graph with diameter at most two, every edge x ∼ y

satisfies κ(x, y) > κ0(x, y). One class of such graphs are d-regular graphs with d ≥ |V |−1
2 .

Next, we use Corollary 4.3 to determine an interval where κ and κ0 always coincide.

Corollary 4.5. Let G = (V,E) be a locally finite graph. Let x, y ∈ V be of equal degree d
with x ∼ y. If

κ(x, y) < −1 +
2|Nxy|+ 3

d
.,

then κ(x, y) = κ0(x, y).

Proof. We argue by contradiction. Assume κ(x, y) 6= κ0(x, y) and

κ(x, y) < −1 +
2|Nxy|+ 3

d
.

Let φ ∈ Oxy be an optimal assignment between S1(x)\B1(y) and S1(y)\B1(x). According
to Corollary 4.3, we have d(z, φ(z)) ≤ 2 for any z ∈ S1(x) \B1(y). Hence,

κ(x, y) =
1

d

(

d+ 1−
∑

z∈S1(x)\B1(y)

d(z, φ(z))

)

≥
1

d

(

d+ 1− 2|S1(x) \B1(y)|

)

=
1

d

(

−d+ 3 + 2|Nxy|

)

,

contradicting our assumption.
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5 Bone-idleness

In this section, we examine edges with Ollivier-Ricci curvature equal to zero for every
idleness parameter α. This concept was originally introduced by Bourne et al. in [9] and
referred to as bone-idle.

Definition 5.1 (Bone-idle). Let G = (V,E) be a locally finite graph. We say an edge
x ∼ y is bone-idle if κα(x, y) = 0 for every α ∈ [0, 1]. We say that G is bone-idle if every
edge of G is bone-idle.

The notion of Ricci-flatness is weaker but strongly related to bone-idleness.

Definition 5.2 (Ricci-flat). Let G = (V,E) be a locally finite graph. We call G Ricci-flat
if κ(x, y) = 0 for every edge x ∼ y ∈ E. We call G α-Ricci flat if κα(x, y) = 0 for every
edge x ∼ y ∈ E.

Due to the following Lemma, bone-idleness and the various notions of Ricci-flatness are
closely related.

Lemma 5.3. Let G = (V,E) be a locally finite graph. Let x, y ∈ V with x ∼ y. Then the
following are equivalent:

(i) κα(x, y) = 0 for all α ∈ [0, 1].

(ii) κ0(x, y) = κ(x, y) = 0.

Proof. (ii) =⇒ (i). Let α ∈ (0, 1) be arbitrary. Assume κ0(x, y) = κ(x, y) = 0. Recall that
the idleness function is concave, and also note that κ1(x, y) = 0. Hence,

κα(x, y) ≥ ακ1(x, y) + (1− α)κ0(x, y) = 0.

The other inequality follows from the fact that the graph of a concave function lies below
its tangent line at each point and that κ′1 = −κ:

κα(x, y) ≤ κ1(x, y) + κ′1(x, y) · (α− 1) = κ(x, y) · (1− α) = 0.

(i) =⇒ (ii). This is an immediate consequence of the definition of κ.

Therefore, a graph is bone-idle if and only if it is Ricci-flat and 0-Ricci-flat. Previous
works have addressed the classification of Ricci-flat graphs. Cushing et al. [14] classified
all Ricci-flat graphs with girth at least five.

Theorem 5.4 ([14], Theorem 1). Let G = (V,E) be a locally finite graph with girth at least
five. Suppose that G is Ricci-flat. Then G is isomorphic to one of the following graphs:

(i) The infinite path,

(ii) the cycle graph Cn for n ≥ 6,

(iii) the dodecahedral graph,
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(iv) the Petersen graph,

(v) the half-dodecahedral graph,

(vi) the Triplex graph.

On the other hand, Bhattacharya et al. [13] classified all graphs that are 0-Ricci-flat and
have girth at least five.

Theorem 5.5 ([13], Corollary 4.1). Let G = (V,E) be a locally finite graph with girth at
least five. Suppose that G is 0-Ricci-flat. Then G is isomorphic to one of the following
graphs:

(i) The infinite path,

(ii) the infinite ray,

(iii) the path Pn for n ≥ 2,

(iv) the cycle graph Cn for n ≥ 5,

(v) the star graph Tn for n ≥ 3.

Combining Theorem 5.5 and Theorem 5.4 yields the following result:

Corollary 5.6. Let G = (V,E) be a locally finite graph with girth at least five. Suppose
that G is bone-idle. Then G is isomorphic to one of the following graphs:

(i) The infinite path,

(ii) the cycle graph Cn for n ≥ 6.

Remark 5.7. Hence, there are no bone-idle graphs with girth equal to five.

The full classification of Ricci-flat and bone-idle graphs appears to be a difficult graph
theory problem, which is still open. In the following, we leverage our previous findings to
investigate the local structure of regular bone-idle graphs.

5.1 Local structures

For the subsequent discussion, we associate the following two quantities with an assignment
φ ∈ Axy:

• N1(φ): The number of neighbors of x, forming a 4-cycle based at the edge x ∼ y,
with their image under φ. That is, N1(φ) = |{z ∈ S1(x) \B1(y) : d(z, φ(z)) = 1}|.

• N2(φ): The number of neighbors of x, forming a 5-cycle based at the edge x ∼ y,
with their image under φ. That is, N2(φ) = |{z ∈ S1(x) \B1(y) : d(z, φ(z)) = 2}|.

Using this notation, we can examine the local structure of regular Ricci-flat graphs of girth
four.
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Theorem 5.8. Let G = (V,E) be a locally finite graph. Let x, y ∈ V be of equal degree d
with x ∼ y. Furthermore, assume that Nxy = ∅. Then κ(x, y) = 0 if and only if one of the
following holds:

(i) There exists an optimal assignment φ ∈ Oxy such that N1(φ) = d−2 and N2(φ) = 0.

(ii) There exists an optimal assignment φ ∈ Oxy such that N1(φ) = d−3 and N2(φ) = 2.

Proof. " =⇒ "Assume κ(x, y) = 0. Let φ ∈ Oxy be an optimal assignment between
S1(x) \B1(y) and S1(y) \B1(x). According to Theorem 2.10, we have

κ(x, y) =
1

d

(

d+ 1−
∑

z∈S1(x)\B1(y)

d(z, φ(z))

)

=
1

d

(

−2d+ 4 + 2N1(φ) +N2(φ)

)

= 0.

This can only be the case if one of the cases stated in Theorem 5.8 holds true.

" ⇐= " This is an immediate consequence of Theorem 2.10.

Next, we present a necessary and sufficient condition for an edge x ∼ y to have κ0(x, y) = 0.
This condition was already established by Bhattacharya et al. [13].

Theorem 5.9. Let G = (V,E) be a locally finite graph. Let x, y ∈ V be of equal degree
d with x ∼ y. Furthermore, assume that Nxy = ∅. Then κ0(x, y) = 0 if and only if there
exists a perfect matching between S1(x) and S1(y).

Therefore, a 0-Ricci-flat, regular graph of girth four must have a perfect matching between
the neighborhoods S1(x) and S1(y) for every edge x ∼ y. Examples are the n-dimensional
hypercube Qn, the n-dimensional integer lattice Z

n and the complete bipartite graph Kn,n.

The subsequent theorem provides a necessary and sufficient condition for an edge in a
graph of girth four to be bone-idle.

Theorem 5.10. Let G = (V,E) be a locally finite graph. Let x, y ∈ V be of equal degree
d with x ∼ y. Furthermore, assume that Nxy = ∅. Then the edge x ∼ y is bone-idle if and
only if there exists an optimal assignment φ ∈ Oxy such that N1(φ) = d−2 and N2(φ) = 0.

Proof. Assume the edge x ∼ y is bone-idle, i.e., κ(x, y) = κ0(x, y) = 0. According to
Corollary 4.3 there exists an optimal assignment φ ∈ Oxy between S1(x) \ B1(y) and
S1(y) \B1(x) and a z ∈ S1(x) \B1(y), such that d(z, φ(z)) = 3. Therefore,

N1(φ) +N2(φ) < |S1(x) \B1(y)| = d− 1. (5.1)

As κ(x, y) = 0 we can apply Theorem 5.8. Using equation 5.1, we conclude that N1(φ) =
d− 2 and N2(φ) = 0 must hold.
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Conversely, assume that there exists an optimal assignment φ ∈ Oxy that satisfies N1(φ) =
d− 2 and N2(φ) = 0. Since

N1(φ) +N2(φ) = d− 2 < |S1(x) \B1(y)|,

there exists a z ∈ S1(x) \ B1(y) such that d(z, φ(z)) = 3. Hence, according to Corol-
lary 4.3, we have κ(x, y) = κ0(x, y). According to Theorem 5.8, we have κ(x, y) = 0, which
concludes the proof.

Both the complete bipartite graph Kn,n and the n-dimensional hypercube Qn are 0-Ricci-
flat, regular graphs of girth four. Note that there exists a perfect matching between
S1(x) \ B1(y) and S1(y) \ B1(x) for any edge x ∼ y in the complete bipartite graph
Kn,n. The same holds for the n-dimensional hypercube Qn. Therefore, according to the
previous theorem, neither of the graphs is bone-idle. Using Theorem 2.10 for the Lin-
Lu-Yau curvature, we obtain that for both the complete bipartite graph Kn,n and the
n-dimensional hypercube Qn

κ(x, y) =
2

n
,

for every edge x ∼ y. Thus, the graphs Kn,n and Qn satisfy κ(x, y) > 0 and κ0(x, y) = 0
for all edges x ∼ y.

A direct implication of Theorem 5.10 is that the n-dimensional integer lattice Z
n is bone-

idle.

We conclude this section by extending Theorem 5.10 to arbitrary regular graphs as follows.

Theorem 5.11. Let G = (V,E) be a locally finite graph. Let x, y ∈ V be of equal degree
d with x ∼ y. Then the edge x ∼ y is bone-idle if and only if there exists an optimal
assignment φ ∈ Oxy such that N1(φ) +N2(φ) < d− 1− |Nxy| and

2d− 4− 3|Nxy| = 2N1(φ) +N2(φ).

Proof. " =⇒ " Assume the edge x ∼ y is bone-idle, i.e., κ(x, y) = κ0(x, y) = 0. According
to Corollary 4.3 there exists an optimal assignment φ ∈ Oxy between S1(x) \ B1(y) and
S1(y) \B1(x) and a z ∈ S1(x) \B1(y), such that d(z, φ(z)) = 3. Therefore,

N1(φ) +N2(φ) < |S1(x) \B1(y)| = d− 1− |Nxy|. (5.2)

Using κ(x, y) = 0 and Theorem 2.10, we obtain

κ(x, y) =
1

d

(

d+ 1−
∑

z∈S1(x)\B1(y)

d(z, φ(z))

)

=
1

d

(

−2d+ 4 + 3|Nxy|+ 2N1(φ) +N2(φ)

)

= 0,

or equivalently, 2N1(φ) +N2(φ) = 2d− 4− 3|Nxy|.

" ⇐= " Assume φ is an optimal assignment such that

N1(φ) +N2(φ) < d− 1− |Nxy| = |S1(x) \B1(y)|.
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Figure 1: Illustration of the two possible cases in Theorem 1.3

Therefore, there exists an z ∈ S1(x) \B1(y) such that d(z, φ(z)) = 3. Hence, according to
Corollary 4.3, we have κ(x, y) = κ0(x, y). Using Theorem 2.10 and

2d− 4− 3|Nxy| = +2N1(φ) +N2(φ),

we obtain κ(x, y) = 0, and the edge x ∼ y is bone-idle.

5.2 3-regular bone-idle graphs

The objective of this section is to demonstrate that no 3-regular bone-idle graphs exist.

Theorem 1.3. Let G = (V,E) be a locally finite graph. Suppose that G is bone-idle, then
G is not 3-regular.

Proof. We argue by contradiction. Assume G is 3-regular and bone-idle. According to
Corollary 5.6, the girth of G must be less than five. Assume there exists an edge x ∼ y

such that |Nxy| > 0. Then S1(x) \ B1(y) and S1(y) \ B1(x) each contain only a single
vertex, which we denote by z1 and z2, respectively. Recall that d(z1, z2) ≤ 3. Thus,

κ(x, y) =
1

3

(

4− d(z1, z2)
)

> 0.

This contradicts the bone-idleness of the graph. Hence, the girth of G must be equal to
four. Let x ∼ y be an edge contained in a 4-cycle. Denote by x1, x2 and y1, y2 the other
two neighbors of x and y, respectively. Without loss of generality, we may assume that
x1 ∼ y1, as x ∼ y is contained in a 4-cycle. Observe that x2 ∼ y1 and y2 ∼ x1 cannot hold
true at the same time. Otherwise, there exists a perfect matching between S1(x) \ {y}
and S1(y) \ {x}, leading to κ(x, y) = 2

3 > 0. Therefore, we may assume, without loss of
generality, that x2 6∼ y1.

According to Theorem 5.10, there must be a 4-cycle based on the edge x ∼ x2. Using that
x2 6∼ y1, one of the following cases must be true:

Case 1: There is a z ∈ S1(x2) \ {x} such that z ∼ x1. In this case we have κ(x, x1) > 0,
contradicting the bone-idleness of G.

Case 2: x2 ∼ y2. In this case, we have κ(x, y) > 0, contradicting the bone-idleness of G.

This concludes the proof.
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Figure 2: Illustration of the icosidodecahedron graph

Figure 3: A primitive 4-regular Ricci-flat graph

Hence, there are no 3-regular bone-idle graphs.

5.3 4-regular bone-idle graphs

In this section, we aim to provide a complete classification of all 4-regular bone-idle graphs.
We begin by examining graphs with a girth of three. In [15], the authors classify all Ricci-
flat 4-regular graphs of girth three.

Theorem 5.12 ([15], Theorem 5). Let G = (V,E) be a 4-regular graph of girth three. If
G is Ricci-flat, then it is isomorphic to the icosidodecahedron graph.

Remark 5.13. See Figure 2 for an illustration of the icosidodecahedron graph, a polyhe-
dron with 20 triangular faces, 12 pentagonal faces on 30 vertices connected by 60 identical
edges, each of which separates a triangle from a pentagon.

Corollary 5.14. Let G = (V,E) be a 4-regular graph of girth three. If G is bone-idle, then
it is isomorphic to the icosidodecahedron graph.

Proof. Assume G is a 4-regular bone-idle graph of girth three. Since it is bone-idle, G is
Ricci-flat and therefore must be isomorphic to the icosidodecahedron graph. It remains to
verify that the the icosidodecahedron graph G is indeed bone-idle. To this end, let x ∼ y be
an arbitrary edge in G. Let φ ∈ Oxy be an optimal assignment between S1(x) \B1(y) and
S1(y) \B1(x). Then there exists an z ∈ S1(x) \B1(y) such that d(z, φ(z)) = 3. According
to Corollary 4.3, we have κ(x, y) = κ0(x, y). Using the Ricci-flatness we have κ(x, y) = 0.
Using Lemma 5.3, we conclude that the edge x ∼ y is bone-idle.

Therefore, we have classified all 4-regular bone-idle graphs of girth three. We now proceed
to classify all such graphs of girth four.

In [15], the authors classify all 4-regular Ricci-flat graphs that contain two four-cycles
sharing a common edge. To this end, they introduce the concept of a primitive graph,

19



Figure 4: A primitive 4-regular Ricci-flat graph of "lattice type"

which can be understood as the 1-skeleton of the universal cover of the CW-complex
formed by gluing 2-cells to all cycles of length at most five. They obtain the following
result.

Theorem 5.15 ([15], Theorem 8). Let G = (V,E) be a 4-regular Ricci-flat graph that con-
tains two four-cycles sharing one edge. Then G is isomorphic to graphs with the primitive
graphs showing in Figure 3 and Figure 4.

According to Theorem 5.10, there must be two four-cycles supported on every edge in a
4-regular bone-idle graph of girth four. Thus, we can apply the previous theorem. Using
Theorem 5.10, it is easy to verify that the graphs with the primitive graphs showing in
Figure 3 and Figure 4 are bone-idle. Therefore, we obtain the following Corollary.

Corollary 5.16. Let G = (V,E) be a 4-regular bone-idle graph of girth four. Then G is
isomorphic to graphs with the primitive graphs showing in Figure 3 and Figure 4.

The finite graphs with the primitive graph depicted in Figure 3 can be constructed as
follows: Start with an n-cycle consisting of vertices x0, . . . , xn−1 placed inside another n-
cycle with vertices y0, . . . , yn−1. Connect each vertex yk to x(k−1) mod n and x(k+1) mod n.
These graphs are denoted by BIn. Figure 5 illustrates the graphs BI6, BI7, and BI8.

Examples of finite graphs with the primitive graph shown in Figure 4 include potentially
twisted tori and the Klein bottle graphs. These graphs can be constructed as follows: Take
an n×m grid graph and denote the vertices by xi,j for i = 0, . . . , n−1 and j = 0, . . . ,m−1.
First, add the edges x0,j ∼ xn−1,j for j = 0, . . . ,m − 1. Then, to obtain a Klein bottle
graph add the edges xi,0 ∼ xn−1−i,m−1 for i = 0, . . . n− 1. Note that n,m ≥ 6 must hold.
On the other hand, to obtain a twisted torus graph add the edges xi,0 ∼ x(i+l) mod n,m−1

for i = 0, . . . , n − 1 and for a fixed l ≤ n
2 . Note that n ≥ 6 and m + l ≥ 6 must hold. A

twisted torus graph and a Klein bottle graph are depicted in Figure 6.
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Figure 5: Illustration of the graphs BI6, BI7 and BI8

By Corollary 5.6, no 4-regular bone-idle graphs exist with girth greater than or equal to
five. Consequently, we have completed the classification of all 4-regular bone-idle graphs.

5.4 5-regular bone-idle graphs

In [7], Lin, Lu, and Yau established the following result concerning the curvature of Carte-
sian products of graphs.

Theorem 5.17 ([7]). Let G = (VG, EG) be a dG-regular graph and H = (VH , EH) be a
dH-regular graph. Let x1, x2 ∈ VG with x1 ∼ x2 and y ∈ VH . Then

κG�H
0 ((x1, y), (x2, y)) =

dG

dG + dH
κG0 (x1, x2),

κG�H((x1, y), (x2, y)) =
dG

dG + dH
κG(x1, x2).

Corollary 5.18. Let G = (VG, EG) be a dG-regular graph and H = (VH , EH) be a dH -
regular graph. If G and H are Ricci-flat graphs, then the Cartesian product G�H is also
Ricci-flat.

Therefore, one method for constructing 5-regular Ricci-flat graphs is to take the Cartesian
product of a Ricci-flat 3-regular graph and a Ricci-flat 2-regular graph. By Theorem 1.3,
this approach is not applicable for constructing 5-regular bone-idle graphs, as no 3-regular
bone-idle graphs exist.

The authors in [16] study 5-regular Ricci-flat graphs. They are able to identify a 5-regular,
symmetric graph of order 72, denoted RF 5

72, that is not of Cartesian product type.

Theorem 5.19 ([16], Theorem 4.1). Let G = (V,E) be a 5-regular, symmetric graph. If
G is Ricci-flat, then it is isomorphic to RF 5

72.

It is easy to verify that for every edge x ∼ y in RF 5
72, κ0(x, y) = −1

5 holds. Therefore, we
obtain the following result.
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Figure 6: Illustration of a twisted torus graph on the left and a Klein bottle graph on the
right

Corollary 5.20. There exists no 5-regular, symmetric graph that is bone-idle.

The authors also formulate the following conjecture.

Conjecture 5.21 ([16], Conjecture 1). If G = (V,E) is a 5-regular Ricci-flat graph, then
G is either isomorphic to RF 5

72 or G is of Cartesian product type.

Should this conjecture prove true, no 5-regular bone-idle graphs exist. The existence of
regular bone-idle graphs with an odd vertex degree remains an open question.
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