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Abstract

In this paper, we study the Picard group of the Baily-Borel compactification of orthogonal Shimura varieties. As a

result, we determine the Picard group of the Baily-Borel compactification of the moduli space of quasi-polarized

K3 surfaces. Interestingly, in contrast to the situation observed in the moduli space of curves, we find that the Picard

group of the Baily-Borel compactification is isomorphic to Z.
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1. Introduction

Exploring the Picard group of moduli spaces stands as a vital and inspiring challenge in moduli

theory, rooted in the groundbreaking contributions of Mumford [26] in 1965. Let ℳ6 be the moduli

space of smooth curves of genus 6 and ℳ6 be its Deligne-Mumford compactification. Harer [18] and

Arbarello-Cornalba [1] showed that

Pic(ℳ6) � Z and Pic(ℳ6) � Z2+[ 6

2 ] (1.1)

are free abelian groups.

For K3 surfaces, let ℱ6 be the (coarse) moduli space of quasi-polarized K3 surfaces of genus 6. By

global Torelli theorem for K3 surfaces, ℱ6 is isomorphic to a Shimura variety of orthogonal type. It has

been shown in [3, 14] that its Picard group Pic(ℱ6) � ZA6 is a free abelian group generated by linear
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combinations of Noether-Lefschetz divisors. Moreover, its rank is

A6 =
316 + 24

24
− 1

4

(
26 − 2

26 − 3

) (6
2

)
− 1

6

(
6 − 1

46 − 5

)
− 1

6
(−1)−

(
6−1

3

)

−
6−1∑
:=0

{
:2

46 − 4

}
− ♯

{
: | :2

46 − 4
∈ Z, 0 ≤ : ≤ 6 − 1

}

where
( ·
·
)

is the Jacobi symbol. On ℱ6, there exists a canonical Satake compactification, denoted as

ℱ6, as established by the work of Baily and Borel. A natural problem is to figure out the Picard group

of ℱ6. The main result of this paper is

Theorem 1.1 (Theorem 6.5). Pic(ℱ6) � Z, which is spanned by an integral multiple of the extended

Hodge line bundle _.

Remark 1.2. Since _ is currently only known to be a Q-line bundle, an integral multiple of _ is needed

in the statement of Theorem 1.1. A generator of Pic(ℱ6) can be chosen to be _ once one can show that

_ is a line bundle.

Our proof relies heavily on the study of the behavior of Heegner divisors on the boundary component

of the Baily-Borel compactification established in [9] and a surjectivity result of theta liftings for vector-

valued modular forms. In fact, we prove that the Baily-Borel compactification of a Shimura variety of

K3 type has Picard number one.

Theorem 1.3 (Corollary 6.4). Let " be an even lattice of signature (2, =) of K3 type, and let Γ ⊂
O(") (Q) be an arithmetic subgroup containing Õ(") = ker(O(") → O("∨/")). If = > 10, then

dimQ PicQ

(
Sh

BB

Γ (")
)
= 1.

Our result can be applied to the Baily-Borel compactification of moduli spaces of lattice-polarized

K3 surfaces, polarized hyper-Kähler varieties, K-stable log Fano pairs and also moduli space of bounded

polarized Calabi-Yau pairs (cf. [15, 21, 4]).

Remark 1.4. We believe that the conditions as stated in Theorem 1.3 can certainly be relaxed, though it

might entail more sophisticated developments of our methods. More precisely, we believe that Theorem

1.3 holds for a general even lattice " of signature (2, =) and a possibly more general arithmetic

subgroup Γ, whenever dim ShΓ (") ≥ 3.

Another motivation for studying this problem concerns the tautological ring of ℱ6. Let

R∗ (ℱ6) ⊆ CH∗(ℱ6)Q

be the subring generated by irreducible Noether-Lefschetz cycles. It is conjectured by Oprea and

Pandharipande (see [12, Conjecture 2]) that

R17 (ℱ6) � Q

is spanned by _17. This is clearly a very challenging problem, especially when 6 gets larger. As

CH17 (ℱ6)Q � CH2(ℱ6)Q � CH2(ℱ6)Q, one can regard R17 (ℱ6) as a subgroup of CH2 (ℱ6)Q. Then

a natural first attempt is to ask whether it is one-dimensional modulo numerical equivalence. Typically,

one can consider intersecting the classes in R17 (ℱ6) with complete intersections in CH2 (ℱ6)Q (via cap

product in the sense of [17, Chapter 17]), which is well-understood set-theoretically in Shimura geometry.

According to the Noether-Lefschetz conjecture, complete intersections of divisors on ℱ6 are rationally

equivalent to linear combinations of Shimura subvarieties on ℱ6, which possess very rich structures.
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However, Theorem 1.1 indicates that all complete intersections in CH2 (ℱ6)Q are proportional to _
2
.

This first test is now almost trivially passed. Although it suggests supportive evidence for the original

conjecture, one still need to find other interesting classes in CH2(ℱ6)Q.

1.1. Organization of the paper

In Section 2, we review the basic theory of vector-valued Siegel modular forms including the theta

series and Siegel-Eisenstein series. Section 3 and Section 4 contain the most technical part. We use the

Bruinier-Stein and Shimura Hecke operators to prove a surjectivity result of theta liftings by adapting

the proof of [25] to the odd rank case. Some computations are similar and we give the details in the

appendix. Readers with a preference for geometry may choose to skip this part.

In Section 5 and Section 6, we study Heegner divisors on Shimura varieties of orthogonal type and

their behavior on the boundary component of the Baily-Borel compactification. The main theorem is

proved in Subsection 6.3.

Notations and conventions

• A discriminant form is a finite abelian group � with a quadratic form q : � → Q/Z such that

(G, H) := q(G + H) − q(G) − q(H)
is a non-degenerate symmetric bilinear form. More generally, for any two elements u = (D1, ..., D3), v =

(E1, ..., E3) ∈ � (3) , we define (u, v) :=
(
(D8 , E 9 )8, 9

)
∈ Sym3 (Q/Z). The level of � is

ℓ(�) := min{< ∈ Z>0 | <q(G) = 0 for all G ∈ �}.
Note that since the bilinear form (−,−) is non-degenerate, for every W ∈ �, we have ℓ(�) · W = 0. Finally, the

?-rank of � is rank? (�) := dimF? (� ⊗ F?).

• We let �= be the image of the map �
×=−−→ � and �= = ker(� ×=−−→ �). We also define �=∗ ⊆ � as the coset{

W | =q(`) + (`, W) ≡ 0 mod Z, ∀` ∈ �=

}
. (1.2)

• Let C[� (3) ] be the group algebra of � (3) = � × � . . . × �. There is a standard Hermitian inner product

〈−,−〉 on C[� (3) ] given by

〈
∑

W∈� (3)

0WeW ,
∑

W∈� (3)

1WeW〉 =
∑

W∈� (3)

0W1W . (1.3)

By identifyingC[� (2) ] withC[�]⊗C[�], we also use 〈−, −〉 to denote the antilinear mapC[�]×C[� (2) ] →
C[�] given by

〈E, D ⊗ F〉 = 〈E, D〉 · F̄ (1.4)

where D, E, F ∈ C[�].

• Let (", 〈−,−〉) be an even lattice. We can identify the dual lattice "∨ as the sublattice

{G ∈ " ⊗ Q | 〈G, H〉 ∈ Z for all H ∈ "}
of " ⊗ Q. The discriminant group �" := "∨/" is a finite group of order | det(") |. There is a natural

quadratic function q" : "∨/" → Q/Z given by

q" (E) = 1

2
〈E, E〉 mod Z, (1.5)

for E ∈ "∨.

• Given a discriminant form �, we use Gen1+,1− (�) to denote the genus of even lattices of signature (1+, 1−)
with discriminant form �. For a lattice " ∈ Gen1+,1− (�), the signature of the discriminant form "∨/"
is defined as sign(") := 1+ − 1− mod 8 ∈ Z/8Z. For all (1+, 1−) such that Gen1+,1− (�) ≠ ∅ and for all

" ∈ Gen1+,1− (�), this quantity is the same. Thus we also use sign(�) to denote it.

• We use e(G) to denote the function 42c8G , and we use
√
I := I

1
2 to denote the principal branch of the square

root function on C.
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2. Vector-valued Siegel modular forms

2.1. Weil representation

Let H3 be the Siegel upper half-space. The metaplectic double cover Mp23 (Z) of Sp23 (Z) consists of

the elements 6̃ =
(
6, q6(g)

)
, where for 6 =

(
� �
� �

)
∈ Sp23 (Z), q6 (g) is a square root of the function

det(�g + �). It is well-known that Mp23 (Z) is generated by

�3 =

( (
0 −Id

Id 0

)
,
√

det(g)
)
, =(�) =

( (
Id �
0 Id

)
, 1

)
,

where � ∈ Sym3 (Z).
Let � be a discriminant form. For each 3 ∈ Z≥1, there is a unitary representation d

(3)
�

of Mp23 (Z)
on the group ring C[� (3) ], called the Weil representation associated to �. It is defined by

d
(3)
�

(=(�))eW = e

(
1

2
tr((W, W)�)

)
eW ,

d
(3)
�

(�3)eW =

e
(
− 3

8
sign(�)

)
|� | 32

∑
X∈� (3)

e(−tr(W, X))eX,
(2.1)

where eW is the standard basis of C[� (3) ] for W = (W1, . . . , W3) ∈ � (3) .

Remark 2.1. For <(*) =
( (
* 0

0 (*−1)⊤
)
,
√

det*−1
)
∈ Mp2= (Z), we have

d
(3)
�

(<(*))eW =
√

det*−1
sign(�)

eW*−1 .

Conventions:

• When � � "∨/" for some lattice " , we may simply write it as d
(3)
"

. And if furthermore 3 = 1,

we may simplify it as d" .

2.2. Siegel modular forms

For any : ∈ 1
2
Z, define the Petersson slash operator |:,� (3) on the space of vector-valued functions

5 : H3 → C[� (3) ] by

( 5 |:,� (3) [6̃]) (g) := q6(g)−2: · det(6):/2 · d (3)
�

(6̃)−1 5 (6g),

with 6̃ = (6, q6(g)) ∈ G̃L+
2 (R) where

G̃L+
2 (R) :=

{(
6 =

(
0 1
2 3

)
∈ GL+

2 (R), q6(g)
)
| ∃C ∈ C× , q6(g)2 = C · (2g + 3)

}

is the metaplectic C×-extension of GL+
2 (R) 1.

Definition 2.2. A Siegel modular form 5 (g) of weight : and type d
(3)
�

is a vector-valued function

5 : H3 → C[� (3) ]

1This is different from the definition given by Shimura in [31]. Here we adopt the convention of Bruinier-Stein in [11].
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satisfying the following two conditions.

• For all 6̃ = (6, q6(g)) ∈ Mp23 (Z), we have 5 |:,� (3) [6̃] = 5 .

• The function 5 is holomorphic on H3 and at ∞.

When � � �" for an even lattice " , a Siegel modular form of type d
(3)
�

has a Fourier expansion

5 (g) =
∑

W∈� (3)

∑
)∈Sym3 (Z)even+(W,W) ,

)≥0

2(), W)e
(
1

2
tr()g)

)
eW .

It is called a cusp form if 2(), W) ≠ 0 implies ) > 0.

We set Mod: (d (3)�
) (resp. Cusp: (d

(3)
�

)) to be the space of Siegel modular forms (resp. cusp forms)

of weight : and type d
(3)
�

. It is a standard fact that Mod: (d (3)�
) = 0 if 2: + sign(�) . 0 mod 2. To see

this, note that the element (I23 ,−1) acts on C[� (3) ] by a scalar (−1)sign(�) . From now on, we assume

that the parity condition

2: + sign(�) ≡ 0 mod 2 (2.2)

always holds.

When 3 = 1, let

〈 5 , 6〉Pet :=

∫
SL2 (Z)\H

〈 5 (I), 6(I)〉H: dGdH

H2

be the Petersson inner product on Mod: (d" ), which is well-defined if at least one of 5 , 6 is a cusp form.

2.3. Some functoriality results regarding Weil representations

This subsection gathers additional notions and results related to various Weil representations for future

reference.

Isotropic lift/descent

Let � ≤ � be an isotropic subgroup.

• The isotropic lift map ↑� : C[�⊥/�] → C[�] is defined by

↑� (eW+�) =
∑
`∈�

eW+`

for all W ∈ �⊥.

• The isotropic descent map ↓� : C[�] → C[�⊥/�] is defined by

↓� (eW) = eW+�

if W ∈ �⊥ and 0 otherwise.

It is well-known that they are adjoint with respect to the inner product on C[�] and C[�⊥/�].
Further, they commute with Weil representations, which indicates that they take modular forms to

modular forms and preserve cuspidality.

Embeddings and tensor products

For 0 < A < 3, there is an inclusion map

] : Mp2A (Z) × Mp23−2A (Z) → Mp23 (Z) (2.3)
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given by

( (
� �
� �

)
, q

)
,
( (
�′ �′

�′ �′

)
, q′

)
↦−→

( ©«

� �
�′ �′

� �
�′ �′

ª®®®¬
, q̃

)
,

where q̃(diag(I, I′)) = q(I) · q′(I′). They satisfy

d
(3)
"

(](6̃1, 6̃2)) (eW ⊗ eW′ ) = d (A )
"

(6̃1) (eW) ⊗ d (3−A )"
(6̃2) (eW′ ).

(cf. [19, Lemma 2.2])

2.4. Siegel-Eisenstein series and Theta series

Suppose " is a negative definite even lattice of rank A under the pairing (−,−). Embedd " into RA so

that the pairing (−,−) is the standard scalar product on RA .

Siegel-Eisenstein series

Let Γ
(3)
∞ ⊆ Sp23 (Z) be the subgroup generated by(

Id �
0 Id

)
and

(
* 0

0 (*−1)⊤
)

for � ∈ Sym3 (Z) and * ∈ GL3 (Z). Let Γ̃
(3)
∞ ⊆ Mp23 (Z) be the preimage of Γ

(3)
∞ . For : ∈ 1

2
Z and

: > 3 + 1, the vector-valued Siegel-Eisenstein series is defined by

E
(3)
:,"

(g) =
∑

6̃=(6,q6 (g ) ) ∈Γ̃ (3)
∞ \Mp23 (Z)

e0 |
:,�

(3)
"

[6̃]

=
∑

6̃=(6,q6 (g ) ) ∈Γ̃ (3)
∞ \Mp23 (Z)

q6(g)−2: · d (3)
"

(6̃)−1(e0),

which is well-defined and converges normally. It is a vector-valued modular form of weight : and type

d
(3)
"

. The summand e0 |
:,�

(3)
"

[6̃] is Γ̃
(3)
∞ -invariant since the parity condition (2.2) holds.

Theta series

Definition 2.3. Let � (-) be a harmonic polynomial in the matrix variable - = (-8 9 ) 8=1,...,A
9=1,...,3

of degree

ℎ. We define the Theta series

Θ
(3)
",�

(g) =
∑

v∈ ("∨ ) (3)
� (v)e

(
−1

2
tr((v, v)g)

)
ev+"3 (2.4)

and the genus Theta series

Θ
(3)
Gen(" ) =

∑
!∈Gen(" )

|Aut(!) |−1
∑

f∈Iso(�" ,�! )
|Aut(�!) |−1f∗Θ(3)

!,1

|Iso(�" , �") | ∑
!∈Gen(" )

|Aut(!) |−1
, (2.5)

where Gen(") is short for Gen0,A (�" ) and f∗eW = ef−1 (W) for W ∈ � (3)
!

.
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By [5, Theorem 4.1], Θ
(3)
",�

is an element in Modℎ+ A
2
(d (3)

"
). Moreover, Θ

(3)
",�

is a cusp form if

ℎ > 0. We define Mod\
: (d

(3)
"

) ⊆ Mod: (d (3)"
) to be the subspace

Span
{
f∗Θ(3)

!,�
| ! ∈ Gen("), � harmonic of degree : − A

2
, f ∈ Iso(�" , �# )

}
,

and define Cusp\
:
(d (3)

"
) as the subspace Mod\

: (d
(3)
"

)∩Cusp: (d
(3)
"

). The main question we will consider

in the following two sections is whether the equality Cusp\
: (d

(3)
"

) = Cusp: (d
(3)
"

) holds. In other words,

we will consider whether any cusp form can be written as a linear combination of Theta series. For

lattices of even rank this was done in [25]. We will adapt the proof to the odd rank case.

Remark 2.4. When 3 = 1, the space of harmonic polynomials in A variables of degree ℎ has dimension(A+ℎ−1
A−1

)
−

(A+ℎ−3
A−1

)
and there is an explicit basis via the Kelvin transform (cf. [2, Theorem 5.25]). When

ℎ = 2, the harmonic polynomials are linear combinations of

�D(E) = 〈D, E〉2 − 〈D, D〉〈E, E〉
A

(2.6)

for D ∈ " .

One can identify the genus Theta series with the Siegel-Eisenstein series using the Siegel-Weil

formula.

Theorem 2.5. Suppose " is a negative definite even lattice of rank A with A
2
> 3 + 1. Then

Θ
(3)
Gen(" ) = E

(3)
A
2 ,"

.

Proof. The proof will be given in Appendix A. See Theorem A.5. �

3. Vector-valued Hecke operator

3.1. Bruinier-Stein’s vector-valued Hecke operator

Let � be a finite abelian group equipped with a discriminant form whose level is ℓ(�) =: # . Bruinier

and Stein have introduced a Hecke operator acting on Mod: (d�). For each integer U > 0, set

g̃U =

( (
U2 0

0 1

)
, 1

)
∈ G̃L+

2 (R).

The (inverse of the) Weil representation can be extended to the double coset

ỸU2 := Mp2(Z) · g̃U · Mp2 (Z).

For any element 6̃ · g̃U · 6̃′ ∈ ỸU2 , define the action

e_ | [6̃ · g̃U · 6̃′] := e_ |� [6̃]· |� [g̃U]· |� [6̃′],

where eW |� [6̃] = d� (6̃)−1 (eW) is the Weil representation and eW |� [g̃U] = eUW . This action is proved

to be well-defined in [11, Proposition 5.1].

Remark 3.1. It is easy to see that this extension can be made also in the case when U = 0. This further

extension will be used in Section 4.

Armed with this extended representation, we can define the vector-valued Hecke operator as follows.
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Definition 3.2. [11, Definition 5.5] Let U > 0 be a positive integer. Express ỸU2 as a disjoint union of

left cosets ⊔
8

Mp2(Z) · X̃8

for some X̃8 = (X8 , qX8 (g)) ∈ ỸU2 . The Hecke operator TU2 : Mod: (d�) → Mod: (d�) is defined by

TU2 ( 5 ) := U:−2
∑
8

∑
W∈�

( 5W |: [X̃8]) ⊗ (eW | [X̃8]),

where 5 =
∑
W∈�

5W ⊗ eW .

This definition is proved to be well-defined in [11, Section 5]. The main properties of these Hecke

operators are summarized in the following proposition.

Proposition 3.3. [11, Theorem 4.12, Theorem 5.6] The Hecke operators defined in Definition 3.2 satisfy

the following properties.

• These Hecke operators take cusp forms to cusp forms. They are self-adjoint with respect to the

Petersson inner product, and the Hecke operators {TU2 : gcd(U, #) = 1} generate a commutative

subalgebra of EndC (Cusp: (d�)).
• For each pair U, V of coprime positive integers, TU2 ◦ TV2 = T(UV)2 .

As a consequence, one has

Corollary 3.4. There exists a basis of Cusp: (d�) consisting of simultaneous eigenforms for all Hecke

operators in {TU2 : gcd(U, #) = 1}.

3.2. Non-vanishing of !-values

Let 5 ∈ Cusp: (d�) be a non-zero simultaneous eigenform for all Hecke operators {TU2 : gcd(U, #) =
1} with eigenvalues {_(U2) : gcd(U, #) = 1}. One can define the !-series

!( 5 , B) :=
∑
U≥1

gcd(U,# )=1

_(U2)
UB

. (3.1)

The main analytic properties of the !-series relevant to our goals are summarized in the following

theorem.

Theorem 3.5. Suppose : ≥ 2. The !-series (3.1) converges absolutely for Re(B) > : + 1. In particular,

when Re(B) > : + 1,

!( 5 , B) ≠ 0.

Proof. The case when : ∈ Z is [25, Proposition 3.3] and the result is slightly stronger. Now we

consider the case when : ∈ Z + 1
2
, then sign(�) is odd. We will establish the theorem by comparing

Bruinier-Stein’s Hecke operators with the scalar-valued Hecke operators defined by Shimura [31].

(8) Since sign(�) is odd, the oddity formula [13, p. 383 (30)] implies that 4 | # . There is a map

Γ0(4)
^−→ G̃L+

2 (R)
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given by (
0 1
2 3

)
↦→

( (
0 1
2 3

)
, n−1

3

( 2
3

) √
2g + 3

)
,

where n3 = 1 if 3 ≡ 1 mod 4, n3 = 8 if 3 ≡ −1 mod 4, and
( ·
·
)

is the Jacobi symbol. This

map lifts to Mp2(Z) when restricted to Γ1(4). We denote by Δ(#) the image of any principal

congruence subgroup Γ(#) ⊂ Γ1(4) under this lift. For a character j of (Z/#Z)× and W ∈ �,

define the element

EW,j :=
∑

3∈ (Z/#Z)×
j(3)−1e3W .

Since the Weil representation is trivial on Δ(#), the function �W,j := 〈 5 , EW,j〉 is then an element

in Cusp: (Δ(#)), where Cusp: (Δ(#)) is the space of scalar-valued cusp forms of weight : and

level Δ(#) (cf. [31]).

(88) We extend ^ to

∞⋃
U=1

Γ0(4)
(
U2 0

0 1

)
Γ0(4)

^−→ G̃L+
2 (R)

by

(
U2 0

0 1

)
↦→ g̃U. For every prime ? satisfying gcd(?, #) = 1, choose an element '?2=−0 ∈ SL2(Z)

as a lift of the element

(
?−2=+0 0

0 ?2=−0

)
∈ SL2(Z/#Z) and consider the set

Σ?2= :=

{
^

(
'?2=−0

(
?2=−0 1#

0 ?0

))
| 0 ≤ 0 ≤ 2=, 0 ≤ 1 < ?0, gcd(1, ?min{0,2=−0}) = 1

}
.

Since '?2=−0

(
?2=−0 1#

0 ?0

)
≡

(
1 0

0 ?2=

)
mod # , the element ^

(
'?2=−0

(
?2=−0 1#

0 ?0

))
lies in the

metaplectic double cover of GL2 (R). As shown in [35, §4], this set can be served as a system of

representatives for

Mp2 (Z)\Mp2(Z)
( (
?2= 0

0 1

)
, 1

)
Mp2 (Z) � Δ(#)\Δ(#)

( (
1 0

0 ?2=

)
, ?=

)
Δ(#).

(888) The advantage of choosing Σ?2= as coset representatives is that the actions of these representatives

via the Weil representation are particularly simple. Let 6̃ =

(
6 =

(
0 1
2 3

)
, q6(g)

)
∈ Mp2 (Z) with

# | 1, # | 2 . For W ∈ �, we have d� (6̃)eW = j� (6̃)e3W for an explicit character j� (cf. [7,

Theorem 5.4]). It follows that for every 6̃ ∈ Σ?2= , we have

eW | [6̃] = e?−=W .

(8E) In [31], Shimura introduced a Hecke operator

T Δ(# )
U2 : Cusp: (Δ(#)) → Cusp: (Δ(#))

defined by

T Δ(# )
U2 (�) = U:−2

∑
6̃∈Δ(# )\Δ(# )

( (
1 0
0 U2=

)
,U=

)
Δ(# )

� |: [6̃] .
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By the discussions in (88), it is easy to see that

〈TU2 ( 5 ), EW,j〉 = j(?=)−1T Δ(# )
?2=

(�W,j).

Now suppose 5 is a non-zero simultaneous eigenform for all Hecke operators in {TU2 : gcd(U, #) =
1} with eigenvalues _(U2). Since the elements EW,j span C[�] and 5 ≠ 0, one can find a pair

(W, j) such that �W,j ≠ 0. Then �W,j is a non-zero simultaneous eigenform for all Hecke operators

in {T Δ(# )
U2 : gcd(U, #) = 1} with eigenvalues j(U)_(U2). We claim that the series

∑
U≥1

gcd(U,# )=1

j(U)_(U2)
UB

is absolutely convergent for Re(B) > : + 1. Hence !( 5 , B) is also absolutely convergent for

Re(B) > : + 1. Since we have a formal product expansion

!( 5 , B) =
∏

gcd(?,# )=1

∞∑
==0

_(?2=)
?=B

,

general theory regarding Euler products now shows that the absolute convergence for Re(B) > : +1

implies !( 5 , B) ≠ 0.

Now we prove the claim. First observe that �W,j (# ·) ∈ Cusp: (Δ0 (#2), k) for some character k

of (Z/#2Z)× . Furthermore, we have (T Δ(# )
U2 �W,j) (# ·) = T Δ0 (#2 ) ,k

U2 (�W,j (# ·)). This is an analog

of the classical way of treating a modular form of level Γ(#) as a modular form of level Γ0(#2)
with a Nebentypus. Now let ? be a prime such that gcd(?, #) = 1. By the theory of Shimura lifts,

j(?)_(?2) is the ?-th Fourier coefficient of a normalized cuspidal Hecke eigenform of weight

2: − 1. Hence the Ramanujan conjecture proved by Deligne implies that

��j(?)_(?2)
�� ≤ 2?:−1.

Since ? ≥ 3, by the explicit algebraic relations between the Hecke operators {T Δ0 (#2 ) ,k
?2= | = ≥ 0}

in [29, Theorem 1.1], one can inductively prove that

��j(?=)_(?2=)
�� ≤ 3=?=(:−1) ≤ ?=: .

This immediately yields the claim.

�

3.3. The case when ? | #

The Hecke operators {TU2 : gcd(U, #) ≠ 1} are trickier since the Hecke algebra generated by {T?2= :

= ≥ 1} is in general non-commutative if ? | # (cf. [11, Remark 5.7]). However, regarding our goals, a

comparison result of these Hecke operators with certain scalar-valued Hecke operators is sufficient.

Lemma 3.6. Fix a prime ?. Let 5 ∈ Mod: (d�) and let W ∈ � satisfy the following conditions (∗?) for

?:

• W is not divisible by ? in �;

• when ? = 2, there exists ` ∈ �, 2` = 0, such that 2q(`) + (`, W) ≠ 0 mod Z.
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Then

〈T?2= ( 5 ), eW〉 = T
q (W)
?2=

〈 5 , e?2=W〉,

where

T
q (W)
?2= (�) := ? (:−2)=

?2=−1∑
1=0

e(−1q(W))� |:
[( (

1 1

0 ?2=

)
, ?=

)]

for any scalar-valued function � on H.

Proof. When U = ?=, there is an explicit coset decomposition

Ỹ?2= = Mp2 (Z) ·
( (
?2=−0 1

0 ?0

)
,
√
?0

)
,

where 0 ≤ 0 ≤ 2=, 0 ≤ 1 < ?0 and gcd(1, ?min{0,2=−0}) = 1 (cf. [32, §5.1]). Set X̃0,1 =( (
?2=−0 1

0 ?0

)
,
√
?0

)
. Then we have

1

? (:−2)= 〈T?2= ( 5 ), eW〉 =
2=∑
0=0

∑
0≤1<?0

gcd(1,?min{0,2=−0} )=1

∑
`∈�

〈 5` |: [X̃0,1] ⊗ (e` | [X̃0,1]), eW〉.

From the definition of T
q (W)
?2=

, it suffices to show

〈e` | [X̃0,1], eW〉 = 0

for every 0 < 2=. The action of X̃0,1 is well-understood. For instance, if ? is odd, there is an explicit

formula of e` | [X̃0,1] proved in [32, Theorem 5.2] and [8, Proposition 5.3]. In general, it is of the form

e` | [X̃0,1] =
∑
_

2_e_ (3.2)

with _ ∈ � ? if ? is odd, and _ = 2<` + V for some V ∈ �2∗ and < ∈ Z if ? = 2 (cf. [30, Theorem 4.7]

and [33, Theorem 1]). As W satisfies the condition (∗?), then 〈e` | [X̃0,1], eW〉 = 0 for every 0 < 2=. �

By using this lemma inductively, one formally obtains a useful result for later detecting when a

modular form is annihilated by those Hecke operators not coprime to # .

Proposition 3.7. [25, Corollary 3.5] Fix a finite set ( of primes. Let 5 ∈ Mod: (d�) and let W, ` ∈ �
satisfy the following conditions:

•

( ∏
?∈(

?

)
W =

( ∏
?∈(

?

)
` and q(W) = q(`);

• for any ? ∈ (, W, ` satisfy conditions (∗?).

Set

E
`

W,(
:=

∑
�⊂(

(−1) |� |eW`

�
,

where W
`

�
∈ � is the element whose ?-adic component is equal to that of ` when ? ∈ � and other ?-adic

components remain the same as those of W. Then if
∏
?∈(

∞∑
==1

T
?2=

?=B ( 5 ) = 0, 〈 5 , E`
W,(

〉 = 0.
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Proof. By using Lemma 3.6, one can verify the following formula

〈T?2= ( 5 ), E
`
W

{?}
W,(\{?}〉 = T

q (W)
?2= 〈 5 , E

?=`
W

{?}
?=W,(\{?}〉, (3.3)

and

〈T?2= ( 5 ), E`
W
`

{?} ,(\{?}
〉 = T

q (W)
?2=

〈 5 , E?
=`

?=W
`

{?} ,(\{?}
〉. (3.4)

By induction on the cardinality of (, one can obtain the assertion by (3.3), (3.4) and the fact

E
`

W,(
= E

`
W

{?}
W,(\{?} − E

`

W
`

{?} ,(\{?}
. (3.5)

�

4. Modular forms as Theta series

This section studies the space of cusp forms Cusp: (d" ) with respect to an even negative definite lattice

" . The goal is to show that under certain conditions of d" , the space Cusp: (d" ) is spanned by the

Theta series. Throughout this section, " is an even negative definite lattice of rank A.

4.1. Projection to Cusp\
: (d" )

In [16], Eichler and Zagier introduced a differential operator transforming a �∞ function on H2 into a

�∞ function onH×H. To define this, we need Gegenbauer polynomials�ℎ
A (G, H), which are defined by

1

(1 − 2G) + H)2) A
2
−1

=

∞∑
ℎ=0

�ℎ
A (G, H))ℎ,

and �ℎ
A (1, 1) =

(A−3+ℎ
ℎ

)
. Then we can define the differential operator

mℎ : �∞ (H2) → �∞ (H × H)

5 ↦→ �ℎ
A

(
1

2

m

mI2
,

m2

mI1mI4

)
5 (/) |I2=0,

where the coordinate / =

(
I1 I2
I3 I4

)
∈ H2. For the Theta series, we have the following facts.

Lemma 4.1. Suppose ℎ > 0. Let {�8} be an orthonormal basis of the space of harmonic forms of

degree ℎ. For (I, I′) ∈ H × H ⊆ H2, we have

Θ
(2)
",1

(I, I′) = Θ
(1)
",1

(I) ⊗ Θ
(1)
",1

(I′) (4.1)

and

(mℎΘ(2)
",1

) (I, I′) = �
∑
8

Θ
(1)
",�8

(I) ⊗ Θ
(1)
",�8

(I′) (4.2)

for some non-zero constant �.

Proof. For the first assertion, this follows from the definition of the Theta series. The second assertion

then follows from [25, Proposition 2.7].

�
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Let : = A
2
+ ℎ for some non-negative integer ℎ. When ℎ = 0, assume further A > 4. As in [25], setting

o",: := mℎΘ
(2)
Gen(" ) , we can define a Theta lifting map

Ψ : Cusp: (d" ) → Mod: (d") (4.3)

by sending 5 to ∫
SL2 (Z)\H

〈 5 (I), o",: (I, −I′)〉H:
dGdH

H2

as a function in I′. Then one has

Proposition 4.2. Let :, " be as above. The linear map Ψ is diagonalizable and surjective onto

Cusp\
:
(d" ). In particular, there is a decomposition

Cusp: (d" ) = Cusp\
: (d" ) ⊕ kerΨ.

Proof. The proof is essentially [25, Proposition 6.2]. According to Lemma 4.1, we have

Ψ( 5 ) (I′) =
∫

SL2 (Z)\H

©
«

∑
!∈Gen(" )

∑
f∈Iso(�" ,�! )

�!,f 〈 5 (I), f∗mℎΘ
(2)
!,1

(I,−I′)〉ª®
¬
H:

dGdH

H2

= �
∑
8

∑
!∈Gen(" )

∑
f∈Iso(�" ,�! )

�!,f 〈 5 , f∗Θ(1)
!,�8

〉Pet · f∗Θ(1)
!,�8

(I′)

where the constant � and the harmonic polynomials {%8} are those in Lemma 4.1, and

Θ
(2)
Gen(" ) =

∑
!∈Gen(" )

∑
f∈Iso(�" ,�! )

�!,ff
∗Θ(2)

!,1

is given in (2.5). When ℎ > 0, as Θ
(1)
!,�8

is cuspidal, we have Ψ( 5 ) ∈ Cusp\
: (d" ). When ℎ = 0, we have

all �8 = 1. Note that Θ
(1)
Gen(" ) = E

(1)
:,"

(by Theorem 2.5) is orthogonal to 5 under the Petersson inner

product, one can rewrite Ψ( 5 ) as

Ψ( 5 ) (I′) =
∑

!∈Gen(" )

∑
f∈Iso(�" ,�! )

�!,f 〈 5 , f∗Θ!,1 − Θ
(1)
Gen(" )〉Pet · (f∗Θ!,1 − Θ

(1)
Gen(" ) ).

Since f∗Θ!,1 − Θ
(1)
Gen(" ) is cuspidal, the above formula implies Ψ( 5 ) ∈ Cusp\

: (d" ) as well. The

assertion now follows from the Lemma 4.3 below. �

Lemma 4.3. [25, Lemma 6.1] Let+ be aC-vector space with an inner product 〈·, ·〉, and let {E8}8∈� ⊂ +
be an arbitrary finite family. Then 5 : + → + defined by E → ∑

8∈� 〈E, E8〉 · E8 is diagonalizable and

surjective onto Span{E8 : 8 ∈ �}.

Thus a statement like "Cusp = Cusp\" is equivalent to "kerΦ = 0".

4.2. Ψ as Hecke operators

Let U ∈ Z>0. Let  U (I, I′) : H × H→ C[�" ] ⊗ C[�" ] be given by

∑
W∈�"

∑
6̃=(6,q6 (I) ) ∈Ỹ

U2

q6(I)−2:

(I′ + 6 · I):
d" (6̃)−1 (eW) ⊗ eW . (4.4)
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More explicitly, if 6 =

(
0 1
2 3

)
and q6(I) = ±

√
2I + 3, then

q6(I)−2:

(I′ + 6(I)):
=

(±1)2:

(0I + 1 + 2II′ + 3I′):
. (4.5)

As a function of I, one can check TU2 ( U (I, I′)) = U2:−2 U (I, I′). As shown in [25, Proposition 3.7]

(see also Appendix C for the odd signature case), it can be viewed as the kernel function of TU2 up to a

scalar, i.e. it satisfies

TU2 ( 5 ) (I′)
U2:−2

= �

∫
SL2 (Z)\H

〈 5 ,  U (I, −I′)〉H:−2dGdH, (4.6)

for some non-zero constant �.

Theorem 4.4. Assume that A = rank(") > 6, and let : = A
2
+ ℎ for some non-negative integer ℎ. For

any 5 ∈ Cusp: (d" ), we have

Ψ( 5 ) = �′
∞∑
U=1

1

U2:−2−ℎ TU2 ( 5 ).

for some non-zero constant �′.

Proof. Let �̃ := ℎ!
(A−3+ℎ

ℎ

) (:−1
ℎ

)
. For g = (I, I′) ∈ H × H ⊆ H2, we claim that

o",: (g) = mℎΘ(2)
Gen(" ) =




E
(1)
:,"

(I) ⊗ E
(1)
:,"

(I′) + e(sign(")/8)
|�" | 1

2

∞∑
U=1

 U (I, I′) if ℎ = 0

�̃
e(sign(")/8)

|�" | 1
2

∞∑
U=1

Uℎ U (I, I′) if ℎ > 0

(4.7)

If the claim holds, note that∫
SL2 (Z)\H

〈 5 (I),E(1)
:,"

(I) ⊗ E
(1)
:,"

(−I′))〉H: dGdH

H2
= 〈 5 (I),E(1)

:,"
(I)〉Pet · E

(1)
:,"

(I′) = 0 (4.8)

for any 5 ∈ Cusp: (d" ), then we have

Ψ( 5 ) =
∫

SL2 (Z)\H
〈 5 (I), o",: (I, −I′)〉H:

dGdH

H2

= �̃
e(−sign(")/8)

|�" | 1
2

∞∑
U=1

∫
SL2 (Z)\H

〈 5 (I), Uℎ U (I, −I′)〉H:
dGdH

H2

= �̃
e(−sign(")/8)

|�" | 1
2

�−1
∞∑
U=1

1

U2:−2−ℎ TU2 ( 5 ),

by using (4.7) and (4.6).

To prove the claim, let us first collect some facts.

(8) By Theorem 2.5, we have

Θ
(2)
Gen(" ) = E

(2)
A
2
,"

=
∑

6̃ (2) ∈Γ̃ (2)
∞ \Mp4 (Z)

(
1 | A

2
[6̃ (2) ]

)
d
(2)
"

(6̃ (2) )−1 (e0 ⊗ e0).



15

(88) It’s shown in Appendix B that for any coset [6̃ (2) ] ∈ Γ̃
(2)
∞ \Mp4(Z), it is uniquely determined by a

pair

(i(6̃ (2) ), U) ∈ M̃at2 (Z) × Z≤0,

(up to ±1 when U = 0), where i(6̃ (2) ) = (6, q6) satisfies 6 ∈ YU2 and

q6(I)−2:

(I′ + 6(I)):
= q6 (2) (I, I′)−2: . (4.9)

Moreover, we can find a representative 6̃
(2)
0

∈ [6̃ (2) ] such that

d
(2)
"

(6̃ (2)
0

)−1(e0 ⊗ e0) =
e(sign(")/8)

|�" | 1
2

∑
W∈�"

(eW | [i(6̃ (2) )]) ⊗ eW . (4.10)

(888) As shown in the proof of [25, Theorem 4.7], recall : = A
2
+ ℎ, we have

mℎ

(
1 | A

2
[6̃ (2) ]

)
(g) = �ℎ

A (1, 1) |U|ℎ
ℎ−1∏
8=0

( A
2
+ 8

) (
1 |: [6̃ (2) ]

)
(g)

= �̃ |U|ℎ
(
1 |: [6̃ (2) ]

)
(g).

(4.11)

for g = (I, I′) ∈ H × H, where the non-zero constant �̃ = ℎ!
(A−3+ℎ

ℎ

) (:−1
ℎ

)
.

Now we are ready to derive the formula. For simplicity, let us first assume ℎ > 0. Then by (4.11),

(4.10) and (B.2), we have

mℎE
(2)
A
2
,"

(I, I′) =
∞∑
U=0

∑
6̃ (2) ∈Γ̃ (2)

∞ \Mp4 (Z)
i (6̃ (2) ) ∈Ỹ

U2

mℎ

(
1 | A

2
[6̃ (2) ]

)
(I, I′)d (2)

"
(6̃ (2) )−1 (e0 ⊗ e0)

= �̃

∞∑
U=1

∑
i (6̃ (2) ) ∈Ỹ

U2

Uℎ
(
1 |: [6̃ (2) ]

)
(I, I′)d (2)

"
(6̃ (2) )−1(e0 ⊗ e0)

= �̃
e(sign(")/8)

|�" | 1
2

∞∑
U=1

∑
i (6̃ (2) ) ∈Ỹ

U2

Uℎ
(
1 |: [6̃ (2) ]

)
(I, I′) ©«

∑
W∈�"

(eW | [i(6̃ (2) )]) ⊗ eW
ª®¬

= �̃
e(sign(")/8)

|�" | 1
2

∞∑
U=1

1

2

∑
6̃∈Ỹ

U2

Uℎ
q6(I)−2:

(I′ + 6 · I):
©
«

∑
W∈�"

(eW | [6̃]) ⊗ eW
ª®
¬

= �̃
e(sign(")/8)

|�" | 1
2

1

2

∞∑
U=1

Uℎ U (I, I′).

When ℎ = 0, one has to deal with the determinant zero part and show that

e(sign(")/8)
|�" | 1

2

1

2

∑
6̃∈Ỹ0/±1

q6(I)−2:

(I′ + 6 · I):
∑

W∈�"

(eW | [6̃]) ⊗ eW = E:," (I) ⊗ E:," (I′).

The argument is essentially the same (see [25, Theorem 4.6]) and we omit the details.

�
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4.3. Injectivity of the projection

Theorem 4.5. Assume that " is a negative definite even lattice of level # and rank A > 6. Furthermore,

assume that for all primes ?, " ⊗ Z? splits a hyperbolic plane. For : ≥ A/2, we have

Cusp\
: (d") = Cusp: (d" ).

Proof. As mentioned before, it suffices to show that the linear map Ψ is injective. When sign(") is

even, this is exactly [25, Theorem 6.7]. When sign(") is odd, the argument is very similar and we may

sketch the proof for the ease of readers.

(8) Suppose 5 ∈ Cusp: (d" ) satisfies Ψ( 5 ) = 0. By Theorem 4.4,

Ψ( 5 ) = �′
∞∑
U=1

TU2

U2:−2−ℎ ( 5 ) = �
′
©
«

∑
U≥1

gcd(U,# )=1

TU2

U2:−2−ℎ

ª®®®
¬
©«
∏
? |#

∞∑
==0

T?2=

?=(2:−2−ℎ)
ª®¬
( 5 )

for some non-zero constant �′. By Corollary 3.4, choose a basis of Cusp: (d" ) consisting of

simultaneous eigenforms for all Hecke operators in {TU2 : gcd(U, #) = 1}. Now by Theorem 3.5,

for each element 6 in this basis,

©
«

∑
U≥1

gcd(U,# )=1

TU2

U2:−2−ℎ

ª®®®
¬
(6) = !(6, 2: − 2 − ℎ)6 ≠ 0.

Therefore the operator
∑
U≥1

gcd(U,# )=1

T
U2

U2:−2−ℎ is invertible, which implies
∏
? |#

∞∑
==1

T
?2=

?= (2:−2−ℎ) ( 5 ) = 0.

(88) Let = :=
∏
? |#

? be the radical of # . By [25, Lemma 6.6], according to our assumption on " , there

exists a sublattice ! ⊆ " such that �! � �" ⊕ �′, where �′ =

(
0 1

=
1
=

0

)
mod Z under a basis

{G1, G2} and =G8 = 0. Then the cyclic subgroup � = 〈G1〉 is an isotropic subgroup of �! and

�⊥/� � �" .

(888) For any W ∈ �" , we have

• G1 + W, G2 + W are not divisible by ? in �! for any ? | # .

• when ; is even, then

2q
(=G1

2

)
+

(=
2
G1, G2 + W

)
= 2q

(=G2

2

)
+

(=
2
G2, G1 + W

)
=

1

2
≠ 0 mod Z.

(8E) According to [25, Lemma 6.3], also
∏
? |#

∞∑
==1

T
?2=

?= (2:−2−ℎ) ↑� ( 5 ) = 0. Let E = EG1+W,G2+W,( and then

↓� (E) =
∑

�⊂{? |# }
(−1) |� | ↓� e(G1+W)

G2+W
�

= eW

as (G1 + W)G2+W
�

is not orthogonal to � unless � = ∅. Then

〈 5 , eW〉 = 〈↑� ( 5 ), E〉 = 0,
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where we used Proposition 3.7 for the last equality. Since W is arbitrary, this implies that 5 = 0.

�

Remark 4.6. There is a well-established criterion for determining whether " ⊗ Z? splits a hyperbolic

plane, as mentioned in [27]. For example, this occurs if rank? (�") < A − 2. In practical terms, this

condition is not overly restrictive when A is sufficiently large, as rank? (�" ) ≤ A always holds.

5. Heegner divisors on Shimura varieties of orthogonal type

Throughout this section, we let " be an even lattice of signature (2, =) under a pairing 〈−,−〉 and

�" = "∨/" . For a normal variety - , ClQ(-) will denote the class group of Weil divisors on - with

rational coefficients.

5.1. Shimura variety attached to a lattice

Let D = D(") be the type IV Hermitian symmetric domain associated to " defined by

D(") =
{
F ∈ P(" ⊗ C) | 〈F, F〉 = 0, 〈F, F〉 > 0

}
(5.1)

Let Õ(") = ker(O(") → O(�" )) be the stable orthogonal group. It acts naturally on D(") and the

arithmetic quotient Õ(")\D is a normal quasi-projective variety, denoted by Sh("). The tautological

line bundle O(−1) on D(") ⊆ P(" ⊗ C) is Õ(")-invariant and descends to a line bundle on Sh("),
denoted by _" . It is called the Hodge line bundle on Sh(").

Example 5.1. Set

Λ6 = 〈2 − 26〉 ⊕ �8 (−1)⊕2 ⊕ *⊕2.

Its discriminant group Λ∨
6/Λ6 is a cyclic group of order 26 − 2. By global Torelli theorem for K3

surfaces, the period map induces an isomorphism

ℱ6 � Sh(Λ6).

which identifies the Noether-Lefschetz divisors on ℱ6 as Heegner divisors on Sh(Λ6).

5.2. Heegner divisors on Sh(")

Let us consider the divisor class group of Sh(").

Definition 5.2. For < ∈ Q and W ∈ �" , if (<, W) ≠ (0, 0), we define

H<,W = Õ(")\
∑

E∈"+W
q" (E)=<

E⊥,

to be the Heegner divisor on Sh("). If (<, W) = (0, 0), then we may set H0,0 = −_" .

In general, the Heegner divisor H<,W ∈ ClQ(Sh(")) is not irreducible. When W = −W in "∨/" , the

Heegner divisor H<,W has multiplicity two. The irreducible component of H<,W is the image of

ΓE\D(E⊥) → Õ(")\D (5.2)

for some E ∈ "∨ ⊆ " ⊗ Q satisfying q" (E) = < and E ≡ W mod " , where ΓE ⊆ Õ(") is the

stabilizer of E.
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When " contains two hyperbolic planes, by using Eichler’s lemma, there is a triangular relation

between the Heegner divisors H<,W and its irreducible components. In this case, the span of all Heegner

divisors H<,W equals the span of irreducible components of H<,W .

5.3. Picard group of Sh(")

Let PicQ(Sh(")) be the Picard group of Sh(") with rational coefficients. As Sh(") has only quotient

singularity, Sh(") is Q-factorial and we have an isomorphism

PicQ(Sh(")) � ClQ(Sh(")),

which identifies H<,W as an element in PicQ(Sh(")). Let us define

ACusp: (d" ) ⊆ Mod: (d")

as the subspace generated by elements in Cusp: (d" ) and the Siegel-Eisenstein series �:," , called the

space of almost cusp forms of weight : and type d" . Then we have

Theorem 5.3 ([3]). Assume that = ≥ 3 and " splits two hyperbolic planes. Then PicQ(Sh(")) is

spanned by the Heegner divisors and there is an isomorphism

Φ : PicC (Sh(")) � ACusp 2+=
2
(d" )∨

by sending H<,W to the coefficient function

5 =
∑

W∈�"

∑
8∈Q≥0

28,W@
8eW ↦→ 2−<,W , ∀ 5 ∈ ACusp 2+=

2
(d"). (5.3)

As a consequence, we have

Theorem 5.4 (cf. [5, 6]). The assumption on " is the same as above. A finite linear combination

H =
∑

W∈�"

∑
<∈Q

0<,WH<,W is proportional to the Hodge line bundle _" = H0,0 if and only if

∑
W∈�"

∑
<∈Q

0<,W2−<,W = 0 (5.4)

for all cusp forms
∑

W∈�"

∑
<∈Q

2<,W@
<eW ∈ Cusp 2+=

2
(d" ).

Proof. If � satisfies (5.4), then the map Φ(H) ∈ ACusp 2+=
2
(d" )∨ satisfies

Φ(H) ( 5 ) = 0

for any 5 ∈ Cusp 2+=
2
(d" ). This means Φ(H) is proportional to the constant coefficients function

Φ(H0,0). It follows that H is a multiple of H0,0. The converse is obvious. �

6. Heegner divisors on Sh(")

6.1. Baily-Borel compactification

There is a Baily-Borel compactification Sh(") of Sh(") by adding modular curves and cusps, which

is a normal projective variety. Abstractly, it is given by the Proj of the graded ring of automorphic forms
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on D. In the modern language, we have the following isomorphism

Sh(") � Proj
⊕
<

H0
(
Sh("), _⊗<"

)
.

In other words, the Hodge line bundle_" can be extended to an ampleQ-line bundle on Sh("), denoted

by _" .

A more explicit description of Sh(") as an arithmetic quotient is given below. If + ⊆ " is a

sublattice, we denote by

c+ : P(" ⊗ C) − P(+ ⊗ C) −→ P("/+ ⊗ C)

the natural projection. Then we have

Sh(") = Õ(")\
(
D

⊔
� :isotropic line

c�⊥D ∪
⊔

� :isotropic plane

c�⊥D
)
.

The 1-dimensional boundary components of Sh(") correspond one-to-one to the orbits of rank 2

primitive isotropic sublattices of " under the action of Õ("). We denote by m� (Sh(")) ⊆ m (Sh("))
the boundary component associated to some isotropic plane �.

For each isotropic plane � ⊆ " , the lattice �⊥/� is a negative definite lattice of rank = − 2. A natural

question is whether, for any isotropic subgroup � ⊆ �" , there is an inclusion

Gen0,=−2 (�⊥/�) ⊆ {�⊥/� | � ⊆ " is an isotropic plane}/� . (6.1)

We provide a sufficient condition for this to be held.

Proposition 6.1. If " splits two hyperbolic planes, then there is an inclusion

Gen0,=−2 (�" ) ⊆ {�⊥/� | � ⊆ " is an isotropic plane}/� . (6.2)

Proof. For any negative definite lattice ! ∈ Gen0,=−2 (�" ),

! ⊕ *⊕2 ∈ Gen2,= (�" ).

Since ♯ |Gen2,= (�" ) | = 1 by [27, Theorem 1.13.1] , we have ! ⊕*⊕2
� " . Now it is sufficient to take

� to be the image of the standard isotropic plane of*⊕2 under this isomorphism.

�

6.2. Heegner divisors on the boundary

Let G ∈ m (Sh(")) be a boundary point. The (analytic) local Picard group of Sh(") at G is defined by

PicQ(Sh("), G) := lim
G∈*

PicQ(* ∩ Sh("))

where* runs through all (analytic) open neighbourhoods of G. There is a restriction map

PicQ(Sh(")) → PicQ(Sh("), G) (6.3)

We say G is a generic point if it is not a cusp. For any isotropic plane � ⊆ " , we say a divisor

� ∈ PicQ(Sh(")) is trivial at generic points of m� (Sh(")) if there exists a generic point G ∈ m� (Sh("))
such that the image of � in PicQ(Sh("), G) is trivial. The natural projection O(") → O(�" ) is

surjective if " splits two hyperbolic planes (cf. [27, Theorem 1.14.2]). Now the result of Bruinier and

Fretaig about local Borcherds products immediately implies
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Theorem 6.2. (cf. [9, Theorem 5.1]) Assume " splits two hyperbolic planes. Let G be a generic point on

the component m� (Sh(")) for some isotropic plane � ⊆ " such that �⊥/� ∈ Gen0,=−2 (�" ). The image

of a finite linear combinations of Heegner divisors
∑

W∈�"

∑
<∈Q

0<,WH<,W is trivial in PicQ(Sh("), 6 · G)

for all 6 ∈ O(") if and only if ∑
W∈�"

∑
<∈Q

0<,W2−<,W = 0

for all theta series f∗Θ�⊥/�,� =
∑

W∈�"

∑
<∈Q

2<,W@
<eW , where � runs over all harmonic polynomials of

degree 2 and f runs over Iso(�" , ��⊥/� ).

For simplicity, we say that an even lattice " is of K3 type if " splits two hyperbolic planes and

" ⊗ Z? can split three hyperbolic planes for all primes ?. Then we have

Theorem 6.3. Let " be an even lattice of signature (2, =) of K3 type. Then if = > 10,

dimQ PicQ(Sh(")) = 1.

Proof. As the boundary of Sh(") in Sh(") are 1-dimensional and dim Sh(") ≥ 3, the pushforward

map is an isomorphism

8∗ : ClQ(Sh(")) � ClQ(Sh(")).

By Theorem 5.3, ClQ(Sh(")) is spanned by the Zariski closure of linear combinations of Heegner

divisors. One can view PicQ(Sh(")) as a subspace of PicQ(Sh(")). For any element� ∈ PicQ(Sh(")),
it can be written as a linear combination

∑
W∈�"

∑
<∈Q

0<,WH<,W . Since � is Q-Cartier, its image in each

local Picard group is a torsion element. By Proposition 6.1 and Theorem 6.2, we have∑
W∈�"

∑
<∈Q

0<,W2−<,W = 0

for all cusp forms 5 =
∑

W∈�"

∑
<∈Q

2<,W@
<eW ∈ Cusp\

2+=
2

(d" ). Applying Theorem 4.5 to �⊥/� for an

isotropic plane � ⊂ " such that �⊥/� ∈ Gen0,=−2 (�" ), the space Cusp\
2+=

2

(d" ) above is actually

Cusp 2+=
2
(d" ). Now Theorem 5.4 implies that � is proportional to the Hodge line bundle. This proves

the theorem. �

More generally, if Γ ⊂ O(") (Q) is an arithmetic subgroup containing Õ("),denote by ShΓ (") :=

Γ\D the Shimura variety with respect to Γ. Let ShΓ (") be the Baily-Borel compactification. Then we

have

Corollary 6.4. With notations and assumptions as above, if = > 10, dimQ PicQ(ShΓ (")) = 1.

Proof. Note that the natural projection

Sh(") → ShΓ (")

is a finite surjective morphism. By [3, Corollary 3.8], the first Chern class map induces an isomorphism

PicQ(Sh(Γ) (")) � H2 (Sh(Γ) ("),Q).

Thus by the projection formula, the pullback homomorphism PicQ(ShΓ (")) → PicQ(Sh(")) is

injective. Since trivially dimQ PicQ(ShΓ (")) ≥ 1, the result now follows from Theorem 6.3. �
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6.3. Proof of Theorem 1.1

Theorem 6.5 (Theorem 1.1). Pic(ℱ6) � Z, which is spanned by an integral multiple of the extended

Hodge line bundle _.

Proof. This is the case when " = Λ6. As rank? (�Λ6
) ≤ 1, by Remark 4.6, the conditions in Theorem

6.3 is automatically satisfied. Hence we have dimQ PicQ(ℱ6) = 1. As shown in [14], Pic(ℱ6) is

torsion-free, then Pic(ℱ6) is also torsion-free as ℱ6\ℱ6 has codimension > 2.

It suffices to show that Cl(ℱ6) ∩ PicQ(ℱ6) ⊂ ClQ(ℱ6) is generated by the extended Hodge line

bundle _. To see this, let S → P1 be a family of unigonal K3 surfaces of genus 6 constructed in [22,

§4.1.2]:

. = P(OP2 (4) ⊕ OP2 )
i
−→ P2

� = i−1 (line), � = P(OP2 (4))
(6.4)

Let � ∈ |3� + 12� | be generic. In particular, it is smooth and it does not intersect �. Let c : .̃ → . be

the double cover branched over � + �. We take a generic member

S ∈ |O.̃ (c
∗�) ⊠ OP1 (1) |.

The resulting familyS → P1 is a family of double cover of the Hirzebruch surfaceΣ := P(OP1 (4) ⊕OP1)
branched over −2 Σ. The fiber of S → P1 is a unigonal K3 surface with at worst A-D-E singularity

and admits a polarization of genus 6, induced by the restriction of 1
2
c∗� + 6c∗�.

One can view ℱ6 as the coarse moduli space of primitive polarized K3 surfaces of genus 6 with at

worst A-D-E singularities, then we obtain a morphism

k : P1 → ℱ6 ⊆ ℱ6 (6.5)

By using the Grothendieck-Riemann-Roch theorem, Laza and O’Grady have computed that the degree

of k∗ (_ |ℱ6
) = k∗ (_) is 1. This implies that _ is primitive in Cl(ℱ6) ∩ PicQ(ℱ6) and hence

Cl(ℱ6) ∩ PicQ(ℱ6) = 〈_〉.

�

Appendix

A. A vector-valued Siegel-Weil formula

Following [25] and [34], we introduce the Siegel-Weil formula for metaplectic groups. For simplicity,

let us assume " is a negative definite even lattice and + = " ⊗ Q. Let Sp23 be the standard sym-

plectic Z-group scheme and Mp23 (A)
c→ Sp23 (A) be the metaplectic double cover. Then the inclusion

Sp23 (Q) ↩→ Sp23 (A) can be uniquely extended to an inclusion

Sp23 (Q) ↩→ Mp23 (A).

Through this lifting, we will consider Sp23 (Q) as a subgroup of Mp23 (A).
Fix the standard additive character k : Q\A → C× whose archimedean component is given by

k∞ : R → C× , G∞ ↦→ e(G∞) and the ?-adic component is given by k? : Q? → C× , G? ↦→ e(−G′?),
where G′? ∈ Q/Z is the principal part of G? . Let lk be the (automorphic) Weil representation of

O(+) (A) × Mp23 (A) realized in the Schr¥odinger model S(+ (A)3), where S(+ (A)3) is the space of

Schwartz-Bruhat functions on + (A)3. Similarly, one can define lk, 5 as the Weil representation acting

on S(+ (A 5 )3).
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Remark A.1. There is a natural relation between this automorphic Weil representation and the

representation d
(3)
"

defined in Subsection 2.1. Each element W ∈ �
(3)
"

corresponds to a Schwartz

function

iW = ⊗?<∞i? ∈ S(+ (A 5 )3),

where i? ∈ S(+ (Q?)3) is the characteristic function of W + (" ⊗ Z?)3 . Under the map

] : C[� (3)
"

] → S(+ (A 5 )3)
eW ↦→ iW ,

we have lk, 5 (6 5 ) ◦ ] = ] ◦ d (3)"
(6) (cf. [36]) for 6 ∈ Mp23 (Z) and 6 5 ∈ Mp23 (Ẑ) the unique element

such that 66 5 ∈ Sp23 (Q) ⊂ Mp23 (A).

Definition A.2. For i ∈ S(+ (A)3), we can define the Theta series

\ (6, ℎ, i) :=
∑

x∈+ (Q)3
lk (6)i(ℎ−1x), 6 ∈ Mp23 (A), ℎ ∈ O(+) (A).

which is automorphic on both Mp23 (A) and O(+) (A).

Let % = #� ⊂ Sp23 be the standard Siegel parabolic subgroup. Here for any commutative ring ',

�(') :=

{
<(*) :=

(
* 0

0 (*−1)⊤
)
|* ∈ GL3 (')

}
,

and

# (') :=

{
=(�) :=

(
�3 �
0 �3

)
|� ∈ Sym3 (')

}
.

We have the global Iwasawa decomposition Sp23 (A) = # (A)�(A) and Mp23 (A) = # (A) �̃(A) ̃ for

the standard maximal open compact subgroup.

Definition A.3. With the notations as above, the Eisenstein series associated with i ∈ S(+3 (A)) is

defined by

� (6, B, i) :=
∑

W∈% (Q)\Sp23 (Q)
Φ(W6, B, i) 6 ∈ Mp23 (A), B ∈ C,

whereΦ(6, B, i) = | det 0(6) |B−B0 (lk (6)i) (0) with B0 = A
2
− 3+1

2
and c(6) = = ·<(0(6)) · : ∈ Sp23 (A)

under the Iwasawa decomposition. It converges absolutely for Re(B) > 3+1
2

.

The famous Siegel-Weil formula identifies the Theta lifting of the constant function 1 and the special

value of the Eisenstein series.

Theorem A.4 (Siegel-Weil formula in the metaplectic case (cf. [34])). Let i ∈ S(+ (A)3) be a  ̃-finite

function. Suppose A > 3 + 3, then the Eisenstein series � (6, B, i) is holomorphic at B = B0 and

� (6, B0, i) =
∫

O(+ ) (Q)\O(+ ) (A)
\ (6, ℎ, i)dℎ.

Here the Haar measure dℎ is normalized so that vol(O(+) (Q)\O(+) (A)) = 1.

As an application, we can deduce Theorem 2.5.
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Theorem A.5. Suppose " is a negative definite even lattice of rank A with A
2
> 3 + 1. Then

Θ
(3)
Gen(" ) = E

(3)
A
2
,"
.

Proof. The idea is to identify the component functions of both sides via the Siegel-Weil formula. When

A is even, this is [25, Theorem 5.5]. Now suppose A is odd and we sketch the proof as below.

According to Kudla (cf. [20, p. 37 Proposition 4.3]), for the archimedean component of the Weil

representation lk, there is a character j
k

+,∞ of ��(R) such that

(lk,∞ (<̃)i∞) (x) = jk

+,∞ (<̃) | det(<(0)) | A2 i∞ (x · 0), <̃ = (<(0), q<(0) ) ∈ ��(R),
where i∞ ∈ S(+ (R)3) and 0 ∈ GL3 (R).

Let i∞ (x) = 4−ctr(x,x) be the standard Gaussian function and for W ∈ ("∨/")3, denote i∞ ⊗ iW
by i∞,W . For g = G + 8H ∈ H3 and 0 ∈ GL3 (R) satisfying 00⊤ = H, we consider the element

6g = =(G)<(0) ∈ Sp23 (R).

The component function of our previously defined vector-valued genus Theta series (resp. vector-valued

Siegel-Eisenstein series) is given as follows.

• Genus Theta series:

〈Θ(3)
Gen(" ) (g), eW〉 = j

k

+,∞ (<̃)−1 | det(<(0)) |− A
2

∫
O(+ ) (Q)\O(+ ) (A)

\ (6̃g , ℎ, i∞,W)dℎ,

where 6̃g = =(G)<̃ = (6g , q6g
) and the Haar measure dℎ is normalized so that

vol(O(+) (Q)\O(+) (A)) = 1.

• Siegel-Eisenstein series:

〈E(3)
A
2
,"

(g), eW〉 = j
k

+,∞ (<̃)−1 | det(<(0)) |− A
2 � (6̃g , B0, i∞,W).

For the comparison of Theta series, the proof is exactly the same as in the classical case (cf. [23, Example

2.2.6]). For more details, one can see [25, Theorem 5.5]. For the comparison of Siegel-Eisenstein series.

Since [25, Theorem 5.5] uses a computation by Kudla which might be difficult to locate a reference in

the metaplectic case, we briefly present an alternative proof here.

Consider @g (x) := 4c8tr( (x,x)g ) . One has

lk,∞ (=(�)) (@g (x)) = k∞

(
1

2
tr((x, x)�)

)
@g (x) = @=(�) ·g (x)

for =(�) =
( (

Id �
0 Id

)
, 1

)
, where � ∈ Sym3 (Z) and

lk,∞ (�3) (@g (x)) =
√

det(g)
−A
@�3 ·g (x)

for �3 =

( (
0 −Id

Id 0

)
,
√

det(g)
)
. Since Mp23 (Z) is generated by �3 and =(�)’s, combining these

equations one gets

lk,∞ (6̃) (@g (x)) = q6(g)−A@6·g (x)
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for 6̃ = (6, q6(g)) ∈ Mp23 (Z). Hence

j
k

+,∞ (<̃)−1 | det(<(0)) |− A
2 Φ(6̃ · 6̃g , B0, i∞,W) = q6(g)−Alk, 5 (6̃ 5 ) (iW) (0)

and the rest are exactly the same as the last several lines in [25, Theorem 5.5].

The result now follows from Theorem A.4. Note that in our case A > 23 + 2 ≥ 3 + 3 for all 3 ∈ Z>0.

So the condition A > 3 + 3 in Theorem A.4 always holds.

�

B. Coset decomposition and Weil representations

Recall there is a map

] : Mp2 (Z) × Mp2 (Z) → Mp4(Z).

For �̃ = (�, q�), �̃ = (�, q�) ∈ Mp2(Z), we define D( �̃) to be the image of ]( �̃, (I2, 1)) and 3 (�̃) to

be the image of ]((I2, 1), �̃). If we set

D( �̃) = (D(�), qD(�) ) and 3 (�̃) = (3 (�), q3 (�) ),

with D(�), 3 (�) ∈ SL2 (Z), then for (I, I′) ∈ H × H ⊆ H2, one has

qD(�) (I, I′) = q�(I) and q3 (�) (I, I′) = q� (I′)

from the definition. Next, for any U ∈ Z, we define

C̃U = (CU, qCU
(g)) =

((U2 + U −U − 1 −1 −U − 1
−U − 1 1 0 0
−U 1 0 0
0 0 −1 −U

)
,
√
U2I − 2UF + I′

)
,

with g =

(
I F
F I′

)
∈ H2.

It has been shown in [25, Proposition 4.2] that for any 6 (2) ∈ Sp4 (Z) there exist some U ∈ Z≤0, �, � ∈
SL2(Z) such that

Γ
(2)
∞ 6 (2) = Γ

(2)
∞ CUD(�)3 (�)

and

i(�CUD(�)3 (�)) = ±�′
(
U2 0

0 1

)
�,

is well-defined, where � = =(()<(*) ∈ Γ
(2)
∞ with det(*) = ±1 and �′ =

(
3 1
2 0

)
if � =

(
0 1
2 3

)
. Since

(�,−1) ∈ Γ̃
(2)
∞ , it follows that we also get a decomposition

Γ̃
(2)
∞ 6̃ (2) = Γ̃

(2)
∞ C̃UD( �̃)3 (�̃) (B.1)

for any 6̃ (2) ∈ Mp4(Z). For our purpose, we need to extend the map i to metaplectic covers and study

their actions under the Weil representation.

Definition B.1. • For �̃ = (�, q�) ∈ Mp2(Z), we define �̃′ = (�′, q�′) where q�′ is given by

q�′ (I)
√
I′ + �′I = q�(I′)

√
I + �I′ .

for I, I′ ∈ H.
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• For 6̃ (2) = (6 (2) , q6 (2) ) ∈ Mp4 (Z), we define ĩ(6̃ (2) ) = (i(6 (2) ), qi (6 (2) ) ), where qi (6 (2) ) is

chosen to satisfy

q6 (2) (I, I′) = qi (6 (2) ) (I)
√
I′ + i(6 (2) )I. (B.2)

Under this map, we have ĩ(C̃U) = g̃U =

( (
U2 0

0 1

)
, 1

)
and one verifies that q�′ (I) and qi (6 (2) ) (I) do

not depend on I′.

Lemma B.2. For any �̃, �̃ ∈ Mp2(Z), we have

(8) ( �̃�̃)′ = �̃′ �̃′

(88) ĩ(C̃UD( �̃)3 (�̃)) = �̃′ · g̃U · �̃

Proof. For (8), from the definition, one can directly verify that

q (�·�) ′ (I)
√
I′ + (� · �)′I = q�′ (I)q� (I′)

√
�′I + �I′ = q�′ ·�′ (I)

√
I′ + (� · �)′I.

For (88), set C̃U · D( �̃) · 3 (�̃) = (6 (2) , q6 (2) ). As i(6 (2) ) = �′ · gU · �, it suffices to show that

q6 (2) (I, I′)√
I′ + i(6 (2) )I

= q�′ (gU · �I)q�(I).

This is clear because

LHS =

(√
U2�I + �I′

)
qD(�) (I, �I′)q3 (�) (I, I′)

√
I′ + �′U2�I

=

(√
U2�I + �I′

)
q�(I)q� (I′)

√
I′ + �′U2�I

= q�′ (U2�I)q�(I)
= RHS.

(B.3)

�

Now it follows from [25, Proposition 4.2] that there is a well-defined injection

Γ̃
(2)
∞ \Mp4 (Z) → (M̃at2(Z) × Z≤0)/(〈(−�, 8)〉 × 0)

[6̃ (2) ] ↦→ (i(6̃ (2) ), U).
(B.4)

We get

Lemma B.3. [25, Lemma 4.3] Let U ∈ Z, �̃ ∈ ỸU2 and �̃ ∈ Mp2(Z). Then∑
W∈�"

(eW | [ �̃]) ⊗ d" (�̃)−1eW =
∑

W∈�"

(eW | [�̃′ �̃]) ⊗ eW .

Then we have

Proposition B.4. For 6̃ (2) = C̃UD( �̃)3 (�̃) with U ≤ 0, we have

d
(2)
"

(6̃ (2) )−1(e0 ⊗ e0) =
e(sign(�" )/8)√

|�" |

∑
W∈�"

(eW | [ĩ(6̃ (2) )]) ⊗ eW . (B.5)
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Proof. It is straightforward to check that C̃U admits the following decomposition

C̃U = �−1
2 · =

((
0 −1

−1 −U

))
· �−1

2 · =
((
U2 + U −U − 1

−U − 1 1

))
· �−1

2 · =
((

0 0

0 1

))

in Mp4(Z).
Given this decomposition, when 6̃ (2) = C̃U, the equation B.5 holds by a direct computation (cf. [25,

Proposition 4.4]).2 Then from the decomposition (B.1), we have

d
(2)
"

(6̃ (2) )−1 (e0 ⊗ e0) = d (2)"
(C̃UD( �̃)3 (�̃))−1 (e0 ⊗ e0)

= d
(2)
"

(D( �̃)3 (�̃))−1d
(2)
"

(C̃U)−1(e0 ⊗ e0)

= d
(2)
"

(D( �̃)3 (�̃))−1 e(sign(�" )/8)√
|�" |

∑
W∈�"

(eW | [i(C̃U)]) ⊗ eW

=
e(sign(�" )/8)√

|�" |

∑
W∈�"

(eW | [i(C̃U)] | [ �̃]) ⊗ d" (�̃)−1(eW)

=
e(sign(�" )/8)√

|�" |

∑
W∈�"

(eW | [�̃′i(C̃U) �̃]) ⊗ eW

=
e(sign(�" )/8)√

|�" |

∑
W∈�"

(eW | [i(C̃UD( �̃)3 (�̃))]) ⊗ eW

=
e(sign(�" )/8)√

|�" |

∑
W∈�"

(eW | [i(6̃ (2) )]) ⊗ eW .

(B.6)

Here we use Lemma B.3 in the fifth equation. �

C. Hecke kernels

Proposition C.1. For U > 0, we have

TU2 ( 5 ) (I′)
U2:−2

= �

∫
SL2 (Z)\H

〈 5 ,  U (I, −I′)〉H:
dGdH

H2
, (C.1)

where the constant � =
2:−4 (:−1)

c8:
.

Proof. We only deal with the odd signature case. As in the even signature case, we have TU2( U (I, I′)) =
U2:−2 U (I, I′) and it suffices to show that

T1 ( 5 ) (I′) = 5 (I′) = �
∫

SL2 (Z)\H
〈 5 ,  1 (I, −Ī′)〉H:

dGdH

H2
.

Denote the element
(
) =

(
1 1

0 1

)
, 1

)
∈ Mp2 (Z) by )̃ . We have

2A careful reader may note that since our definition of "�" is different from that in [25], the action of "�2" in [25] is actually the action of

"�−1
2

" in our notation. Therefore, the reason why we use �−1
2

in the above decomposition is to keep the consistency with the computations in [25,

Proposition 4.4].
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 1 (I, I′) =
∑

W∈�"

∑
6̃∈Mp2 (Z)

q6(I)−2:

(I′ + 6 · I):
d" (6̃)−1 (eW) ⊗ eW

=
∑

W∈�"

∑
6̃∈〈)̃ 〉\Mp2 (Z)

∑
=∈Z

q)=6 (I)−2:

(I′ + )=6 · I):
d" ()̃=6̃)−1(eW) ⊗ eW

=
∑

W∈�"

∑
6̃∈〈)̃ 〉\Mp2 (Z)

∑
=∈Z

q6(I)−2:

(I′ + 6 · I + =):
e(−=q(W))d" (6̃)−1 (eW) ⊗ eW

= 2
(−2c8):
Γ(:)

∑
W∈�"

∑
<∈Z+q (W)

<>0

<:−1PW,<(I) ⊗ e(<I′)eW

(C.2)

where PW,<(I) = 1
2

∑
6̃∈Γ̃+

∞\Mp2 (Z)
(e(<I)eW) |:,�"

[6̃] is the Poincaré series defined in [10, §1.2]. Here

the last identity comes from the Lipschitz Summation Formula in [24] (see also [28, Theorem 1]), which

we recall in Lemma C.2 below.

Write the cusp form 5 as a Fourier expansion

5 (I) =
∑

W∈�"

∑
<∈Z+q (W)

<>0

2(<, W)e(<I)eW .

By [10, Proposition 1.5], one has 〈 5 ,PW,<(I)〉Pet =
2·Γ (:−1)
(4c<):−1 2(<, W). Combine this with (C.2), we

finally get

∫
SL2 (Z)\H

〈 5 ,  1 (I,−Ī′)〉H:
dGdH

H2

=2
(2c8):
Γ(:)

2 · Γ(: − 1)
(4c):−1

∑
W∈�"

∑
<∈Z+q (W)

<>0

2(<, W)e(<I′)eW

=
c8:

2:−4(: − 1)
5 (I′).

�

Lemma C.2 (Lipschitz Summation Formula). Let : ∈ C with Re(:) > 1 and I ∈ H. Then for G ∈ R,

∞∑
==−∞

e(=G) (I + =)−: =
(−2c8):
Γ(:)

∑
A ∈Z−G
A>0

A:−1e(AI)

where we chose a branch of the logarithm compatible with our choice of
√·.
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