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We theoretically investigate a thermoelectric heat engine based on a single-level quantum dot,
calculating average quantities such as current, heat current, output power, and efficiency, as well as
fluctuations (noise). Our theory is based on a diagrammatic expansion of the memory kernel together
with counting statistics, and we investigate the effects of strong interactions and next-to-leading
order tunneling. Accounting for next-to-leading order tunneling is crucial for a correct description
when operating at high power and high efficiency, and in particular affect the qualitative behavior of
the Fano factor and efficiency. We compare our results with the so-called thermodynamic uncertainty
relations, which provide a lower bound on the fluctuations for a given efficiency. In principle, the
conventional thermodynamic uncertainty relations can be violated by the non-Markovian quantum
effects originating from next-to-leading order tunneling, providing a type of quantum advantage.
However, for the specific heat engine realization we consider here, we find that next-to-leading order
tunneling does not lead to such violations, but in fact always pushes the results further away from
the bound set by the thermodynamic uncertainty relations.

I. INTRODUCTION

Transport through quantum dot (QD) systems has
been studied intensely in recent years. They can be used
to investigate fundamental aspects of open quantum sys-
tems, non-equilibrium and many body effects [1–5]. In
addition, QDs are used in many quantum technological
applications, e.g. sensors [6–8] and qubits [9–11].

From a theory perspective, transport in QDs (and
other interacting nanoscale systems) presents an interest-
ing challenge. In the absence of interactions, scattering
theory can provide exact results for many simple systems,
including a single resonant level [12]. In the presence of
electron-electron interactions this problem gets signifi-
cantly more complicated and cannot be solved exactly.
At low temperatures, non-equilibrium Green’s function
methods have been used together with renormalization
group approaches [13, 14], while others used fully numer-
ical methods [15–20].

Master equations naturally include Coulomb interac-
tions, at the cost of treating the tunneling within some
level of approximation. In leading order perturbation
theory only sequential tunneling is considered. There are
also perturbative schemes that allow including higher or-
der. In Ref. [21] elastic and inelastic co-tunneling have
been considered, as it is the dominating contribution in
the Coulomb blockade regime, where the sequential tun-
neling contributions to the current are exponentially sup-
pressed. Later, all next to leading order processes [22–24]
and more general higher order processes [25–27] were in-
cluded.

High tunability and control allows QD devices to be
operated as thermal machines in many different forms.
They can be used as heat pumps or heat valves [28, 29],
for heat rectification [30, 31] and refrigeration [28, 32].
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FIG. 1. (a) Sketch of the system with the QD energy level ε
coupled to a hot (h) and cold (c) lead described by tempera-
tures Th/c, chemical potentials µh/c and tunnel couplings Γ.
(b) Power from a gate/bias sweep with temperatures Th = 1.3,
T=1.0, U = 100Tc and Γ = 0.25Tc at symmetric bias. Note
the small bias/gate range, focusing on a region close to the
0−1 charge degeneracy point. The red curve is the load volt-
age depending on the gate voltage with a resistance coupled
according to (c). The load resistance R ≈ 74.43 is chosen
such that the cut goes through the maximum power point.
(c) Coupling scheme for a load resistor.

There are also many schemes in which the QDs are oper-
ated as heat engines. Quantum mechanical equivalents of
Otto or Carnot cycles [33–35] make use of cyclic driving
of a QD between two thermal baths. In engines based
on coupling to a single heat bath there are autonomous
Maxwell demon type engines [36–38] as well as Szilard
engine realizations [39–42], where measurement and feed-
back play an important role.
In contrast to cyclic schemes, steady state thermoelec-

tric heat engines use the energy filtering capabilities of
the quantized QD levels to extract electrical work from
a temperature gradient between leads [43–48]. A QD
(that can be modeled by a single spinful level) coupled
to metallic leads has been investigated earlier and it has
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been shown that higher order tunneling contributions
play an important role in limiting the efficiency [49, 50].

In addition to the average current, it is interesting to
study the current fluctuations or noise, which can contain
additional information about the system [51, 52]. Noise
in charge transport through QDs has been investigated
theoretically [51–57] and experimentally [58, 59]. Co-
tunneling has been shown to play an important role and
can alter the noise characteristics [53–55]. Full counting
statistics can be used to calculate the noise and higher
current cumulants [60–62].

The noise in QD systems plays an important role in
the context of fluctuation dissipation relations [53, 63]
and thermodynamic uncertainty relations (TURs) [64–
70]. The TUR is a lower bound on the fluctuations of
the current (and therefore output power) through the
heat engine, that increases with increasing efficiency and
current. Alternatively, it provides an upper bound on the
efficiency that decreases with decreasing fluctuations. It
is known that the classically derived TUR holds in the
sequential tunneling regime, but quantum mechanical ef-
fects and higher order tunneling contributions can lead
to violations [68, 69, 71], giving a type of quantum ad-
vantage.

In this work, we investigate the current noise together
with the heat current and generated electric power in a
single spinful level QD operated as a thermoelectric en-
gine, including tunnel processes to next-to-leading order.
We calculate these quantities for a given set of parameters
in a realistic heat engine setup, varying the QD level and
comparing with sequential tunneling and non-interacting
results. Similarly, we calculate these quantities at the
maximum power point, varying the tunnel coupling and
temperature difference, in order to systematically investi-
gate the effects of interactions and next-to-leading order
tunneling.

The paper is organized as follows. In section II we
introduce the setup and briefly review the Master equa-
tion and counting statistics approach we use. Section III
investigates the influence of interactions as well as the
next-to-leading order contributions on the noise in the
thermoelectric engine setup and section IV summaries
the results and provides an outlook. Throughout the pa-
per we use units where ℏ = e = kB = 1.

II. MODEL AND METHODS

We investigate a QD described by a single spinful level
coupled to a hot (h) and a cold (c) lead, schematically
shown in Fig. 1(a). The QD is described by the level ε
and the Coulomb charging energy is given by U . With
the QD creation/annihilation operators d†σ/dσ the QD
Hamiltonian reads

HD =
∑

σ=↑,↓

nσεσ + Un↑n↓, nσ = d†σdσ. (1)

We assume infinite and non-interacting fermionic leads
described by their chemical potentials µr and tem-
peratures Tr, where r = h/c. With the lead cre-

ation/annihilation operators c†kσr/ckσr, where k is a mo-
mentum index, σ is the spin index and r the lead index,
the lead Hamiltonian can be written as

Hr =
∑
k,σ

ωkσlnkσl, nkσr = c†kσrckσr. (2)

The leads and the QD are coupled by the tunneling am-
plitudes tkσr via the tunneling Hamiltonian

HT,r =
∑
k,σ

tkσrd
†
σckσr +H.c.. (3)

The tunnel amplitude defines the bare tunnel rates

Γr = 2πνr|tkσr|2, (4)

with the lead density of states νr. We assume the wide
band limit, where νr is constant over an energy range
much larger than all other relevant energies. Combining
these parts gives the full Hamiltonian

H =HD +
∑
r

HT,r +
∑
r

Hr. (5)

A. Transport quantities and counting statistics

To calculate the various transport quantities for this
system we use the real-time diagrammatic technique in
Liouville-Laplace superoperator space [22–25, 27]. For
the practical implementation see [72]. Starting from the
Liouville-von Neumann equation for the density matrix
of the full system

ρ̇(t) = −i[H, ρ(t)] = Lρ(t) (6)

we perform a Laplace transformation and trace over the
reservoirs. The stationary state reduced density matrix
of the QD, ρD, can then be found via the Laplace zero
frequency limit and we need to solve

(LD +W (i0+))ρD = 0, LD• = −i[HD, •]. (7)

This expression is in principle exact, but in practice some
form of approximation is needed to find W (i0+). We
expand in the tunneling Hamiltonian HT up to next-
to-leading order. Here leading / next-to-leading order is
H2

T /H
4
T , which is Γ/Γ2. We count orders in Γ and refer to

it as first and second order perturbation theory. Details
on this derivation and expressions for the first and second
order kernels can be found Refs [23, 62].

In order to calculate the noise (second current cumu-
lant) we find the counting field resolved kernel W (z, χr)
where z is the Laplace frequency and χr is the counting
field at lead r. As described in Ref. [62] this can be
done by modifying the bath contraction functions in the
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integrals that make up the kernel to include the counting
field. In second order the counting field resolved kernel
can be expanded as

W (χr, z) =
∑

k=−2,...,2

eikχrWk,r(z). (8)

The kernels Wk,r then contain all tunneling processes
that transfer k electrons to/from lead r. The sub-kernels
W±2,r contain exclusively second-order terms, while the
others can contain both first and second-order contribu-
tions. In a two-terminal setup the current and noise at
both lead are the same, due to current conservation, and
we therefore drop the lead indices on these quantities.

To calculate the current cumulants we are interested
in we follow Refs [60–62]. We use |•) to denote vectors in
Liouville-Laplace superoperator space. In this notation
expectation values are given by

((•)) = (ψ0| • |ψ0) = Tr(•ρD), (9)

where the left and right null vectors of W (0, i0+) are
defined via

W (0, i0+)|ψ0) = (ψ0|W (0, i0+) = 0. (10)

We define projection operators in super operator space

P = |ψ0)(ψ0|, Q = 1− P (11)

and the pseudo-inverse

R(δ) = Q 1

δ +W (0, δ + i0+)
Q. (12)

The first two current cumulants, i.e. mean particle cur-
rent I and current noise S then read [60, 62, 73]

I =− ((J ′)) (13)

S =− ((J ′′ − 2J ′RJ ′)) + 2I((J̇ ′ − J ′RJ̇)), (14)

where R = R(δ → 0) and J(χ, δ) is the shifted kernel

J(χ, δ) =W (χ, z = δ − i0+)−W (χ = 0, z = i0+),
(15)

with the derivatives

J ′ = ∂χJ |χ,δ→0, J̇ = ∂δJ |χ,δ→0. (16)

From the current I and the noise S the Fano-factor can
be calculated as

F =
S

|I|
. (17)

The heat current Qr out of lead r can be calculated
from the charge current Ir and energy current JE,r in
that lead via Qr = JE,r − µrIr. Note that unlike the
charge and energy currents, the heat current is not con-
served and we need to keep the reservoir index. Details

on the calculations of the energy current can be found in
Refs [27, 37, 50].
In the case of zero Coulomb interaction U = 0 the

equations for the different spins decouple and the sys-
tem can be solved analytically using Landauer-Büttiker
scattering theory [12]. The resulting equations for the
transport quantities of interest can be found in Appendix
A.

B. Operation as thermoelectric engine

The QD system can be operated in a parameter regime
where a temperature bias can be utilized to perform elec-
trical work, see Refs. [43, 45–50]. The QD level acts as
an energy filter, causing electrons to flow from the lead
with higher to the lead with lower occupation at energy
ε. In the situation depicted in Fig. 1(a) ε lies above the
chemical potentials. The chemical potential of the hot
lead µh lies below that of the cold lead µc, i.e. there is
an electric bias from cold to hot lead. However, due to
the broader Fermi function in the hot lead the occupa-
tion at energy ε in the hot lead can be higher than in the
cold lead leading to a current against that bias.
Important quantities characterizing thermoelectric en-

gines are the (electrical) power P and the efficiency η. In
Fig. 1(b) the power of a single QD heat engine is shown
in gate-bias space with fixed temperature bias, tunnel
couplings and charging energy. The gate voltage Vg here
corresponds directly to the QD levels via ε = −Vg (for
simplicity setting the charge offset and gate lever arm to
unity), while the bias voltage is applied symmetrically to
the leads, i.e. µh = −µc = Vb

2 . The power due to the
transport of electrons against that bias is calculated from
the current and bias as

P = −IVb. (18)

Note that Fig. 1(b) only show a small region around the
0− 1 charge degeneracy point where the output power is
positive. In the white areas, the QD does not operate as
a heat engine.
To extract electrical work from the heat engine one

cannot apply an external bias voltage. Instead, the ex-
ternal load can be modeled by a resistor R as shown in
Fig. 1(c). The current produced by the thermally bi-
ased QD passes through the resistor and produces power
there. Due to current conservation, for every gate voltage
we can find the corresponding voltage V that develops
over the resistor by self consistently solving [49, 50]

I(Vg, V ) = V/R. (19)

The load resistance R thus leads to a built up voltage V
over the QD, see the dashed line in Fig. 1(b). In this
sense operating the QD at a given gate and bias is equiv-
alent to operating it as a heat engine at that gate with
a specific load. R can be optimized for the operation
point with e.g. maximal power output or maximal effi-
ciency. In this work we choose to optimize for the power
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P , marked with a cross in Fig. 1(b), for detail see Ap-
pendix B. In the 0 electron sector V is negative, while to
the right of the charge degeneracy point V is positive.
The efficiency of the engine is the ratio of power and

heat current at the hot lead, i.e.

η =
P

Qh
=

−IV
Qh

(20)

A fundamental thermodynamic bound on the efficiency
is the Carnot-efficiency

ηC = 1− Tc
Th
. (21)

The Curzon-Ahlborn efficiency

ηCA = 1−
√
Tc
Th

≈ ηC
2

+
η2C
8

+ . . . (22)

provides a bound on the efficiency at maximum power
[46, 74]. Unlike the Carnot bound it can be violated, e.g.
for a single level QD in the sequential tunneling limit
[75].

C. Thermodynamic uncertainty relations

With the help of the current noise from counting statis-
tics we can investigate the TUR [64–69]

S

I2
σ ≥ 2. (23)

In the heat engine case the entropy production reads σ =
P 1

Tc

ηC−η
η [69, 76] and inserting this results in

S

I
V

1

Tc

ηC − η

η
≥ 2. (24)

We can rearrange Eq. (24) to get bounds on the individ-
ual quantities given the other two, e.g. for the noise

S ≥ 2I
Tc
V

η

ηC − η
, (25)

or the efficiency

η ≤ ηC
2ITc

SV + 1
. (26)

III. RESULTS

Figure 2 shows different transport quantities along a
gate sweep for the setup shown in Fig. 1(c), i.e. the QD
coupled in a circuit with an external load resistance R
and no external bias voltage. In each case we compare
the result from first and second order perturbation theory
in the tunnel couplings, referred to as first and second
order respectively.

The current, Fig. 2(a), is positive for gate voltages
left of the charge degeneracy point. This corresponds
to the situation sketched in Fig. 1(a), where the QD
level sits above the lead chemical potentials (charge 0
sector). Note that the built up voltage is negative here,
i.e. µh < µc, and positive current in our convention
means electrons flow from the hot lead into the QD. For
large negative gate voltages the level is far away from the
bias window and the current is small. Getting closer to
the bias window the current increases, due to the increas-
ing difference in the Fermi functions of the leads. At the
charge degeneracy point the chemical potentials line up
with the QD level and the current has to be zero. To the
right of the degeneracy point (charge 1 sector) the occu-
pation in the cold lead is larger and the current is inverted
compared to the charge 0 sector. The asymmetry in the
height of the peak between the charge sectors results from
a combination of spin degeneracy and Coulomb interac-
tion, see Appendix A of Ref. [50]. Note that at the 1-2
charge degeneracy point the picture would be flipped.
When comparing first and second order in Fig. 2(a) we
observe the known shift of the current zero due to second
order contributions. This is due to a re-normalization of
the level energies in second order [23, 77, 78] and is also
visible in the other plots.

The noise S in Fig. 2(b) is a positive quantity. It
shows one peak centered at the charge degeneracy point
and looks qualitatively similar in first and second order.
The second order noise approaches zero slower than the
first order noise.

The effect of the second order tunneling becomes more
clear in the Fano factor F = S/I in Fig. 2(c). Towards
the charge degeneracy it has to diverge, since the current
in the denominator becomes 0, while the noise stays fi-
nite. In first order the Fano factor converges to a fixed
value in the blockaded regime, i.e. the current and noise
converge towards zero at the same rate. In contrast, the
second order Fano factor does not converge when going
into the blockaded regime, because in second order the
current goes to zero faster than the noise. This can be
explained by additional transport mechanisms in second
order that can contribute to the noise, but not necessarily
to the current [54, 79].

The power in Fig. 2(d) is developed in the load. It has
to be zero at the current inversion point, with peaks on
either side of it. The asymmetry in the current results
in an asymmetry in the power. Here also the shift of the
current inversion point in second order mentioned earlier
becomes clear.

The heat current Qh at the hot lead, Fig. 2(e), is
coupled to the electron current and thus has a dip at the
current inversion point, peaks on either side and vanishes
for larger |Vg|. In second order, Qh does not go to zero
at the current inversion point. This is because the tight
coupling between particle and heat current gets broken
by second order tunneling [49, 50]. This leads to a strik-
ing difference in the efficiency η = P/Qh, shown in Fig.
2(f), which reduces to zero at the current inversion point
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FIG. 2. (a) Current, (b) noise, (c) Fano factor, (d) power, (e) heat current and (f) efficiency as a function of Vg in the setup
in Fig. 1(c). The resistance R ≈ 74.43 is chosen to maximize the power. All other parameters are the same as in Fig. 1. All
figures show second order (orange) and first order (purple) results. The orange dotted line in the efficiency (f) indicates the
bound given by the TUR (26) for the second order, where the shaded areas are indicate TUR violations. Note, that we choose
the optimal load of the second order approach for both cases, since the difference is small.

in second order, but not in first order. The orange dotted
line in Fig. 2(f) indicates the bound given by the TUR
(26) for the second order curve. Note that because the
bound includes I and S, it is not completely identical in
first and second order. We omit the first order bound,
since at this scale it cannot be distinguished from the
efficiency. The bound is not saturated in second order.
Notably, the TUR bound is smaller than the Carnot ef-
ficiency, i.e. given the current and noise of a heat engine
and assuming the TURs to hold, we can find a tighter
bound than Carnot. TURs can in principle be violated
in second order [68, 69]. However, we find that this does
not happen in our system, at least not in the parameter
regime we investigate.

In Fig. 3 we show the same quantities as in Fig. 2,
but at the maximum power point varying the tunnel cou-
plings to the leads. We also show different Coulomb in-
teraction strengths, U = 100 and U = 0, and compare to
scattering theory for U = 0. In first order the maximum
power point does not change with Γ. Because Γ is simply
a pre-factor in the first order rate equation the current,
noise, power and heat current for the first order approach
are linear in Γ. Note the scaling with Γ that leads to all
these quantities being constant in first order. Deviations
from that behavior are a related to higher order tunnel-

ing. For second order and non-interacting scattering the-
ory the maximum power point moves in gate-bias space
when sweeping Γ.

Figure 3(a) shows the currents scaled by Γ. Without
interactions, the second order current follows the scat-
tering theory result closely. Coulomb interactions reduce
the current for both first and second order. Towards
Γ ≈ 0.4 the second order current changes curvature indi-
cating breakdown of perturbation theory. Similar behav-
ior can be seen in the noise in Fig. 3(b). The deviation
between scattering theory and second order noise can be
explained by the maximum power point shifting more in
second order, compared to scattering theory (see Fig. 5
in Appendix B). The noise at the maximum power point
is sensitive to changes in gate position (compare Figs.
2(b) and (d)) leading to large deviations.

Figure 3(c) shows the Fano factor, which increases with
Γ in the non-interacting second order and scattering the-
ory results. For bigger tunnel couplings the deviations
become larger. In first order, Coulomb interaction re-
duces the Fano factor. For small Γ this is also the case
for second order, but for larger tunnel coupling the inter-
actions lead to a crossover of the two curves.

Figure 3(d) shows the power. The second order curve
without Coulomb interactions follows the scattering the-
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FIG. 3. (a) Current, (b) noise, (c) Fano factor, (d) power, (e) heat current and (f) efficiency at maximum power plotted
as a function of the tunnel coupling to the leads for different approaches and different values of U (see top of Figure). Other
parameters are the same as in Fig. 1.

ory results well. Coulomb interactions reduce the power
in both first and second order. In the heat current, Fig.
3(e), second order without interactions and scattering
theory results qualitatively agree. In both first and sec-
ond order, Coulomb interactions lead to a reduced heat
current. The efficiency, Fig. 3(f), for second order and
scattering theory both show a decrease in efficiency with
increasing Γ.

In Fig. 4 we vary the temperature difference ∆T by
increasing the temperature of the hot lead, while keeping
the temperature of the cold lead fixed. As before the
position of the maximum power point will shift in gate
with increasing temperature difference, also requiring a
different optimal load. Here it will shift for both first and
second order, as well as for scattering theory, see Fig. 6
in Appendix B.

The current in Fig. 4(a) increases with the temper-
ature difference. For ∆T ≳ 0.5 this increase is clearly
smaller than linear. The noise in Fig. 4(b) increases
with the temperature difference. An increased tempera-
ture of one of the leads means the average temperature
of the system is higher. That is expected to result in
more thermal noise. Similarly to the current, the noise
is reduced by the interactions. The bounds given by the
TUR in Eq. (25) are given as dotted lines in the cor-
responding color. For small ∆T the first order results
with Coulomb interaction seem to saturate the bound,

while the other results are all far away from saturation.
Increasing the temperature difference increases the noise
in all cases and pushes the noise further away from the
bound.

For decreasing temperature difference the maximum
power point converges to the charge degeneracy point,
where the current is zero, while the noise is finite (and
the values is given by the equilibrium fluctuation dissi-
pation theorem as S = −2T̄ ∂I/∂∆µ|∆µ=0). Thus, the
Fano factor in Fig. 4(c) diverges for small temperature
differences.

The power in Fig. 4(d) increases with increasing tem-
perature difference, since at larger ∆T the QD supports
larger currents. The heat current at the hot lead in-
creases with the temperature difference in all cases, see
Fig. 4(e). The efficiencies in Fig. 4(f) are qualitative sim-
ilar, where the first order efficiencies are higher than the
other results and follow the Curzon-Ahlborn efficiency in
Eq. (22) (not shown here). Again we indicate the TUR
bound from Eq. (26) by dotted lines. These bounds are
consistently smaller than the Carnot efficiency.
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FIG. 4. (a) Current, (b) noise, (c) Fano factor, (d) power, (e) heat current and (f) efficiency at maximum power plotted as
a function of the temperature difference ∆T between the leads for different approaches and different values of U (see top of
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IV. CONCLUSION

In this work, we have theoretically studied a QD op-
erated as a thermoelectric heat engine. In particular, we
used a second order master equation approach to calcu-
late current, noise and heat current, as well as quantities
derived from these. For the QD in a heat engine config-
uration we investigate a gate sweep when coupled to a
load resistance, as well as sweeping the tunnel couplings
and temperature difference at maximum power output.
We compare results from first and second order pertur-
bation theory in the tunneling rates Γ, and in the non-
interacting case we additionally compare with exact scat-
tering theory. We observe that in the heat engine regime
the second order processes can reduce the noise. How-
ever, at the same time the current is suppressed and the
Fano factor typically increases compared to pure sequen-
tial tunneling approaches. Coulomb interactions reduce
the noise and lower the Fano factor, at least in the pa-
rameter range we investigated.

Since the TURs contain the Fano factor, second or-

der tunneling pushes the heat engine further away from
saturating the TUR. While interactions reduce the Fano
factor, the reduction of the heat current and thus effi-
ciency means that the TUR is also further from being
saturated for significant Coulomb interaction strength.
Our results show no TUR violations when operating a
QD as a thermoelectric engine at maximum power. In
that sense they provide a bound on the efficiency of the
engine (given current and noise) that is lower than the
fundamental Carnot efficiency.
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[12] Y. Blanter and M. Büttiker, Shot noise in mesoscopic
conductors, Phys. Rep. 336, 1 (2000).

[13] J. Rammer, Quantum Field Theory of Non-equilibrium
States (Cambridge University Press, 2007).

[14] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden,
and K. Schönhammer, Functional renormalization group
approach to correlated fermion systems, Rev. Mod. Phys.
84, 299 (2012).

[15] A. N. Rubtsov, V. V. Savkin, and A. I. Lichten-
stein, Continuous-time quantum Monte Carlo method for
fermions, Phys. Rev. B 72, 035122 (2005).
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[61] C. Flindt, T. Novotný, A. Braggio, and A.-P. Jauho,
Counting statistics of transport through coulomb block-
ade nanostructures: High-order cumulants and non-
markovian effects, Phys. Rev. B 82, 155407 (2010).

[62] C. Emary, Counting statistics of cotunneling electrons,
Phys. Rev. B 80, 235306 (2009).

[63] L. Tesser and J. Splettstoesser, Out-of-equilibrium
fluctuation-dissipation bounds, Phys. Rev. Lett. 132,
186304 (2024).

[64] A. C. Barato and U. Seifert, Thermodynamic uncertainty
relation for biomolecular processes, Phys. Rev. Lett. 114,
158101 (2015).

[65] P. Pietzonka and U. Seifert, Universal trade-off between
power, efficiency, and constancy in steady-state heat en-
gines, Phys. Rev. Lett. 120, 190602 (2018).

[66] U. Seifert, Stochastic thermodynamics: From principles
to the cost of precision, Physica A 504, 176 (2018).

[67] T. R. Gingrich, J. M. Horowitz, N. Perunov, and J. L.
England, Dissipation bounds all steady-state current
fluctuations, Phys. Rev. Lett. 116, 120601 (2016).

[68] B. K. Agarwalla and D. Segal, Assessing the validity of
the thermodynamic uncertainty relation in quantum sys-
tems, Phys. Rev. B 98, 155438 (2018).

[69] J. Liu and D. Segal, Thermodynamic uncertainty relation
in quantum thermoelectric junctions, Phys. Rev. E 99,
062141 (2019).

[70] S. Kheradsoud, N. Dashti, M. Misiorny, P. Potts,
J. Splettstoesser, and P. Samuelsson, Power, efficiency
and fluctuations in a quantum point contact as steady-
state thermoelectric heat engine, Entropy 21, 777 (2019).
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Appendix A: Landauer-Büttiker scattering theory

Here we present the resulting equations for the current
I, noise S and heat currents Qr for a single electronic

level at ε coupled to leads at temperatures Tr and chemi-
cal potentials µr. For a derivation see e.g. chapter 2.3-2.4
in Ref. [12]. The current and noise read

I =
1

2π

∫
dE{T (E)[fh(E)− fc(E)]}, (A1)

S =
1

2π

∫
dE{T (E)[fh(E)(1− fh(E)) + fc(E)(1− fc(E))] + T (E)[1− T (E)](fh(E)− fc(E))2}. (A2)

The transmission T (E) for a single resonant level at ε
given the tunnel rates Γh/c is given by a Lorentzian

T (E) =
ΓhΓc

(E − ε)2 + (Γh + Γc)2/4
. (A3)

To find the heat current we first use the energy current

JE =
1

2π

∫
dE{E · T (E)[fh(E)− fc(E)]}. (A4)

As in the main text the heat current at lead r then reads

Qr = JE − µrI. (A5)

Note that the result for the non-interacting Anderson dot
is simply the results of the single levels times two.

Appendix B: Postition of the max power point

The area in gate/bias space where the QD operates as
a heat engine, i.e. has positive power output, changes
when changing parameters such as the coupling to the
leads or the temperature difference between the leads.
We are interested in comparing how the transport quan-
tities and heat engine characteristics at the point of max-
imum power output evolves when sweeping parameters.

The maximum power point (Vg,max, Vb,max) in gate-
bias space can be found numerically by optimizing the
power P = −IVb with an applied external bias voltage
Vb. The resulting point in Fig. 1(a) is marked with a
red cross. This bias voltage corresponds to choosing a
load resistance R = Vb,max/I(Vg,max, Vb,max) and tuning
to the gate voltage Vg,max. Finding the voltages V that
develop over the resistor for each gate voltage then results
in the red dashed line in Fig. 1(b).

Figure 5 shows the position of the maximum power
point for increasing Γ. Note that the maximum power
point for the first order does not shift at all. This is
because in first order Γ is only a pre-factor, scaling the

FIG. 5. Position of the max power point in gate/bias space
depending on the tunnel couplings 0.01 ≤ Γ ≤ 0.4 (arrows
indicate increasing Γ).

current and hence the power. In second order and scat-
tering theory the maximum moves towards lower bias, in
the direction of the arrows. In gate the Coulomb inter-
action determines the direction of the shift.

For a sweep in temperature difference the max power
point moves towards larger gate and bias voltages for all
approaches in a similar fashion, see Fig. 6.
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FIG. 6. Position of the max power point in gate/bias space
depending on the temperature difference 0.05 ≤ ∆T ≤ 3.0
(arrow indicates increasing ∆T ).
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