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Abstract

Inexact proximal augmented Lagrangian methods (pALMs) are particularly appealing

for tackling convex constrained optimization problems because of their elegant conver-

gence properties and strong practical performance. To solve the associated pALM sub-

problems, efficient methods such as Newton-type methods are essential. Consequently,

the effectiveness of the inexact pALM hinges on the error criteria used to control the inex-

actness when solving these subproblems. However, existing inexact pALMs either rely on

absolute-type error criteria (which may complicate implementation by necessitating the

pre-specification of an infinite sequence of error tolerance parameters) or require an addi-

tional correction step when using relative error criteria (which can potentially slow down

the convergence of the pALM). To address this deficiency, this paper proposes ripALM, a

relative-type inexact pALM, which can simplify practical implementation while preserv-

ing the appealing convergence properties of the classical absolute-type inexact pALM.

We emphasize that ripALM is the first relative-type inexact version of the vanilla pALM

with provable convergence guarantees. Numerical experiments on quadratically regu-

larized optimal transport (OT) problems demonstrate the competitive efficiency of the

proposed method compared to existing methods. As our analysis can be extended to a

more general convex constrained problem setting, including other regularized OT prob-

lems, the proposed ripALM may provide broad applicability and has the potential to

serve as a basic optimization tool.

Keywords: augmented Lagrangian method; proximal term; relative-type error crite-

rion; asymptotically Q-(super)linear convergence rate; quadratically regularized optimal

transport

1 Introduction

Constrained optimization, admitting excellent modeling power for real-world applications

across a wide range of fields, including machine learning and data science, engineering,
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operations research, is a central area in optimization, especially in the current big-data

era [6, 7]. This paper is dedicated to solving the following linearly constrained convex

optimization problem:
min
x∈RN

f(x), s.t. Ax = b, (1.1)

where f : RN → R ∪ {+∞} is a (possibly nonsmooth) proper closed convex function,

A ∈ RM×N and b ∈ RM are given data. While we focus on (1.1) in this paper, we would

like to mention that the inexact algorithmic framework along with the associated theory

developed in this paper can be extended to a more general convex constrained optimization

problem studied in [11].

The augmented Lagrangian method (ALM) is recognized as one of the most popular

and effective methods for solving constrained optimization problems [16, 34]. The essential

component of the ALM for solving problem (1.1) involves penalizing the linear constraint

Ax = b to derive the augmented Lagrangian function, defined as

Lprimσ (x,y) = f(x) + ⟨y, Ax− b⟩+ σ

2
∥Ax− b∥2 , (x,y) ∈ RN × RM ,

where y ∈ RM is the Lagrangian multiplier associated with the linear constraint and σ > 0

is a penalty parameter. Then, for a given sequence of penalty parameters {σk} ⊆ R++ and

an initial Lagrangian multiplier y0 ∈ RM , the ALM iteratively performs the following steps:xk+1 ∈ arg min
x∈RN

{
Lprimσk (x,yk)

}
,

yk+1 = yk + σk∇yLprimσk (xk+1,yk) = yk + σk
(
Axk+1 − b

)
,

which consists of minimizing one ALM-subproblem to get xk+1 and one gradient ascent step

(associated with Lprimσk ) with step size σk to get yk+1. Since the augmented Lagrangian

function Lprimσ (·) is associated with the primal problem (1.1), the above ALM is usually

named as a primal-based ALM. Alternatively, one may also consider a dual-based ALM

which is associated with the dual problem of (1.1) given by (modulo a minus sign)

min
y∈RM

f∗(A⊤y)− b⊤y, (1.2)

where f∗ : RN → R∪ {+∞} denotes the conjugate function of f and A⊤ is the transpose of

A. Then, given a penalty parameter σ > 0, the augmented Lagrangian function associated

with problem (1.2) is given by (see Section 2 for the detailed derivation)

Ldualσ (y,x) = −b⊤y +
1

2σ

∥∥x+ σA⊤y
∥∥2 − 1

2σ
∥x∥2 − Mσf

(
x+ σA⊤y

)
, (x,y) ∈ RN × RM ,

where Mσf (x) := min
y

{
f(y) + 1

2σ∥y − x∥2
}

denotes the Moreau envelope of the function

σf(·) at x. Consequently, for a given sequence of penalty parameters {σk} ⊆ R++ and an

initial point x0 ∈ RN , the dual-based ALM reads as follows: yk+1 ∈ arg min
y∈RM

{
Ldualσk

(y,xk)
}
,

xk+1 = xk + σk∇xLdualσk
(yk+1,xk) = proxσkf

(
xk + σkA

⊤yk+1
)
.

The choice between using a primal-based or dual-based approach is problem-dependent. For

example, when f is nonsmooth, but its proximal mapping is easy-to-compute, the dual-based

ALM may be more preferable. This is because, in the dual-based ALM, the optimization

problem for updating y involves minimizing a continuously differentiable objective function,

which can substantially simplify the optimization process.
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The applicability of the ALM has been significantly expanded since Rockafellar’s seminal

works [38, 39], which established a deep connection between the ALM and the proximal

point algorithm (PPA). Moreover, the elegant convergence properties of the ALM can be

established under the Lipschitz continuity of a certain solution mapping. Subsequent works

have shown that this stringent condition can be further relaxed; see, for example, [8, 29] and

references therein. Indeed, understanding the convergence properties of the ALM continues

to be a topic of interest in the literature. Apart from theoretical advancements, numerous

studies have demonstrated the remarkable efficiency of the ALM in solving various convex

problems, including conic programming problems [20, 22, 24, 55], statistical optimization

problems [19, 25, 53], optimization problems in machine learning [47, 48] and image/signal

processing [18, 27], to mention just a few. These successful applications highlight the critical

roles of both the solution methods used for solving ALM-subproblems and the error crite-

ria that control the accuracy required for solving these subproblems, while preserving the

appealing convergence properties of the ALM.

To solve ALM-subproblems efficiently, second-order methods, such as Newton-type meth-

ods [35], are strong candidates due to their fast local convergence rates. For example, once

the iterate of a Newton-type method falls into the fast convergence region, only a few more

iterations are needed to achieve a highly accurate solution. However, certain regularity con-

ditions are needed to ensure the nonsingularity of the (generalized) Hessian of the ALM

subproblem’s objective function at its solution point. Theoretically, such regularity condi-

tions are generally not verifiable in advance, except in some special cases [24]. Numerically,

ill-conditioned or singular (generalized) Hessians can lead to unpredictable numerical be-

haviors, resulting in unstable implementations and excessive efforts for parameter tuning.

To enhance the applicability of a second-order method for solving ALM’s subproblems, a

common simple approach is to add a proximal term to the ALM subproblem’s objective

function, resulting in the proximal augmented Lagrangian method (pALM)1. Specifically,

given {τk} ⊆ R++, {σk} ⊆ R++ and (x0,y0) ∈ RN × RM , the dual-based pALM iteratively

performs the following steps: yk+1 = arg min
y∈RM

{
Ldualσk

(y,xk) +
τk

2σk

∥∥y − yk
∥∥2 },

xk+1 = xk + σk∇xLdualσk
(yk+1,xk) = proxσkf

(
xk + σkA

⊤yk+1
)
.

(1.3)

By incorporating a proximal term, the pALM is able to bypass the regularity conditions

when applying a second-order method for solving its subproblem. This typically results in

more robust implementations with reduced parameter tuning. We refer readers to [9, 10,

15, 17, 21, 23, 25, 26, 33, 51] for successful applications of the pALM in addressing various

important optimization problems.

To make the pALM truly implementable and practical, it must allow approximate so-

lutions to the subproblem with progressively improved accuracy, and the associated error

criterion must be practically verifiable, while preserving desirable convergence properties of

the outer loop. To achieve this, an absolute-type error criterion was introduced by Rock-

afellar for the pALM in [38] and is now widely used in the literature; see, for example,

[21, 23, 25, 26, 33]. However, this absolute-type error criterion requires the specification

of a summable sequence of tolerance parameters, which must be tuned to avoid being too

conservative or too aggressive. As a result, careful parameter tuning of this sequence is often

necessary to achieve superior convergence performance. This process can result in exces-

sive effort and potential inefficiencies in practical implementations. A notable alternative

1The pALM is also known as the proximal method of multipliers; see [38].
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is to adopt a relative-type error criterion, which seeks to control the errors in minimizing

the subproblems based on some quantity related to the progress of the algorithm. This ap-

proach eliminates the need for a summable tolerance sequence, thereby enhancing practical

implementability. The adoption of a relative-type error criterion started from the seminal

works of Solodov and Svaiter [44, 42, 43, 45, 46] on inexact versions of the PPA, and has

since influenced the development of inexact versions of numerous algorithms, including the

variable metric PPA [30], ALM [11], ADMM [12], FISTA [3], and the Bregman-type methods

[49, 52]. However, to the best of our knowledge, research on relative-type inexact versions of

the pALM remains in its early stage, with limited exploration in [10, 17, 51]. In particular, all

these inexact versions are derived by applying a (variable metric) hybrid proximal extragra-

dient method [30, 42, 43] to a certain primal-dual solution mapping of the convex constrained

problem, and therefore require an additional correction step to ensure convergence. Conse-

quently, the algorithms developed in [10, 17, 51] essentially deviate from the vanilla pALM

framework (1.3). Moreover, our numerical results also indicate that the correction step tends

to slow down the convergence of the pALM and thus increase the computational cost. These

observations naturally lead us to raise the following question:

Can we design a relative-type error criterion for the vanilla pALM, while preserving

desirable convergence properties?

In light of this, the primary goal of this paper is to address the above question by designing

a relative-type error criterion for the vanilla pALM (1.3). Note that the relative-type error

criterion proposed by Eckstein and Silva [11] for the ALM innovatively introduces an auxil-

iary error variable to control the inexactness while ensuring convergence. In this work, we

shall demonstrate that a similar idea can be adapted to the vanilla pALM, but with essential

modifications. We should emphasize that the corresponding theoretical convergence analysis

also requires substantial modifications, due to the inclusion of the proximal term. Interest-

ingly, while the initial motivation for considering pALM was to ensure the nonsingularity of

the (generalized) Hessian of the ALM subproblem’s objective function at its solution point,

our analysis reveals that this proximal term can further improve the existing convergence

properties of the relative-type inexact ALM studied in [1, 11, 54]. Specifically, under some

common assumptions, it ensures the convergence of both the primal and dual sequences, as

well as their asymptotically Q-(super)linear convergence rates. The key contributions and

findings of this paper are summarized as follows:

• We develop a relative-type inexact proximal augmented Lagrangian method (ripALM)

to solve the dual problem (1.2). This proposed ripALM is the first inexact version of

the vanilla pALM (1.3). It not only shares the same convergence properties for the

sequence {xk} as the relative-type inexact ALM studied in [1, 11, 54], but also offers

other theoretical advantages in that the sequence {yk} is guaranteed to converge, and

both primal and dual sequences achieve asymptotically Q-(super)linear convergence

rates under a relatively weaker error bound assumption. These results provide strong

theoretical support for the applicability of ripALM, particularly in scenarios where

accurate solutions of both primal and dual problems are required.

• Numerically, we implement the proposed ripALM and apply it to solve quadratically

regularized optimal transport (QROT) problems. Extensive numerical results validate

the promising performance of the proposed ripALM for solving large-scale QROT prob-

lems. Moreover, comparisons with existing methods underscore our motivation and

contributions in developing a relative-type error criterion for the vanilla pALM. We
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also emphasize that our ripALM can be extended to solve optimal transport problems

with other convex regularizers such as the group quadratic regularizer [51], provided

that the regularizers are proximal-friendly and the generalized Jacobians associated

with the pALM-subproblems are easy to compute. Given the growing interests in

developing efficient algorithmic frameworks for computational optimal transport [31],

our work may open up new possibilities for applying the powerful pALM algorithmic

framework in a wide variety of real-world applications.

The remaining parts of this paper are organized as follows. Section 2 describes the

main algorithmic framework of ripALM, whose convergence analysis is conducted in Section

3. Section 4 showcases how to apply the proposed ripALM for solving QROT problems.

Numerical experiments are conducted in Section 5. Finally, some concluding remarks are

summarized in Section 6.

Notation. We use Rn, Rn
+, Rm×n and Rm×n

+ to denote the sets of n-dimensional real

vectors, n-dimensional non-negative vectors, m×n real matrices and m×n real non-negative

matrices, respectively. For a vector x ∈ Rn, xi denotes its i-th entry, ∥x∥ denotes its

Euclidean norm, and ∥x∥H :=
√
⟨x, Hx⟩ denotes its weighted norm associated with a

symmetric positive definite matrix H ∈ Rn×n. For a matrix X ∈ Rm×n, Xij denotes its

(i, j)-th entry, ∥X∥F denotes its Frobenius norm, and vec(X) denotes the vectorization of

X, where [vec(X)]i+(j−1)m = Xij for any 1 ≤ i ≤ m and 1 ≤ j ≤ n. For simplicity, given an

integer n > 0, we use 1n ∈ Rn to denote the n-dimensional vector of all ones, and use In to

denote the n× n identity matrix.

For an extended-real-valued function f : Rn → [−∞,∞], we say that it is proper if

f(x) > −∞ for all x ∈ Rn and its effective domain dom f := {x ∈ Rn : f(x) < ∞} is

nonempty. A proper function f is said to be closed if it is lower semicontinuous. Assume

that f : Rn → (−∞,∞] is a proper and closed convex function, the subdifferential of f at x ∈
dom f is defined by ∂f(x) :=

{
d ∈ Rn : f(y) ≥ f(x)+⟨d, y−x⟩, ∀y ∈ Rn

}
and its conjugate

function f∗ : Rn → (−∞,∞] is defined by f∗(y) := sup
{
⟨y, x⟩ − f(x) : x ∈ Rn

}
. For any

ν > 0, the Moreau envelope of νf at x is defined by Mνf (x) := miny
{
f(y)+ 1

2ν ∥y−x∥
2
}
, and

the proximal mapping of νf at x is defined by proxνf (x) := argminy
{
f(y) + 1

2ν ∥y−x∥2
}
.

Let S be a closed convex subset of Rn. Its indicator function δS is defined by δS(x) = 0

if x ∈ S and δS(x) = +∞ otherwise. Moreover, we denote the weighted distance of x ∈ Rn

to S by distH(x,S) := infy∈S ∥x−y∥H associated with a symmetric positive definite matrix

H. When H is the identity matrix, we omit H in the notation and simply use dist(x,S)
to denote the Euclidean distance of x ∈ Rn to S. Moreover, we use ΠS(x) to denote the

projection of x onto S.

2 A relative-type inexact pALM

In this section, we focus on developing a relative-type inexact proximal augmented La-

grangian method (ripALM) to solve the dual problem (1.2). The algorithmic framework is

developed based on the parametric convex duality framework (see, for example, [36, 37] and

[40, Chapter 11]).

We first identify problem (1.2) with the following problem

min
y∈RM

G(y,0), (2.1)

where G : RM × RN → (−∞,+∞] is defined by

G(y, ξ) := f∗(A⊤y + ξ)− b⊤y. (2.2)
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Note that G is proper closed convex since f∗ is proper closed convex. Then, the (ordinary)

Lagrangian function of problem (1.2) can be defined by taking the concave conjugate of G

with respect to its second argument (see [40, Definition 11.45]), that is,

ℓ(y,x) := inf
ξ∈RN

{G(y, ξ)− ⟨x, ξ⟩} = −b⊤y + ⟨x, A⊤y⟩ − f(x). (2.3)

Clearly, ℓ is convex in its first argument and concave in the second argument. For a given

penalty parameter σ > 0, the augmented Lagrangian function of problem (1.2) is defined by

(see [40, Example 11.57])

Lσ(y, x) := sup
s∈RN

{
ℓ(y, s)− 1

2σ
∥s− x∥2

}
=− b⊤y +

1

2σ

∥∥x+ σA⊤y
∥∥2 − 1

2σ
∥x∥2 − Mσf

(
x+ σA⊤y

)
.

From the property of the Moreau envelope (see [2, Proposition 12.30]), we know that Lσ is

continuously differentiable with respect to its first argument and

∇yLσ(y,x) = Aproxσf
(
x+ σA⊤y

)
− b.

With the above preparations, we are ready to present our ripALM for solving problem (1.2)

in Algorithm 1.

Algorithm 1 A relative-type inexact proximal augmented Lagrangian method (ripALM)

for solving problem (1.2)

Input: ρ ∈ [0, 1), {σk}∞k=0 is a sequence of real numbers such that infk≥0{σk} > 0, and

{τk}∞k=0 is a sequence of real numbers such that infk≥0{τk} > 0 and supk≥0{τk} < ∞.

Choose y0, w0 ∈ RM and x0 ∈ RN arbitrarily. Set k = 0.

while the termination criterion is not met, do

Step 1. Approximately solve the subproblem:

min
y∈RM

Lσk
(y, xk) +

τk
2σk

∥∥y − yk
∥∥2 (2.4)

to find yk+1 ∈ RM such that

2
∣∣⟨wk − yk+1, σk∆

k+1⟩
∣∣+ ∥∥σk∆k+1

∥∥2
≤ ρ

(∥∥proxσkf

(
xk + σkA

⊤yk+1
)
− xk

∥∥2 + τk
∥∥yk+1 − yk

∥∥2) ,
(2.5)

where ∆k+1 := ∇yLσk
(yk+1,xk) + τkσ

−1
k (yk+1 − yk).

Step 2. Update

xk+1 = proxσkf

(
xk + σkA

⊤yk+1
)
, wk+1 = wk − σk∆

k+1. (2.6)

Step 3. Set k = k + 1 and go to Step 1.

end while

Output: (yk,xk)

In line with pALM-type methods, at each iteration, our ripALM in Algorithm 1 approxi-

mately minimizes the sum of the augmented Lagrangian function Lσk
(·, xk) and a proximal
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term τk
2σk

∥∥ · −yk
∥∥2 under the error criterion (2.5), followed by the updates of the multi-

plier xk and the auxiliary error variable wk. Due to the strong convexity of the objective

function in (2.4), the subproblem (2.4) has a unique solution, denoted as yk,∗, satisfying

∆k,∗ := ∇yLσk
(yk,∗,xk) + τkσ

−1
k (yk,∗ − yk) = 0. Then, for any minimizing sequence {yk,t}

for (2.4) converging to yk,∗, we have that ∆k,t := ∇yLσk
(yk,t,xk) + τkσ

−1
k (yk,t − yk) → 0

and consequently 2
∣∣⟨wk − yk,t, σk∆

k,t⟩
∣∣+ ∥∥σk∆k,t

∥∥2 → 0 as t→∞. Meanwhile, if yk is not

the solution of (2.4) and τk ̸= 0, the right-hand side of (2.5) cannot be zero. Therefore, in

this case, our error criterion (2.5) must hold after finitely many t iterations, and thus it is

achievable.

Compared to the recent semismooth Newton based inexact proximal augmented La-

grangian (Snipal) method developed in [21, Section 3], our ripALM in Algorithm 1 employs

a significantly different error criterion (2.5) for solving the subproblem (2.4). Specifically, in

our context, Snipal requires the error term ∆k+1 to satisfy

(A)
∥∥∆k+1

∥∥ ≤ min
(√

τk, 1
)

σk
εk, εk ≥ 0,

∞∑
k=0

εk <∞,

(B)
∥∥∆k+1

∥∥ ≤ δk min
(√

τk, 1
)

σk

√∥∥∆k+1
x

∥∥2 + τk
∥∥∆k+1

y

∥∥2, 0 ≤ δk < 1,

∞∑
k=0

δk <∞,

(2.7)

with ∆k+1
x := xk+1 − xk and ∆k+1

y := yk+1 − yk, to guarantee an asymptotically Q-

(super)linear convergence rate.2 Both error criteria (A) and (B) in (2.7) are of the absolute

type, meaning that they require the pre-specification of two summable sequences of tolerance

parameters, {εk} ⊆ [0,∞) and {δk} ⊆ [0, 1), to control the error incurred in the inexact mini-

mization of the subproblem. Since there is generally no direct guidance on optimally selecting

these tolerance parameters to achieve good convergence efficiency, this absolute-type crite-

rion typically requires careful tuning for the tolerance parameters, which may make Snipal

less user-friendly in practical implementations. In contrast, the error criterion (2.5) used in

ripALM is of the relative type, meaning that the error 2
∣∣⟨wk−yk+1, σk∆

k+1⟩
∣∣+∥∥σk∆k+1

∥∥2
is regulated by a tentative successive difference related to the progress of the algorithm.

Moreover, this relative-type criterion only involves a single tolerance parameter ρ ∈ [0, 1),

thus simplifying the process of parameter tuning both computationally and in terms of im-

plementation, as we shall see in subsection 5.1.

Thanks to the advantage of eliminating the need to select an infinite sequence of tolerance

parameters, various versions of relative error criteria have been widely adopted in numerous

well-known algorithms (e.g., PPA, ALM, ADMM, FISTA, etc) to approximately solve sub-

problems over the past two decades. This trend began with the seminal works of Solodov

and Svaiter [42, 43, 44, 45, 46], which has since inspired the development of numerous algo-

rithms; see, for example, [3, 11, 12, 30, 49, 51, 52]. Following the same research theme, Yang

et al. [51] recently developed a corrected inexact proximal augmented Lagrangian method

(ciPALM) for solving a class of group-quadratic regularized optimal transport problems. The

error criterion used there can be described as follows: choose ρ ∈ [0, 1), at each iteration,

approximately solve the subproblem (2.4) to find a point ỹk+1 such that

∆̃k+1 := ∇yLσk
(ỹk+1,xk) + τkσ

−1
k (ỹk+1 − yk),∥∥σk∆̃k+1

∥∥2 ≤ ρmin (τk, 1)
∥∥∥proxσkf

(
xk + σkA

⊤ỹk+1
)
− xk

∥∥∥2 + τk

∥∥∥ỹk+1 − yk
∥∥∥2 . (2.8)

2Note that the error criterion (A) in (2.7) alone is sufficient for establishing the global convergence of the

Snipal; see [21, Section 3].
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When (2.8) is satisfied, the multiplier is updated as usual: xk+1 = proxσkf

(
xk+σkA

⊤ỹk+1
)
.

This is then followed by an extra correction step: yk+1 = yk − τ−1
k σk

(
Axk+1 − b

)
. After

these updates, the algorithm proceeds to the next iteration. One can see that the error

criterion (2.8) used in the ciPALM is also of the relative type and looks even simpler than

(2.5) used in our ripALM. However, we should point out that the ciPALM requires an extra

correction step to guarantee the convergence, and hence it may only be viewed as a pALM-

like algorithm. In contrast, our relative error criterion (2.5) is designed for the vanilla pALM,

where the error variable wk is used solely in the construction of the error criterion (2.5) and

does not directly influence either the objective function in (2.4) or the updating rules of

the primal and dual variables. Our experimental results also show that the correction step

tends to slow down the convergence of the pALM, whereas our ripALM can offer greater

robustness and efficiency; see subsection 5.1 for numerical comparisons.

Our relative error criterion (2.5) is inspired by Eckstein and Silva’s practical relative error

criterion [11], which was developed for the approximate minimization of the subproblems in

the vanilla ALM (i.e., without the proximal term τk
2σk

∥∥y−yk
∥∥2 in the subproblem (2.4) in our

context). Unlike their work, we suggest incorporating τk
2σk

∥∥y−yk
∥∥2 in the subproblem (2.4).

This proximal term guarantees the existence and uniqueness of the optimal solution of the

strongly convex subproblem (2.4). Introducing the proximal term also ensures the positive

definiteness of the generalized Hessian of the objective function in (2.4), thereby facilitating

the application of the semi-smooth Newton method to solve the subproblem (2.4) effectively,

as shown in Section 4. In addition, as we will see later in the next section, our ripALM

not only shares the same convergence properties for the sequence {xk} as Eckstein and

Silva’s relative-type inexact ALM developed in [1, 11, 54], but also offers other theoretical

advantages in that the sequence {yk} is guaranteed to converge, and both primal and dual

sequences achieve asymptotically Q-(super)linear convergence rates under a relatively weaker

error bound assumption.

3 Convergence analysis

In this section, we study the convergence properties of ripALM in Algorithm 1. Before

proceeding, we recall the definition of G from (2.2) and further define F : RN × RM ⇒
RN × RM to be the concave conjugate of G:

F (θ,x) := inf
y∈RM , ξ∈RN

{
G(y, ξ)− ⟨θ,y⟩ − ⟨x, ξ⟩

}
, (3.1)

which is a closed (upper semicontinuous) concave function. Then, the dual problem of (2.1)

is given by

max
x∈RN

F (0,x), (3.2)

which can be rewritten as problem (1.1). Next, let ∂G : RM × RN ⇒ RM × RN and

∂F : RM × RN ⇒ RM × RN denote the subgradient maps of G and F , respectively, that is,

(θ,x) ∈ ∂G(y, ξ) ⇔ G(y′, ξ′) ≥ G(y, ξ) + ⟨θ,y′ − y⟩+ ⟨x, ξ′ − ξ⟩, ∀(y′, ξ′),

(y, ξ) ∈ ∂F (θ,x) ⇔ F (θ′,x′) ≤ F (θ,x)− ⟨y,θ′ − θ⟩ − ⟨ξ,x′ − x⟩, ∀(θ′,x′).

We also recall the definition of ℓ from (2.3) and let ∂ℓ : RM × RN ⇒ RM × RN denote the

subgradient map of ℓ, that is,

(θ, ξ) ∈ ∂ℓ(y,x) ⇔

{
ℓ(y′,x) ≥ ℓ(y,x) + ⟨θ,y′ − y⟩, ∀y′ ∈ RM ,

ℓ(y,x′) ≤ ℓ(y,x)− ⟨ξ,x′ − x⟩, ∀x′ ∈ RN .
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By this definition, one can verify that

∂ℓ(y,x) := {Ax− b} ×
{
v −A⊤y | v ∈ ∂f(x)

}
.

Moreover, all the subgradient maps ∂G, ∂F and ∂ℓ are maximal monotone operators, and

satisfy that (see also [11, equation (23)]):

(θ,x) ∈ ∂G(y, ξ) ⇔ (θ, ξ) ∈ ∂ℓ(y,x) ⇔ (y, ξ) ∈ ∂F (θ,x). (3.3)

If (y∗,x∗) ∈ RM × RN satisfies (0,0) ∈ ∂ℓ(y∗,x∗), then y∗ solves problem (2.1) (i.e.,

problem (1.2)) and x∗ solves problem (3.2) (i.e., problem (1.1)). In this case, we call (y∗,x∗)

a saddle point of the Lagrangian function ℓ(y,x). If such a saddle point exists, then strong

duality holds, that is, the optimal values of problems (2.1) and (3.2) are finite and equal,

i.e., G(y∗,0) = F (0,x∗). Moreover, the set of saddle points can be written as Y∗ × X ∗ ⊆
RM × RN , where Y∗ is the solution set of problem (2.1) (i.e., problem (1.2)) and X ∗ is the

solution set of problem (3.2) (i.e., problem (1.1)).

With the above preparations, we are now ready to establish the convergence results of

the proposed ripALM in Algorithm 1. The analysis is inspired by [1, 11, 54], but is more

involved. We need to be particularly careful in establishing a proper recursive relation with

respect to xk, yk and wk, due to the inclusion of the proximal term τk
2σk
∥y − yk∥2.

Theorem 3.1. Let the functions G, F and ℓ be defined as in (2.2), (3.1) and (2.3), respec-

tively. Let ρ ∈ [0, 1), {σk} ⊂ R++ be a positive sequence satisfying that σk ≥ σmin > 0 for

all k ≥ 0, and {τk} be a positive sequence satisfying that

τk ≥ τmin > 0, τk+1 ≤ (1 + νk)τk with νk ≥ 0 and
∑∞

k=0νk < +∞.

Let {yk}, {∆k}, {wk} ⊂ RM and {xk} ⊂ RN be sequences generated by Algorithm 1. If ℓ

admits a saddle point (i.e., (∂ℓ)−1(0,0) ̸= ∅), then the following statements hold.

(i) The sequences {yk}, {wk} and {xk} are bounded.

(ii) lim
k→∞

∆k+1 = 0, lim
k→∞

θk+1 = 0 and lim
k→∞

ξk+1 = 0, where θk+1 and ξk+1 are defined by

θk+1 := ∆k+1 − τkσ
−1
k (yk+1 − yk) and ξk+1 := σ−1

k (xk − xk+1), ∀k ≥ 0.

(iii) Both the sequences
{
G(yk+1, ξk+1)

}
and

{
F (θk+1, xk+1)

}
converge to the common

optimal value of problems (2.1) and (3.2).

(iv) Any accumulation point of {yk} is an optimal solution of problem (2.1) (i.e., problem

(1.2)), and any accumulation point of {xk} is an optimal solution of problem (3.2)

(i.e., problem (1.1)).

(v) The sequence {xk} converges to an optimal solution of problem (3.2).

Proof. See Appendix A.1. 2

We next study the asymptotically Q-(super)linear convergence rate of our ripALM under

an error-bound condition presented in Assumption A. As noted in [21, Lemma 2.4], this

error-bound condition is weaker than the local upper Lipschitz continuity of (∂ℓ)−1 at the

origin. The latter condition was used in [54] to establish the asymptotic Q-(super)linear

convergence rate for Eckstein and Silva’s relative-type inexact ALM, while the former, weaker

condition has also been employed in [21] and [51] to establish the asymptotic Q-(super)linear

convergence rate for the Snipal and ciPALM, respectively.
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Assumption A. For any r > 0, there exist a constant κ > 0 such that, for any (y,x) ∈{
(y,x) ∈ RM × RN | dist

(
(y,x), (∂ℓ)−1(0,0)

)
≤ r

}
,

dist
(
(y,x), (∂ℓ)−1(0,0)

)
≤ κdist ((0,0), ∂ℓ(y,x)) . (3.4)

Theorem 3.2. Under the same assumptions as in Theorem 3.1, suppose additionally that

Assumption A holds, and the sequences of parameters ρ, {σk} and {τk} satisfy that

√
τmin − 2

√
ρ > 0 and lim inf

k→∞
σk > c ·

2κ
√
τmax

(
ρ+

√
ρmax {1, τmax}

)
√
τmin − 2

√
ρ

, (3.5)

where c > 1 is an arbitrarily given positive constant and τmax := τ0
∏∞

k=0(1 + νk). Let

Λk := Diag(τkIM , IN ), τk := max {1, τk} and

γk :=

(
1−

2κ
√
τk (ρ+

√
ρτk) + 2σk

√
ρ

σk
√
τk

)
σ2
k

κ2
(√

ρ+
√
τk

)2
τk

.

Then, the following statements hold.

(i) For any sufficiently large k, we have that γk > 0 and

distΛk+1

(
(yk+1,xk+1), (∂ℓ)−1(0,0)

)
≤ µk distΛk

(
(yk,xk), (∂ℓ)−1(0,0)

)
,

where

lim sup
k→∞

{
µk :=

√
1 + νk
1 + γk

}
< 1.

(ii) The sequence {yk} is convergent.

Proof. See Appendix A.2. 2

Remark 3.1 (Comments on µk). One can see from the expression of γk that, after a finite

number of iterations, γk becomes proportional to the penalty parameter σk, provided that ρ,

{σk} and {τk} satisfy conditions in (3.5). Therefore, if
√
τmin − 2

√
ρ > 0, the coefficient

µk can be less than 1 when σk is sufficiently large, and it approaches 0 as σk tends to +∞.

This readily demonstrates that the sequence
{
(yk,xk)

}
converges to the set of saddle points

at a Q-(super)linear rate if σk is sufficiently large and
√
τmin − 2

√
ρ > 0. In practical

implementations, one could simply choose an increasing sequence of {σk} with σk ↑ +∞,

and set τmin ≥ 4 to ensure that
√
τmin− 2

√
ρ > 0 for any ρ ∈ [0, 1). In contrast, as discussed

in [51, Remark 2.1], the ciPALM (which is also of relative-type but uses the error criterion

(2.8)) should require ρ < 1
3 to guarantee an asymptotically Q-(super)linear convergence rate

under the same error bound condition. This highlights another advantage of our ripALM, as

it offers greater flexibility in choosing ρ.

4 Application to the QROT problem

In this section, we will present the application of ripALM in Algorithm 1 for solving quadrat-

ically regularized optimal transport (QROT) problems. As a significant variant of the classi-

cal optimal transport problem, the QROT problem has garnered notable attention in recent

years; see, e.g., [4, 13, 28] for more details. Mathematically, the QROT problem is given as

follows:

min
X

{λ

2
∥X∥2F + ⟨C, X⟩ | X1n = α, X⊤1m = β, X ≥ 0

}
, (4.1)
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where λ > 0 is a given regularization parameter, C ∈ Rm×n
+ is a given cost matrix, α :=

(α1, · · · , αm)⊤ ∈ Σm and β := (β1, · · · , βn)⊤ ∈ Σn are given probability vectors with Σm

(resp., Σn) denoting the m (resp., n)-dimensional unit simplex, and 1m (resp., 1n) denotes

the m (resp., n)-dimensional vector of all ones.

To apply our proposed ripALM, we first reformulate (4.1) as follows:

min
X∈Rm×n

{
fq(X) :=

λ

2
∥X∥2F + ⟨C,X⟩+ δRm×n

+
(X) | X1n = α, X⊤1m = β

}
. (4.2)

Clearly, it falls into the form of problem (1.1) (upon vectorization of X). Further, one can

show that the dual problem of (4.2) is given by (modulo a minus sign)

min
u,v

f∗
q

(
u1⊤n + 1mv⊤

)
−α⊤u− β⊤v, (4.3)

and its associated augmented Lagrangian function is given by (using the similar deduction

as Section 2)

Lσ(u,v, X) =−α⊤u− β⊤v +
1

2σ

∥∥∥X + σ
(
u1⊤n + 1mv⊤

)∥∥∥2
F

− 1

2σ
∥X∥2F − Mσfq

(
X + σ

(
u1⊤n + 1mv⊤

))
,

where u ∈ Rm, v ∈ Rn are the Lagrange multipliers corresponding to X1n = α and

X⊤1m = β, respectively, and the conjugate function f∗
q admits the following expression:

f∗
q (Z) =


δRm×n

+
(C − Z) , if λ = 0,

1

2λ

∥∥∥ΠRm×n
+

(Z − C)
∥∥∥2
F
, if λ > 0.

Thus, given an arbitrary initial guess
(
u0,v0, X0

)
∈ Rm × Rn × Rm×n, the basic iterative

scheme of our ripALM for solving (4.3) reads as follows:
(
uk+1,vk+1

)
≈ argmin

u∈Rm,v∈Rn
{Ψk(u,v)} , (4.4a)

Xk+1 = proxσkfq

(
Xk + σk

(
uk+11⊤n + 1m(vk+1)⊤

))
, (4.4b)

where

Ψk(u,v) := Lσk
(u,v, Xk) +

τk
2σk

∥∥∥u− uk
∥∥∥2 + τk

2σk

∥∥∥v − vk
∥∥∥2 .

To truly implement our ripALM for solving problem (4.2), it is essential to efficiently

solve the subproblem (4.4a) to find (uk+1,vk+1) satisfying the error criterion (2.5). In the

following, we shall describe how to apply a semismooth Newton (Ssn) method to achieve

this goal. For simplicity, we drop the index k and explicitly rewrite the subproblem (4.4a)

as follows:

min
u∈Rm,v∈Rn


Ψ(u,v) := −α⊤u− β⊤v +

1

2σ

∥∥∥X̄ + σ
(
u1⊤n + 1mv⊤

)∥∥∥2
F
− 1

2σ
∥X̄∥2F

− Mσfq

(
X̄ + σ

(
u1⊤n + 1mv⊤

))
+

τ

2σ
∥u− ū∥2 + τ

2σ
∥v − v̄∥2

 , (4.5)

where ū, v̄ and X̄ are given. From the property of the Moreau envelope (see, for example,

[2, Proposition 12.30]), we see that Ψ is strongly convex and continuously differentiable with

the gradient

∇Ψ(u,v) =


(
proxσfq

(
X̄ + σ

(
u1⊤n + 1mv⊤)))1n −α+ τσ−1 (u− ū)(

proxσfq

(
X̄ + σ

(
u1⊤n + 1mv⊤)))⊤

1m − β + τσ−1 (v − v̄)

 .
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Note that the proximal mapping proxσfq(·) can be easily computed as follows:

proxσfq (Z) =
1

1 + λσ
ΠRm×n

+
(Z − σC) , ∀Z ∈ Rm×n.

Then, from the first-order optimality condition, solving problem (4.5) is equivalent to solving

the following non-smooth equation:

∇Ψ(u,v) = 0. (4.6)

In view of the nice property of ∇Ψ, we are able to follow [19, 21, 22, 51] to apply a globally

convergent and locally superlinearly convergent Ssn method to solve (4.6). Specifically, let

W(u,v) := X̄ + σ
(
u1⊤n + 1mv⊤ − C

)
and define the multifunction ∂̂(∇Ψ) : Rm × Rn ⇒

R(m+n)×(m+n) as follows:

∂̂(∇Ψ)(u,v) :=

H ∈ R(m+n)×(m+n)

∣∣∣∣∣∣∣
H :=

σ

1 + λσ
BDiag(vec(Ω))B⊤ +

τ

σ
Im+n,

∀Ω ∈ ∂ΠRm×n
+

(W(u,v))

 ,

where B :=

[
1⊤n ⊗ Im
In ⊗ 1⊤m

]
∈ R(m+n)×mn with “⊗” denoting the Kronecker product, vec(Ω)

denotes the vectorization of Ω with [vec(Ω)]i+(j−1)m = Ωij for any 1 ≤ i ≤ m and 1 ≤
j ≤ n, Diag(z) denotes the diagonal matrix whose ith diagonal element is given by zi, and

∂ΠRm×n
+

(Z) denotes the generalized Jacobian of the Lipschitz continuous mapping ΠRm×n
+

at

Z, which is defined by

∂ΠRm×n
+

(Z) :=

Ω ∈ Rm×n

∣∣∣∣ Ωij ∈


{1}, if Zij > 0,

[0, 1], if Zij = 0,

{0}, if Zij < 0,

 .

Then, using similar arguments as in the proof of [51, Proposition 4], one can show that ∇Ψ(·)
is strongly semi-smooth with respect to ∂̂(∇Ψ)(·), and thus the Ssn method is applicable.

More importantly, for any (u,v) ∈ Rm×Rn, all elements of ∂̂(∇Ψ)(u,v) are positive definite.

This ensures the direct applicability of the Ssn method without the need for a specific

regularity condition, such as the primal constraint nondegeneracy condition [55], highlighting

the advantage of incorporating a proximal term. The detailed description of the Ssn method

for solving equation (4.6) is presented in Algorithm 2. We refer readers to [19, Theorem 3.6]

for its detailed convergence results.

5 Numerical experiments

In this section, we conduct numerical experiments to evaluate the performance and validate

the efficiency of our ripALM in Algorithm 1 for solving the QROT problem (4.1). Specifically,

we will conduct experiments from the following two aspects:

• In Section 5.1, we compare our ripALM with Snipal [21] and ciPALM [51], which rep-

resent the latest absolute-type and relative-type inexact pALMs, respectively. These

comparisons aim to illustrate how different error criteria with different tolerance pa-

rameters influence the practical numerical performance of the inexact pALM.

• In Section 5.2, we compare our ripALM with Gurobi and a dual alternating direc-

tion method of multipliers (dADMM, see Appendix B for more details) for solving
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Algorithm 2 A semismooth Newton (Ssn) method for solving equation (4.6)

Input: Choose µ̄ ∈ (0, 1), µ ∈ (0, 1], η ∈ (0, 1/2), δ ∈ (0, 1), and an initial point (u0,v0) ∈
Rm × Rn. Set t = 0.

while the termination criterion is not met do

Step 1. Compute ∇Ψ(ut,vt) and choose an element Ht ∈ ∂̂(∇Ψ)(ut,vt). Solve the

linear system

Htdt = −∇Ψ(ut,vt), (4.7)

nearly exactly by the (sparse) Cholesky decomposition with forward and backward sub-

stitutions, or approximately by the preconditioned conjugate gradient (CG) method to

find dt := (dt
u,d

t
v) such that∥∥Htdt +∇Ψ(ut,vt)

∥∥ ≤ min
{
µ̄,

∥∥∇Ψ(ut,vt)
∥∥1+µ

}
.

Step 2. (Line search) Find a step size αt := δit , where it is the smallest non-negative

integer such that

Ψ
(
ut + δitdt

u, v
t + δitdt

v

)
−Ψ(ut,vt) ≤ ηδit

〈
∇Ψ(ut,vt), dt

〉
.

Step 3. Set ut+1 = ut + αtd
t
u, v

t+1 = vt + αtd
t
v, t = t+ 1, and go to Step 1.

end while

large-scale QROT problems. Gurobi represents one of the state-of-the-art commercial

solvers, while the dADMM is a widely used first-order method for solving large-scale

constrained convex optimization problems; see, for example, [5, 14].

All experiments are run inMatlab R2023a on a PC with Intel processor i7-12700K@3.60GHz

(with 12 cores and 20 threads) and 64GB of RAM, equipped with a Windows OS. The im-

plementation details are given as follows.

Termination conditions. Let Z(u,v, X) := C + λX − u1⊤n − 1mv⊤. The Karush-

Kuhn-Tucker (KKT) system for problem (4.1) and its dual (4.3) is given by

X1n = α, X⊤1m = β, ⟨X, Z(u,v, X)⟩ = 0, X ≥ 0, Z(u,v, X) ≥ 0. (5.1)

Note that (u,v, X) satisfies the KKT system (5.1) if and only if X solves (4.1) and (u,v)

solves (4.3), respectively. Based on (5.1), we define the relative KKT residual for any

(X, u, v) as follows:

∆kkt(u,v, X) := max {∆p(X), ∆d(u,v, X), ∆c(u,v, X)} ,

where

∆p(X) := max

{
∥X1n −α∥
1 + ∥α∥

,
∥X⊤1m − β∥

1 + ∥β∥
,
∥min{X, 0}∥F

1 + ∥X∥F

}
,

∆d(u,v, X) :=
∥min{Z(u, v, X), 0}∥F

1 + ∥C∥F
, ∆c(u,v, X) :=

|⟨X, Z(u, v, X)⟩|
1 + ∥C∥F

.

Moreover, we define the relative duality gap as follows:

∆gap(u, v, X) :=
|pobj(X)− dobj(u,v)|

1 + |pobj(X)|+ |dobj(u,v)|
,
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where pobj(X) := fq(X) and dobj(u,v) := −f∗
q

(
u1⊤n + 1mv⊤) + α⊤u + β⊤v. Using

these relative residuals, we will terminate our ripALM when it returns a point (uk, vk, Xk)

satisfying

∆k
res := max

{
∆kkt(u

k, vk, Xk), ∆gap(u
k, vk, Xk)

}
< 10−6.

Initial points. For the experiments in Section 5.1, we simply initialize all inexact pALMs

at the origin to amplify the impact of inexactness. For the experiments in Section 5.2, we will

employ a warm-start strategy for more efficiency. Indeed, our numerical experience (see, e.g.,

[21, 23, 51]) have suggested that a reasonably good initial point would benefit the practical

performance of such a “pALM+ Ssn” algorithmic framework. Therefore, for the experiments

in Section 5.2, we first employ an inexact Bregman proximal gradient method (iBPGM)

with Sinkhorn’s algorithm as a subsolver for solving the QROT problem (4.1) to generate an

initial point for our ripALM; see Appendix C for more details. Specifically, we terminate this

iBPGM as long as it produces a point (uk, vk, Xk) such that ∆k
res < 10−3, or it reaches the

maximal number of iterations 500. Note that the time consumed during the warm-starting

phase is included in the total computational time for our ripALM. Additionally, the initial

error variable w0 in our ripALM is always set to 0.

For the Ssn method in Algorithm 2, we will initialize it with the origin at the first pALM

iteration and then employ a warm-start strategy thereafter. Specifically, at each pALM

iteration, we initialize the Ssn method with the approximate solution obtained by the Ssn

method in the previous pALM iteration.

Hyperparameters. Our ripALM as well as Snipal and ciPALM require appropriate

choices of {σk} and {τk} to achieve superior performance. In our experiments, for all algo-

rithms, we simply set σk = min
{
104, max

{
10−4, 1.5k

}}
and τk ≡ 5 for all k ≥ 0. These

choices of {τk} and {σk} can satisfy the required conditions in Theorems 3.1 and 3.2; see also

Remark 3.1. Moreover, we would like to emphasize that more sophisticated updating rules

for σk and τk are possible and may lead to improved numerical performance. In addition,

for the Ssn method in Algorithm 2, we set η = 10−4, δ = 0.5, µ̄ = 10−3 and µ = 0.2.

5.1 Comparison with SNIPAL and ciPALM

In this part of experiments, we compare our ripALM with Snipal [21] and ciPALM [51]

for solving the QROT problem (4.1) to illustrate how different error criteria with different

tolerance parameters influence the numerical performance of the inexact pALM. Note that

both our ripALM and the ciPALM are of relative-type and only require a single tolerance

parameter ρ, as shown in (2.5) and (2.8), respectively, while the Snipal is of absolute-type

and requires two summable tolerance parameter sequences {εk} and {δk}, as shown in (2.7).

For simplicity, in our comparisons, we set εk = ε0/(k + 1)p, δk = δ0/(k + 1)q with ε0 = δ0 ∈{
0.01, 1

}
and p, q ∈

{
1.1, 2.1, 3.1

}
(hence, there are 18 combinations in total) for Snipal.

For our ripALM and the ciPALM, we consider ρ ∈ {0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 0.9, 0.99, 0.999}
(hence, there are 9 choices).

We use images from the ClassicImages class in the DOTmark collection [41], which

serves as a benchmark dataset for the OT problem and its variants, to generate the QROT

instance. Note that the images in the ClassicImages class consist of ten different images,

each with different resolutions of 32× 32, 64× 64, 128× 128 and 512× 512. Thus, for each

resolution, we can pair any two different images and compute the QROT problem, resulting

in 45 QROT problems. Moreover, the cost matrix C is obtained by calculating the squared

Euclidean distances between pixels.

Tables 1 and 2 present the average results (over 45 instances) for 64 × 64 resolution

with the regularization parameter λ ∈ {1, 0.1}. From the results, one can see that the
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performance of all algorithms depends on the choices of tolerance parameters, and with

proper tuning, their performances can be comparable. This is indeed expected since all the

algorithms essentially employ the same “pALM + Ssn” framework, but differ in their error

criteria for solving the subproblems. Notably, since our ripALM and the ciPALM involve

only a single tolerance parameter ρ ∈ [0, 1), they are more user-friendly and easier to tune

since a simple 1-D grid-search strategy is sufficient. We also observe that the number of

pALM iterations for the three methods remains unchanged (e.g., 17). However, using an

absolute-type error criterion often leads to redundant efforts in solving the subproblems.

In contrast, a relative-type error criterion has the potential to alleviate this issue. This

supports the main motivation for developing a relative-type error criterion. Moreover, one

can see that our ripALM always outperforms the ciPALM in terms of the total number of the

Ssn iterations, resulting in a substantial reduction in computational time. This is because

the ciPALM requires an extra correction step to guarantee the convergence, which tends to

increase the number of Ssn iterations3 needed to achieve its error criterion (2.8), though this

excessive cost does not contribute to the progress of pALM iterations. These observations

further support the use of vanilla inexact pALM, as advocated in this paper. Clearly, our

ripALM exhibits greater robustness and efficiency, as shown in Tables 1 and 2. Moreover,

observe that the performance of ripALM is relatively stable across different parameter values

of ρ, with slight advantage for ρ ≥ 0.5.

5.2 Comparison with Gurobi and dADMM

In this part of experiments, we compare our ripALM with Gurobi (version 10.0.1) and

dADMM for solving large-scale QROT problems. For our ripALM, we set ρ = 0.99 based

on the numerical observations from the previous section. For Gurobi, we use its default

termination conditions and set the corresponding termination tolerances as 10−6, aligning it

with our tolerance. For dADMM, we initialize the penalty parameter as σ0 = 0.01∥C∥−1
F , and

dynamically adjust it based on the primal-dual residuals, following the approach described

in [50, Section 5.1], to achieve superior empirical performance. Moreover, we will terminate

dADMM when it returns a point (uk, vk, Xk) satisfying ∆k
res < 10−6, or its number of

iterations reaches 10000.

We follow [52, Section 5.1] to generate a random QROT instance. Specifically, we first

generate two discrete probability distributions
{
(ai, pi) ∈ R+ × R3 : i = 1, · · · ,m

}
and{

(bj , qj) ∈ R+ × R3 : j = 1, · · · , n
}
. Here, a := (a1, · · ·, am)⊤ and b := (b1, · · ·, bn)⊤ are

probabilities/weights, which are generated from the uniform distribution on the open interval

(0, 1) and further normalized such that
∑m

i ai =
∑n

j bj = 1. Moreover, {pi} and {qj} are
support points whose entries are drawn from a five-component multivariate Gaussian mixture

distribution, with a mean vector (−20, 10, 0, 10, 20)⊤ and a variance vector (5, 5, 5, 5, 5)⊤,

using randomly generated weights. Then, the cost matrix C is generated by cij = ∥pi−qj∥2
for 1 ≤ i ≤ m and 1 ≤ j ≤ n and normalized by dividing (element-wise) by its maximal

entry.

We then generate a set of random instances with m = n ∈ {1000, 2000, . . . , 10000}.
For each m, we generate 10 instances with different random seeds, and present the average

numerical performances of our ripALM, dADMM and Gurobi in Table 3 and Figure 1, with

λ ∈ {1, 0.1}. It can be observed that both ripALM and Gurobi are able to solve the tested

problems accurately, in the sense that the residual ∆res is smaller than 10−6. In contrast, the

dADMM, even after 10000 iterations, can only produce lower-quality solutions, especially

3One possible reason is that the variable derived from performing the corrected step is no longer a good

initial point for the Ssn method in the next iteration.
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Table 1: Comparisons between ripALM, SNIPAL and ciPALM under different choices of

tolerance parameters, where λ = 1 and the instances are generated using images with the

resolution of 64 × 64 in the ClassicImages class from the DOTmark collection. In the

table, “∆res” denotes the terminating ∆k
res; “#” denotes the number of iterations (the total

number of the Ssn iterations is given in the bracket); “time” denotes the computational

time in seconds.

Snipal

(ε0=δ0, p, q) ∆res # time (ε0=δ0, p, q) ∆res # time

(1, 1.1, 1.1) 7.85e-07 17 (52) 9.56 (0.01, 1.1, 1.1) 7.85e-07 17 (61) 11.12

(1, 1.1, 2.1) 7.85e-07 17 (55) 9.97 (0.01, 1.1, 2.1) 7.85e-07 17 (63) 11.36

(1, 1.1, 3.1) 7.85e-07 17 (58) 10.33 (0.01, 1.1, 3.1) 7.85e-07 17 (64) 11.57

(1, 2.1, 1.1) 7.85e-07 17 (52) 9.55 (0.01, 2.1, 1.1) 7.85e-07 17 (61) 11.12

(1, 2.1, 2.1) 7.85e-07 17 (55) 9.98 (0.01, 2.1, 2.1) 7.85e-07 17 (63) 11.36

(1, 2.1, 3.1) 7.85e-07 17 (58) 10.33 (0.01, 2.1, 3.1) 7.85e-07 17 (64) 11.56

(1, 3.1, 1.1) 7.85e-07 17 (52) 9.55 (0.01, 3.1, 1.1) 7.85e-07 17 (61) 11.13

(1, 3.1, 2.1) 7.85e-07 17 (55) 9.99 (0.01, 3.1, 2.1) 7.85e-07 17 (63) 11.36

(1, 3.1, 3.1) 7.85e-07 17 (58) 10.34 (0.01, 3.1, 3.1) 7.85e-07 17 (64) 11.57

ripALM ciPALM

ρ ∆res # time ρ ∆res # time

0.999 7.85e-07 17 (47) 8.86 0.999 7.85e-07 17 (68) 15.49

0.99 7.85e-07 17 (47) 8.86 0.99 7.85e-07 17 (68) 15.53

0.9 7.85e-07 17 (47) 8.86 0.9 7.85e-07 17 (68) 15.17

0.7 7.85e-07 17 (47) 8.99 0.7 7.85e-07 17 (66) 14.08

0.5 7.85e-07 17 (48) 9.07 0.5 7.85e-07 17 (63) 12.95

0.3 7.85e-07 17 (49) 9.21 0.3 7.85e-07 17 (60) 11.51

0.1 7.85e-07 17 (50) 9.45 0.1 7.85e-07 17 (57) 10.65

0.05 7.85e-07 17 (51) 9.61 0.05 7.85e-07 17 (56) 10.51

0.01 7.85e-07 17 (53) 9.94 0.01 7.85e-07 17 (58) 10.76

when the problem size becomes large. Moreover, we have also observed that Gurobi can be

rather time-consuming and memory-consuming for large-scale problems. As an example, for

the case where m = n = 10000, a large-scale QP containing 108 nonnegative variables and

20000 equality constraints was solved. One can see that Gurobi is around 2∼4 times slower

than our ripALM. In addition, Gurobi may lack robustness, especially for solving large-scale

problems. Indeed, as observed from Figure 1, the computational times taken by Gurobi can

vary a lot among the 10 randomly generated instances. In conclusion, our ripALM shows

potential for greater efficiency and robustness in solving large-scale QROT problems.

6 Conclusions

In this paper, we developed a relative-type inexact proximal augmented Lagrangian method

(ripALM) for solving a class of linearly constrained convex optimization problems. The pro-

posed ripALM is the first relative-type inexact version of the vanilla pALM with provable

convergence guarantees. By employing a relative-type error criterion, it simplifies implemen-

tation and parameter tuning, compared to the absolute-type inexact pALM. We conducted
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Table 2: Same as Table 1 but for λ = 0.1.

Snipal

(ε0=δ0, p, q) ∆res # time (ε0=δ0, p, q) ∆res # time

(1, 1.1, 1.1) 6.43e-07 19 (92) 28.48 (0.01, 1.1, 1.1) 6.43e-07 19 (101) 30.04

(1, 1.1, 2.1) 6.43e-07 19 (95) 28.91 (0.01, 1.1, 2.1) 6.43e-07 19 (103) 30.31

(1, 1.1, 3.1) 6.43e-07 19 (98) 29.26 (0.01, 1.1, 3.1) 6.43e-07 19 (105) 30.50

(1, 2.1, 1.1) 6.43e-07 19 (92) 28.49 (0.01, 2.1, 1.1) 6.43e-07 19 (101) 30.06

(1, 2.1, 2.1) 6.43e-07 19 (95) 28.91 (0.01, 2.1, 2.1) 6.43e-07 19 (103) 30.28

(1, 2.1, 3.1) 6.43e-07 19 (98) 29.27 (0.01, 2.1, 3.1) 6.43e-07 19 (105) 30.47

(1, 3.1, 1.1) 6.43e-07 19 (92) 28.49 (0.01, 3.1, 1.1) 6.43e-07 19 (101) 30.02

(1, 3.1, 2.1) 6.43e-07 19 (95) 28.92 (0.01, 3.1, 2.1) 6.43e-07 19 (103) 30.29

(1, 3.1, 3.1) 6.43e-07 19 (98) 29.28 (0.01, 3.1, 3.1) 6.43e-07 19 (105) 30.48

ripALM ciPALM

ρ ∆res # time ρ ∆res # time

0.999 6.43e-07 19 (86) 27.77 0.999 6.43e-07 19 (108) 34.70

0.99 6.43e-07 19 (86) 27.78 0.99 6.43e-07 19 (108) 34.71

0.9 6.43e-07 19 (86) 27.78 0.9 6.43e-07 19 (107) 34.11

0.7 6.43e-07 19 (87) 27.88 0.7 6.43e-07 19 (106) 33.29

0.5 6.43e-07 19 (87) 27.95 0.5 6.43e-07 19 (103) 32.10

0.3 6.43e-07 19 (88) 28.10 0.3 6.43e-07 19 (100) 30.60

0.1 6.43e-07 19 (90) 28.32 0.1 6.43e-07 19 (97) 29.66

0.05 6.43e-07 19 (91) 28.47 0.05 6.43e-07 19 (96) 29.45

0.01 6.43e-07 19 (92) 28.83 0.01 6.43e-07 19 (98) 29.73

a thorough convergence analysis and demonstrated the competitive efficiency of our ripALM

through numerical experiments on solving quadratically regularized optimal transport prob-

lems. Since our algorithm is applicable to a more general linearly constrained convex opti-

mization problem, future work may explore potential applications of this framework to other

practical problems, including general regularized optimal transport problems studied in [51].

A Missing Proofs in Section 3

A.1 Proof of Theorem 3.1

Proof. Statement (i). First, recall that ℓ(y,x) = −b⊤y + ⟨x, A⊤y⟩ − f(x), which is convex

in y and concave in x. We see that ∂ℓ(y,x) = {Ax− b}×
{
v −A⊤y | v ∈ ∂f(x)

}
. By using

the relations in (2.5) and (2.6), along with some manipulations, we can obtain the following

results for all k ≥ 0:
(
∆k+1 − τkσ

−1
k (yk+1 − yk), σ−1

k (xk − xk+1)
)
∈ ∂ℓ(yk+1,xk+1), (A.1a)

2
∣∣⟨wk − yk+1, σk∆

k+1⟩
∣∣+ ∥∥σk∆k+1

∥∥2 ≤ ρ
(∥∥xk+1 − xk

∥∥2 + τk
∥∥yk+1 − yk

∥∥2), (A.1b)

wk+1 = wk − σk∆
k+1. (A.1c)

Let (y∗,x∗) ∈ RM ×RN be an arbitrary saddle point of ℓ and hence (0,0) ∈ ∂ℓ(y∗,x∗).
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Table 3: Numerical results of Gurobi, dADMM, and ripALM. In the table, “∆res” denotes

the terminating ∆k
res; “#” denotes the number of iterations (the total number of the Ssn

iterations is given in the bracket); “time” denotes the computational time.

Gurobi dADMM ripALM

m = n ∆res # time ∆res # time ∆res # time

λ = 1

1000 2.70e-07 32 4.53 2.71e-06 10000 15.21 5.36e-07 16 (48) 1.29

2000 3.61e-07 38 22.15 1.20e-05 10000 99.73 6.89e-07 17 (62) 6.12

3000 2.61e-07 40 60.87 2.11e-05 10000 240.03 5.47e-07 17 (70) 15.93

4000 4.23e-07 43 125.35 4.68e-05 10000 431.83 6.19e-07 17 (78) 29.84

5000 4.22e-07 45 205.56 7.32e-05 10000 678.86 6.66e-07 17 (82) 49.36

6000 5.07e-07 45 312.47 1.04e-04 10000 979.18 6.11e-07 17 (86) 72.30

7000 5.54e-07 45 407.12 1.32e-04 10000 1337.06 5.25e-07 18 (90) 104.18

8000 5.17e-07 48 625.94 1.56e-04 10000 1746.24 4.75e-07 18 (96) 147.89

9000 1.47e-06 50 842.62 2.16e-04 10000 2208.15 6.03e-07 18 (98) 185.94

10000 5.63e-07 49 1031.17 2.53e-04 10000 2724.33 6.09e-07 18 (98) 240.24

λ = 0.1

1000 2.55e-07 33 4.63 3.17e-05 10000 15.31 7.50e-07 18 (83) 1.65

2000 5.55e-07 38 22.26 1.39e-04 10000 100.22 5.77e-07 19 (107) 8.76

3000 1.75e-06 41 57.58 2.78e-04 10000 238.54 5.29e-07 19 (119) 22.82

4000 6.43e-07 43 118.20 5.01e-04 10000 430.89 6.85e-07 19 (129) 44.08

5000 4.71e-07 45 191.02 7.26e-04 10000 678.03 5.49e-07 20 (141) 78.06

6000 5.57e-07 47 298.67 1.08e-03 10000 977.75 5.92e-07 20 (148) 125.25

7000 6.98e-07 49 437.49 1.30e-03 10000 1332.25 6.21e-07 20 (149) 173.81

8000 7.95e-07 49 629.63 1.62e-03 10000 1740.13 7.59e-07 20 (157) 240.14

9000 5.87e-07 51 794.23 2.15e-03 10000 2202.89 6.03e-07 21 (168) 346.25

10000 6.02e-07 52 1073.12 2.43e-03 10000 2718.42 4.96e-07 21 (176) 462.52

For all k ≥ 0,

∥xk − x∗∥2 = ∥xk − xk+1 + xk+1 − x∗∥2

= ∥xk − xk+1∥2 + 2⟨xk − xk+1, xk+1 − x∗⟩+ ∥xk+1 − x∗∥2.

By letting ξk+1 := σ−1
k (xk − xk+1), the above equation can be reformulated as

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2σk⟨xk+1 − x∗, ξk+1⟩ − ∥xk+1 − xk∥2. (A.2)

Then, using the relation wk+1 = wk − σk∆
k+1 (by (A.1c)), we see that

∥wk+1 − y∗∥2 = ∥wk − σk∆
k+1 − y∗∥2

= ∥wk − y∗∥2 − 2⟨wk − y∗, σk∆
k+1⟩+ ∥σk∆k+1∥2

= ∥wk − y∗∥2 − 2⟨wk − yk+1, σk∆
k+1⟩+ ∥σk∆k+1∥2

− 2σk⟨yk+1 − y∗, θk+1⟩ − 2τk⟨yk+1 − y∗, yk+1 − yk⟩.

(A.3)

where θk+1 := ∆k+1 − τkσ
−1
k (yk+1 − yk). Similarly,

τk∥yk+1 − y∗∥2 = τk∥yk − y∗∥2 − τk∥yk+1 − yk∥2 + 2τk⟨yk+1 − y∗, yk+1 − yk⟩. (A.4)
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Figure 1: Comparisons among ripALM, Gurobi, and dADMM for the QROT problem with

m = n ∈ {1000, 2000, . . . , 10000}. The shaded region indicates the maximum and minimum

computation times taken to solve the ten instances for each problem dimension.

By summing (A.2), (A.3) and (A.4), we have that

∥xk+1 − x∗∥2 + ∥wk+1 − y∗∥2 + τk∥yk+1 − y∗∥2

= ∥xk − x∗∥2 + ∥wk − y∗∥2 + τk∥yk − y∗∥2

− 2σk

(
⟨yk+1 − y∗, θk+1⟩+ ⟨xk+1 − x∗, ξk+1⟩

)
− 2⟨wk − yk+1, σk∆

k+1⟩

+ ∥σk∆k+1∥2 − ∥xk+1 − xk∥2 − τk∥yk+1 − yk∥2.

(A.5)

Note from (A.1a) that (
θk+1, ξk+1

)
∈ ∂ℓ(yk+1,xk+1), (A.6)

which, together with 0 ∈ ∂ℓ(y∗,x∗) and the monotonicity of ∂ℓ, yields

⟨yk+1 − y∗, θk+1⟩+ ⟨xk+1 − x∗, ξk+1⟩ ≥ 0.

Moreover, by using (A.1b), we see that

−2⟨wk − yk+1, σk∆
k+1⟩+ ∥σk∆k+1∥2 ≤ 2

∣∣⟨wk − yk+1, σk∆
k+1⟩

∣∣+ ∥σk∆k+1∥2

≤ ρ
(
∥xk+1 − xk∥2 + τk∥yk+1 − yk∥2

)
.

Substituting the above two inequalities into (A.5), we obtain a key inequality for the subse-

quent convergence analysis:

∥xk+1 − x∗∥2 + ∥wk+1 − y∗∥2 + τk∥yk+1 − y∗∥2

≤ ∥xk − x∗∥2 + ∥wk − y∗∥2 + τk∥yk − y∗∥2

− (1− ρ)
(
∥xk+1 − xk∥2 + τk∥yk+1 − yk∥2

)
.

(A.7)

The inequality (A.7), together with ρ ∈ [0, 1) and τk+1 ≤ (1 + νk)τk with νk ≥ 0 and∑
νi <∞ for all k ≥ 0, implies that

∥xk+1 − x∗∥2 + ∥wk+1 − y∗∥2 + τk+1∥yk+1 − y∗∥2

≤ (1 + νk)
(
∥xk − x∗∥2 + ∥wk − y∗∥2 + τk∥yk − y∗∥2

)
.

(A.8)
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Since {νk} is a non-negative summable sequence, it then follows from [32, Lemma 2 in

Section 2.2] that the sequence
{
∥xk − x∗∥2 + ∥wk − y∗∥2 + τk∥yk − y∗∥2

}
is convergent.

This together with τk ≥ τmin > 0 implies that all sequences {xk}, {wk}, {yk} are bounded.

Statement (ii). Using (A.7) again with τk+1 ≤ (1 + νk)τk with νk ≥ 0 and
∑

νi <∞ for

all k ≥ 0, we have that

0 ≤ (1− ρ)(1 + νk)
(
∥xk+1 − xk∥2 + τk∥yk+1 − yk∥2

)
≤ (1 + νk)

(
∥xk − x∗∥2 + ∥wk − y∗∥2 + τk∥yk − y∗∥2

)
−
(
∥xk+1 − x∗∥2 + ∥wk+1 − y∗∥2 + τk+1∥yk+1 − y∗∥2

)
.

(A.9)

Since
{
∥xk − x∗∥2 + ∥wk − y∗∥2 + τk∥yk − y∗∥2

}
is convergent, νk → 0 (due to νk ≥ 0 and∑

νi <∞) and ρ ∈ [0, 1), it then follows from (A.9) that

lim
k→∞

∥xk+1 − xk∥ = 0 and lim
k→∞

∥
√
τk(y

k+1 − yk)∥ = 0. (A.10)

Note that both sequences {σk} and {τk} are bounded away from 0. Thus, we further have

that lim
k→∞

ξk+1(:= σ−1
k (xk − xk+1)) = 0 and lim

k→∞
∥yk+1 − yk∥ = 0. Moreover, using (A.10)

together with (A.1b) implies that

lim
k→∞

|⟨wk − yk+1, σk∆
k+1⟩| = 0 and lim

k→∞
∥σk∆k+1∥2 = 0.

Since {σk} is bounded away from 0, we then obtain that lim
k→∞
⟨wk − yk+1, ∆k+1⟩ = 0 and

lim
k→∞

∆k+1 = 0. Finally, recall again that τk+1 ≤ (1+νk)τk with νk ≥ 0 and
∑

νi <∞ for all

k ≥ 0. Thus, τk must be bounded from above and hence τkσ
−1
k is also bounded from above.

Consequently, we can obtain that lim
k→∞

τkσ
−1
k (yk+1 − yk) = 0 and hence lim

k→∞
θk+1 = 0.

Statement (iii). We first study the limit of {F
(
θk+1, xk+1

)
}. Using relations (A.6) and

(3.3), we have that (yk+1, ξk+1) ∈ ∂F
(
θk+1, xk+1

)
. Then, by the concavity of F , it holds

that, for all k ≥ 0,

F (0, x∗) ≤ F
(
θk+1, xk+1

)
+ ⟨yk+1, θk+1⟩+ ⟨ξk+1, xk+1 − x∗⟩.

Since lim
k→∞

θk+1 = 0, lim
k→∞

ξk+1 = 0, and the sequences {xk} and {yk} are bounded, we can

obtain from the above inequality that

lim inf
k→∞

F
(
θk+1, xk+1

)
≥ F (0, x∗). (A.11)

On the other hand, since {xk} is bounded, it has at least one accumulation point. Suppose

that x∞ is an accumulation point and {xki} is a convergent subsequence such that lim
i→∞

xki =

x∞. Since lim
k→∞

∥xk+1 − xk∥ = 0, we also have that lim
i→∞

xki+1 = x∞. Thus, by passing

to a further subsequence if necessary, we may assume without loss of generality that the

subsequence
{
F
(
θki+1, xki+1

)}
satisfies

lim
i→∞

F
(
θki+1,xki+1

)
= lim sup

k→∞
F
(
θk+1, xk+1

)
.

Note that F is closed upper semicontinuous concave (see, for example, [37, Theorem 7]),

and thus domF is closed. This together with (0, x∞) = lim
i→∞

(
θki+1, xki+1

)
induces that
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(0, x∞) ∈ domF . Then, we see that

F (0, x∗)

≥ F (0, x∞) (since x∗ is optimal for problem (3.2))

= F

(
lim
i→∞

θki+1, lim
i→∞

xki+1

)
(since lim

k→∞
θk+1 = 0 and lim

i→∞
xki+1 = x∞)

≥ lim sup
i→∞

F
(
θki+1, xki+1

)
(since F is upper semicontinuous)

= lim sup
k→∞

F
(
θk+1, xk+1

)
. (by the choice of subsequence {xki+1})

This together with (A.11) implies that

lim
k→∞

F
(
θk+1, xk+1

)
= F (0, x∗). (A.12)

We next study the limit of {G(yk+1, ξk+1)}. Since −F and G are convex conjugate

and
(
θk+1, xk+1

)
∈ ∂G(yk+1, ξk+1), we can get the following equality by using the Fenchel

equality (see, for example, [36, Theorem 23.5]):

G(yk+1, ξk+1) = F
(
θk+1, xk+1

)
+ ⟨θk+1, yk+1⟩+ ⟨xk+1, ξk+1⟩.

Since lim
k→∞

θk+1 = 0, lim
k→∞

ξk+1 = 0, and the sequences {xk} and {yk} are bounded, we

obtain that

lim
k→∞

G(yk+1, ξk+1) = F (0, x∗) = G(y∗, 0).

This proves statement (iii).

Statement (iv). We first prove that any accumulation point of {yk} is an optimal solution

of problem (2.1). Since {yk} is bounded by statement (i), the sequence {yk} has at least one
accumulation point. Suppose that y∞ is an accumulation point and {ykj} is a convergent

subsequence such that lim
j→∞

ykj = y∞. Since lim
k→∞

∥yk+1 − yk∥ = 0, we also have that

lim
j→∞

ykj+1 = y∞. Then, using the fact that G is lower semicontinuous and convex, and

lim
k→∞

ξk+1 = 0, we obtain that

G(y∞,0) = G( lim
j→∞

ykj+1, lim
j→∞

ξkj+1) ≤ lim inf
j→∞

G(ykj+1, ξkj+1) = G(y∗,0).

This implies that y∞ is an optimal solution of problem (2.1). Similarly, using the upper

semicontinuity of F and analogous manipulations, we can prove that any accumulation point

of {xk} is an optimal solution of problem (3.2). This proves statement (iv).

Statement (v). We next prove that the whole sequence {xk} is convergent. Let

Dτk

(
(wk,yk), Y∗

)
:= inf

y∗∈Y∗

{
∥wk − y∗∥2 + τk∥yk − y∗∥2

}
,

and define that

ϕ := lim inf
k→∞

Dτk

(
(wk,yk), Y∗

)
,

where Y∗ is the solution set of problem (2.1) (i.e., problem (1.2)). Since {wk}, {yk} and

{τk} are bounded, we see that 0 ≤ ϕ < ∞ and there exists a subsequence {(wkj ,ykj , τkj )}
such that

lim
j→∞

Dτkj

(
(wkj ,ykj ), Y∗

)
= ϕ.
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Then, by passing to a further subsequence if necessary, we may also assume without loss of

generality that the subsequence {xkj} ⊆ {xk} converges to some accumulation point x∞,

which, in view of statement (iv), belongs to X ∗ (the optimal solution set of (3.2)). Thus, for

such x∞ and any y∗ ∈ Y∗, using (A.8) with some manipulations, we can obtain that, for all

k > kj ,

∥xk − x∞∥2 + ∥wk − y∗∥2 + τk∥yk − y∗∥2

≤

k−1∏
i=kj

(
1 + νi

)(
∥xkj − x∞∥2 + ∥wkj − y∗∥2 + τkj∥y

kj − y∗∥2
)
.

Since 0 ≤ ϕ ≤ lim inf
k→∞

{
∥wk − y∗∥2 + τk∥yk − y∗∥2

}
for any y∗ ∈ Y∗, passing to the limit

superior when k → ∞ on the both sides of the above inequality, we obtain that, for any

y∗ ∈ Y∗,

ϕ+ lim sup
k→∞

{
∥xk − x∞∥2

}
≤ lim sup

k→∞

{
∥xk − x∞∥2 + ∥wk − y∗∥2 + τk∥yk − y∗∥2

}
≤

 ∞∏
i=kj

(1 + νi)

(
∥xkj − x∞∥2 + ∥wkj − y∗∥2 + τkj∥y

kj − y∗∥2
)
, ∀j ≥ 0.

Taking the infimum in y∗ ∈ Y∗ on the right-hand side of the last inequality, we have that

lim sup
k→∞

{
∥xk − x∞∥2

}
≤

 ∞∏
i=kj

(1 + νi)

 ∥xkj − x∞∥2 +

 ∞∏
i=kj

(1 + νi)

Dτkj

(
(wkj ,ykj ), Y

)
− ϕ, ∀j ≥ 0.

Since ln
(∏∞

i=kj
(1 + νi)

)
=

∑∞
i=kj

ln(1 + νi) ≤
∑∞

i=kj
νi and lim

j→∞

∑∞
i=kj

νi = 0 (due to the

summability of {νk}), we see that lim
j→∞

∏∞
i=kj

(1 + νi) = 1. Using this fact, we can observe

that the right-hand side of the above inequality converges to 0 as j →∞. Then, we conclude

that lim
k→∞

xk = x∞, which completes the proof. 2

A.2 Proof of Theorem 3.2

Proof. Statement (i). For the sake of clarity, we will present our proof in three steps.

Step I. Let (y∗,x∗) ∈ RM × RN be an arbitrary saddle point of ℓ. Similar to the proof

of Theorem 3.1(i), we combine (A.2) with (A.4) to obtain that

∥xk+1 − x∗∥2 + τk∥yk+1 − y∗∥2

= ∥xk − x∗∥2 + τk∥yk − y∗∥2 − 2σk

(
⟨yk+1 − y∗, θk+1⟩+ ⟨xk+1 − x∗, ξk+1⟩

)
+ 2σk⟨yk+1 − y∗,∆k+1⟩ − ∥xk+1 − xk∥2 − τk∥yk+1 − yk∥2.

Since (0,0) ∈ ∂ℓ(y∗,x∗) and
(
θk+1, ξk+1

)
∈ ∂ℓ(yk+1,xk+1), it then follows from the mono-

tonicity of ∂ℓ that

⟨yk+1 − y∗, θk+1⟩+ ⟨xk+1 − x∗, ξk+1⟩ ≥ 0.
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Thus, we conclude that ∥∥∥∥√τk(yk − y∗)

xk − x∗

∥∥∥∥2 − ∥∥∥∥√τk(yk+1 − y∗)

xk+1 − x∗

∥∥∥∥2
≥

∥∥∥∥√τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥2 − 2σk∥yk+1 − y∗∥∥∆k+1∥.
(A.13)

Define the sequences {yk} ⊆ RM and {xk} ⊆ RN as follows:

yk := ΠY∗(yk) and xk := ΠX ∗(xk), ∀ k ≥ 0,

where Y∗ is the solution set of problem (2.1) (i.e., problem (1.2)), X ∗ is the solution set of

problem (3.2) (i.e., problem (1.1)), and ΠY∗(yk) (resp. ΠX ∗(xk)) denotes the projection of

yk (resp. xk) onto set Y∗ (resp. X ∗). Since (A.13) holds for any y∗ ∈ Y∗ and x∗ ∈ X ∗, we

can replace y∗ and x∗ with yk and xk, respectively, to obtain that∥∥∥∥√τk(yk − yk)

xk − xk

∥∥∥∥2 − ∥∥∥∥√τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥2
≥

∥∥∥∥√τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥2 − 2σk∥yk+1 − yk∥∥∆k+1∥.

Moreover, from the definitions of yk and xk, we have that
∥∥yk+1 − yk+1

∥∥ ≤ ∥∥yk+1 − yk
∥∥

and
∥∥xk+1 − xk+1

∥∥ ≤ ∥∥xk+1 − xk
∥∥. These, together with the above inequality, yield that∥∥∥∥√τk(yk − yk)

xk − xk

∥∥∥∥2 − ∥∥∥∥√τk(yk+1 − yk+1)

xk+1 − xk+1

∥∥∥∥2
≥

∥∥∥∥√τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥2 − 2σk∥yk+1 − yk∥∥∆k+1∥.
(A.14)

Step II. We next derive an upper bound for ∥yk+1 − yk∥∥∆k+1∥. On the one hand, we

have from (A.1b) that

σ2
k∥∆k+1∥2 ≤ ρ

(
∥xk+1 − xk∥2 + τk∥yk+1 − yk∥2

)
,

which implies that

∥∆k+1∥ ≤
√
ρ

σk

∥∥∥∥√τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥ . (A.15)

On the other hand, we see that

∥yk+1 − yk∥ ≤ ∥yk+1 − yk+1∥+ ∥yk+1 − yk∥ ≤ ∥yk+1 − yk+1∥+ ∥yk+1 − yk∥

≤ ∥yk+1 − yk+1∥+ 1
√
τk

∥∥∥∥√τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥ , (A.16)

where the second inequality follows from the non-expansiveness of the projection operator

ΠY∗(·). Moreover, since {yk} and {xk} are bounded (by Theorem 3.1(i)), there must exist

a positive scalar r such that

dist
(
(yk,xk), (∂ℓ)−1(0,0)

)
≤ r, ∀ k ≥ 0.

Thus, we apply Assumption A with this r and know that, there exists a κ > 0 such that

dist
(
(yk+1,xk+1), Y∗ ×X ∗

)
≤ κdist

(
(0,0), ∂ℓ(yk+1,xk+1)

)
≤ κ

∥∥∥(θk+1, ξk+1)
∥∥∥ ,
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where the last inequality is due to (A.6) (i.e.,
(
θk+1, ξk+1

)
∈ ∂ℓ(yk+1,xk+1)) with θk+1 :=

∆k+1 − τkσ
−1
k (yk+1 − yk) and ξk+1 := σ−1

k (xk −xk+1). This inequality further implies that

∥yk+1 − yk+1∥ ≤
√
∥yk+1 − yk+1∥2 + ∥xk+1 − xk+1∥2

≤ κ

∥∥∥∥∆k+1 − τkσ
−1
k (yk+1 − yk)

σ−1
k (xk − xk+1)

∥∥∥∥ ≤ κ

(
∥∆k+1∥+ 1

σk

∥∥∥∥τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥)
≤ κ

(
∥∆k+1∥+

√
τk
σk

∥∥∥∥√τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥)
≤

κ
(√

ρ+
√
τk

)
σk

∥∥∥∥√τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥ ,
(A.17)

where τk is defined as τk := max {1, τk} and the last inequality follows from (A.15). Now,

combing (A.15), (A.16) and (A.17), with some manipulations, we can obtain that

∥yk+1 − yk∥∥∆k+1∥ ≤
(
κ
√
τk (ρ+

√
ρτk) + σk

√
ρ

σ2
k

√
τk

)∥∥∥∥√τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥2 .
Then, substituting this inequality into (A.14) yields that∥∥∥∥√τk(yk − yk)

xk − xk

∥∥∥∥2 − ∥∥∥∥√τk(yk+1 − yk+1)

xk+1 − xk+1

∥∥∥∥2
≥

(
1−

2κ
√
τk (ρ+

√
ρτk) + 2σk

√
ρ

σk
√
τk

)∥∥∥∥√τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥2 .
(A.18)

Step III. In the following, we will establish the convergence rate based on (A.18). First,

by recalling the conditions on {τk}: τk ≥ τmin > 0 and τk+1 ≤ (1 + νk)τk with νk ≥ 0 and∑∞
k=0 νk < +∞, we know that there exists τmax := (

∏∞
k=0(1 + νk)) τ0 such that 0 < τmin ≤

τk ≤ τmax < +∞ for all k ≥ 0. This together with condition (3.5) implies that there exists

a positive integer k0 such that

√
τk − 2

√
ρ > 0 and σk > c ·

2κ
√
τk (ρ+

√
ρτk)√

τk − 2
√
ρ

, ∀ k ≥ k0,

where c > 1. Hence, one can verify that(
1−

2κ
√
τk (ρ+

√
ρτk) + 2σk

√
ρ

σk
√
τk

)
> c̃ :=

c− 1

c
·
√
τmin − 2

√
ρ

√
τmin

> 0, ∀ k ≥ k0, (A.19)

which means that the factor in the right-hand side of (A.18) will be positive when k ≥ k0.

On the other hand, using (A.17) again, we deduce that∥∥∥∥√τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥2 ≥ σ2
k

κ2
(√

ρ+
√
τk

)2 ∥∥∥∥yk+1 − yk+1

xk+1 − xk+1

∥∥∥∥2
≥

σ2
k

κ2
(√

ρ+
√
τk

)2
τk

∥∥∥∥√τk(yk+1 − yk+1)

xk+1 − xk+1

∥∥∥∥2 .
This, together with (A.18) and (A.19), yields that∥∥∥∥√τk(yk − yk)

xk − xk

∥∥∥∥2 ≥ (1 + γk)

∥∥∥∥√τk(yk+1 − yk+1)

xk+1 − xk+1

∥∥∥∥2 , ∀ k ≥ k0, (A.20)
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where

γk :=

(
1−

2κ
√
τk (ρ+

√
ρτk) + 2σk

√
ρ

σk
√
τk

)
σ2
k

κ2
(√

ρ+
√
τk

)2
τk

≥ c̃ ·
σ2
k

κ2
(√

ρ+
√
τmax

)2
τmax

≥ γmin :=
c̃ σ2

min

κ2
(√

ρ+
√
τmax

)2
τmax

> 0, ∀ k ≥ k0.

(A.21)

Let Λk := Diag(τkIM , IN ). Since {τk} is bounded away from 0 and satisfies that (1+νk)τk ≥
τk+1, we have that (1 + νk)Λ

k ⪰ Λk+1 ≻ 0. Then, one can obtain from (A.20) that

(1 + νk)

∥∥∥∥yk − yk

xk − xk

∥∥∥∥2
Λk

≥ (1 + γk)

∥∥∥∥yk+1 − yk+1

xk+1 − xk+1

∥∥∥∥2
Λk+1

,

which readily implies that

distΛk+1

(
(yk+1,xk+1), (∂ℓ)−1(0,0)

)
≤ µk distΛk

(
(yk,xk), (∂ℓ)−1(0,0)

)
,

where µk :=
√

1+νk
1+γk

. Since νk → 0 and γk ≥ γmin > 0 for all k > k0, one can verify that

lim sup
k→∞

{µk} < 1. Thus, we obtain the desired results in statement (i).

Statement (ii). Using (A.18) and (A.19) again, we see that

c̃ τmin∥yk+1 − yk∥2 ≤ c̃

∥∥∥∥√τk(yk+1 − yk)

xk+1 − xk

∥∥∥∥2 ≤ distΛk

(
(yk,xk), (∂ℓ)−1(0,0)

)
,

for any k ≥ k0. Using this inequality and the fact that the sequence
{
distΛk

(
(yk,xk), (∂ℓ)−1(0,0)

)}
is asymptotically Q-(super)linear convergent, we can conclude that there exist a positive in-

teger k1, 0 < β < 1 and C > 0 such that

∥yk+1 − yk∥ ≤ Cβk, ∀ k ≥ k1,

which further implies that
∑∞

k=0 ∥yk+1−yk∥ <∞. Consequently, {yk} is a Cauchy sequence

and hence convergent. Therefore, the proof is completed. 2

B A dual ADMM for QROTs

In this section, we present the alternating direction method of multipliers (ADMM, see, e.g.

[5, 14]) for solving the dual problem (4.3), which can be reformulated as:

min
u∈Rm,v∈Rn,W∈Rm×n

{
f∗
q (W )−α⊤u− β⊤v | u1⊤n + 1mv⊤ = W

}
. (B.1)

Given a penalty parameter σ > 0, the augmented Lagrangian function of (B.1) is

Lσ (u,v,W ;X)

:= f∗
q (W )−α⊤u− β⊤v +

〈
X, u1⊤n + 1mv⊤ −W

〉
+

σ

2

∥∥∥u1⊤n + 1mv⊤ −W
∥∥∥2
F
.

Then, the ADMM for solving (B.1) can be described as in Algorithm 3.
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Algorithm 3 ADMM for solving (B.1)

Input: a penalty parameter σ > 0, and initializations u0 ∈ Rm, v0 ∈ Rn, W 0, X0 ∈ Rm×n.

Set k = 0.

while the termination criterion is not met, do

Step 1. Compute (
uk+1, vk+1

)
= argmin

u,v
Lσ

(
u,v,W k;Xk

)
.

Step 2. Compute

W k+1 = argmin
W
Lσ

(
uk+1,vk+1,W ;Xk

)
.

Step 3. Set Xk+1 = Xk + τσ
(
uk+11⊤n + 1m(vk+1)⊤ −W k+1

)
, where τ ∈

(
0, 1+

√
5

2

)
is

the dual step-size that is typically set to 1.618.

Step 4. Set k ← k + 1 and go to Step 1.

end while

Output:
(
uk,vk,W k, Xk

)
.

Both subproblems in ADMM can be solved efficiently. Specifically,
(
uk+1, vk+1

)
can be

obtained by solving the following unconstrained convex minimization problem:

min
u,v

hk(u,v) := −α⊤u− β⊤v +
σ

2

∥∥∥u1⊤n + 1mv⊤ − Sk
∥∥∥2
F
, (B.2)

where Sk := W k − σ−1Xk. From the first-order optimality conditions of (B.2), we see that

solving problem (B.2) is equivalent to solving the equation ∇hk(u,v) = 0. This, in turn,

reduces to solving the following linear system{
nu+ (1⊤n v)1m = σ−1α+ Sk1n, (B.3a)

(1⊤mu)1n +mv = σ−1β + (Sk)⊤1m. (B.3b)

With some algebraic manipulations, it is not difficult to show that

u∗(t) =
σ−1α+ Sk1n

n
+ t1m, ∀ t ∈ R,

v∗(t) =
σ−1β + (Sk)⊤1m

m
− 1⊤mu∗(t)

m
1n, ∀ t ∈ R.

solves the above linear system. Thus, we obtain a solution pair (u∗(t),v∗(t)) with any t ∈ R.
It can be routinely shown that (u∗(t),v∗(t)) satisfies the linear system (B.3a) and (B.3b),

and therefore solves problem (B.2). On the other hand, W k+1 can be obtained by computing

the proximal operator of the function σ−1f∗
q , i.e.,

W k+1 := proxσ−1f∗
q

(
Qk

)
=

C −ΠRm×n
+

(
C −Qk

)
, λ = 0,

Qk − (1 + λσ)−1ΠRm×n
+

(Qk − C), λ > 0,

where Qk := uk+11⊤n + 1m(vk+1)⊤ + σ−1Xk.

C An iBPGM for QROTs

In this section, we briefly discuss how to employ an inexact Bregman proximal gradient

method (iBPGM) with Sinkhorn’s algorithm as a subsolver for solving the QROT problem
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(4.1). We refer readers to [52, Section 5] for more details. Specifically, the iBPGM with the

entropy kernel function for solving (4.1) can be given as follows: let X0 > 0 and ϕ(X) :=∑
ij xij(log xij − 1), at the k-th iteration, compute

Xk+1 ≈ min
X

{
⟨C + λXk, X⟩+ µkDϕ(X, Xk) | X1n = α, X⊤1m = β

}
, (C.1)

where µk ≥ λ is a positive proximal parameter, and Dϕ(U, V ) denotes the Bregman distance

between U and V associated with the kernel function ϕ which is defined as Dϕ(U, V ) :=

ϕ(U)− ϕ(V )− ⟨∇ϕ(V ), U − V ⟩. Problem (C.1) can be rewritten as

min
X

{
⟨Mk, X⟩+ µk

∑
ijxij(log xij − 1) | X1n = α, X⊤1m = β

}
, (C.2)

where Mk := C + λXk − µk logX
k. Note that problem (C.2) has the same form as the en-

tropic regularized optimal transport problem and hence can be readily solved by the popular

Sinkhorn’s algorithm; see [31, Section 4.2] for more details. Specifically, let Ξk := e−Mk/µk .

Then, given an initial positive vector vk,0, the iterative scheme is given by

uk,t = α./
(
Ξkvk,t−1

)
, vk,t = β./

(
(Ξk)⊤uk,t

)
, ∀ t ≥ 0, (C.3)

where ‘./’ denotes the entrywise division between two vectors. When a pair (uk,t, vk,t)

is obtained based on a certain stopping criterion, an approximate solution of (C.2) (and

hence (C.1)) can be recovered by setting Xk,t := Diag(uk,t) Ξk Diag(vk,t). Meanwhile, a pair

of approximate dual solutions can be recovered by setting fk,t := µk logu
k,t and gk,t :=

µk log v
k,t. In our experiments, we simply execute Sinkhorn’s iteration (C.3) only once for

each subproblem, and observe that this is sufficient for obtaining a promising initial point

for warm-starting our ripALM.
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[3] Y. Bello-Cruz, M.L.N. Gonçalves, and N. Krislock. On FISTA with a relative error rule.

Computational Optimization and Applications, 84(2):295–318, 2023.

[4] M. Blondel, V. Seguy, and A. Rolet. Smooth and sparse optimal transport. In Proceed-

ings of the Twenty-First International Conference on Artificial Intelligence and Statis-

tics, volume 84, pages 880–889, Lanzarote, Spain, 2018. PMLR.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimization and

statistical learning via the alternating direction method of multipliers. Foundations and

Trends® in Machine learning, 3(1):1–122, 2011.

[6] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,

Cambridge, 2004.

[7] Y. Cui and J.-S. Pang. Modern Nonconvex Nondifferentiable Optimization. MOS-SIAM

Series on Optimization. SIAM, Philadelphia, 2021.

27



[8] Y. Cui, D.F. Sun, and K.-C. Toh. On the R-superlinear convergence of the KKT

residuals generated by the augmented Lagrangian method for convex composite conic

programming. Mathematical Programming, 178(1):381–415, 2019.

[9] A. De Marchi. Augmented Lagrangian and Proximal Methods for Constrained Structured

Optimization. PhD thesis, Universität der Bundeswehr München, 2021.

[10] J. Eckstein and P.J.S. Silva. Proximal methods for nonlinear programming: double

regularization and inexact subproblems. Computational Optimization and Applications,

46(2):279–304, 2010.

[11] J. Eckstein and P.J.S. Silva. A practical relative error criterion for augmented La-

grangians. Mathematical Programming, 141(1):319–348, 2013.

[12] J. Eckstein and W. Yao. Relative-error approximate versions of Douglas–Rachford

splitting and special cases of the ADMM. Mathematical Programming, 170(2):417–444,

2018.

[13] M. Essid and J. Solomon. Quadratically regularized optimal transport on graphs. SIAM

Journal on Scientific Computing, 40(4):A1961–A1986, 2018.

[14] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational

problems via finite element approximation. Computers & Mathematics with Applica-

tions, 2(1):17–40, 1976.

[15] B. Hermans, A. Themelis, and P. Patrinos. QPALM: a Newton-type proximal aug-

mented Lagrangian method for quadratic programs. In 2019 IEEE 58th Conference on

Decision and Control (CDC), pages 4325–4330. IEEE, 2019.

[16] M.R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and

Applications, 4(5):303–320, 1969.

[17] C. Humes Jr., P.J.S. Silva, and B.F. Svaiter. Some inexact hybrid proximal augmented

Lagrangian algorithms. Numerical Algorithms, 35:175–184, 2004.

[18] C. Li, W. Yin, H. Jiang, and Y. Zhang. An efficient augmented Lagrangian method

with applications to total variation minimization. Computational Optimization and

Applications, 56(3):507–530, 2013.

[19] X. Li, D.F. Sun, and K.-C. Toh. A highly efficient semismooth Newton augmented La-

grangian method for solving Lasso problems. SIAM Journal on Optimization, 28(1):433–

458, 2018.

[20] X. Li, D.F. Sun, and K.-C. Toh. QSDPNAL: a two-phase augmented Lagrangian method

for convex quadratic semidefinite programming. Mathematical Programming Computa-

tion, 10(4):703–743, 2018.

[21] X. Li, D.F. Sun, and K.-C. Toh. An asymptotically superlinearly convergent semismooth

Newton augmented Lagrangian method for linear programming. SIAM Journal on

Optimization, 30(3):2410–2440, 2020.

[22] X. Li, D.F. Sun, and K.-C. Toh. On the efficient computation of a generalized Jacobian

of the projector over the Birkhoff polytope. Mathematical Programming, 179(1):419–446,

2020.

28



[23] L. Liang, X. Li, D.F. Sun, and K.-C. Toh. QPPAL: a two-phase proximal augmented La-

grangian method for high-dimensional convex quadratic programming problems. ACM

Transactions on Mathematical Software (TOMS), 48(3):1–27, 2022.

[24] L. Liang, D.F. Sun, and K.-C. Toh. An inexact augmented Lagrangian method for

second-order cone programming with applications. SIAM Journal on Optimization,

31(3):1748–1773, 2021.

[25] M.X. Lin, Y.-J. Liu, D.F. Sun, and K.-C. Toh. Efficient sparse semismooth Newton

methods for the clustered Lasso problem. SIAM Journal on Optimization, 29(3):2026–

2052, 2019.

[26] M.X. Lin, D.F. Sun, and K.-C. Toh. An augmented Lagrangian method with constraint

generation for shape-constrained convex regression problems. Mathematical Program-

ming Computation, 14(2):223–270, 2022.

[27] Y.-F. Liu, X. Liu, and S. Ma. On the nonergodic convergence rate of an inexact aug-

mented Lagrangian framework for composite convex programming. Mathematics of

Operations Research, 44(2):632–650, 2019.

[28] D.A. Lorenz, P. Manns, and C. Meyer. Quadratically regularized optimal transport.

Applied Mathematics & Optimization, 83(3):1919–1949, 2021.

[29] F.J. Luque. Asymptotic convergence analysis of the proximal point algorithm. SIAM

Journal on Control and Optimization, 22(2):277–293, 1984.

[30] L.A. Parente, P.A. Lotito, and M.V. Solodov. A class of inexact variable metric proximal

point algorithms. SIAM Journal on Optimization, 19(1):240–260, 2008.
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