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generalized erlang distributed interarrival times ∗

Linlin Tiana† Bohan Lib‡ Guoqing Lia§

a. School of Mathematics and Statistics, Donghua University, Shanghai, P.R. China 201620

b. Center for Financial Engineering, Soochow University, Suzhou, Jiangsu, P.R. China 215006

Abstract This paper explores the optimal investment problem of a renewal risk

model with generalized Erlang distributed interarrival times. We assume that the

phases of the interarrival time can be observed. The price of the risky asset is driven

by the CEV model and the insurer aims to maximize the exponential utility of the

terminal wealth by asset allocation. By solving the corresponding Hamilton-Jacobi-

Bellman equation, when the interest rate is zero, the concavity of the solution as well

as the the explicit expression of the investment policy is shown. When the interest

rate is not zero, the explicit expression of the optimal investment strategy is shown,

the structure as well as the concavity of the value function is proved.

Keywords: Exponential utility; Renewal process; Stochastic optimal control;

Hamilton-Jacobi-Bellman equation

1 Introduction

The optimal investment problem of a general insurer has been studied under various settings since

the work of [11]. With the exponential utility, [16] consider the optimal investment strategy for

an insurer with jump-diffusion surplus process when the risky asset follow a Geometric Brownian

motion in which the closed form of the optimal investment strategy is shown. [14] extends the
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results of [16] to the case of multiple risky assets. The optimal investment for an insurer with

cointegrated assets with CRRA utility was studied in [6]. [8] studied the excess-of-loss reinsurance

and investment strategies under a constant elasticity of variance (CEV) model of the insurer. [15]

study the robust optimal portfolio and reinsurance problem under a CEV model.

All above mentioned optimization problems are investigated in the Markovian framework. In

the compound Poisson model, the interclaim times are exponential distributed. But exponential

distributed interclaim times have no memory about the time elapsed since the last claim. To

overcome such drawback, probabilist brought out the renewal process to characterize the surplus

of the insurance company. For example, for the Erlang(n) interclaim times, [1] and [2] calculate the

moment-generating function of the discounted dividends of horizontal barrier strategies and show

that in general horizontal barrier strategies is not the optimal dividend strategy. [10] show that

the optimal dividend strategy is of phase-wise barrier strategy for the Erlang(n) interclaim times.

Later, [3, 4] investigate the optimal investment and dividend problem of the Sparre Andersen model

in the framework of viscosity solution. One can refer [5, 13] for more control studies about renewal

surplus process. As far as we know, the explicit solution of optimal utility of renewal process is

not easy to find, thus, the paper explores the optimal investment problem of Erlang(n) distributed

interclaim renewal process.

Now we describe the renewal claim process formally. Let {Jt} be a homogenous Markov chain

on the state space {1, 2, · · · , n} with an intensity matrix of the form
−λ1 λ1 0 · · · 0

0 −λ2 λ2 · · · 0
...

...
...

. . .
...

λn 0 0 · · · −λn

 ,

i.e., the process moves through 1 → 2 → · · · → n→ 1 → · · · and stays in state i ∈ {1, 2, · · · , n} for

an exponential time with parameter λi — this is often referred to as an exponential clock. When

the exponential clock rings, Jt jumps to the next state. Specifically, when the current state is n,

after staying an exponential time with parameter λn, Jt will jump to state 1 and a claim occurs.

We also assume that the phases of Jt can be observed. It is obvious that if n = 1, then the surplus

process degenerates to the compound Poisson process.

As the Markov chain Jt has n states, the Hamilton-Jacobi-Bellman (HJB) equation forms a

system of n-dimensional coupled equation. We divide the optimization problem into two cases: the

first where the interest rate is zero, and the second where the interest rate is non-zero. The solutions

to the Hamilton-Jacobi-Bellman (HJB) equation in these two cases take different mathematical
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forms. The main challenge lies in demonstrating that the solution to each HJB equation is concave.

In the first case, when the interest rate is zero, we prove the concavity of the solution using the

Laplace transform of the Markov chain with killing. Additionally, we derive the explicit expressions

for both the value function and the optimal investment strategy. In the second case, where the

interest rate is non-zero, it is more difficult to express the solution to the HJB equation explicitly.

However, we establish the existence of a solution, and rigorously prove the explicit form and

concavity of the value function by decoupling the system of simultaneous equations and applying

the Banach fixed point theorem.

One might compare the Erlang(n) renewal model with the regime-switching model where various

optimization problems have been addressed within the regime-switching framework. For example,

[7] explores an optimal investment problem of an insurance company aiming to maximize the

minimal expected exponential utility with regime switching. Later, [9] investigates an optimal

investment problem of an insurer with risk constraint and regime-switching. Other optimization

problems in this area include [12], which explores the optimal dividend problem for an insurance

company in the presence of regime shifts, and [18], which studies optimal consumption, investment,

and insurance policies under regime switching.

A key distinction between our model and the regime-switching is: in the regime-switching

model, external regime influence variables such as the interest rate, claim intensity, return rate,

and volatility rate and so on. However, regime changes typically do not lead to a lump sum

reduction in wealth. In contrast, in our Erlang(n) model, at the end of phase n, not only the

Markov chain enters a new phase (phase 1), but also a claim occurs, resulting in a lump sum

decrease in wealth. Given these differences, we focus on the optimal investment problem in the

context of Erlang(n) interclaim times.

The main contributions of this work are twofold: 1. The optimal investment problems for the

classical compound Poisson claim process are well-established. The Erlang-distributed interclaim

model extends the classical compound Poisson model. The explicit solutions derived in our study

provide valuable insights for other optimization problems involving renewal processes. 2. To

demonstrate the concavity of the solution to the HJB equation, we employ the Laplace transform

of the Markov chain, decouple the system of simultaneous equations, and apply the Banach fixed

point theorem, showcasing the novelty of the mathematical methodology.

The structure of the paper is organized as follows. Section 2 introduces the surplus process

of the insurance company. The goal is to maximize the exponential utility of terminal wealth by

investment. The problem is then divided into two cases. Section 3 studies the case where the
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interest rate is zero, presenting the explicit solution for both the optimal value function and the

optimal strategy. In Section 4, we explore the case where the interest rate is non-zero. In this sec-

tion, we provide the explicit expression for the optimal investment policy and apply the decoupling

equation technique, along with the Banach fixed point theorem, to demonstrate the concavity of

the solution to the HJB equation. Section 5 analyzes the sensitivity of various parameters on the

optimal policy and value function. Finally, Section 6 concludes the paper, while some detailed

proofs are provided in the Appendix.

2 Modelling

We work on a complete probability space (Ω,F ,P) which satisfies the usual condition. Let T > 0

be a finite time horizon and Ft stands the information available before time t ∈ [0, T ]. The surplus

of the insurer follows

dCt = cdt− d

Nt∑
i=1

Yi (2.1)

where c > 0 is the premium rate, Nt is a renewal counting process representing the number of

claims before time t, {Yi}∞i=1 are independent and identically distributed positive random variables

and Yi represents the size of the i-th claim. The interclaim times are independent and follow a

generalized Erlang(n) distribution. As we introduced in the last section, the state of the Markov

chain can be observed. We also assume that the claim size {Yi}∞i=1 are i.i.d random variables which

are independent with the markov chain {Jt}.

The insurer is allowed to invest in a financial market consisting two assets, one risk-free asset

and one risky asset. The price process S0(t) of the risk-free asset follows

dS0(t) = rS0(t)dt,

where r > 0 is the risk-free interest rate. We assume that the price process of the risky asset is

driven by the CEV model

dS(t) = S(t)(µdt+ σS(t)βdW (t)),

where µ > r is the expected instantaneous return rate of the risky asset; k > 0 is a constant; β ≥ 0

represents the elasticity parameter; W (t) is a standard Brownian motion which is independent of

the compound renewal process. When β = 0, a CEV model degenerates to a geometric Brownian

motion.
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The investment strategy is denoted by {at}0≤t≤T , where at ∈ R denotes the total amount of

money invested in the risky asset. Under the strategy a, the surplus process of the insurance

company follows

dXa
t = (rXt + (µ− r)at + c)dt+ σSβ

t atdWt − d

Nt∑
i=1

Yi (2.2)

We call a strategy {at}0≤t≤T admissible if for any t ∈ [0, T ], at is Ft progressively measurable,

E[
∫ +∞
0

a2tS(t)
2βdt] < +∞ and the equation (2.2) admits a unique strong solution. Denote Uad the

set of all admissible strategies.

We consider the optimal investment problem which aims to maximize exponential utility of the

terminal wealth, mathematically speaking, the utility function of the insurer is defined as

U(x) = − 1

m
e−mx,

where m > 0 is a constant. Such an utility function plays an important role in mathematical

finance and actuarial science. The constant m is called the absolute risk aversion parameter. For

any investment strategy {at}0≤t≤T ∈ Uad and any initial state (s, x, i), define the utility of the

strategy a as

J(t, x, s, i; a) = E [U(Xa
T )|Xt = x, St = s, Jt = i] . (2.3)

The value function is defined as

V (t, x, s, i) = sup
{a}∈Uad

J(t, x, s, i; a), (2.4)

The aim of our paper is to find the optimal policy a∗ ∈ Uad so that J(t, x, s, i; a∗) = V (t, x, s, i).

By dynamic programming principle, we derive the HJB equation of the optimization problem (2.4)

which is an n-dimensional coupled equation:

vt(t, x, s, i) + supa∈R
{
vx(t, x, s, i)(c+ a(µ− r) + rx) + 1

2σ
2a2s2βvxx(t, x, s, i)

+σ2as2β+1vxs(t, x, s, i)
}
+ µsvs(t, x, s, i) +

1
2σ

2s2β+2vss(t, x, s, i)

+λi(v(t, x, s, i+ 1)− v(t, x, s, i)) = 0, i = 1, 2, · · · , n− 1;

vt(t, x, s, i) + supa∈R
{
vx(t, x, s, i)(c+ a(µ− r) + rx) + 1

2σ
2a2s2βvxx(t, x, s, i)

+σ2as2β+1vxs(t, x, s, i)
}
+ µsvs(t, x, s, n) +

1
2σ

2s2β+2vss(t, x, s, i)

+λn(E[v(t, x− Y, s, 1)]− v(t, x, s, i)) = 0, i = n,

(2.5)

with boundary condition

v(T, x, s, i) = − 1

m
e−mx, i = 1, 2, 3, . . . , n. (2.6)
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We treat the case of r = 0 and r ̸= 0 differently since there is an explicit solution for the case of

r = 0. There is no explicit expression for the case of r ̸= 0 but the structure of the solution can be

expressed. The next section deals with the case of r = 0 first.

3 When the interest rate is 0

If the interest rate is 0, then equation (2.5) degenerates to the following equations:

vt(t, x, s, i) + supa∈R
{
vx(t, x, s, i)(c+ aµ) + 1

2σ
2a2s2βvxx(t, x, s, i)

+σ2as2β+1vxs(t, x, s, i)
}
+ µsvs(t, x, s, i) +

1
2σ

2s2β+2vss(t, x, s, i)

+λi(v(t, x, s, i+ 1)− v(t, x, s, i)) = 0, i = 1, 2, · · · , n− 1;

vt(t, x, s, i) + supa∈R
{
vx(t, x, s, i)(c+ aµ) + 1

2σ
2a2s2βvxx(t, x, s, i)

+σ2as2β+1vxs(t, x, s, i)
}
+ µsvs(t, x, s, i) +

1
2σ

2s2β+2vss(t, x, s, i)

+λn(E[v(t, x− Y, s, 1)]− v(t, x, s, i)) = 0, i = n.

(3.1)

Notice that if there exists a concave solution for (3.1), for each i, the maximizer of (3.1) a∗(t, x, s, i) =

−µvx(t,x,s,i)+σ2s2β+1vxs(t,x,s,i)
σ2s2βvxx(t,x,s,i)

. In what follows, we look for a continuously differentiable concave

solution for (3.1). We conjecture that the solution of (3.1) takes the form of

v(t, x, s, i) = − 1

m
exp

{
−mx+

µ2

2σ2
(t− T )s−2β

}
ψi(t), i = 1, 2, . . . , n, (3.2)

where ψi(t), i = 1, 2, · · · , n are some unknown functions which will be determined later. After

direct calculations,

vt = v(t, x, s, i)
µ2

2σ2
s−2β − 1

m
exp

{
−mx+

µ2

2σ2
(t− T )s−2β

}
ψ′(t),

vx = −mv(t, x, s, i), vxx = m2v(t, x, s, i)

vs = β
µ2(T − t)

σ2
s−2β−1v(t, x, s, i),

vss = [
β2µ4(T − t)2

σ4
s−4β−2 − βµ2(T − t)

σ2
(2β + 1)s−2β−2]v(t, x, s, i),

vxs = −mβµ
2(T − t)

σ2
s−2β−1v(t, x, s, i).

(3.3)

Substituting

a∗(t, x, s, i) = −µvx(t, x, s, i) + σ2s2β+1vxs(t, x, s, i)

σ2s2βvxx(t, x, s, i)
(3.4)
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and (3.3) into (3.1) and eliminating same terms show that {ψi}ni=1 satisfies

ψ′
1(t)− (cm+ (2β+1)µ2β(T−t)

2 + λ1)ψ1(t) + λ1ψ2(t) = 0,

ψ′
2(t)− (cm+ (2β+1)µ2β(T−t)

2 + λ2)ψ2(t) + λ2ψ3(t) = 0,

· · ·

ψ′
n−1(t)− (cm+ (2β+1)µ2β(T−t)

2 + λn−1)ψn−1(t) + λn−1ψn(t) = 0,

ψ′
n(t)− (cm+ (2β+1)µ2β(T−t)

2 + λn)ψn(t) + λnψ1(t)EemY = 0.

(3.5)

Denote L(t) :=
∫ t

0
(cm+ (2β+1)µ2β(T−u)

2 )du. Multiplying e−L(t) on both sides of (3.5) gives

φ′
1(t)− λ1φ1(t) + λ1φ2(t) = 0,

φ′
2(t)− λ2φ2(t) + λ2C3(t) = 0,

· · ·

φ′
n−1(t)− λn−1φn−1(t) + λn−1φn(t) = 0,

φ′
n(t)− λnφn(t) + λnE(emY )φ1(t) = 0,

or equivalently, 

φ′
1(t)

φ′
2(t)
...

φ′
n−1(t)

φ′
n(t)


= Q̂



φ1(t)

φ2(t)
...

φn−1(t)

φn(t)


, (3.6)

where

Q̂ =



λ1 −λ1 0 · · · 0 0

0 λ2 −λ2 · · · 0 0

0 0 λ3 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · λn−1 −λn−1

−λnE(emY ) 0 0 · · · 0 λn


.

The boundary condition of φi(t) is

φi(T ) = e−L(T ) > 0. (3.7)
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As we can see, every element of the matrix Q̂ is constant. Combining the boundary condition

(3.7), the explicit solution of φi(t) can be derived.

φ1(t)

φ2(t)
...

φn−1(t)

φn(t)


= eQ̂(t−T )



φ1(T )

φ2(T )
...

φn−1(T )

φn(T )


= eQ̂(t−T )



e−L(T )

e−L(T )

...

e−L(T )

e−L(T )


, (3.8)

Now we show that the solution φi(t), i = 1, 2 · · · , n, are non-negative. To see this, we only need to

show that every element of the matrix eQ̂(t−T ) is non-negative.

Lemma 3.1. Every element of the matrix eQ̂(t−T ) is non-negative.

Actually, the matrix eQ̂(t−T ) can be seen as the transition matrix of a Markov chain with

killing. Thus, the non-negativity of every element is undoubtable. We leave the detailed proof in

the Appendix for the readability of the whole context of the paper.

Lemma 3.2. The function v(t, x, s, i) is concave about x.

Proof. From above calculations, we can notice that the concavity of v(t, x, s, i) is equivalent to the

non-negativity of {φi(t)}ni=1. By Lemma 3.1, we get that every element of the matrix eQ̂(T−t) is

nonnegative. The proof is complete.

Until now, we solve a continuously differentiable concave solution for the HJB equation, i.e.,

v(t, x, s, i) = − 1

m
exp

{
−mx+

µ2

2σ2
(t− T )s−2β

}
ψi(t), i = 1, 2, . . . , n, (3.9)

where ψi(t) = φi(t)e
L(t) and φi(t) is given by (3.8).

Now we formulate a verification theorem to show that under suitable conditions, the solution

of the HJB equation (2.6)-(3.1) is indeed the optimal value function when the interest rate is 0.

Theorem 3.3. (verification theorem) Denote H1(u) =
µ+µ2β(T−t)

σ2s2βm
, if −8H1(u)+16σ2

µ2H
2
1 (u) <

µ2

σ2

for all u ∈ [0, T ], then the value function V (t, x, s, i) = v(t, x, s, i), where v is shown in (3.9). The

optimal investment policy is

a∗(t) =
µ+ µ2β(T − t)

σ2s2βm
.

The detailed proof is in the Appendix.
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4 When the interest rate is not 0

When the interest rate is not 0, the HJB equation is

vt(t, x, s, i) + supa∈R
{
vx(t, x, s, i)(c+ a(µ− r) + rx) + 1

2σ
2a2s2βvxx(t, x, s, i)

+σ2as2β+1vxs(t, x, s, i)
}
+ µsvs(t, x, s, i) +

1
2σ

2s2β+2vss(t, x, s, i)

+λi(v(t, x, s, i+ 1)− v(t, x, s, i)) = 0, i = 1, 2, · · · , n− 1;

vt(t, x, s, i) + supa∈R
{
vx(t, x, s, i)(c+ a(µ− r) + rx) + 1

2σ
2a2s2βvxx(t, x, s, i)

+σ2as2β+1vxs(t, x, s, i)
}
+ µsvs(t, x, s, n) +

1
2σ

2s2β+2vss(t, x, s, i)

+λn(E[v(t, x− Y, s, 1)]− v(t, x, s, i)) = 0, i = n,

(4.1)

with boundary condition

v(T, x, s, i) = − 1

m
e−mx, i = 1, 2, 3, . . . , n. (4.2)

In this section, if there exists a concave solution for (4.1), for each i, the maximizer of (4.1)

a∗(t, x, s, i) = − (µ− r)vx(t, x, s, i) + σ2s2β+1vxs(t, x, s, i)

σ2s2βvxx(t, x, s, i)
. (4.3)

Similar with Section 3, we look for a continuously differentiable concave solution for the HJB

equation (4.1)-(4.2). We conjecture that the solution takes the form of

v(t, x, s, i) = − 1

m
exp

{
−mxer(T−t) − (µ− r)2

4σ2βr
[1− e2βr(t−T )]s−2β

}
ψi(t), i = 1, 2, . . . , n. (4.4)

where ψi(t), i = 1, 2, · · · , n, are some deterministic function which will be determined later. After

simple calculations, we can get that

vt(t, x, s, i) = v(t, x, s, 1)

(
mrxer(T−t) +

(µ− r)2

2σ2
e2βr(t−T )s−2β

)
− 1

m
exp

{
−mxer(T−t) − (µ− r)2

4σ2βr
[1− e2βr(t−T )]s−2β

}
ψ′
i(t), (4.5)

vx(t, x, s, i) = v(t, x, s, i)
{
−mer(T−t)

}
, (4.6)

vxx(t, x, s, i) = v(t, x, s, i)
{
−mer(T−t)

}2

, (4.7)

vs(t, x, s, i) = v(t, x, s, i)

{
(µ− r)2

2σ2r
[1− e2βr(t−T )]s−2β−1

}
, (4.8)

vss(t, x, s, i) = v(t, x, s, i)

{
(µ− r)4

4σ4r2
[1− e2βr(t−T )]2s−4β−2

}
+ v(t, x, s, i)

{
−(2β + 1)

(µ− r)2

2σ2r
[1− e2βr(t−T )]s−2β−2

}
, (4.9)
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vxs(t, x, s, i) = v(t, x, s, i)

{
−mer(T−t) (µ− r)2

2σ2r
[1− e2βr(t−T )]s−2β−1

}
. (4.10)

Substituting (4.3) and (4.5)-(4.10) into (4.4) shows that {ψi}ni=1 should satisfy

ψ′
1(t)− (cmer(T−t) + (2β+1)(µ−r)2

4r [1− e2βr(t−T )] + λ1)ψ1(t) + λ1ψ2(t) = 0,

ψ′
2(t)− (cmer(T−t) + (2β+1)(µ−r)2

4r [1− e2βr(t−T )] + λ2)ψ2(t) + λ2ψ3(t) = 0,

· · ·

ψ′
n−1(t)− (cmer(T−t) + (2β+1)(µ−r)2

4r [1− e2βr(t−T )] + λn−1)ψn−1(t) + λn−1ψn(t) = 0,

ψ′
n(t)− (cmer(T−t) + (2β+1)(µ−r)2

4r [1− e2βr(t−T )] + λn)ψn(t) + λnψ1(t)EemY er(T−t)

= 0.

(4.11)

Together with (2.6) we get that the boundary condition of {ψi}ni=1 is

ψi(T ) = 1, i = 1, 2, 3, · · · , n. (4.12)

We need to solve a continuously differentiable and non-negative solution for (4.11)-(4.12). The

non-negativity of the solution is to make sure that the solution of (4.4) is concave. We use the

technique of changing variables can be used to simplify (4.11).

Denote Fi(t) one primitive function of cmer(T−t) + (2β+1)(µ−r)2

4r [1 − e2βr(t−T )], i = 1, 2, · · · , n,

or in other words,

Fi(t) =

∫ t

0

{
cmer(T−u) +

(2β + 1)(µ− r)2

4r
[1− e2βr(u−T )]

}
du. (4.13)

Multiplying e−Fi(t) on both sides of (4.11) gives

e−F1(t)ψ′
1(t)− e−F1(t)

(
cmer(T−t) + (2β+1)(µ−r)2

4r [1− e2βr(t−T )] + λ1

)
ψ1(t)

+λ1ψ2(t)e
−F1(t) = 0,

e−F2(t)ψ′
2(t)− e−F2(t)

(
cmer(T−t) + (2β+1)(µ−r)2

4r [1− e2βr(t−T )] + λ2

)
ψ2(t)

+λ2ψ3(t)e
−F2(t) = 0,

. . . ,

e−Fn−1(t)ψ′
n−1(t)− e−Fn−1(t)

(
cmer(T−t) + (2β+1)(µ−r)2

4r [1− e2βr(t−T )] + λn−1

)
ψn−1(t)

+λn−1ψn(t)e
−Fn−1(t) = 0,

e−Fn(t)ψ′
n(t)− e−Fn(t)(cmer(T−t) + (2β+1)(µ−r)2

4r [1− e2βr(t−T )] + λn)ψn(t)

+λnψ1(t)EemY er(T−t)

e−Fn(t) = 0.
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Denote

φi(t) := e−Fi(t)ψi(t), i = 1, 2, 3, . . . , n. (4.14)

It turns out that 

φ′
1(t)− λ1φ1(t) + λ1φ2(t) = 0,

φ′
2(t)− λ2φ2(t) + λ2φ3(t) = 0,

· · ·

φ′
n−1(t)− λn−1φn−1(t) + λn−1φn(t) = 0,

φ′
n(t)− λnφn(t) + λnE(emY er(T−t)

)φ1(t) = 0,

(4.15)

or equivalently, 

φ′
1(t)

φ′
2(t)
...

φ′
n−1(t)

φ′
n(t)


= Q(t)



φ1(t)

φ2(t)
...

φn−1(t)

φn(t)


, (4.16)

where

Q(t) =



λ1 −λ1 0 · · · 0 0

0 λ2 −λ2 · · · 0 0

0 0 λ3 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · λn−1 −λn−1

−λnz(t) 0 0 · · · 0 λn


is a n× n matrix and z(t) := E(emY er(T−t)

). The boundary condition is

φi(T ) = e−Fi(T ) > 0. (4.17)

The ordinary differential equations (4.15) looks quite simple and the existence as well as unique-

ness of the solution is undoubtable. But showing an explicit expression of the solution is not easy

since Cayley–Hamilton theorem is not applicable due to the fact that for some u, t ∈ [0, T ],

Q(t)Q(u) ̸= Q(u)Q(t).
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We show that the solution of (4.15) {φi(t)}ni=1 is non-negative. The non-negativity is to verify the

concavity of the solution of the HJB equation.

Denote z(t) := E(emY er(T−t)

) for simplicity. Denote z̄ := sups∈[0,T ] |z(s)| and λ̄ := max{λ1, · · · , λn}.

For a given δ ≤ 1
2z̄λ̄

, we divide the time interval [0, T ] into the N subintervals [0, T − (N −

1)δ], · · · , [T − kδ, T − (k − 1)δ], such that T ≤ Nδ. Now consider the system (4.15) in the time

interval [T − kδ, T − (k − 1)δ]:

φ′
1(t)− λ1φ1(t) + λ1φ2(t) = 0,

φ′
2(t)− λ2φ2(t) + λ2C3(t) = 0,

· · · t ∈ [T − kδ, T − (k − 1)δ],

φ′
n−1(t)− λn−1φn−1(t) + λn−1φn(t) = 0,

φ′
n(t)− λnφn(t) + λnz(t)φ1(t) = 0.

(4.18)

Consider the non-negative valued continuous function space C([T −kδ, T − (k−1)δ];R+) equipped

with the supremum norm ∥v∥∞ := sups∈[T−kδ,T−(k−1)δ] |v(s)| which is a Banach space. If k = 1,

then the boundary condition is φi(T − (k− 1)δ) = e−Fi(T ) > 0. If k ̸= 1, we assume that the same

system defined in the former time interval [T − (k−1)δ, T − (k−2)δ] admits a unique non-negative

solution φ̄i(t) ∈ C([T − kδ, T − (k − 1)δ];R≥0), then let φi(T − (k − 1)δ) := φ̄i(T − (k − 1)δ).

Lemma 4.1. For any k = 1, · · · , N , the equation system (4.18) admits a unique solution (φ1, · · · , φn)

such that φi(t) ∈ C1([T − kδ, T − (k − 1)δ];R+) for all i = 1, · · · , n.

Proof. We decouple the system (4.18) by constructing a map Φ : C([T − kδ, T − (k − 1)δ];R+) ∋

φ̂1 7−→ φ1 ∈ C([T − kδ, T − (k − 1)δ];R+) as follows

φ′
1(t)− λ1φ1(t) + λ1φ2(t) = 0,

φ′
2(t)− λ2φ2(t) + λ2φ3(t) = 0,

· · ·

φ′
n−1(t)− λn−1φn−1(t) + λn−1φn(t) = 0,

φ′
n(t)− λnφn(t) + λnz(t)φ̂1(t) = 0,

(4.19)

Since φ̂1(t) and z(t) are non-negative functions, it is easy to show that

φn(t) = e−λn(T−(k−1)δ−t)φ̄n(T − (k − 1)δ) + λn

∫ T−(k−1)δ

t

e−λn(s−t)z(s)φ̂1(s)ds > 0. (4.20)

Hence φn(t) belongs to C([T − kδ, T − (k − 1)δ];R+). We conduct this procedure to the equation

of φn−1, · · · , φ1 one-by-one. It can be shown that the system of (4.19) admits a unique solution

(φ1, · · · , φn), and all the entries belong to C([T −kδ, T − (k−1)δ];R+). Therefore Φ is a self-map.
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If we consider another input φ̂ε
1(t) to the system,

(φε
1)

′(t)− λ1φ
ε
1(t) + λ1φ

ε
2(t) = 0,

(φε
2)

′(t)− λ2φ
ε
2(t) + λ2φ

ε
3(t) = 0,

· · ·

(φε
n−1)

′(t)− λn−1φ
ε
n−1(t) + λn−1φ

ε
n(t) = 0,

(φε
n)

′(t)− λnφ
ε
n(t) + λnz(t)φ̂

ε
1(t) = 0,

(4.21)

The last equation can be written as

φε
n(t) = e−λn(T−t)φ̄i(T − (k − 1)δ) + λn

∫ T−(k−1)δ

t

e−λn(s−t)z(s)φ̂ε
1(s)ds. (4.22)

We take the difference of (4.20) and (4.22),

φε
n(t)− φn(t) = λn

∫ T−(k−1)δ

t

e−λn(s−t)z(s) (φ̂ε
1(s)− φ̂1(s)) ds ≤ δλ̄z̄∥φ̂ε

1 − φ̂1∥∞.

For the second-to-last equation, we have

φε
n−1(t)− φn−1(t) =λn−1

∫ T−(k−1)δ

t

e−λn−1(s−t)z(s) (φε
n(t)− φn(t)) ds

≤δλ̄z̄∥φε
n − φn∥∞ ≤ δ2λ̄2z̄2∥φ̂ε

1 − φ̂1∥∞.

We take this procedure to other equations in systems (4.19) and (4.21) to deduce that

∥φε
1 − φ1∥∞ ≤ δnλ̄nz̄n∥φ̂ε

1 − φ̂1∥∞ ≤ 1

2n
∥φ̂ε

1 − φ̂1∥∞. (4.23)

Hence the map Φ is contractive map. By the Banach fixed point theorem, there exists a unique

fixed point φ1 ∈ C([T − kδ, T − (k − 1)δ];R+) such that Φ(φ1) = φ1. Until now, we proved that

the equation system (4.18) admits a unique solution (φ1, · · · , φn) such that, for any i = 1, · · · , n,

φi(t) ∈ C([T − kδ, T − (k − 1)δ];R+). By the continuity of z(t), the system (4.18) further shows

that each φi(t) ∈ C1([T − kδ, T − (k − 1)δ];R+).

Theorem 4.2. The equation system (4.15) admits a unique solution (φ1, · · · , φn) such that φi(t) ∈

C1([0, T ];R+) for all i = 1, · · · , n.

Proof. We paste all the solutions in the N subintervals [T − kδ, T − (k − 1)δ] together to obtain

the solution to system (4.15).

The non-negativity of φi implies the concavity of v(t, x, s, i) about x. In summary, we construct

a continuously differentiable concave solution v(t, x, s, i) for the HJB equation (4.1)-(4.2). In what
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follows, a verification theorem is provided to show that under suitable conditions, a continuously

differentiable solution of the HJB equation is indeed the optimal value function defined in (2.4).

Theorem 4.3. (verification theorem) For the case of interest rate not being 0, let v(t, x, s, i)

defined in (4.4) be the solution of HJB equation (4.1)-(4.2), and the parameters satisfy that for all

u ∈ [0, T ], −16(µ − r)Q̂(u) + 64Q̂(u)2 ≤ µ2, where Q̂(u) = (µ − r) + (1 − e2βr(T−u)) (µ−r)2

2r , the

optimal value function V (t, x, s, i) = v(t, x, s, i). The optimal investment policy is

a∗ =
(µ− r) + (1− e2βr(T−t)) (µ−r)2

2r

σ2s2βmer(T−t)
. (4.24)

Detailed proof is shown in the Appendix.

5 Sensitivity Analysis

This section explores sensitivity of the optimal policy and the optimal value function about different

parameters. We assume that the interclaim times follow Erlang (2) distribution and claim size

follows the uniform distribution on [0, 1]. Unless otherwise stated, the parameters are shown in

the following table.

µ r β T λ1 λ2 σ m c s

0.2 0.18 1 2 0.5 2 0.3 1 2.5 1

1.0 1.2 1.4 1.6 1.8 2.0
s

0.06
0.08
0.10
0.12
0.14
0.16
0.18

a
*

Figure 5.1: The optimal strategy a∗ about

stock price s at time t = 1.

Figure 5.2: The optimal strategy a∗ about

stock price s and time t.

From the explicit expression we can see that the optimal policy is irrelevant with the current

surplus x, the current phase i. The optimal policy is correlated with current time t, the stock
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price s, the interest rate r, the drift µ and the volatility σ of the stock price. Figure 5.1 shows

the effect of stock process s on the optimal investment policy a∗ when t = 1. We can see that the

investment amount on stocks is decreasing with the increasing of stock price. This phenomenon

is in line with intuition since as stock price increasing, the cost of holding stocks will be higher.

The volatility decreases when the stock price increases, thus, holding a large amount of stocks can

not produce high profits. Eventually, when the stock price is high, the optimal policy should be

decreasing the amount of money invested in stocks. Figure 5.2 is a 3-dimensional picture showing

the effect of time t and stock price s on the optimal investment policy a∗ from which we can see

that the amount of investment increases as the time t increases which means as t approaches to

the terminal time, the insurer tends to take more risk in order to get higher returns.

µ r β T λ1 λ2 σ m c s

0.2 0.18 1 2 0.5 2 0.3 1 2.5 1

V(t,2,1,1)

V(t,2,1,2)

0.5 1.0 1.5 2.0
t

-0.14

-0.12

-0.10

-0.08

-0.06

-0.04

-0.02

Figure 5.3: The value function V about

time t at x = 2 and s = 1.

V(1,2,s,1)

V(1,2,s,2)

0.12 0.14 0.16 0.18 0.20
s

-0.010

-0.009

-0.008

-0.007

-0.006

Figure 5.4: The value function V about

stock price s at time t = 1, x = 2.

Figure 5.3 shows the value function about variable t when x = 2, s = 1. It is obvious the

value function is negative-valued and decreasing with respect to t. From the picture we can also

see that V (t, x, s, 1) ≥ V (t, x, s, 2). This cames from the fact that the state 2 is more “close”

to the claim time, i.e., when the insurer is in state 2, the insurance company need to undertake

upcoming claims. Figure 5.4 shows the picture of V about the variable s when t = 1 and x = 2

from which we can see that the value function is decreasing with respect to s. This is because

we adopt the exponential utility which means the decision-maker’s attitude toward risk does not

change with wealth levels. Thus, when the stock prices is increasing, the volatility risk of stocks is

also increasing leading to that the utility of the insurer decreases.
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6 Conclusion

This paper copes the optimal investment of the renewal surplus process in which the interclaim

times are Erlang(n) distributed. As there are n state in the Markov chain, Laplace transform of the

Markov chain, decoupling the n−dimensional coupled equation and Banach fixed point theorem

are used to prove the concavity of the value function. Our results show that the optimal policy

is irrelevant with the wealth and the current phase of Erlang(n) distribution. The utility of the

insurer decreases when the current time is close to the next claim. We further focus on the optimal

investment of renewal process when the phase of Erlang(n) distribution can not be observed.

7 Appendix

Proof of Lemma 3.1 Denote ζ := E(emY ). Without loss of generality, we consider the matrix O

has the form of 

−λ1 λ1 0 · · · 0 0

0 −λ2 λ2 · · · 0 0

0 0 −λ3 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −λn−1 λn−1

λnζ 0 0 · · · 0 −λn


and show that for any t > 0, every element of the matrix eOt is non-negative. Consider a Markov

chain J̃t with the transition matrix

−λ1 λ1 0 · · · 0 0

0 −λ2 λ2 · · · 0 0

0 0 −λ3 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · −λn−1 λn−1

λnζ 0 0 · · · 0 −λnζ


.

From the transition matrix, we can see that

P(J̃t = n, t ∈ [0, s]|J̃0 = n) = e−λnζs = 1− λnζs+ o(s),

P(J̃[0,s] = i|J̃0 = i) = 1− λis+ o(s), i ̸= n.
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If the initial state i ̸= n, define fij(t) := E
[
1{Xt=j}|X0 = i

]
, then

fij(t) = (1− λis)fij(t− s) + λisfi+1,j(t− s) + o(s),

Thus,
fij(t)− fij(t− s)

s
=

−λisfij(t− s) + λisfi+1,j(t− s) + o(s)

s
,

Letting s ↓ 0 gives

f ′ij(t) = −λifij(t) + λifi+1,j . (7.1)

If the initial state i = n, define fij(t) = E
[
eλi(ζ−1)

∫ t
0
1{J̃u=i}du1{Xt=j}|X0 = i

]
. We can obtain

that

fnj(t) = eλn(ζ−1)s(1− λnζs)fnj(t− s) + f1j(t)λnζs+ o(s). (7.2)

Notice that

eλn(ζ−1)s = 1 + λn(ζ − 1)s+ o(s). (7.3)

Substituting (7.3) into (7.2) gives

fnj(t) = (1 + λn(ζ − 1)s)(1− λnζs)fnj(t− s) + f1j(t)λnζs+ o(s)

= (1− λns)fnj(t− s) + f1j(t)λnζs+ o(s),

which gives

fnj(t)− fnj(t− s)

s
=

−λnsfnj(t− s) + f1j(t)λnζs+ o(s)

s
. (7.4)

Letting s ↓ 0 in (7.4) gives

f ′nj(t) = −λnfnj(t) + f1jλnζ. (7.5)

Combining (7.1) and (7.5), we can see that the matrix {fij}n×n is the solution of f ′(t) = Of(t)

with boundary condition f(0) = E, where E is the identity matrix, or in other words, f(t) = eOt.

By the definition of fij(t), we can see that fij(t) is non-negative, which means that every element

of eOt is non-negative. The proof is complete. ■

Proof of Theorem 3.3 Denote Jt the current state of Erlang (n) distributed interclaim time
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at time t. For any strategy {a}, by Itô formula,

v(τn ∧ T,Xτn∧T , Sτn∧T , Jτn∧T ) = v(t, x, s, j) +

∫ τn∧T

t

(vt + (c+ πuµ)vx + µSuvs +
1

2
σ2S2β+1

u vss

+ σ2S2β+1
u πuvxs +

1

2
vxxσ

2S2β
u π2

u)du+

∫ τn∧T

t

σSβ
uπudWu

+
∑

t≤u≤(τn∧T )

(v(u,Xu, Su, Ju)− v(u,Xu−, Su, Ju−)),

(7.6)

where

τn = n ∧ inf{u > t; |Xπ(s)| ≥ n} ∧ inf{u > t; |S(u)| ≥ n}, (7.7)

for n = 1, 2, · · · . Since v is a continuously differentiable solution of the HJB equation, taking

expectation on both sides of (7.6) leads to

Ev(τn ∧ T,Xτn∧T , Sτn∧T , Jτn∧T ) ≤ v(t, x, s, j).

By Fatou’s lemma, letting n→ +∞ gives

E[U(Xπ
T )] ≤ v(t, x, s, j).

On the other hand, we choose the strategy a∗ and denote X∗(t) the corresponding surplus

which is driven by strategy a∗. To show E[U(X∗
T )] = v(t, x, s, j), we only need to prove that

lim
n→+∞

Ev(τn ∧ T,X∗
τn∧T , Sτn∧T , Jτn∧T ) = v(t, x, s, j). (7.8)

To prove (7.8), we only need to show that E[v2(t,X∗(t), S(t), J(t))] < +∞.

Combining (3.9), we get that

v2(t,X∗(t), S(t), J(t))

=
1

m2
exp

{
−2mX∗(t) +

2µ2

σ2
(t− T )S(t)−2β

}
ψ2
J(t)(t)

≤M1 exp {−2mX∗(t)} ,

(7.9)

where M1 > 0 is a suitable constant. Substituting a∗ into (2.2) gives

X∗
t = x0 +

∫ t

0

(µa∗u + c)du+

∫ t

0

σS(u)βa∗udWu −
∑

0≤u≤t

(Xu− −Xu)χ{△Xu ̸=0}, (7.10)
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where χ is the indicator function. Substituting (7.10) gives

exp
{
−2mXπ∗

(t)
}

=exp

{
− 2m

(
x0 +

∫ t

0

(µa∗u + c)du

+

∫ t

0

σS(u)βa∗udWu −
∑

0≤u≤t

(Xu− −Xu)χ{△Xu ̸=0}

)}

≤ exp

{
− 2m

(
x0 +

∫ t

0

(µa∗u + c)du+

∫ t

0

σS(u)βa∗udWu

)}
≤M2 exp

{
− 2m

(∫ t

0

µa∗udu+

∫ t

0

σS(u)βa∗udWu

)}
,

(7.11)

where M2 > 0 is a suitable constant. Substituting a∗(t) = µ+µ2β(T−t)

σ2S(t)2βm
into the above inequality,

we get that

exp {−2mX∗(t)}

≤M2 exp

{
− 2

∫ t

0

µ2 + µ3β(T − u)

σ2
S−2β(u)du− 2

∫ t

0

µ+ µ2β(T − u)

σ
S(u)−βdWu

}
.

(7.12)

Notice that H1(u) :=
µ2+µ3β(T−u)

σ2 , then

exp {−2mX∗(t)} ≤M2 exp

{
− 2

∫ t

0

H1(u)S(u)
−2βdu− 2

∫ t

0

σ

µ
H1(u)S(u)

−βdWu

}
=M2 exp

{
− 2

∫ t

0

H1(u)S(u)
−2βdu+ 4

∫ t

0

σ2

µ2
H2

1 (u)S(u)
−2βdu

}
· exp

{
− 2

∫ t

0

σ

µ
H1(u)S(u)

−βdWu − 4

∫ t

0

σ2

µ2
H2

1 (u)S(u)
−2βdu

}
:=M2 exp{H̃1(t) + H̃2(t)},

(7.13)

where H̃1(t) = −2
∫ t

0
H1(u)S(u)

−2βdu+4
∫ t

0
σ2

µ2H
2
1 (u)S(u)

−2βdu, H̃2(t) = −2
∫ t

0
σ
µH1(u)S(u)

−βdWu−

4
∫ t

0
σ2

µ2H
2
1 (u)S(u)

−2βdu. By Hölder’s inequality, we get that

E [exp {−2mX∗(t)}] ≤M2

(
E
[
e2H̃1(t)

]) 1
2
(
E
[
e2H̃2(t)

]) 1
2

, (7.14)

Applying Theorem 5.1 of [17], we get that E
[
e2H̃1(t)

]
< +∞. By Lemma 4.3 of [17], it is known

that e2H̃2(t) is a martingale, then E
[
e2H̃2(t)

]
< +∞. The proof is complete. ■

Proof of Theorem 4.24 Similar with the proof of Theorem 3.3, we only need to show that

when applying the optimal strategy a∗ defined in (4.24), it holds that

lim
n→+∞

Ev(τn ∧ T,X∗
τn∧T , Sτn∧T , Jτn∧T ) = v(t, x, s, j), j = 1, 2, · · · , n.
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i.e., we show that under the strategy a∗, V (τn ∧ T,X∗
τn∧T , Sτn∧T , Jτn∧T ) is uniformly integrable.

After direct calculation, we get that there exists a constant M̂1 > 0, M̂2 > 0,

v2(t,X∗(t), S(t), J(t))

=
1

m2
exp

{
−2mX∗(t)er(T−t) − 2(µ− r)2

4σ2βr
[1− e2βr(t−T )]S(t)−2β

}
ψ2
Y (t)(t)

≤M̂1 exp

{
−2mX∗(t)er(T−t) − (µ− r)2

2σ2βr
[1− e2βr(t−T )]S(t)−2β

}
≤M̂2 exp

{
−2mer(T−t)X∗(t)

}
.

(7.15)

Substituting π∗ into (2.2) gives

X∗
t =ertx0 +

∫ t

0

er(t−u)[(µ− r)a∗u + c]du+

∫ t

0

er(t−u)σS(u)βa∗udWu

−
∑

0≤u≤t

er(t−u)(Xu− −Xu)χ{△Xu ̸=0}.
(7.16)

Substituting (4.24) and (7.16) into (7.15) gives

exp
{
−2mer(T−t)X∗(t)

}
=exp

{
− 2mer(T−t)

(
ertx0 +

∫ t

0

er(t−u)[(µ− r)a∗u + c]du

+

∫ t

0

er(t−u)σS(u)βa∗udWu −
∑

0≤u≤t

er(t−u)(Xu− −Xu)χ{△Xu ̸=0}

)}

≤M̂3 exp

{
− 2mer(T−t)

∫ t

0

er(t−u)(µ− r)
(µ− r) + (1− e2βr(T−u)) (µ−r)2

2r

σ2S(u)2βmer(T−u)
du

− 2mer(T−t)

∫ t

0

er(t−u)σS(u)β
(µ− r) + (1− e2βr(T−u)) (µ−r)2

2r

σ2S(u)2βmer(T−u)
dWu

}
=M̂3 exp

{∫ t

0

(
−2merTQ1(u) + 4m2e2rTQ2

2(u)
)
S(u)−2βdu

+

∫ t

0

−2merTQ2(u)S(u)
−βdWu −

∫ t

0

4m2e2rTQ2
2(u)S(u)

−2βdu :=M3 exp{Q3(t) +Q4(t)},

where M̂ > 0 is a suitable constant and

Q1(u) := (µ− r)
(µ− r) + (1− e2βr(T−u)) (µ−r)2

2r

σ2merT
,

Q2(u) :=
(µ− r) + (1− e2βr(T−u)) (µ−r)2

2r

σmerT
,

Q3(t) :=

∫ t

0

(
−2merTQ1(u) + 4m2e2rTQ2

2(u)
)
S(u)−2βdu,

Q4(t) :=

∫ t

0

−2merTQ2(u)S(u)
−βdWu −

∫ t

0

4m2e2rTQ2
2(u)S(u)

−2βdu.
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By Cauchy-Schwarz inequality,

E exp
{
−2mer(T−t)X∗(t)

}
≤M3E(exp{Q3(t) +Q4(t)}) ≤M3(E exp{2Q3(t)})

1
2 (E exp{2Q4(t)})

1
2 .

Applying Theorem 5.1 of [17], it holds that

E[e2Q3(t)] < +∞.

As −2merTQ2(u) deterministic and bounded on [0, T ], by Lemma 4.3 of [17] we see that e2Q4(t) is

a martingale, then

E[exp2Q4(t)] < +∞.

Until now, we show that under suitable conditions, the solution of the HJB equation is indeed

the value function of the optimization problem. The optimal policy is deduced by some direct

calculations of (3.4). ■
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