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SOME ISOPERIMETRIC INEQUALITIES FOR HOMOGENEOUS NORMS

ON STRATIFIED LIE GROUPS

YAOZHONG QIU

Abstract. We continue the program initiated in [IKZ11; Qiu24] and study L
1-type func-

tional inequalities for some probability measures defined in terms of homogeneous norms

on a stratified Lie group, our goal being to obtain isoperimetric inequalities beyond the

nondegenerate setting of probability measures defined in terms of the Carnot-Carathéodory

distance. We then provide some examples on and beyond stratified Lie groups.

1. Introduction and main results

In this paper, we continue the program initiated in [IKZ11; Qiu24] and study L1Φ-entropy

type inequalities for probability measures defined on stratified Lie groups using an adaptation

of the methods presented in the latter, our goal being to obtain isoperimetric inequalities for

some probability measures defined in terms of homogeneous norms. Consider the probability

measure

(1.1) dµp = Z−1e−ψ
p

dξ

where ψ is a homogeneous norm (in the sense of [BLU07, §5]) on a stratified Lie group G

with Lebesgue measure dξ, p > 0, and Z is a normalisation constant (here and in the sequel).

It was shown in [HZ10, Corollary 4.1] that if ψ is the Carnot-Carathéodory distance d on

the Heisenberg group G = Hn and p ≥ 2 then µp satisfies a q-logarithmic Sobolev inequality

(1.2)

∫
|f |q log

(
|f |q∫
|f |q dµp

)
dµp .

∫
|∇Gf |

q dµp

for q ∈ (1, 2] Hölder conjugate to p and f : Hn → R smooth. Here and in the sequel .

means the inequality holds for some constant C > 0 independent of f appearing on the right

hand side. Note for p > 2 this inequality improves on and implies the standard 2-logarithmic

Sobolev inequality since it implies, by Hölder’s inequality, a defective 2-logarithmic Sobolev

inequality (meaning with an additional L2-norm appearing on the right hand side) which

can be tightened by the 2-Poincaré inequality of [BZ05, Corollary 2.5] and [BGL+14, Propo-

sition 5.1.3]. Despite some technical differences between the Carnot-Carathéodory distance

and the euclidean norm (for instance, smoothness), the measures they define in the sense of

(1.1) are analogous at the level of functional inequalities; both satisfy (1.2), and according

to [IKZ11, Theorem 5.6], both share the same isoperimetric profile up to constants.
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It was later proven in [Qiu24, Theorem 2] that if ψ is the Kaplan norm N = NG on (again

for simplicity) the Heisenberg group G = Hn and p > 2, then µp satisfies a q-super-Poincaré

inequality

(1.3)

∫
|f |q dµp ≤ ε

∫
|∇Gf |

q dµp + βq(ε)

(∫
|f |q/2 dµp

)2

for q ∈ (1, 2) Hölder conjugate to p, all ε > 0 and growth

βq(ε) = C exp(C ′ε−2(p−1)/(p−2)), C, C ′ > 0.

[Ing12, Lemma 4.11] showed this q-variant is stronger than the 2-super-Poincaré inequality,

the latter introduced in [Wan00] to study the essential spectrum of the operator whose

Dirichlet form is E(f, f) =
∫
|∇Gf |

2 dµ. One of the observations made in [Qiu24] was

that the growth βq in (1.3) for the Kaplan norm measure dµp = Z−1e−N
p

dξ implies a 2-

super-Poincaré inequality with a growth β2 which coincided with the growth of the “model”

measure dνr = Z−1e−|x|rdx for r = 2p
p+2

∈ (1, 2) on Rn. Thus the measure dµp, despite having

supergaussian decay of tails, can only support a subgaussian 2-super-Poincaré inequality.

In this paper, we would like to answer the question of whether such a subgaussian q-

super-Poincaré inequality implies subgaussian isoperimetric content. That is, does dµp =

Z−1e−N
p

dξ, p > 2, share the same isoperimetric profile as dνr = Z−1e−|x|rdx, r = 2p
p+2

, up

to constants? An issue however with the q-super-Poincaré inequality for q > 1 is that the

method of extracting isoperimetric content through the consequent F -Sobolev inequality

(1.4)

∫
f 2F (f 2)dµp ≤ c1

∫
|∇Gf |

2 dµp + c2, c1, c2 > 0 and

∫
f 2dµp = 1,

as done in [Wan00, Theorem 3.4], fails in the subelliptic setting of stratified Lie groups due

to the absence of curvature lower bounds. In particular the consequences of [Qiu24] are

apparently partial in the sense they cannot recover the expected isoperimetric content.

Although in light of the previous discussion the choice of q being Hölder conjugate to p is

somehow the “natural” choice of setting, it is not known to us how to extract isoperimetric

content from q-super-Poincaré inequalities (more precisely, the q-variant of the F -Sobolev

inequality they imply) in the subelliptic setting due to the dependence on curvature lower

bounds. In contrast, the methods developed in [IKZ11] for isoperimetric inequalities require

no such assumptions. Motivated by their work, we will complete the picture by first proving

a 1-super-Poincaré inequality for µp, show this passes to an L1-analogue of the F -Sobolev

inequality following the arguments of [Wan00, Theorem 3.2], and finally show this implies via

[IKZ11, Theorem 4.5] the expected isoperimetric inequality. We will conclude by providing

an argument which shows these ideas can be greatly simplified but are included nonetheless

for the sake of completeness and possible applications in future work. We will not be able to

affirmatively answer the question of whether a q-super-Poincaré inequality, q > 1, directly

implies isoperimetric content but we will see it “predicts” a 1-super-Poincaré inequality (at

least in the cases of interest) which does.
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We now introduce the main objects of interest. The methods allow for generalisation to

other spaces with a similar structure, but to provide a clearer exposition of the main ideas,

the underlying space of interest (for the moment) is a stratified Lie group G. This means

that G = (Rn, ◦) is a Lie group, which we will identify with Rn equipped with a composition

law ◦ : Rn × Rn → Rn, whose Lie algebra (g, [−,−]) of left invariant vector fields admits the

decomposition (or stratification)

g =

r−1⊕

i=0

gi such that gi = [gi, gi+1], 1 ≤ i ≤ r − 1.

In other words, g0 generates the Lie algebra g through successive Lie bracketing. The

prototypical example is the Heisenberg group H1 = (R3, ◦) whose Lie algebra h1 is generated

by X1 = ∂x −
y
2
∂z and X2 = ∂y +

x
2
∂z. There is a canonical basis {X1, · · · , Xℓ} for g0 and ℓ

the topological dimension of g0 whose components form the subgradient ∇G := (X1, · · · , Xℓ)

and sublaplacian ∆G = ∇G · ∇G =
∑ℓ

i=1X
2
i on G replacing their euclidean counterparts

∇ = (∂1, · · · , ∂n) and ∆ =
∑n

i=1 ∂
2
i .

The identification between g and G through the exponential map equips G with the

coordinates G ∼= ⊗r−1
i=0Ri where dim(Ri) = dim(gi). The first strata R0, called the horizontal

strata, is distinguished in the sense it represents the “euclidean” part of G; for a function f

on G depending only on coordinates in R0, the action of ∇G and ∆G is simply the euclidean

one. For a point ξ = (x0, · · · , xr−1) ∈ ⊗r−1
i=0Ri

∼= G, we write x = x(ξ) = x0 for the horizontal

part of ξ, and |x| for its euclidean norm, called the horizontal norm. The horizontal norm

will appear in the estimates on the homogeneous norm ψ.

Every stratified Lie group is equipped with a family of automorphisms

δλ(ξ) = δλ(x0, · · · , xr−1) = (λx0, · · · , λ
rxr−1), λ > 0

called dilations. We will be interested in studying measures defined in terms of homogeneous

norms, meaning smooth almost everywhere functions ψ satisfying

(1) ψ(ξ) = 0 if and only if ξ = e,

(2) ψ(ξ−1) = ψ(ξ) for each ξ ∈ G, and

(3) ψ(δλ(ξ)) = λψ(ξ) for each ξ ∈ G.

Two homogeneous norms are particularly distinguished. The first is the Carnot-Carathéodory

distance mentioned in the introduction is the metric on G, defined as

d(ξ1, ξ2) = sup
|∇Gf |

2≤1

f(ξ1)− f(ξ2)

for all ξ1, ξ2 ∈ G and where the supremum is taken over all f smooth. Abusing notation,

we will write d(ξ) ≡ d(ξ, 0) for the homogeneous norm d. It can also be defined in terms of

geodesics which are integral curves of X1, · · · , Xℓ, that is paths whose tangent vectors belong

to Span{X1, · · · , Xℓ} at each point. That the space is actually connected by such paths is

because the vector fields X1, · · · , Xℓ satisfy Hörmander’s rank condition and therefore the

Carathéodory-Chow theorem applies, see for instance [BLU07, Chapter 19].
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The second is the Kaplan norm N which, on a Heisenberg group, is defined as the funda-

mental solution to ∆G, namely if Q(G) =
∑r−1

i=0 (i+ 1) dim(gi) is the homogeneous dimension

of G, then

∆GN
2−Q(G) = δ0

in the sense of distributions. On more general stratified Lie groups, the Kaplan norm is

typically called the Korányi-Folland gauge. Both d and N are homogeneous norms in the

sense of [BLU07, §5], and are equivalent up to constants.

Interestingly, the Carnot-Carathéodory distance satisfies like the euclidean norm on Rn

the eikonal equation |∇Gd| = 1 in the distributional sense [MC01, Theorem 3.1], but is not

smooth on G \ {0}. On the other hand, the Kaplan norm is smooth on all of G \ {0} but

need not satisfy the eikonal equation and instead |∇GN | may vanish in certain directions,

for instance along the zero locus {|x| = 0} of the horizontal norm when G is a Heisenberg

group. These differences manifest in the functional inequalities their respective measures

satisfy; see, for instance, [HZ10, Theorem 6.3] wherein it was shown on a H-type group

that µp can never satisfy a logarithmic Sobolev inequality when ψ is any homogeneous norm

smooth away from the origin (in particular when ψ is the Kaplan norm). For more details

on stratified Lie groups, we refer the reader to [BLU07].

The functional inequalities of interest are q-super-Poincaré, F -Sobolev, and isoperimetric

inequalities. If (X,A, ν) is a probability space and L is a selfadjoint operator on L2(ν)

generating a Markov semigroup (Pt)t≥0 with Dirichlet form E(f, f), then the 2-super-Poincaré

inequality as introduced by [Wan00] is the family of inequalities

(1.5)

∫
f 2dν ≤ εE(f, f) + β2(ε)

(∫
|f | dν

)2

valid for real-valued f : X → R in the domain D(E) of the Dirichlet form and ε > ε0 ≥ 0.

As before, we call β2 : (ε0,∞) → R the growth function. One of the remarkable proper-

ties of the 2-super-Poincaré inequality is that it not only implies [Wan00, Theorem 2.1] the

essential spectrum σess(−L) of −L is contained in [ε−1
0 ,∞), but also implies [Wan00, The-

orems 3.1 and 3.2] via F -Sobolev inequalities (defined below) a number of other functional

inequalities, including in particular the Poincaré and logarithmic Sobolev. For more details

on 2-super-Poincaré inequalities, we refer the reader to [Wan00; Wan02], and also to [Wan06;

Bak04; BGL+14] for more general discussion of functional inequalities.

In the sequel, we will always work in the diffusion setting where X = G is a stratified

Lie group, dν = Z−1e−Udξ, and L = ∆G −∇GU · ∇G with U ∈ W 2,1
loc (G) satisfying Z =∫

e−Udξ < ∞ where dξ is the Lebesgue measure on G. Then L is essentially selfadjoint in

L2(ν), its unique selfadjoint extension generates a Markov semigroup (Pt)t≥0 in L2(ν), and

its Dirichlet form E(f, f) = (−Lf, f) =
∫
|∇Gf |

2 dµp has domain D(E) = W 1,2(ν). The

1-super-Poincaré inequality in this diffusion setting is the family of inequalities

(1.6)

∫
|f | dν ≤ ε

∫
|∇Gf | dν + β1(ε)

(∫
|f |1/2 dν

)2

, ε ≥ ε0 > 0.
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It was shown for ε0 = 0 in [Ing12, Lemma 4.11] to imply (1.5) with β2(ε) = Cβ1(C
′ε1/2) for

some C,C ′ > 0. The implication is still true for general ε0 > 0, but the ε0 in (1.6) need not

be the same ε0 in (1.5).

The goal of this paper is to study the 1-super-Poincaré inequality (1.6) for a class of

homogeneous norms ψ on a stratified Lie group G defining the probability measure dν =

dµp = Z−1e−ψ
p

dξ where Z is again the normalisation constant, with its dependence on p

suppressed for convenience. The main ingredients will be estimates for ∇Gψ, ∆Gψ, and

∇G |x| · ∇Gψ. The proofs will also pass through the L1-analogue of a U -bound

(1.7)

∫
ηf 2dν . E(f, f) +

∫
f 2dν

which we continue to call a U -bound (since we will not consider inequalities of any other

Lp-type)

(1.8)

∫
η |f | dµp .

∫
|∇Gf | dµp +

∫
|f | dµp

for some η : G → R. They were introduced in [HZ10] and shown under generic conditions

(going beyond the case of stratified Lie groups) to provide Poincaré and logarithmic Sobolev

inequalities. One reason they might be interesting to study is that there are some tractable

ways to prove them, for instance the original integration by parts method of [HZ10]. They are

also stable under (certain types of) perturbations beyond the typical functions of bounded

oscillation. In the L2-case of (1.7), they are essentially quadratic form lower bounds η .

−L+ 1. For more discussion on U -bounds, we refer the reader to [HZ10; IKZ11; Qiu24] and

the references therein.

After proving the 1-super-Poincaré inequality, we will prove an L1-analogue of the F -

Sobolev inequality

(1.9)

∫
f 2F (f 2)dν ≤ c1E(f, f) + c2,

∫
f 2dν = 1 and c1, c2 > 0

which we continue to call a F -Sobolev inequality

(1.10)

∫
|f |F1(|f |)dµp ≤ c1

∫
|∇Gf | dµp + c2,

∫
|f | dµp = 1 and c1, c2 > 0

and in particular establish a correspondence between 1-super-Poincaré inequalities and F -

Sobolev inequalities analogous to [Wan00, Theorems 3.1 and 3.2]. As mentioned earlier,

such a F -Sobolev inequality is an L1Φ-entropy inequality in the language of [IKZ11] and,

following their methods, we will conclude by deducing the titular isoperimetric inequality

which we present in greater generality than necessary (as far as the examples we present are

concerned) for possible applications in future work.

Theorem 1. Let G be a stratified Lie group with Lebesgue measure dξ, N a homogeneous

norm satisfying the estimates

(1.11)
|x|α

Nα
. |∇GN | .

|x|β

Nβ
, |∆GN | .

|x|γ

Nγ+1
, |∇G |x| · ∇GN | .

|x|δ

N δ
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for some α, β, γ, δ ≥ 0. Let

σ = max(−2α,−β,−γ,−δ + 1).

If δ ≥ σ + 2α and p > 1 + σ + 2α then the measure dµp = Z−1e−N
p

dξ satisfies the 1-super-

Poincaré inequality (1.6) with ε0 = 0 and

β1(ε) = C exp
(
C ′ε−p(1+σ+2α)/(p−1−σ−2α)

)
, C, C ′ > 0.

Proposition 1. The 1-super-Poincaré inequality (1.6) with growth

β1(ε) = C exp(C ′ε−1/δ), C, C ′ > 0

implies the F -Sobolev inequality (1.10) with

F1(x) = log(1 + x)δ.

Theorem 2. Assume as in Theorem 1. Let d be the Carnot-Carathéodory distance and for

a Borel set A define

Aε = {x ∈ G | d(x,A) < ε} and µ+
p (A) = lim inf

ε→0+

µp(Aε \ A)

ε

the ε-neighbourhood of A and the surface measure with respect to µp of A respectively. Then

the isoperimetric profile

Iµp(t) = inf{µ+
p (A) | A is Borel and µp(A) = t}

of µp satisfies

Ur(t) . µ+
p (A), r =

p(1 + σ + 2α)

p− (1 + σ + 2α)
,

that is Iµp & Ur, for all A such that µp(A) = t and where Ur = Iνr∗ is the isoperimetric

profile of the measure

dνr∗ = Z−1e−|x|r
∗

dx

where

r∗ =
(1 + σ + 2α)p

(σ + 2α)p+ (1 + σ + 2α)

is Hölder conjugate to r.

In other words, there exist measures µp on stratified Lie groups with (up to constants) the

concentration, but not isoperimetric, properties of νp.

Remark 1. The isoperimetric profile Ur of νr∗ itself satisfies

Ur(t) & min(t, 1− t) log

(
1

min(t, 1− t)

)1−1/r∗

, t ∈ (0, 1).
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2. Proof of main results

The main idea of the proof follows the generalisation provided in [Qiu24, §2.3] to general

step two stratified Lie groups; the estimates (1.11) provide a U -bound (1.8) of the form

η = |x|sN t for some s, t > 0, and then a suitable Hardy inequality allows passage to the

q-super-Poincaré inequality. Unlike in [Qiu24], we will actually need the Hardy inequality as

opposed to the associated uncertainty principle. We therefore start by proving a U -bound

for µp assuming (1.11). In what follows, all integration happens over G and f ∈ W 1,2(µp).

Moreover, we write I1(f) . I2(f) whenever I1(f) ≤ CI2(f) for some constant C > 0 which

does not depend on f .

Lemma 2. Given (1.11), it holds
∫

|x|σ+2αNp−1−σ−2α |f | dµp .

∫
|∇Gf | dµp +

∫
|f | dµp

where

σ = max(−2α,−β,−γ,−δ + 1).

Proof. The proof follows the integration by parts strategy of [HZ10]. Assume without loss of

generality f ≥ 0. We can develop the integral with respect to dξ of ∇G(fe
−U) · |x|εN ζ∇GN

with ε, ζ ∈ R in two ways. Let V = Np. We may either expand the subgradient and obtain
∫

∇G(fe
−V ) · ∇G |x|εN ζ∇GNdξ =

∫
∇Gf |x|

εN ζ∇GNdµp −

∫
f |x|εN ζ∇GV · ∇GNdµp

or we may integrate by parts and obtain
∫

∇G(fe
−V ) · |x|εN ζ∇GNdξ = −

∫
f∇G · (|x|εN ζ∇GN)dµp.

Equating, we find

(2.1)

∫
f |x|εN ζ∇GV · ∇GNdµp =

∫
∇Gf |x|

εN ζ∇GNdµp

+

∫
f∇G · (|x|εN ζ∇GN)dµp.

On the left hand side of (2.1) we have ∇GV · ∇GN = ∇GN
p · ∇GN = pNp−1 |∇GN |2 &

Np−1 |x|2αN−2α and therefore

(2.2)

∫
f |x|εN ζ∇GV · ∇GNdµp &

∫
f |x|ε+2αN ζ+p−1−2αdµp.

On the right hand side of (2.1) and using the estimates (1.11), the first addend is controlled

just by taking absolute values inside the integrand

(2.3)

∫
∇Gf |x|

εN ζ∇GNdµp .

∫
|∇Gf | |x|

ε+βN ζ−βdµp
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while the second addend is expanded to find

(2.4)

∫
f∇G · (|x|εN ζ∇GN)dµp .

∫
f |x|ε+δ−1N ζ−δdµp

+

∫
f |x|ε+2αN ζ−1−2αdµp

+

∫
f |x|ε+γ N ζ−1−γdµp.

The weight |x|ε+βN ζ−β in (2.3) must satisfy ε+ β ≥ 0 and be equal to O(1/N θ) for some

θ ≥ 0. Clearly if θ = 0 it is automatic the right hand side of (2.3) is controlled by
∫
|∇Gf | dµp,

while if θ > 0 we can glue the U -bound restricted to a function supported outside the unit

ball B1 with respect to N where 1/N θ . 1, with the trivial U -bound
∫
B1
fηdµp .

∫
fdµp

inside B1, by compactness of B1 and continuity of η = |x|ε+2αN ζ+p−1−2α. This implies that

ε ≥ −β and ζ ≤ −ε. The formality of the decomposition G = B1 ⊔ B
c
1 can be resolved

modulo constants by writing f = fχ+ f(1− χ) where χ = min(1,max(2−N, 0)) satisfies

|∇Gχ| ≤ 1, see also [Wan00; Wan02; Cat+09; HZ10].

The remaining weights can be handled similarly. |x|ε+δ−1N ζ−δ for instance must satisfy

ε+ δ − 1 ≥ 0 and be again equal to O(1/N θ) for some θ ≥ 0 which implies by our previous

argument ε ≥ −δ + 1 and ζ ≤ −ε + 1. In short, we conclude

ε ≥ max(−β,−δ + 1,−2α,−γ) and ζ ≤ min(−ε,−ε+ 1,−ε+ 1,−ε+ 1) = −ε.

To make the U -bound as large as possible, we choose ε and ζ as small and large respectively

as possible. Thus we arrive at the U -bound
∫
f |x|σ+2αNp−1−σ−2αdµp .

∫
|∇Gf | dµp +

∫
fdµp

by taking ε = σ = max(−β,−δ + 1,−2α,−γ) and ζ = −ε. �

Remark 2. There is perhaps some scope for improvement in these U -bounds in special cases

where the estimates can be improved. For instance, if either ε or ζ is negative, then the first

two terms in (2.4) come with negative signs. In particular the second term is automatically

controlled since it is nonnegative, while the first term can also be controlled in cases such as

a Heisenberg group where ∇G |x| · ∇GN = |x|3N−3 is also nonnegative.

Lemma 3. Given (1.11) and if δ ≥ σ + 2α, it holds for all r > 0 and sufficiently small

ε > 0 that ∫
|f | dµp . ε

∫
|∇Gf | dµp + ε−r

∫
|x|r |f | dµp.

Proof. We follow the proof of [Qiu24, Lemma 4] and start by proving an L1-Hardy inequality

for µ with respect to the horizontal norm |x|. Consider
∫

|f |∇G · hdµp ≤

∫
|∇Gf | |h| dµp +

∫
|f |∇GV · hdµp
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for h a vector field of the same length as ∇G. With h = x
|x|

= ∇G |x| we find

(d− 1)

∫
|f |

|x|
dµp .

∫
|∇Gf | dµp +

∫
|f |∇GV · ∇G |x| dµp

.

∫
|∇Gf | dµp +

∫
|f |Np−1∇GN · ∇G |x| dµp

.

∫
|∇Gf | dµp +

∫
|x|δ Np−1−δ |f | dµp

where d = dim(g0) = dim(R0) is the horizontal dimension. We would like to control the

weight |x|δNp−1−δ in the second addend by the U -bound η = |x|σ+2αNp−1−σ−2α, possibly up

to a constant plus an arbitrarily small factor of |x|−1 which can be carried over to the left

hand side. If δ ≥ σ + 2α, this is automatic since we have the estimate |x| . N , since |x| can

be controlled by a euclidean-like norm (see [BLU07, Example 5.1.2]) and all homogeneous

norms are equivalent (see [BLU07, §5]), while if δ < σ + 2α, this is impossible since Np−1−δ

grows faster than Np−1−σ−2α at infinity and |x| can be fixed away from zero independently

of N → ∞. It follows we require δ ≥ σ + 2α, in which case

(d− 1)

∫
|f |

|x|
dµp .

∫
|∇Gf | dµp +

∫
|f | dµp.

The apparent issue at d = 1 can be sidestepped by the fact a nontrivial stratified Lie group

G can never have horizontal dimension d = 1 as otherwise the Lie algebra g of G is generated

by a single left invariant vector field X which is impossible.

By the scalar inequality

|x|r +
1

|x|
& 1 =⇒ ε−r |x|r +

ε

|x|
& 1,

we obtain
∫

|f | dµp . ε

∫
|f |

|x|
dµp + ε−r

∫
|x|r |f | dµp . ε

∫
|∇Gf | dµ+ ε−r

∫
|x|r |f | dµp

for any ε > 0. �

We now conclude with the proof of the main results.

Proof of Theorem 1. We follow again the arguments of [Qiu24]. It is possible by the L1-

Sobolev inequality [VSC91, Theorem IV.7.1]

(2.5)

(∫
|f |Q/(Q−1) dξ

)(Q−1)/Q

.

∫
|∇Gf | dξ, f ∈ C∞

c (G),

where Q is the homogeneous dimension of G, together with Hölder interpolation to prove a

1-super-Poincaré inequality with respect to Lebesgue measure

(2.6)

∫
|f | dξ . ε

∫
|∇Gf | dξ + β̃1(ε)

(∫
|f |1/2 dξ

)2
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where β1(ε) = C(1 + ε−Q) for some C > 0. Assume f ≥ 0 without loss of generality. Let

BR be the N -ball of radius R. On BR, by compactness, we apply (2.6) to fe−N
p

to find

(2.7)

∫

BR

|f | dµp . δ

∫

BR

|∇Gf | dµp +

∫

BR

|∇GN
p| |f | dµp + β̃1(δ)

(∫

BR

|f |1/2 e−N
p/2dξ

)2

. δ

∫
|∇Gf | dµp + δRp−1

∫
|f | dµp + β̃1(δ) sup

BR

eN
p

(∫
|f |1/2 dµp

)2

. δ

∫
|∇Gf | dµp + δRp−1

∫
|f | dµp + β̃1(δ)e

Rp

(∫
|f |1/2 dµp

)2

.

since |∇GN | . 1 under (1.11). We will choose R to be a suitable negative power of ε > 0

sufficiently small, and then choose δ to be a positive power of ε such that δ and δRp−1 are

both comparable to ε. As a result, the dependence on δ will not play any role in the leading

asymptotics which are controlled by eR
p

.

To determine the appropriate scale of R, on Bc
R we apply the Hardy inequality with

r = σ + 2α to obtain

(2.8)

∫

Bc
R

|f | dµp . ε

∫

Bc
R

|∇Gf | dµp + ε−(σ+2α)

∫

Bc
R

|x|σ+2α |f | dµp

. ε

∫
|∇Gf | dµp + ε−(σ+2α)R−(p−1−σ−2α)

∫
|x|σ+2αNp−1−σ−2α |f | dµp

. ε

∫
|∇Gf | dµp + ε−(σ+2α)R−(p−1−σ−2α)

(∫
|∇Gf | dµp +

∫
|f | dµp

)

by the U -bound of Lemma 2. It suffices to choose R such that

ε−(σ+2α)R−(p−1−σ−2α) = ε,

that is

(2.9) R = ε−τ , τ =
1 + σ + 2α

p− 1− σ − 2α
.

We conclude by adding (2.7) and (2.8) which yields the expected 1-super-Poincaré inequality

with growth

β1(ε) . exp
(
Cε−p(1+σ+2α)/(p−1−σ−2α)

)
, C > 0.

The formality of the decomposition G = BR ⊔ Bc
R is addressed using the same argument

appearing in the proof of Lemma 2. �

Proof of Proposition 1. The proof follows [Wan00, Theorem 3.2] except we replace

(1) µ(f 2) = 1 with µ(f) = 1,

(2) An = {δn+1 > f 2 ≥ δn} with An = {δn+1 > f ≥ δn}, and

(3) fn = (f − δn/2) ∧ (δ(n+1)/2 − δn/2) with fn = (f − δn) ∧ (δn+1 − δn).
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The proof follows in exactly the same way up until the second lower bound for µ(|∇f |2)

where our analogue is

µ(|∇Gf |) ≥

∞∑

n=0

ξ(δn)µ(f ≥ δn+1)(δn+1 − δn)

meaning we obtain the same function F as in the case of the 2-super-Poincaré inequality but

with different constants, namely c1 is not (δ(n+1)/2 − δn/2)2/(δn − δn−1) but instead

c1 =
δn+1 − δn

δn − δn−1
= δ.

It follows [Wan00, Corollary 3.3] holds with the same F , that is the 1-super-Poincaré inequal-

ity with growth β1(ε) . exp(Cε−1/τ ) for some C, τ > 0 implies the F -Sobolev inequality
∫

|f |F1(|f |)dµ ≤ c1

∫
|∇Gf | dµ+ c2,

∫
|f | dµ = 1

for some c1, c2 > 0 and

F1(x) = log(1 + x)τ . �

Proof of Theorem 2. The F -Sobolev inequality implies by renormalisation a defective 1-

logarithmicθ Sobolev inequality of the form

∫
|f | log

(
1 +

|f |∫
|f | dµp

)θ

dµp .

∫
|∇Gf | dµp +

∫
|f | dµp

where

θ =
p− 1− σ − 2α

p(1 + σ + 2α)

and which, in the language of [IKZ11], is a defective (meaning with an additional
∫
|f | dµp

term on the right hand side) L1Φ-entropy inequality for Φ(x) = x log(1 + x)θ. To apply part

(ii) of [IKZ11, Theorem 4.5], we also need a Cheeger inequality

∫ ∣∣∣∣f −

∫
fdµp

∣∣∣∣ dµp .
∫

|∇Gf | dµp.

By [IKZ11, Theorem 2.6] it suffices, given a local Cheeger inequality for Lebesgue measure

dξ, to exhibit a U -bound

(2.10)

∫
Npr |f | dµp .

∫
|∇Gf | dµp +

∫
|f | dµp

for any r > 0. But this is already provided by the U -bound and the L1-Hardy inequality

together with the scalar inequality

cxp +
1

xq
& cq/(q+p)
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for all c, x > 0, that is

(2.11)

∫
N (p−1−σ−2α)/(1+σ+2α) |f | dµp .

∫
|f |

|x|
dµp +

∫
|x|σ+2αNp−1−σ−2α |f | dµp

.

∫
|∇Gf | dµp +

∫
|f | dµp.

The result follows from part (iii) of [IKZ11, Theorem 4.5] with q = 1/θ, that is µp has the

isoperimetric profile of dνr∗ where

r∗ =
q

q − 1
=

p(1 + σ + 2α)

p(1 + σ + 2α)− (p− (1 + σ + 2α))
=

(1 + σ + 2α)p

(σ + 2α)p+ (1 + σ + 2α)

is Hölder conjugate to q.

To complete the argument we note [IKZ11, Theorem 2.6] requires in addition to (2.10)

also a local L1-Poincaré inequality for Lebesgue measure, which is provided by [Jer86, The-

orem 2.1]. �

3. Examples

In the following examples, we will usually speak of µp as having the isoperimetric profile

of νr∗ , despite the fact the isoperimetric inequality we have established provides only a lower

bound for the isoperimetric profile. That is, we have shown Iµp(t) & Ur(t) but we do not

know if Iµp(t) . Ur(t) as well.

3.1. Stratified Lie groups of step two. If G ∼= Rn
x × Rm

z is a step two stratified Lie group

defined in [DZ21, §2] and

N(x, z) = (|x|4 + a |z|2)1/4

is a homogeneous norm with parameter a > 0, then N satisfies (1.11) with α = β = 1,

γ = 2, and δ = 3 according to [DZ21, Lemma 2]. When a = 16 and G is a H-type group in

the sense of [BLU07, Chapter 18], this is the Kaplan norm after [Kap80, Theorem 2], that

is N2−Q(G) is the fundamental solution to the sublaplacian ∆G. The conditions are readily

checked: σ = −1 and δ = 3 ≥ 1 = σ + 2α, so for p > 1 + σ + 2α = 2 the measure

dµp = Z−1e−N
p

dξ

has the isoperimetric profile of dνr∗ = Z−1e−d
r∗

dξ where

r∗ =
(1 + σ + 2α)p

(σ + 2α)p+ (1 + σ + 2α)
=

2p

p+ 2
.

In other words these measures have supergaussian decay of tails but a subgaussian isoperimet-

ric profile (which is only asymptotically gaussian as p→ ∞). This result covers Heisenberg

groups, H-type groups, and Métivier groups.

Remark 3. This is what we mean in the introduction by the predictive power of the

q-super-Poincaré inequality, q Hölder conjugate to p; not only does the growth βq(ε) .

exp(Cε−2(p−1)/(p−2)) imply a 2-super-Poincaré inequality for µp with, since p/(p− 2) =

2(p− 1)/(p− 2) · q/2, the same growth β2(ε) . exp(Cε−p/(p−2)) as that which appears in
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the 2-super-Poincaré inequality for νr∗ , but it also correctly predicted, since 2p/(p− 2) =

2(p− 1)/(p− 2) · q/1, the growth β1(ε) . exp(Cε−2p/(p−2)) of the 1-super-Poincaré inequal-

ity for µp.

3.2. Grushin and Heisenberg-Greiner sublaplacians. According to [Qiu24], the Ka-

plan norms in the Grushin and Heisenberg-Greiner settings, which respectively generalise

the euclidean and Heisenberg settings, satisfy the estimates (1.11).

The Grushin subgradient (see for instance [DAm04]) is defined as the operator

∇η = (∇x, |x|
η∇y), η > 0,

acting on Rn
x × Rm

y . The Grushin sublaplacian ∆η = ∇η · ∇η = ∆x + |x|2η∆y is not a

sublaplacian on a stratified Lie group, but it shares some similarities. For instance, ∆η

generalises the euclidean laplacian at η = 0, is homogeneous of order 2 with respect to the

anisotropic dilations δλ(x, y) = (λx, λ1+ηy), and is hypoelliptic for η > 0, a result due to

[Gru70, Theorem 1.2] and known already for η ∈ 2Z≥1 by Hörmander’s condition. As before,

for a function f depending only on x, the action of ∆η is the euclidean one. It admits a

Kaplan norm

N = (|x|2(1+η) + (1 + η)2 |y|2)1/(2+2η)

which is the fundamental solution for ∆η and satisfies (1.11) with α = β = η, γ = 2η, and

δ = 2η + 1, and so the conditions are again checked with σ = −η and so for p > 1 + η the

measure

dµp = Z−1e−N
p

dξ

has the isoperimetric profile of dνr∗ = Z−1e−d
r∗

dξ where

(3.1) r∗ =
(1 + η)p

(1 + η)p− (p− (1 + η))
=

(1 + η)p

ηp+ (η + 1)

provided the “horizontal” dimension satisfies n ≥ 2, so that the L1-Hardy inequality holds.

Note the distance d here implicit in the definition of the isoperimetric profile is the Carnot-

Carathéodory distance induced by the vector fields comprising ∇η.

Similarly, the Heisenberg-Greiner operator (see for instance [DAm05, §2]) is defined as the

operator

∇ζ = (X1
ζ , · · · , X

n
ζ , Y

1
ζ , · · · , Y

n
ζ ), ζ ≥ 1,

acting on Rn
x × Rn

y × R1
z and where

Xζ
i = ∂xi + 2ζyir

2ζ−2∂z, Y ζ
i = ∂yi − 2ζxir

2ζ−2∂z, r = |(x, y)| .

The Heisenberg-Greiner sublaplacian ∆ζ = ∇ζ · ∇ζ =
∑n

i=1X
2
i + Y 2

i generalises the Heisen-

berg laplacian at ζ = 1. It also admits a Kaplan norm

N(x, y, z) = ((|x|2 + |y|2)2ζ + z2)1/(4ζ) = (r4ζ + z2)1/(4ζ)

which is the fundamental solution for ∆ζ and satisfies (1.11) with α = β = 2ζ − 1, γ =

4ζ − 2, and δ = 4ζ − 1, and so for σ = −(2ζ − 1) and p > 2ζ the measure

dµp = Z−1e−N
p

dξ
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has the isoperimetric profile of dνr∗ = Z−1e−d
r∗

dξ where

r∗ =
2ζp

(2ζ − 1)p+ 2ζ
.

Note both of these cases recover the isoperimetric inequality in the step two stratified Lie

group setting at η = ζ = 1. Note also the case η = 0, which corresponds to the euclidean

setting, recovers the expected isoperimetric inequality, that is r∗ = p itself.

To complete the argument, since the Grushin and Heisenberg-Greiner sublaplacians fall

outside the scope of [VSC91], the existence of the L1-Sobolev inequality and the local L1-

Poincaré inequality needed for [IKZ11, Theorem 2.6] are a priori suspect. However, these

are valid for certain parameters, for instance at least when we have η ∈ 2Z≥1 and ζ ∈ Z≥1,

in which case the constituent vector fields satisfy Hörmander’s condition; the L1-Sobolev

inequality follows from [CDG94, Theorem 1.1] while the L1-Poincaré inequality again fol-

lows from [Jer86, Theorem 2.1], see also [FLW95, Theorem 1]. In fact in the Grushin case,

[CDG94] proved the L1-Sobolev inequality for all η > 0 while [FGW94, Theorem 1] proved

(a stronger version of) the L1-Poincaré inequality, so there is a full family of probability mea-

sures with arbitrarily fast (supergaussian) decay of tails but apparently with an isoperimetric

profile which is arbitrarily close to linear (but still superexponential).

Remark 4. The case η ∈ (0, 1) may also be of some interest. If η ≥ 1 we see by (3.1) that

r∗ = r∗(η, p) < 2 for all p > 1 + η and therefore µp never achieves gaussian isoperimetry.

However, if η < 1 and p ≥ 2(1 + η)/(1− η), then r∗(η, p) ≥ 2 which then, according to the

fourth and fifth parts of [IKZ11, Theorem 4.5], implies µp not only achieves (super)gaussian

isoperimetry, but also satisfies the q-logarithmic Sobolev inequality (1.2) and the Bobkov-

type functional isoperimetric inequalities of [Bob96; Bob97].

Remark 5. We return to the statement made in the introduction that the arguments can

be greatly simplified. Recall in the proof of the Cheeger inequality we proved a U -bound of

the form ∫
Npr |f | dµp .

∫
|∇Gf | dµp +

∫
|f | dµp

and observe that in all of the previous examples we had that the estimates provide the

U -bound ∫
|x|αNp−1−α |f | dµp .

∫
|∇GN

p| |f | dµp .

∫
|∇Gf | dµp +

∫
|f | dµp.

These two inequalities automatically yield the expected isoperimetric content by [IKZ11,

Theorems 2.1, 2.7, and 4.5] providing respectively the defective L1Φ-entropy, Cheeger, and

isoperimetric inequalities.

3.3. The case of horizontal dimension n = 1. In [CFZ23] the q-Poincaré inequality was

proved for a probability measure of the form (1.1) on the Engel group B4
∼= (R4, ◦) and

more generally on a stratified Lie group G = Gn+1
∼= (Rn+1, ◦) of step n ≥ 3 with filiform

Lie algebra gn+1, meaning gn+1 is generated by two vector fields X1, X2 and higher strata
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are spanned by a single vector field. The proof made use of a U -bound which vanishes on

{|x1| = 0} together with ideas from [Ing12].

The main objects are

(1)

‖x‖n =

n∑

j=2

(
|x1|

(n+1)/2 + |x2|
(n+1)/2 + |xj |

(n+1)/(2(j−1))
)2n/(n+1)

,

(2) N(x) = (‖x‖n + |xn+1|)
1/n,

(3) X1 = ∂x1 ,

(4) X2 = ∂x2 + x1∂x3 +
x21
2
∂x4 + · · ·+

xn−1

1

(n−1)!
∂xn+1

.

What is interesting is that the proof of the U -bound does not involve taking the full subgra-

dient but only the X1-derivative. Indeed, for f ≥ 0,
∫
X1(fe

−Np

) ·X1 |x1| dξ =

∫
X1(f)X1 |x1| dµ−

∫
fNp−1X1N ·X1 |x1| dµ

= −

∫
fX2

1 |x1| dµ.

The integral in the second equality vanishes since X2
1 |x1| = 0 in the distributional sense,

while in the first equality we have

|X1(f)| ≤ |∇Gf | , |X1 |x1|| ≤ 1, X1N ·X1 |x1| & |x1|
(n−1)/2 ‖x‖(n−1)/2N−(n−1)

by [CFZ23, Equation 4.4], giving

(3.2)

∫
|x1|

n−1Np−n |f | dµp .

∫
|x1|

(n−1)/2 ‖x‖(n−1)/2Np−n |f | dµp .

∫
|∇Gf | dµp.

We do not know if the absence of the L1-Hardy inequality in dimension 1 is technical in the

sense it can still be sidestepped and we can still expect formally there is also the U -bound

(3.3)
1

|x1|
+ |x1|

n−1Np−n & N (p−n)/n,

or if the U -bound, and therefore the subsequent isoperimetric inequality, should be different.

With our current method, we have a partial answer which does not fall within the purview

of the previous framework but is still based on the same types of estimates.

If ψ is a smooth homogeneous norm, then X1ψ = O(1) and X2
1ψ = O(1/ψ) away from

zero. If δ ∈ (0, 1), we have

X1
|x1|

1+δ

ψδ
= (1 + δ)

|x1|
δ

ψδ
X1 |x1| − δ

|x1|
1+δ

ψ1+δ
X1ψ . 1,

and

X2
1

|x1|
1+δ

ψδ
= δ(1 + δ)

|x1|
−1+δ

ψδ
+ |x1|

1+δX2
1 (ψ

−δ)− 2δ(1 + δ)
|x1|

δ

ψ1+δ
X1 |x1| ·X1ψ

= δ(1 + δ)
1

|x1|
1−δ ψδ

+O

(
1

ψ

)
.
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Taking ψ = N , we arrive at
∫
fX2

1

|x1|
1+δ

N δ
dµp & δ(1 + δ)

∫
f

|x1|
1−δ N δ

dµp +O

(∫
f

N
dµp

)

∫
X1(fe

−Np

) ·X1
|x1|

1+δ

N δ
dξ =

∫
X1f ·X1

|x1|
1+δ

N δ
dµp −

∫
fNp−1X1N ·X1

|x1|
1+δ

N δ
dµp

.

∫
|∇B4

f | dµp +

∫
fNp−1 |X1N | dµp

.

∫
|∇B4

f | dµp +

∫
f |x1|

(n−1)/2 ‖x‖(n−1)/2Np−ndµp

.

∫
|∇B4

f | dµp +

∫
fdµp

It follows

δ(1 + δ)

∫
f

|x1|
1−δ N δ

dµp .

∫
|∇B4

f | dµp +

∫
|f | dµp

from which we obtain via (3.2) the U -bound

δ(1 + δ)
1

|x1|
1−δ N δ

+ |x1|
n−1Np−n & c(δ)N (p−n)/n−q(δ)

where c(δ), q(δ) → 0 as δ → 0+. That is, we almost have an L1-Hardy inequality and (3.3).

We can show by the previous arguments that µp satisfies the isoperimetric inequality

(3.4) Upn/(p−n)+q(δ)(µp(A)) . c̃(δ)µ+
p (A)

where c̃(δ) → ∞ as δ → 0+, that is asymptotically up to a constant which blows up, µp

has the isoperimetric profile of dνr∗ = Z−1e−d
r∗

dξ for r = pn
p(n−1)+n

. This can be seen by

following the proof of [IKZ11, Theorem 4.5]; the constants on the right hand side of the

isoperimetric inequality depend on the constant in the L1Φ-entropy inequality linearly up

to another constant depending on pn/(p− n) + q(δ) which can be uniformly bounded for

δ ∈ (0, 1).

A similar argument can be applied to the homogeneous norms on stratified Lie groups

satisfying the conditions of [CFZ22, Lemma 4.6], because the estimates are essentially the

same (and the U -bound again vanishes on the zero set of a single horizontal coordinate).

Indeed, there is a horizontal coordinate xi and a horizontal vector field Xi = ∂xi for which

the homogeneous norm N satisfies

|X1N | .
|xi|

η−1

Nη−1
. XiN ·Xi |xi|

for some η ≥ 2. The rest of the arguments go through with η replacing n, giving another

isoperimetric inequality of the form (3.4).
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[HZ10] Hebisch, W. and B. Zegarliński (2010). “Coercive inequalities on metric measure spaces”.

In: Journal of Functional Analysis 258.3, pp. 814–851 (cit. on pp. 1, 4, 5, 7, 8).



18 REFERENCES
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