
CLASSIFICATION OF THE LIMIT SHAPE FOR

1+1-DIMENSIONAL FPP

MALTE HASSLER

Abstract. We introduce a simplified model of planar first passage percola-

tion where weights along vertical edges are deterministic. We show that the

limit shape has a flat edge in the vertical direction if and only if the random
distribution of the horizontal edges has an atom at the infimum of its support.

Furthermore, we present bounds on the upper and lower derivative of the time

constant.

1. Introduction

Classical first passage percolation has a simple definition: Consider the Z2 lat-
tice and put weights on each edge independently and identically according to some
non-negative probability distribution. The graph distance now becomes a random
metric space and one can study random metric balls at the origin. Cox and Dur-
rett [4] have shown that under mild assumptions this random ball converges to
a deterministic, convex limit shape, which depends on the choice of distribution.
While it is conjectured that the limit shape is differentiable if the distribution is
not deterministic and strictly convex if the distribution is continuous, the nature of
the limit shape is still almost completely open. There are only a few special cases
where one can say something about the limit shape, most notably:

• If the distribution is deterministic, then the limit shape is a dilation of the
ℓ1-diamond.

• If the distribution is supported on [1,∞) and has an atom at 1 of mass at
least 1/2, then the limit shape has a flat edge near the main diagonal and
is differentiable at the endpoints of that edge (see [6] and [13]).

• For each k, there exists ε > 0 such that a random variable supported on
[1, 1 + ε] has a limit shape that is not a polygon with k or less edges (see
[22], Theorem 1.4).

Properties of the limit shape are of particular interest because they yield infor-
mation about the geodesics (see [22, Lemma 4.6]) and the existence of bi-infinite
geodesics [17] which has implications for the disordered Ising ferromagnet. The
interested reader can find more about results and conjectures in FPP in a survey
by Auffinger, Damron and Hanson [18].

Given the difficulty of studying the limit shape, various simplified models have
been introduced. In 1998, Seppäläinen [10] studied a model where vertical edges
have constant weights 1 and the minimizing paths are restricted to be directed in the
horizontal and vertical direction. This model is later known as the SJ-model due to
major contributions by Johansson [12]. Further work has been done by O’Connell
and Martin [11], [14], [15]. They were able to exactly compute the limit shape for
exponential, geometric and Bernoulli distributions as well as a combination of them
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2 MALTE HASSLER

(we like to point out that the first two distributions are the ones where last passage
percolation is integrable). In our work however, we aim to show results in maximal
generality instead of focusing on a few distributions.

Let us formally introduce our model. It coincides with the SJ-model, but one
step closer to original FPP as paths are no longer required to be directed. To our
knowledge, it has not been studied before.

1.1. The model and main result. Consider the Z2 lattice and let G be a prob-
ability measure on [0,∞). To each vertical edge e of Z2 we assign a deterministic
weight τe = 1. To each vertical edge e we assign a random weight τe independently
sampled according to G. A path p is a finite or infinite sequence p = (z0, z1, ...) of
points in Z2 such that zk and zk+1 are connected by an edge for all k ≥ 0. We say
that an edge e lies in p if e = (zk, zk+1) for some k.

For each path p we assign a random passage time

T (p) =
∑
e∈p

τe.

For (x1, y1), (x2, y2) ∈ Z2 define

(1) T ((x1, y1), (x2, y2)) = inf
p
T (p)

where the infimum is taken over all paths starting at (x1, y1) and ending at (x2, y2).
For α ∈ R, let ⌈α⌉ denote the smallest integer greater or equal to α. The first

result is the existence of a time constant to which the random passage times for a
particular direction converge to.

Theorem 1. Let G be any probability measure on [0,∞). Then there exists a
convex, deterministic function Λ : [0,∞) → [0,∞) depending on G such that

(2) Λ(ν) = lim
n→∞

1

n
T ((0, 0), (n, ⌈vn⌉)).

almost surely and in L1.

The theorem is a standard result proved using the subadditive ergodic theorem.
We will prove it in Section 4 together with the next lemma.

Lemma 1. Λ(v) = 0 if and only if v = 0 and G = δ0.

Definition 1. For G ̸= δ0 and 0 ≤ θ ≤ π
2 , we define the curve

B(θ) = 1

Λ(tan(θ)) cos(θ)
.

The limit shape BG is the closed area embodied by the four symmetrical copies
of the curve B(θ)eiθ, B(θ)e−iθ,−B(θ)eiθ,−B(θ)e−iθ. The union of the four curves
then form the boundary of the limit shape ∂BG.

Moreover, we define the random balls:

B(t) = {x ∈ Z2 : T ((0, 0), x) ≤ t}.

We can then state the analogue of the Cox-Durrett limit shape theorem, which
we will prove in Section 4.8. Note that unlike classical FPP, we no longer require
a mean bound nor that G(0) is larger than the critical probability for Bernoulli
percolation.



CLASSIFICATION OF THE LIMIT SHAPE FOR 1+1-DIMENSIONAL FPP 3

Theorem 2. Let G ̸= δ0. The limit shape BG is convex, compact, nonempty and
for each ε > 0

P
(
(1− ε)BG ⊂ B(t)

t
⊂ (1 + ε)BG for all large t

)
= 1.

One can see that the points (1/Λ(0), 0) and (0, 1) lie on the boundary of the
limit shape, so by convexity, the curve B(θ)eiθ cannot lie below the straight line
between the points. For x ∈ ∂BG, we say that x lies on a flat edge if there exists
y ∈ ∂BG \ {x} such that the line segment from x to y is completely contained in
∂BG. We are now able to state the main theorem:

Main Theorem. Let G ̸= δ0 and define t0 := inf{x : G([0, x]) > 0}. Then (0, 1)
lies on a flat edge of the limit shape if and only if G({t0}) > 0.

In particular, if G has no atom at the infimum of its support, then the limit
shape is not a polygon. Such a result is far from being known in the classical FPP
model and the number of flat edges is useful for understanding the behavior of
geodesics (see for example [22]).

1.2. Motivation and organization of the paper. There has been recent progress
in showing the differentiability of the limit shape by Yuri Bakhtin and Douglas Dow
for discrete polymer models [19] and Hamilton-Jacobi-Bellman equations [20], both
of which can be interpreted as continuous versions of FPP. Their result is universal
as it holds for a large class of distributions.

Our model is initially motivated by the fact that it is a natural discretization
of their polymer model in the zero temperature setting. While the discreteness
prevents us from using the methods in [19] to its full potential, we can still derive
bounds on the upper and lower derivative of the time constant that link it to the
local behavior of geodesics (Theorem 3). The main idea here is to replace continuous
shear maps, which are not applicable anymore in our discrete model, by a random
analogue that is supported over the integers.

We will present and derive these inequalities in the following section after in-
troducing basic properties of geodesics. The inequalities are not essential for us
to prove the main theorem, and depending on the reader’s interest one can skip
forward to Section 3. However, the concepts presented appear to be rather new in
the field and provide some intuition why the main theorem holds.

2. Connecting the derivative of the time constant with the local
geometry of geodesics

2.1. Geodesics. A path p from (x1, y1) to (x2, y2) is a geodesic if it assumes the
infimum in (1).

We call a path p (right) semi-directed if

zk+1 − zk ∈ {(1, 0), (0, 1), (0,−1)} ∀ k ≥ 0.

In other words, the path p is allowed to move up, down and right, but not left.

Proposition 2. Suppose γ is a geodesic from (x1, y1) to (x2, y2) with x2 ≥ x1.
Then there exists a semi-directed, non-intersecting geodesic γ′ from (x1, y1) to
(x2, y2).
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Proof. Erasing loops cannot increase the passage time, so we can clearly obtain a
non-intersecting geodesic. Suppose γ was not semi-directed already. Then there
exists x3, y3 ∈ Z and k ∈ N such that zk = (x3, y3) and zk+1 = (x3 − 1, y3). The
first time γ hits the vertical line {x2}×Z, we can take a straight line to (x2, y2) and
the resulting path is a geodesic because the edge weights are non-negative. Thus,
we may assume that x3 < x2. Then there exists k′ > k+1 such that zk′ = (x3, y4)
lies on the vertical line {x3} × Z. Let γ′ be the path that goes from zk straight up
or down to zk′ . Since T (zk, zk′) = |y4 − y3|, the path γ′ is a geodesic. By repeating
this step every time a left-turn occurs, we obtain a semi-directed geodesic. □

From the proof it is also clear that if G(0) = 0, then almost surely every geodesic
is semi-directed and non-intersecting.

Proposition 3. For all m ∈ Z and n ∈ Z≥0, there always exists a geodesic con-
necting the origin and (n,m) and the number of such geodesics is finite.

Proof. Define the cylinder sets

Cn(h) := {(k, j) ∈ Z2 : k ∈ {0, ..., n}, |j| ≤ h}.

Pick a semi-directed path p going from the origin to (n,m) and choose h ∈ N
large enough such that p ∈ Cn(h) and T (p) ≤ h. Let p′ be any semi-directed path
going from the origin to (n,m) that is not completely contained in Cn(h). Then
T (p′) > h ≥ T (p), so p′ is not a geodesic. Since the number of semi-directed,
non-intersecting paths from the origin to (n,m) which are completely contained in
Cn(h) is finite, the minimum of their passage times is assumed. □

Proposition 4. If the distribution G is continuous, geodesics are almost surely
unique.

Proof. For s, t ≥ 1, let G(s, t) be the distribution of X1+...+Xs−Y1−...−Yt, where
X1, ..., Xs, Y1, ..., Yt are i.i.d. random variables with distribution G. If G is continu-
ous, so is G(s, t). Now let Z1, Z2, .. be an enumeration of the edge weights. Suppose
there exists two geodesics, then there exists a finite subset {i1, ..., is, j1, ..., jt} ⊂ N
such that Zi1 + ...+ Zis − Zj1 − ...− Zjt = 0. Since G(s, t) is continuous, for each
choice of indices {i1, ..., is, j1, ..., jt}, this event has zero probability. Since we sum
over a countable set of indices, geodesics are almost surely unique. □

For the rest of the paper, we will speak of the geodesic even if G is not continuous.
We mean with this that a geodesic has been chosen in some deterministic way.

2.2. The derivative of the time constant. To state and prove the theorem on
derivative inequalities, we need to introduce the concept of pioneer points:

Definition 2. Let p be a semi-directed path from the origin to a point (n,m). For
k = 0, ..., n let fp(k) ∈ Z be such that (k, fp(k)) ∈ Z2 is the first intersection of p
with the vertical line {k} × Z. In particular, fp(0) = 0. The points (k, fp(k)) ∈ Z2

are referred to as pioneer points. We also introduce the convention fp(n+ 1) = m
(even though (n+ 1,m) ̸∈ p).

Definition 3. Let p be a semi-directed path from the origin to a point (n,m). The
number of right-turns of p is defined as

R(p) := |k ∈ {0, ..., n} : fp(k) = fp(k + 1)| .
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similarily, we define the number of up-turns by

U(p) := |k ∈ {0, ..., n} : fp(k) < fp(k + 1)| ,
and the number of down-turns by

D(p) := |k ∈ {0, ..., n} : fp(k) > fp(k + 1)| .

By symmetry of the model, we can meaningfully extend the time constant to R
and Λ(−v) = Λ(v). Since the function Λ : R 7→ [0,∞) is convex, in each direction
v ∈ R we have upper and lower derivatives

∂+Λ(v) = lim
w↘v

Λ(w)− Λ(v)

w − v
and ∂−Λ(v) = lim

w↗v

Λ(v)− Λ(w)

v − w
.

The time constant is differentiable at v if and only if ∂+Λ(v) = ∂−Λ(v). For v = 0,
due to symmetry, this is equivalent to ∂+Λ(0) = 0.

Proposition 5. We have |∂+/−Λ(v)| ≤ 1 and for v > 0 also ∂+/−Λ(v) ≥ 0.

Proof. Since we can always connect a geodesic going from the origin to (n, ⌈vn⌉)
by a straight vertical line to (n, ⌈wn⌉), we have

|T ((0, 0), (n, ⌈vn⌉))− T ((0, 0), (n, ⌈wn⌉))| ≤ |⌈wn⌉ − ⌈vn⌉|

and thus |Λ(v) − Λ(w)| ≤ |v − w|. This shows |∂+/−Λ(v)| ≤ 1. The other bound
follows from convexity and symmetry. □

Our second main result is an improvement on the bounds in the previous propo-
sition which links the derivative to the local geometry of the geodesics:

Theorem 3. Let G be non-deterministic and v ≥ 0. For each n, let γn(v) be the
geodesic from the origin to (n, ⌈vn⌉). We have the following bounds:

(3) ∂+Λ(v) ≤ lim inf
n→∞

1

n
E [U(γn(v)) +R(γn(v))−D(γn(v))]

and

(4) ∂−Λ(v) ≥ lim sup
n→∞

1

n
E [U(γn(v))−R(γn(v))−D(γn(v))]

Since U(γn(v))+R(γn(v))+D(γn(v)) = n+1, this again yields the bound from
the Propositon 5, although it might not always be the case that the expression in
(4) is positive. If we can show that down-turns in geodesics occur with a linear
ratio, then (3) tells us that ∂+Λ(v) < 1 which implies that the limit shape has no
flat edge at (0, 1).

In classical FPP the study of the local geometry of geodesics has recently caught
attention. We refer here to an article by Jacquet [21] who shows that any positive
probability event only depending on the weights in a finite box will be observed
along a geodesic a linear ratio of times with respect to the distance between the
endpoints of the geodesic. In particular, this applies to down-turns. The main idea
is to increase edge weights inside the box to force the geodesic into a specific shape.
Unfortunately, this technique does not apply to our model because the vertical
edge weights are static. So while we employ a different strategy to proof the main
theorem, Theorem 3 gives some intuition why it should hold.

However, a simple application of this result is that ∂+Λ(0) < 1 if G is not
deterministic and hence the limit shape is not an ℓ1-diamond. This is because
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it is very unlikely for a geodesic to have a lot of consecutive right-turns, hence
R(γ)/n < 1 and symmetry at v = 0 yields E [D(γ)] = E [U(γ)].

A natural guess for an expression for the derivative based on Theorem 3 is
Λ′(v) = limn→∞ E [U(γn(v))−D(γn(v))] /n. However, this equality is not true
in general: If G(0) > 1/2, we can move horizontally along zero-weight edges and
move upwards if we encounter a larger weight. If v is large enough, we thus find
a path with minimal passage time vn with large probability. So Λ′(v) = 1, but
E [R(γn)] ≥ n/2.

Figure 1. A semi-directed path p from the origin to (n, ⌈vn⌉)
with n = 7 and v = 0.7. Pioneer points are shown in green and
fp = (0, 2, 2, 1,−1,−1, 4, 6, 5).

2.3. An equivalent model. We now rewrite our model in a way that resembles
the polymers studied in [19].

For each semi-directed, non-intersecting path p from the origin to (n, ⌈vn⌉),
define

γ = γ(p) = (fp(0), ..., fp(n+ 1)).

See Figure 1 for an example. Moreover let V (x) = |x| denote the absolute value,
let Fk(x) be the weight of the edge ((k− 1), x), (k, x)) and write ∆kγ = γk+1 − γk.
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We rewrite the passage time as a sum of vertical edges and a sum of the horizontal
edge weights:

(5) T (p) = An(γ) :=

n∑
k=0

V (∆kγ) +

n∑
k=1

Fk(γk).

Then γ(p) ∈ Γn(v) where

Γn(v) = {γ ∈ Zn+2 : γ0 = 0, γn+1 = ⌈vn⌉}.
Conversely, one can check that given γ ∈ Γn(v), there exists a unique semi-

directed, non-intersectng path p from the origin to (n, ⌈vn⌉) such that γ = γ(p).
Thus, we also have

(6) T ((0, 0), (n, ⌈vn⌉)) = An∗ (v) := inf
γ∈Γn(v)

An(γ)

and almost surely and in expectation

Λ(v) = lim
n→∞

1

n
An∗ (v).

We say γ ∈ Γn(v) is a geodesic if the infimum in (6) is attained. Clearly, a
non-intersecting, semi-directed path p is a geodesic in the original model if and
only if γ(p) is a geodesic. So existence and finiteness of geodesics (Proposition 3)
also holds here.

2.4. Random shearing. The main idea in [19] is to shift the environment by so-
called shear maps of the form (Ξvγ)k = γk + vk. The obstacle is that our paths γ
live in Z, so this map is not well-defined for all v and k. We overcome this issue by
introducing additional randomness.

For each n ∈ N, denote by Sn the group of permutations of {1, ..., n}.
Let σn be a random variable uniformly distributed over Sn, independently for

each n. For every v ≥ 0 and x ∈ [−1, 1], we define a random variable ωn,v(x) ∈
{0,±1}n+1 depending on σn+1 as follows:

(7) ωn,v(x)k :=

{
sgn(x) if σ−1

n+1(k) ≤ |⌈(v + x)n⌉ − ⌈vn⌉|
0 if σ−1

n+1(k) > |⌈(v + x)n⌉ − ⌈vn⌉|
, k ∈ {1, ...n+ 1}.

Here sgn(x) ∈ {−1, 0, 1} denotes the sign function. Given n, v and x, we define
Ωn,v(x) as the probability space we sample ωn,v(x) from.

Proposition 6. Let n ∈ N, k ∈ {1, ..., n + 1}, v ≥ 0 and x, y ∈ [0, 1] with x ≤ y.
The following properties hold:

(1) ωn,v(x)k ∼ Bernoulli( ⌈(v+x)n⌉−⌈vn⌉
n+1 )

(2)
∑n+1
i=1 ω

n,v(x)i = |⌈(v + x)n⌉ − ⌈vn⌉|.
(3) ωn,v(x)k ≤ ωn,v(y)k
(4) P(ωn,v(x)k = 0, ωn,v(y)k = 1) = ⌈(v+y)n⌉−⌈(v+x)n⌉

n+1 .

Proof. Since σ = σn+1 is uniformly distributed over Sn+1, each variable σ−1(k)
is uniformly distributed over {1, ..., n + 1}. So the probability that σ−1(k) ≤
⌈(v + x)n⌉ − ⌈vn⌉ is (⌈(v + x)n⌉ − ⌈vn⌉)/(n+ 1). This shows (1). Since σ−1(k) ≤
⌈(v + x)n⌉ − ⌈vn⌉ is satisfied for exactly ⌈(v + x)n⌉ − ⌈vn⌉ values of k, we get (2).
As x < y, if ωn,v(x)k = 1, then σ−1(k) ≤ ⌈(v + x)n⌉ − ⌈vn⌉ ≤ ⌈(v + y)n⌉ − ⌈vn⌉,



8 MALTE HASSLER

so ωn,v(y)k = 1. This shows (3). The only case when ωn,v(x)k and ωn,v(y)k
differ is thus when ωn,v(x)k = 0 and ωn,v(y)k = 1. Equivalently, σ−1(k) ∈
{⌈(v + x)n⌉ − ⌈vn⌉ + 1, ..., ⌈(v + y)n⌉ − ⌈vn⌉}, which happens with probability
(⌈(v + y)n⌉ − ⌈(v + x)n⌉)/(n+ 1). □

For each ω ∈ Ωn,v(x) and path γ ∈ Zn+2, define the shear maps coordinate-wise
for k = 0, ..., n+ 1

(Ξωγ)k := γk +

k∑
i=1

ωi

They have the inverse operator (Ξ−1
ω γ)k := γk−

∑k
i=1 ωi. Note that in expectation

and for large n they behave analogously to the shear maps in [19]:

E [(Ξωγ)k] = γk +

k∑
i=1

E [ωi] = γk + k
|⌈(v + x)n⌉ − ⌈vn⌉|

n+ 1

n→∞−→ γk + k|x|.

Also define the shears on the random environment

(Ξ∗
ωF )k(x) = Fk(x+

k∑
i=1

ωi).

with inverse operator Ξ∗,−1
ω . By independence of the environment F = {Fk(x)},

we get that the shear maps are measure preserving for every n, v, x and ω, i.e.
E [g(Ξ∗

ωF )] = E [g(F )] for any measurable function g.
We define the sheared passage time:

Bn(ω)(γ) =

n∑
k=0

V (∆kγ + ωk+1) +

n∑
k=1

Fk(γk),

and consider the minimization problem:

(8) Bn∗ (v, ω) = inf{Bn(ω)(γ) : γ ∈ Γn(v)}.

In particular, if x = 0, then ω ≡ 0 and Bn(ω) = An. Note that for γ ∈ Γn(v), the

path γ′ = Ξωγ is a path starting at 0 with final point ⌈vn⌉+
∑n+1
k=1 ωi = ⌈(v + x)n⌉.

We can write:

Bn(ω)(γ) =

n∑
k=0

V (∆kγ
′) +

n∑
k=1

(Ξ∗,−1
ω F )k(γ

′
k),

and see that is equal to An(v+ x)(γ′) in the shifted environment Ξ∗,−1
ω F , which

has the same distribution as F . This allows us to apply distributional results of
An∗ (v) to Bn∗ (v, ω). The advantage of (8) is that we can compare passage times
of different directions while working with geodesics living in the same path space
Γn(v). Note that if γ is a geodesic, then so is γ′ in its space and vice versa.

2.5. The upper derivative. We are now ready to prove Theorem 3, starting with
the upper derivative. Let x ∈ (0, 1) and sample ω from Ωn,v(x). For each z ∈ Z
and i ∈ N, we have the identity

V (z + ωi)− V (z) = 1(ωi(w) = 1)∆V (z)
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where

(9) ∆V (z) = V (z + 1)− V (z) = |z + 1| − |z| =

{
+1 , z ≥ 0

−1 , z < 0

is the discrete (right) derivative of the absolute value. It follows that for any
path γ ∈ Γn(v):

(10)
1

n
Bn(ω)(γ)− 1

n
An(γ) =

1

n

n∑
k=0

1(ωk+1 = 1)∆V (∆kγ).

Now let γ be the geodesic, we then have An(γ) = An∗ (v) and Bn(ω)(γ) ≥
Bn∗ (v, ω). Hence, (10) implies

1

n
Bn∗ (v, ω)−

1

n
An∗ (v) ≤

1

n

n∑
k=0

1(ωk+1 = 1)∆V (∆kγ)

We now take the expectation. Firstly, note that ω is independent of the edge
weights, so we may apply Proposition 6. And secondly, recall that Bn∗ (v, ω) and
An∗ (v + x) have the same distribution for every ω ∈ Ωn,v(x).

(11)
1

n
E [An∗ (v + x)]− 1

n
E [An∗ (v)] ≤

1

n

n∑
k=0

⌈(v + x)n⌉ − ⌈vn⌉
n+ 1

E [∆V (∆kγ)]

Applying (9) and taking the limit n→ ∞ yields

Λ(v + x)− Λ(v) ≤ x lim inf
n→∞

1

n
E [U(γn(v)) +R(γn(v))−D(γn(v))] .

2.6. The lower derivative. The lower bound calculation is very similar. Let
x ∈ (−1, 0) and sample ω from Ωn,v(x). For any path γ ∈ Γn(v) we have the
identity

1

n
An(γ)− 1

n
Bn(ω)(γ) =

1

n

n∑
k=0

1(ωk+1 = −1)∆V (∆kγ − 1)

Setting γ to be the geodesic yields

1

n
An∗ (v)−

1

n
Bn∗ (v, ω) ≥

1

n

n∑
k=0

1(ωk+1 = −1)∆V (∆kγ − 1).

Taking the expectation and the limit then yields

Λ(v)− Λ(v − x) ≥ |x| lim inf
n→∞

1

n
E [U(γn(v))−R(γn(v))−D(γn(v))] .

3. Classification of the limit shape

This section deals with the proof of the Main Theorem. We will work with differ-
ent first passage models, so let us first introduce some notation. For a probability
measure G, let TG(·, ·) and ΛG(v) denote the passage time and the time constant
in our undirected model with edges distributed according to G.

For the directed SJ-model, we write TGdir(·, ·) and ΛGdir(v). If the underlying
distribution is clear, we omit the superscript.
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When G is a {0, 1}-Bernoulli distribution with G(0) = p, let T pFPP (·, ·) and
ΛpFPP (v) be the passage time and time constant with these Bernoulli weights in
the original, undirected FPP model where both horizontal and vertical edges are
randomized.

Finally, we consider a model where the sites of the Z2 lattice have i.i.d. Bernoulli
weights and paths are required to be semi-directed. We refer to this model as the
site percolation model and the passage times are denoted by T psite(·, ·).

3.1. Regularity of the passage time. The following lemma explains why unlike
the standard FPP models, the existence of the limit shape and many other proper-
ties hold in our model without moment assumptions. The main reason is that we
can move around edges with high weights at a controlled cost.

Definition 4. Let G be non-deterministic and B > t0(G). For any edge e of the
lattice, we define the detour height as the distance to an edge with small passage
time:

kB(e) := min (k ≥ 1| min(τ(e+ (0, k)), τ(e− (0, k))) < B) .

The detour of e is the path that starts at one edge of e, goes kB(e) edges upwards
or downwards, passes the horizontal edge with weight less than B and goes kB(e)
edges down back to the other endpoint of e. The detour time dtB(e) is the passage
time of the detour.

Lemma 7. Set e0 := ((0, 0), (1, 0)) and X = dtB(e) for some B > t0(G). Then
there exists θ > 0 such that E

[
eθX

]
<∞.

Proof. We have the bound X ≤ 2kB(e0) + B. By independence of edge weights,
kB(e) has a geometric distribution. So X also has exponential tails and thus finite
exponential moments. □

As a consequence, passage times always have finite moments

Corollary 8. For any G, there exists θ > 0 such that given x1, x2, y1, y2 ∈ Z and
T = T ((x1, y1), (x2, y2)) we have E

[
eθT
]
<∞.

Proof. For i ∈ {x1, ..., x2 − 1}, set ei = ((i, y1), (i + 1, y1)). Then T ≤ dtB(ex1) +
· · ·+ dtB(ex2−1) + |y2 − y1|. All these summands are independent. □

We continue with a statement going back to Hammersley and Welsh [1]:

Lemma 9 (Stochastic dominance). Let F1 and F2 be two distribution functions
satisfying F1(x) ≤ F2(x) for all x ≥ 0. Then the associated time constant functions
satisfy Λ2(v) ≤ Λ1(v) for all v.

Proof. For every horizontal edge, we can create a coupling such that the edge weight
τ1 has F1, the edge weight τ2 has distribution F2 and τ2 ≤ τ1. Hence, the passage
times are ordered as well. □

The following lemmas deal with the continuity of the time constant under weak
convergence but we only need it for some special cases. The results are known in
classical FPP.

Lemma 10 (Continuity for Bernoulli distributions). Let Λp be the time constant
function with {0, 1}-Bernoulli distribution (i.e. G(0) = p). Then for every v point-
wise limp→0 Λ

p(v) = Λ0(v) = v + 1. The same holds for Λdir.
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Proof. Note that we have

ΛpFPP (v) ≤ Λp(v) ≤ v + 1.

By Theorem 1.14 in [3], we know that ΛpFPP (v) converges to Λ0
FPP (v) = v + 1, so

the same must hold for our model and the SJ-model. □

Showing this for arbitrary distributions is a bit harder, we will move its prove
to Section 4.3.

Lemma 11 (Continuity for truncations). For a distribution function G(x) and
B > 0, let GB be the distribution obtained by truncating above at B, i.e.

GB(x) =

{
G(x) if x < B,

1 if x ≥ B
.

And let Λ and ΛB be the associated time constant functions. Then ΛB converges
to Λ pointwise as B → ∞.

We will also need some knowledge of large deviations of the passage time. Again,
similar results are known for FPP and the proofs are found in Sections 4.4 to 4.6.
Contrary to the original model however, no moment assumptions are required,
which in parts is explained in Lemma 7.

Theorem 4 (Large deviations, right tail). For each ε > 0 and v0 ≥ 0, there exist
constants A,B such that for all n ≥ 1 and v ∈ [0, v0]:

P (T ((0, 0), (n, ⌈vn⌉)) ≥ n(Λ(v) + ε)) ≤ A exp(−Bn).

This estimate also gives us a tail bound on the number of edges in a geodesic:

Corollary 12 (Length of geodesics). For each ε > 0, there exists constants A,B
depending on ε such that for all n ≥ 1 and v:

P (|γn(v)| ≥ n(Λ(v) + 1 + ε)) ≤ A exp(−Bn).

Proof. Simply note that |γn(v)| − n equals the number of vertical edges of γn(v),
which have weight 1. Hence, the event |γn(v)| ≥ n(Λ(v) + 1 + ε) implies the event
of Theorem 4. □

Theorem 5 (Large deviations, left tail). For each ε > 0 and v0 ≥ 0, there exist
constants A,B such that for all n ≥ 1 and v ∈ [0, v0]:

P (T ((0, 0), (n, ⌈vn⌉)) ≤ n(Λ(v)− ε)) ≤ A exp(−Bn).

The same holds for the SJ model when G corresponds to a Bernoulli distribution.

For the site percolation model, we will need a combination of continuity and
large deviation results, to be proven in Section 4.7.

Lemma 13 (Site percolation). For every ε > 0 and v ∈ R, there exists constants
A,B > 0 and pε > 0 such that for all p < pε we have

P (T psite((0, 0), (n, ⌈vn⌉)) ≤ n(v + 1− ε)) ≤ A exp(−Bn).
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3.2. Bounds on the limit shape. Seppäläinen’s main result can be reformulated
as the following:

Theorem 6. Let p ∈ [0, 1] and κ > λ ≥ 0. Let each edge e be independently
distributed according to

P (e = λ) = p, P (e = κ) = q := 1− p.

Then

Λdir(v) =

{
λ+ v if v > q/p

λ+ v + (κ− λ)(
√
q −√

pv)2 if v ≤ q/p

We can derive from this the limiting behavior of the time constant in our model.

Proposition 14. The line v + t0 is an asymptote of the time constant function,
i.e. limv→∞ Λ(v) − v − t0 = 0. If G have an atom at t0(G), then we even have
Λ(v) = v + t0 for all v ≥ (1−G(t0))/G(t0).

Proof. Let B > t0 + 1. We first prove the proposition for the truncated passage
time ΛB(v). For ε ∈ (0, 1), set p = G(t0 + ε). Let Gp be the Bernoulli distribution

P (e = t0 + ε) = p, P (e = B) = 1− p

Then for v > (1− p)/p we have by Theorem 6,

ΛB(v) ≤ ΛGp(v) ≤ Λ
Gp

dir(v) ≤ t0 + ε+ v.

Since we also have the trivial lower bound Λ(v) ≥ t0+v, we conclude that Λ
B(v)−

v − t0 converges to zero uniformly in B as v → ∞. By Lemma 11 and the Moore-
Osgood theorem, the same holds for Λ(v). Also if G(t0) > 0, we may choose ε = 0
in the estimate above and must reach equality at finite v. □

Note that the same clearly holds for Λdir(v) if the distribution is bounded. The
major work left is to derive a lower bound on Λ(v) to show that the function stays
strictly above the asymptote if G has no atoms at the infimum of its support. We
will prove it in Section 3.4.

Proposition 15. Let G have no atom at t0. For all v ≥ 0, we have Λ(v) > t0 + v.

Proof of Main Theorem using Proposition 15: We need to show the equivalence
of the following

(1) The limit shape has a flat edge at (0, 1).
(2) There exists v0 such that Λ(v) = v + t0 for all v ≥ v0.

Set x = cos(θ)B(θ), y = sin(θ)B(θ), then we rewrite B(θ)eiθ = (x, y). Assumption
(1) means that there exists (x0, y0) ∈ ∂B such that the straight line from (0, 1) to
(x0, y0) forms the boundary of the limit shape. Thus for all x ∈ (0, x0) we have

y(x) = 1− 1− y0
x0

x

Using the identities v = y/x and Λ(v) = 1/x coming from Definition 1, this becomes

Λ(v) = v +
1− y0
x0

∀v ≥ v0 := y0/x0.

Finally by Proposition 14, we must have t0 = (1−y0)/x0. Conversely, (2) translates
into y(x) = 1− t0x for all x < x0 := 1/Λ(v0).
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3.3. The local behavior of semi-directed paths. There are two different ways
we can ensure that the time constant is strictly above v+ t0. Firstly, if the geodesic
to (n, ⌈vn⌉) moves downwards along εn vertical edges, then the passage is at least
(v + ε+ t0)n. Secondly, if the geodesic is directed in a large box, we can compare
its passage time to the directed model where we know by Theorem 6 that the time
constant is above the theoretical minimum if the slope in the box is not too large.
Thus, before proving Proposition 15, we will derive some deterministic results that
a semi-directed path has to move downwards a significant amount of times or has
some local regions where the slope of the path is bounded.

Lemma 16. Let f(x) be a Riemann-integrable function on [0, 1] and set L =∫ 1

0
f(x) dx. For ε > 0, define the sets

D = {x ∈ [0, 1] : f(x) < 0}, Lε = {x ∈ [0, 1] : f(x) ∈ [0, L+ ε]}.

Then one of the following holds:

(12)

∣∣∣∣∫
D

f(x) dx

∣∣∣∣ ≥ ε

2
.

or

(13) µ(Lε ∪D) ≥ ε

2(L+ ε)
.

where µ(·) denotes the Lebesgue measure.

Proof. If (12) does not hold, then we have

L =

∫
D

f(x) dx+

∫
Lε

f(x) dx+

∫
(Lε∪D)c

f(x) dx ≥ −ε
2
+ µ((Lε ∪D)c)(L+ ε)

and hence

µ(Lε ∪D) ≥ 1− L+ ε/2

L+ ε
=

ε

2(L+ ε)
.

□

Corollary 17. Let p be a semi-directed path from the origin to (n, ⌈vn⌉) and let
ε > 0. For each proper divisor K of n, divide the cylinder [0, n]×Z into n/K strips
and count the ratio η of strips in which the slope of p is bounded from above:

η :=
K

n

∣∣{i ∈ {0, ..., n/K − 1} : f∗p (K(i+ 1))− f∗p (Ki) ≤ K(vn + ε)
}∣∣

where vn = ⌈vn⌉/n and f∗p (x) = fp(x) as defined in Section 2.3 with the exception
of f∗p (n) = (n, ⌈vn⌉). Then p moves downwards along at least εn/(2K) vertical
edges or η > ε/(2(vn + ε)).

Proof. Let F (x) be the piecewise linear function connecting the points f∗p (Ki) for
i = 0, ..., n/K in that order and let f(x) be the derivative of F (x) wherever it is
differentiable. Now apply Lemma 16 with L = vn and rescaled by n, we have one
of the following: If (12) occurs, then there are at least ε/2 out of the n/K strips
of width K where the slope of p is negative. Hence, the path p contains moves
downwards along at least one vertical edge in the strip and the total amount of
such edges for p is at least εn/(2K). On the other hand, if (13) occurs, then at
least ε/(2(vn + ε)) of the n/K strips have slope at most K(vn + ε). □
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3.4. Staying above the asymptote. We will now prove Proposition 15. Con-
struct a set of Bernoulli distributions Ber(G, v) as follows:

For v ≥ 0, choose t(v) > t0 such that for p(v) := G(t(v)) we have v ≤ (1 −
p(v))/p(v). Then let Ber(G, v) be a probability distribution for the edges e defined
by:

P (e = t0) = p(v), P (e = t(v)) = 1− p(v).

A Ber(G, v)-distributed weight τ ′ can be coupled with a G-distributed weights by
setting

(14) τ ′ = t0 if τ ∈ [t0, t(v)], τ ′ = t(v) otherwise.

Let ΛS(v,G) be the time constant function in the directed model with distribution
Ber(G, v). We note the following from Theorem 6:

Proposition 18. Let G have no atom at t0. Then ΛS(v,G)(v) > v+t0 for all v ≥ 0.

So set ε := ΛS(v) − (t0 + v) > 0 where we abbreviate ΛS = ΛS(G,v). We claim
that for all 0 ≤ w < v we have

(15) ΛS(w)− (t0 + w) ≥ ε.

Suppose not, then the distance of ΛS from the straight line is smaller at w than
at v, so the slope between v and w is greater than 1. But by convexity of ΛS this
contradicts the fact that ΛS eventually coincides with a linear function of slope 1.

This motivates the definition of the following subset of [0, v]:

J := {w ∈ [0, v] : ΛS(w)− Λ(w) ≥ ε/2}.
For w ∈ Jc, inequality (15) implies Λ(w) ≥ t0 + w + ε/2. In particular, if v ∈ Jc,
then we are done, so let us assume v ∈ J .

Proposition 19. There exist constants A1, b1 > 0 such that for all w ∈ J and
n ≥ 1

P (γn(w) is directed ) ≤ A1 exp(−b1n).

Proof. Let Mn,w be the event T ((0, 0), (n, ⌈wn⌉)) ≤ (Λ(w) + ε/4)n, then by The-
orem 4, there exists A2, B2 > 0 uniform for w ∈ [0, v] such that P(Mc

n,w) ≤
A2 exp(−B2n). So under the event Mn,w, assume γn(w) is directed. Then we
have T ((0, 0), (n, ⌈wn⌉)) = Tdir((0, 0), (n, ⌈wn⌉)) ≥ TS((0, 0), (n, ⌈wn⌉)), where we
use the coupling (14). Since w ∈ J , this means the event {TS((0, 0), (n, ⌈wn⌉)) ≤
(ΛS(w)− ε/4)n} occurs, which is also exponentially small by Theorem 5. □

Since Λ is Lipschitz and ΛS has an explicit formula, we can compute δ > 0 such
that ΛS(v

′) − Λ(v′) ≥ ε/4 for all v′ ∈ [v, v + δ]. Clearly, Proposition 19 holds for
such v′ as well with modified constants.

We now construct a map from our edge-model with distribution G to a macro-
scopic, standard FPP Bernoulli-distributed site model.

Given K to be determined later, let BK ⊂ Z2 be the collection of vertices
and edges contained in the half-open rectangle [0,K)× [0, 2⌈K(v + δ)⌉), where we
naturally embed the lattice in R2. By applying translations of the rectangle of
the form θij = (iK, 2j⌈K(v + δ)⌉) with i, j ∈ Z, we form a set of rectangles AK

partitioning the lattice such that each edge and vertex lies in a unique rectangle.
Translating each rectangle by θ′ = (0, ⌈K(v + δ)⌉) yields another partition A′

K

with the same property. We say a semi-directed path p trapezoidally crosses BK
if it contains a vertex in {0} × [0, ⌈K(v + δ)⌉) and {K} × [0, 2⌈K(v + δ)⌉) and the
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subpath of p between these vertices is completely contained in BK . We adopt the
terminology for translations of BK .

Let T (BK ;h1, h2) be the passage time from (0, h1) to (K,h2) over all paths
completely contained in BK . Define the event QK that the trapezoidal crossing
time is close to its infimum:

QK :=

{
∃h1, h2 : 0 ≤ h1 < ⌈K(v + δ)⌉, 0 ≤ h2 ≤ h1 + ⌈K(v + δ)⌉ :
T (BK ;h1, h2) < h2 − h1 +Kt0 +min(2,Kε/4)

}
.

We generalize this to arbitrary x ∈ AK ∪ A′
K . Choose i, j ∈ Z, b ∈ {0, 1} such

that x = BK + θi,j + bθ′. And let T (x;h1, h2) be the passage time from (iK, h1) to
((i + 1)K,h2) over all paths completely contained in x. We define the translated
event

Qx
k :=

 ∃h1 ∈ [(2j + b)⌈K(v + δ)⌉, (2j + b+ 1)⌈K(v + δ)⌉),
h2 ∈ [(2j + b)⌈K(v + δ)⌉, h1 + ⌈K(v + δ)⌉] :
T (x;h1, h2) < h2 − h1 +Kt0 +min(2,Kε/4)

 .

By disjointness of the rectangles, each collection of Bernoulli random variables
{1(Qx

k), x ∈ Ak} and {1(Qx
k), x ∈ A′

k} is i.i.d.

Proposition 20. lim supK→∞ P(QK) = 0.

Proof. For each value of ∆h := h2 − h1, choose w(∆h) ∈ [0, v + δ] such that
∆h = ⌈Kw⌉. If w ∈ J , then the geodesic γ from (0, h1) to (K,h2) is directed with
probability at most A1 exp(−b1K) by Proposition 19. And if γ is not directed, it
contains at least ∆h + 2 vertical edges. Hence with exponentially large proability
and fixed h1, h2

T (BK ;h1, h2) ≥ T (γ) ≥ h2 − h1 +Kt0 + 2.

If w ∈ Jc, then Λ(w) ≥ t0+w+ε/2. ChooseK > 8/ε, then the event T (BK ;h1, h2) <
h2−h1+Kt0+Kε/4 implies T (γ) ≤ K(t0+w+3ε/8), which is small by Theorem 5.
After taking a union bound over the order K2 values for h1 and h2, the probability
of the event QK is still decreasing in K. □

Consider a semi-directed path γ from (0, 0) to (n, ⌈vn⌉), which traverses the
adjacent vertices x0 = (0, 0), x1, x2, ..., xN = (n, ⌈vn⌉) in this order. Let xi and
x′
i be the elements of AK and A′

K , respectively, such that xi ∈ xi ∩ x′
i. After

erasing loops (i.e. removing all xk with i < k ≤ j and xi = xj), we then obtain the
semi-directed macroscopic image paths ϕ(γ) from 0 := BK to xN as well as the
path ϕ′(γ) ⊂ A′

K from 0′ := BK − θ to x′
N .

Let p = P(QK) and we give each macroscopic vertex weight 0 with probability
p and weight 1 with probability 1− p. We thus couple the microscopic model with
a site percolation model on the macroscopic vertices AK (see Figure 2).

We will now make a case distinction on γ when γ is the geodesic and show that
in each case

T (γ) = T ((0, 0), (n, ⌈vn⌉)) ≥ (t0 + v + ε0)n

for some ε0 > 0 surely or with exponentially high probability in n. By Theorem 4,
this yields Proposition 15.

By Corollary 17 with ε = δ/2, one of two things hold. Either

(S1a) The path γ moves downward along at least δn/(4K)vertical edges.
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Figure 2. A semi-directed path starting from the origin together
with the associated macroscopic vertices from AK (blue) and A′

K

(red). Shaded regions indicate a trapezoidal crossing.

Then T (γ) ≥ (t0 + v + δ/(2K))n as desired. Or

There exists at least δn/(4K(v + δ/2)) horizontal strips of width K

in which the slope is at most v + δ/2.
(S1b)

We can split the statement (S1b) further into the two cases

The subpath of γ in half of the δn/(4K(v + δ/2)) horizontal strips(S2a)

is not directed.

The subpath of γ in at least δn/(8K(v + δ/2)) of the horizontal strips(S2b)

is directed and of bounded slope.

If (S2a) holds, we obtain the bound T (γ) ≥ (t0+v+1/(4K(v+δ/2)))n, because
each subpath must have at least two additional vertical edges. Thus we are left
with (S2b), which we further divide into two cases according to the heights at which
the path γ enters a strip more frequently
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There exist at least δn/(16K(v + δ/2)) elements of A′
K

that are trapezoidally crossed by γ.
(S3a)

There exist at least δn/(16K(v + δ/2)) elements of AK

that are trapezoidally crossed by γ.
(S3b)

We continue with (S3b), the argument for (S3a) will be analogous. Let TK ⊂ Ak

denote the subset of rectangles trapezoidally crossed by γ and we distinguish:

For half of the elements x ∈ TK the event Qx
K does not occur.(S4a)

For half of the elements x ∈ TK the event Qx
K occurs.(S4b)

By definition ofQK , the event (S4a) yields T (γ) ≥ (t0+v+min(2,Kε/4)/(32K(v+
δ/2))n. To understand (S4b), we look at the macroscopic model and distinguish

The path ϕ(γ) moves downwards along at least δn/(64K(v + δ/2))

macroscopic edges.
(S5a)

The path ϕ(γ) moves downwards along at most δn/(64K(v + δ/2))

macroscopic edges.
(S5b)

For each downward move of ϕ(γ) , the microscopic path p must move downwards
along one edge. So if (S5a) holds, then T (γ) ≥ (t0 + v + δ/(64K(v + δ/2))n.
We conclude by showing that (S5b) is unlikely. Recall xn = (n, ⌈vn⌉), so the
macroscopic coordinates of xN are approximately (n/K, vn/(2K(v + δ)) with a
negligible rounding error in each coordinate. For the macroscopic passage time
T(ϕ(γ)) we then get the upper bound by counting the number of sites of ϕ(γ) and
subtracting all sites with weight 0 where Qx

K occurs:

(16) T(ϕ(γ)) ≤ [v/(2(v + δ)) + δ/(64(v + δ/2)) + (1− δ/(32(v + δ/2)))] (n/K)

Finally, we apply Lemma 13 with ε = δ/(27(v + δ/2)). Choosing p < pε (and
thus K large), we see that the event that such a path ϕ(γ) with very low passage
time (16) exists is exponentially small. This finishes the proof of Proposition 15.

4. Proofs of auxiliary results

Most of the results covered in this section are known for the standard FPP model.
The proofs thus follow existing literature, though some arguments are made easier
by the simplification of our model.

4.1. The time constant, proof of Theorem 1. The heart of the proof is the
subadditive ergodic theorem, originally developed by Kingman. The version below
is due to Liggett.

Theorem 7 (The subadditive ergodic theorem (as stated in [18])). Let (Xm,n)0≤m<n
be a family of random variables that satisfies:

(a) X0,n ≤ X0,m +Xm,n, for all 0 < m < n.
(b) The distribution of the sequences (Xm,m+k)k≥1 and (Xm+1,m+k+1)k≥1 is

the same for all m ≥ 0.
(c) For each k ≥ 1, the sequence (Xnk,(n+1)k)n≥0 is stationary.
(d) E [X0,1] <∞ and E [X0,n] > −cn for some finite constant c.
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Then

(17) lim
n→∞

X0,n

n
exists a.s. and in L1.

Furthermore, if the stationary sequence in (c) is also ergodic, then the limit in (17)
is constant almost surely and equal to

(18) lim
n→∞

E [X0,n]

n
= inf

n

1

n
E [X0,n] .

Lemma 21 (Exponential decay of passage times). For any distribution G and
non-negative integers u, v there exists a constant C > 0 such that for all k

P (T ((0, 0), (u, v)) > k) ≤ C 2−k.

Consequently, passage times have finite expectation.

Proof. Let Y1, ..., Yq be i.i.d. random variables with distribution G and set Y =
Y1 + ...+ Yu. Then there exists t ≥ 0 such that

P (Y > t) ≤ 1

2
.

For h ∈ Z, let Σh denote the sum of the edge weights of the u edges along the
horizontal path from (0, h) to (u, h). Then almost surely there exists a stopping
time T ≥ 0 such that min(ΣT ,Σ−T ) ≤ t and T is minimal with that property. Note
that

T ((0, 0), (u, v)) ≤ t+ 2T + v.

Since edge weights are independent, we obtain:

P (T ((0, 0), (u, v)) > k) ≤ P
(
T >

k − t− v

2

)
= P

(
Xi > t, ∀ |i| ≤ k − t− v

2

)
≤ 1

2k−(t+v+1)
.

□

We first show the existence of a time constant for rational v.

Lemma 22. Consider rational v = p/q with p ∈ Z≥ 0, q ∈ Z+ and for 0 ≤ m < n
we define:

Xm,n := T ((qm, pm), (qn, pn)) = T ((qm, ⌈vqm⌉), (qn, ⌈vqn⌉)).

Then (17) and (18) hold.

Proof. We apply the subadditive ergodic theorem. We established that the passage
times are achieved by geodesics and the composed path of the geodesic from (0, 0) to
(qm, pm) and of the geodesic from (qm, pm) to (qn, pn) cannot have a passage time
less than the passage time of the geodesic from the origin to (qn, pn). This shows
(a). Since the horizontal passage times are i.i.d. the sequence (Xnk,(n+1)k)n≥0 is
stationary ergodic and (b) holds as well. We clearly haveX0,n ≥ 0 and E [X0,1] <∞
follows from Lemma 21. □

Next, we show that the limit

(19) lim
n→∞

1

n
T ((0, 0), (n, ⌈vn⌉))
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exists almost surely. For each n, define u(n) as the smallest integer larger or equal
to n which is a multiple of q. By subadditivity:

|T ((0, 0), (n, ⌈vn⌉))− T ((0, 0), (u(n), vu(n)))| ≤ T ((n, ⌈vn⌉), (u(n), vu(n))) =: Zn.

Note that Zn equals in distribution the passage time from the origin to a point
inside the rectangle [0, ..., q− 1]× [0, ..., vq]. Hence, by applying Lemma 21, we find
a constant C > 0 uniform in n such that for all k

P (Zn > k) ≤ C2−k.

By Borel-Cantelli, we thus have that almost surely

lim
n→∞

Zn
n

= 0.

Together with Lemma 22 this shows (19). The estimate also implies convergence
in expectation.

Moreover, since

|T ((0, 0), (n, ⌈vn⌉))− T ((0, 0), (n, ⌈wn⌉))| ≤ |⌈vn⌉ − ⌈wn⌉|

we have that the time constant is uniformly Lipschitz and thus continuously extends
to the reals

|Λ(v)− Λ(w)| ≤ |v − w|.
Hence, Theorem 1 holds for all v ∈ [0,∞).

4.2. Proof of Lemma 1.

Lemma 23. Given integers M ≥ k ≥ 1, let S(M,k) be the number of distinct
k-tuples (a1, ..., ak) of integers whose absolute values sum up to M . We then have
that

S(M,k) =

M−1∑
ρ=0

(
k

ρ

)(
M − 1

ρ

)
2ρ +

(
k

M

)
2M

Proof. Let ρ ∈ {0, ...,M} be the number of ai that are non-zero. The problem
reduces to count the number of distinct tuples (b1, ..., bρ) of positive integers that
sum up to at most M . We multiply this number with the number of choices to
select ρ indices from {1, ..., k} and the signs of the ai.

We use a stars and bars argument to show that the number of values for the
bi is indeed

(
M−1
ρ

)
for ρ < M . So given M stars, select ρ bars out of the M − 1

possible positions between the stars. The number of stars between two consecutive
bars then corresponds to b1, ..., bρ,M −

∑
i bi, respectively. □

An application of this lemma is a bound on the number of semi-directed paths
with plausible passage time.

Corollary 24. Let G be arbitrary and C ≥ 1. There are at most (2Ce)n+1 semi-
directed paths from the origin to a point (n,m) with passage time at most Cn.

Proof. A semi-directed path is defined by its vertical jumps and the number of
vertical edges is a lower bound for the passage time. We then apply the lemma and
a standard inequality for the binomial coefficient. □
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Since Λ(v) ≥ v + t0(G), we are left with the case v = 0 and t0 = 0. Clearly, if
G = δx, then Λ(0) = x. So assume by contradiction that G is not deterministic
and Λ(0) = 0. Then there exists τ1 > τ0(G) such that p := G([τ0, τ1)) ∈ (0, 1). Let
us now look at all possible geodesics γ(0, (n, 0)) and show that it is very unlikely
for them to have a low passage time.

Let Lε be the event that the geodesic from (0, 0) to (n, 0) contains at most 2εn
vertical edges and at most εn horizontal edges with passage time τ1 or higher. By
Theorem 1, it suffices to take a union bound over all semi-directed paths p that
satisfy these properties.

Since p is defined by its vertical jumps, we apply Lemma 23 to count all semi-
directed paths with at most 2εn vertical edges. We then multiply this with the
number of ways to choose (1− ε)n edges with weights less than τ1. Each instance
of a path and edge weight configuration then has probability at most p(1−ε)n. Thus,
we get (dropping rounding to integers for the sake of readability)

P (Eε) ≤ S(n, 2εn)

(
n

εn

)
p(1−ε)n ≤

2εn∑
ρ=0

(
n

ρ

)(
2εn

ρ

)
2ρ ·

(
n

εn

)
pn/2

≤ (2εn+ 1)

(
n

2εn

)(
2εn

εn

)
2εn
(
n

εn

)
pn/2 ≤ n(2e3ε−3)εnpn/2.

As ε → 0, we have (2e3ε−3)ε → 1 < p−1/2. So for small enough ε, the expression
above goes to zero as n→ ∞ and hence we must have had Λ(0) > 0.

4.3. Continuity, proof of Lemma 11.

Lemma 25. Let G have unbounded support and let ρ(γn, B) be the number of
horizontal edges with weight greater than B in the geodesic γn from the origin to
(n, ⌈vn⌉). For all β > 0, there exists B > 0 such that limn→∞ P(ρ(γn, B) > βn) =
0.

Proof. Define new edge weights e′i for the lattice where e′i = 1 if the original edge
weight ei is at most B and set e′i = 0 otherwise. So if the event ρ(γn, B) > βn
occurs, then the passage time in the modified model is at most (v+1−β)n. However
by Lemma 10, there exists B such that the time constant in this Bernoulli model
is at least v + 1− β/2. The lemma then follows from Theorem 1. □

Now let us turn to the proof of Lemma 11. In FPP the proof of continuity goes
back to Cox and Kesten [5, Lemma 2]. Let ε > 0. Our goal is to show that for some
B > 0 the passage times of GB and G to (n, ⌈vn⌉) differ by at most εn for large
n and with a probability uniformly bounded away from zero. Then convergence of
the time constant follows from Theorem 1. We do a coupling of an edge weight
environment {τi} with distribution G with one with distribution GB by defining
τ ′i := min(τi, B). Let T (p) denote the passage time in the original environment
and TB(p) the passage time with the τ ′i weights instead. Let γ and γB be the
geodesic from the origin to (n, ⌈vn⌉), respectively in the original and the truncated
environment.

For any semi-directed path p with horizontal edges e1, .., en we construct a mod-
ified path d(p) as follows: For any edge ei with τ(ei) ≥ B, replace this edge by the
detour of ei until we find an edge with weight strictly less than B. The passage
time then increases by at most 2kB(ei).
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Note that

TB(γB) ≤ TB(d(γB)) = T (d(γB)), and TB(γB) ≤ T (γ) ≤ T (d(γB)).

So it suffices to show that the probability of the event TB(d(γB))− TB(γB) > εn
goes to zero as n→ ∞. Let C be the set of all semi-directed paths to (n, ⌈vn⌉) that
have at most 2Λ(v)n vertical edges. By Theorem 1, the event γB ̸∈ C goes to zero
for large n. So it suffices to take a union bound over all paths p ∈ C. For any such
path p and i ∈ {1, ..., n}, set ai = 0 if τB(ei) < B and ai = 2|kB(ei)| otherwise.
Define A as the set of tuples (a1, ..., an) of non-negative numbers satisfying the
following conditions:

• S :=
∑
ai ≥ εn

• ρ := |i : ai ≥ 1| ≤ βn := εn/2.

We may assume the second condition because of Lemma 25. Define q = G([B,∞)).
To count the set, we use the same combinatorial argument as in Lemma 23 to count
all ways to sum ρ positive integers to (at most) S and multiply them by the number
of ways to choose ρ of n indices with ai ≥ 1. A union bound then yields:

P
(
TB(d(γB))− TB(γB) > εn, γB ∈ C, ρ(γB , B) ≤ βn

)
≤
∑
p∈C

∑
A

n∏
i=1

qai

≤
∑
p∈C

∞∑
S=εn

βn∑
ρ=1

(
n

ρ

)(
S − 1

ρ

)
qS ≤

∑
p ∈C

∞∑
S=εn

(βn)

(
n

βn

)(
S

βn

)
qS

≤
∑
p ∈C

βn

(
e

βn

)βn ∞∑
S=εn

SβnqS ≤
∑
p ∈C

βn

(
e

βn

)βn
(βn)!

∞∑
S=εn

(qe)S

≤
∑
p ∈C

6βn2
∞∑

S=εn

(qe)S ≤ (4Λ(v)e)n+1 6βn2

qe(1− qe)
(qe)εn

We applied Corollary 24 in the last step. We conclude that the probability goes to
zero if q < (4Λ(v)e2)−1/ε which is guaranteed for B large enough.

4.4. Right-tail large deviations, proof of Theorem 4. This theorem and its
rather simple proof originate from Grimmett and Kesten [7, Theorem 3.2]. To
simplify the notation, define tn(v) = T ((0, 0), (n, ⌈vn⌉)). Given ε > 0 and k ∈
{0, ..., ⌈3v0/ε⌉}, by Theorem 1 there exists N(k) such that

1

m
E [tm(kε/2)] ≤ Λ(kε/3) + ε/3 ∀m ≥ N(k).

Set N := maxkN(k). Since |tn(v)− tn(w)| ≤ |v − w|n+ 1, we can conclude

(20)
1

N
E [tN (v)] ≤ Λ(v) + ε ∀ v ∈ [0, v0].

Let us assume n = rN for some integer r. Define Yi = T ((N(i − 1), ⌈vN⌉(i −
1)), (Ni, ⌈vN⌉i)) for i = 1, ..., r. These variables are independent and distributed
like Y1 = tN (v). Also let Zi = Yi−E [Yi]. Using subadditivity and (20) we conclude

P (T ((0, 0), (n, ⌈vN⌉r)) > n(Λ(v) + 2ε)) ≤ P (Y1 + ...Yr > n(Λ(v) + 2ε))

≤ P (Z1 + ...+ Zr > rNε) ≤

(
E
[
eξZ1

]
eNεξ

)r
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where ξ > 0. By Lemma 7, E
[
eξt1(0)

]
< ∞ for sufficiently small ξ. Since tN (v)

is stochastically dominated by (v0 + t1(0))N , we have that E
[
eξY1

]
is uniformly

bounded in v. Since also E [Z1] = 0 we have E
[
eξZ1

]
= 1 + o(ξ). Hence, choos-

ing ξ small enough yields E
[
eξZ1

]
< eNεξ and the probability above decreases

exponentially in n.
Finally, for general n′ ∈ N, there exists n ≤ n′ such that n′ − n < N . By

subadditivity,

P (tn(v) > n(Λ(v) + 3ε))

≤P (T ((0, 0), (n, ⌈vN⌉r)) > n(Λ(v) + 2ε)) + P (T ((n, ⌈vN⌉r), (n′, ⌈v′n⌉)) > εn)

The two points of the summand on the right lies in a box of constant size N × (N +
2)v0. By Lemma 7 and a Chernoff bound, the probability of their passage time
being large also decreases exponentially in n.

4.5. Concentration inequalities. While Theorem 5 can be shown with a stan-
dard but somewhat tedious block argument going back to Kesten, we use a shorter
and more modern entropy argument to show a concentration bound first from which
the theorem will easily follow.

Theorem 8 (Concentration bound). Let G have finite variance. Then there exist
a constant C > 0 such that for all x = (x1, x2) ∈ Zd and t ≥ 0:

P (|T (0, x)− E [T (0, x)] | ≥ t
√
x1) ≤ e−Ct

2

.

A central object is entropy. For a non-negative random variable X we define

EntX = E [X logX]− E [X] logE [X] .

Our goal is to show the following claim:
Claim 2: Write T = T (0, x). There exists some constant C > 0 such that for

all λ ∈ R

(21) Ent eλT ≤ C∥x∥1λ2E
[
eλT
]
.

The following arguments can be found in [18]. We will treat the λ < 0 case,
the argument for λ > 0 is nearly identical and can be found in [18, Section 3.4.2].
First, we prove Theorem 8 using this claim. We use the Herbst argument. Set
ψ(λ) = logE

[
eλ(T−E[T ]

]
. One can check that

Ent eλT

λ2E [eλT ]
=

d

dy

(
ψ(λ)

λ

)
.

Integrating (21) then yields

ψ(λ) ≤ C∥x∥1λ2.
So for λ < 0 one has using Markov’s inequality

P
(
T − E [T ] ≤ −t

√
∥x∥
)
= P

(
eλ(T−E[T ]) ≥ e−tλ

√
∥x∥
)

≤ eψ(λ)+tλ
√

∥x∥ ≤ eC∥x∥λ2+tλ
√

∥x∥.

Choosing λ = −t/(2C
√
∥x∥) then completes the proof.

Now let us prove the claim. Enumerate the horizontal edge weights of Z2 by
τe1 , τe2 , .... Let Ei be the expectation operator conditioned on {τej}j ̸=i. For any
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measurable, non-negative function X of the edge weights we define the conditional
entropy

EntiX = Ei [X logX]− Ei [X] logEi [X] .

By tensorization of entropy (see [16, Theorem 4.22]), we have

(22) Ent eλT ≤
∞∑
i=1

E
[
Enti e

λT
]
.

Lemma 26 (Symmetrized LSI, [16]). Let q(x) = x(ex − 1). Let Z and Z ′ be two
i.i.d. random variables. Then for all λ ∈ R,

Ent eλZ ≤ E
[
eλZq(λ(Z ′ − Z)+)

]
.

Together with (22) this lemma yields:

(23) Ent eλT ≤
∞∑
i=1

E
[
eλT q(λ(T ′

i − T )+)
]

where T ′
i is the passage time at ei is replaced with an independent copy τ ′ei . Note

that if γ is a semi-directed geodesic from 0 to x for the original weights, then
T ′
i − T > 0 only if ei ∈ γ. Since q(x) is increasing in |x|, we may apply the bound
q(λ(T ′

i − T )+) ≤ q(τ ′ei)1(ei ∈ γ). In any of the directed models, the geodesic
contains exactly x1 horizontal edges. And by independence,

(24) Ent eλT ≤ E [q(λτei)]E
[
eλT
]
x1 ≤ E

[
τ2e
]
λ2E [λT ]

.

4.6. Left-tail large deviations, proof of Theorem 5. Since the expected pas-
sage time En(v) := E [T (0, (n, ⌈vn⌉))] is Lipschitz as a function of v, we have that
En(v)/n converges uniformly to Λ(v) for v ∈ [0, v0]. So given ε > 0 and sufficiently
large n, we have

|En(v)− Λ(v)n| ≤ ε

2
n ∀v ∈ [0, v0].

Setting t = ε
√
n/2 in Theorem 8 then yields the estimate, given that G has finite

variance. For arbitrary distributions, let TB be the passage time where the G-
distributed weights are truncated at B. Under the usual coupling, we have that

TB(0, x) ≤ TB(γ(0, x)) ≤ T (γ(0, x)) = T (0, x).

Given ε > 0, choose B large enough such that Λ(v) ≤ ΛB(v)+ε/2 for all v ∈ [0, v0].
Then the event T (0, (n, ⌈vn⌉)) ≤ (Λ(v) − ε)n implies TB(0, (n, ⌈vn⌉)) ≤ (Λ(v) −
ε/2)n, which has small probability.

4.7. The site percolation model, proof of Lemma 13. The idea is to couple
the site percolation model with the original FPP model with Bernoulli-distributed
edge weights. Let us consider a weight configuration of the site percolation model
with parameter p. We define a new percolation model on the edges of Z2 where
the weight of an edge is set as the minimum of the weights of the two adja-
cent sites. Denoting the passage time of this model by T p∗ (·, ·), we note that
T p∗ (0, x) ≤ T psite(0, x). The edges e in the new model are Bernoulli distributed
such that P(τ(e) = 1) = (1 − p)2. Two edge weights are dependent if and only if
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they neighbor the same site. We now apply a result by Liggett et. al. [9] to con-
clude that this dependent edge weight measure stochastically dominates a product
measure. In particular, [9] implies that

P (T psite(0, x) < N) ≤ P (T p∗ (0, x) < N) ≤ P
(
T
p∗(p)
FPP (0, x) < N

)
where p∗(p) → 0 as p→ 0. The lemma now follows from the continuity of the time
constant [3] and large derivation results [8] for standard FPP.

4.8. The limit shape, proof of Theorem 2. Usually we define the time constant
as µ(x) = limn→∞ T (0, nx)/n for x = (x1, x2) ∈ N2. Thus we have the relation
µ(x) = x1Λ(x2/x1). Let θ = arg x. If convergence of the sets Bt holds, then the
boundary of the limit shape is the set {x ∈ R : µ(x) = 1} which translates to
cos(θ)Λ(tan(θ)) = 1.

Suppose the Shape Theorem does not hold, then there exists δ > 0 such that we
can find infinity many x = (x1, x2) ∈ Z>0×Z≥0 such that with positive probability

|T (0, x)− Λ(x2/x1)x1| > δ∥x∥.

Choose v0 such that Λ(v0) ≤ v0 + t0 + δ/5 and v0 > 2((Λ(0) − t0)δ)
−1. Let v

be a limit point of x2/x1. If v ≤ v0, we get a contradiction by our large deviation
results. If v > v0, we must have Λ(x2/x1) ≤ x2/x1 + t0 + δ/4 for large x. Using
subadditivity and a large deviation estimate, we have almost surely x2 + t0x1 ≤
T (0, x) ≤ T (0, (x1, 0)+x2 ≤ (Λ(0)+δ/4)x1+x2. Bringing the two bounds together
yields a contradiction:

|T (0, x)− Λ(x2/x1)x1| ≤ |T (0, x)− x2 − t0x1|+ δ/4x1

≤ (Λ(0)− t0 + δ/4)x1 + δ/4x1 ≤ δ/2(x2 + x1) < δ∥x∥.
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