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(GENERALIZED) FILTER PROPERTIES OF THE

AMALGAMATED ALGEBRA

Y. AZIMI

Abstract. Let R and S be commutative rings with unity, f : R → S a
ring homomorphism and J an ideal of S. Then the subring R ⊲⊳f J :=
{(a, f(a) + j) | a ∈ R and j ∈ J} of R × S is called the amalgamation of R
with S along J with respect to f . In this paper, we determine when R ⊲⊳f J

is a (generalized) filter ring.

1. Introduction

Throughout this paper, let R and S be two commutative rings with identity, J
be a non-zero proper ideal of S, and f : R → S be a ring homomorphism.

D’Anna, Finocchiaro, and Fontana in [10] and [11] have introduced the following
subring (with standard component-wise operations)

R ⊲⊳f J := {(r, f(r) + j) | r ∈ R and j ∈ J}
of R × S, called the amalgamated algebra (or amalgamation) of R with S along J
with respect to f . This construction generalizes the amalgamated duplication of
a ring along an ideal (introduced and studied in [13]). Moreover, several classical
constructions such as Nagata’s idealization (cf. [16, page 2]), the R+XS[X ] and the
R+XSJXK constructions can be studied as particular cases of this construction (see
[10, Example 2.5 and Remark 2.8]). Recently, many properties of amalgamations
investigated in several papers (e.g. [20], [4], [6], [3], etc.) and the construction
has proved its worth providing numerous (counter)examples in commutative ring
theory.

In [9], Cuong et al. introduced the notion of filter regular sequence as an exten-
sion of regular sequence, and via this notion, they studied f -modules, as an exten-
sion of (generalized) Cohen-Macaulay modules. This structure is a well-known
structure in commutative algebra and have applications in algebraic geometry.
Then, in [17], Nhan extended this notion to generalized regular sequence, which
in turn, leads to the introduction of generalized f -modules in [18]. We have the
following implications:

Gorenstein ring =⇒ Cohen-Macaulay ring =⇒ generalized Cohen-Macaulay ring
=⇒ f -ring =⇒ generalized f -ring.

It has already investigated that when R ⊲⊳f J is one of the three first in the above
list ([4], [5],[6], [2]). In this paper, we investigate when it is one of the two last
properties.
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The proofs for the two case is almost the same, but for f -modules easier. There-
fore we deal with case of generalized f -modules in details, and the same proof with
minor modifications works in the case of f -modules. We provide a sketch of proof
for this case and leave details for the reader.

2. Results

Let us first fix some notation which we shall use throughout the paper: As
mentioned above, R and S are two commutative rings with identity, J is an ideal
of the ring S, and f : R → S is a ring homomorphism. In the sequel, we consider
contractions and extensions with respect to the natural embedding ιR : R → R ⊲⊳f

J defined by ιR(x) = (x, f(x)), for every x ∈ R.
Let I be an ideal of R, and M be a finitely generated R-module such that

M 6= IM . We shall refer to the length of a maximal M -sequence contained in I as
the depth of M in I, and we shall denote this by depth(I,M). It will be convenient
to use depthM to denote depth(m,M) when (R,m) is a local ring.

(Generalized) f -modules are defined in the context of Noetherian local rings for
finitely generated modules. Thus we always assume that (R,m) is a Noetherian
local ring and J is finitely generated as an R-module. We will also assume that
J ⊆ Jac(S). When this is the case, (R ⊲⊳f J,m′f ) is also a Noetherian local ring
(see [10, Proposition 5.7] and [12, Corollary 2.7]).

The notion of M -generalized regular sequence of M is defined as a sequence
x1, . . . , xn of elements in m such that, for all i = 1, . . . , n, xi /∈ p for all p ∈
Ass(M/(x1, . . . , xi−1)M) satisfying dimR/p > 1. The length of a maximal gen-
eralized regular sequence of M in I is called the generalized depth of M in I and
denoted by g-depth(I,M). In this paper, we use the following characterization for
g-depth(I,M) by the support of local cohomology module Hi

I(M):

Lemma 2.1. Let I be an ideal of R, and M be a finitely generated R-module. Then
the following equality holds.

g-depth(I,M) = min{r | there exists p ∈ SuppR(H
r
I (M)) such that dimR/p > 1}.

Proof. If dimM/IM > 1, then the assertion holds by [17, Proposition 4.5]. If
dimM/IM ≤ 1, then by definition, g-depth(I,M) = ∞. The other side is also
infinite since SuppR(H

r
I (M)) ⊆ Supp(M) ∩ Supp(R/I) = Supp(M/IM). �

The following lemma, which has the key role in the proof of Theorem 2.4, links
the g-depth of R ⊲⊳f J in the extension ideal ae to the g-depth of R and J in the
prime ideal a.

Lemma 2.2. Let a ∈ Spec(R). Then the following holds:

g-depth(ae, R ⊲⊳f J) = min{g-depth(a, R), g-depth(a, J)}.
Proof. We first show that the existence of some P ∈ SuppR⊲⊳fJ

(

Hr
ae(R ⊲⊳f J)

)

with the property dimR ⊲⊳f J/P > 1 is equivalent to the existence of some
p ∈ SuppR

(

Hr
ae(R ⊲⊳f J)

)

with the property dimR/p > 1. To achieve this,

first we note that, by [11, Lemma 3.6], the extension ιR : R → R ⊲⊳f J is
integral since we assume that J is finitely generated as an R-module. There-
fore, for any P ∈ Spec(R ⊲⊳f J), we have dimR ⊲⊳f J/P > 1 if and only if
dimR/Pc > 1. Next, let P ∈ SuppR⊲⊳fJ

(

Hr
ae(R ⊲⊳f J)

)

, say α/1 is a non-zero

element of
(

Hr
ae(R ⊲⊳f J)

)

P
. If r ∈ R such that rα = 0, then f(r) ∈ P , i.e. r ∈ Pc.
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We have thus proved Pc ∈ SuppR
(

Hr
ae(R ⊲⊳f J)

)

.

Suppose conversely that p ∈ SuppR
(

Hr
ae(R ⊲⊳f J)

)

. Then, for some ideal I ofR ⊲⊳f

J , with the property R ⊲⊳f J/I ⊆ Hr
ae(R ⊲⊳f J), we have p ∈ SuppR

(

R ⊲⊳f J/I
)

.

From this we have Ic ⊆ p. By lying over property, there exists P ∈ Spec(R ⊲⊳f

J) such that I ⊆ P and Pc = p, hence that P ∈ SuppR⊲⊳fJ

(

R ⊲⊳f J/I
)

⊆
SuppR⊲⊳fJ

(

Hr
ae(R ⊲⊳f J)

)

. This completes the proof of our claim. Now we have:

g-depth(ae, R ⊲⊳f J) = min{r|∃P ∈ SuppR⊲⊳fJ

(

Hr
ae(R ⊲⊳f J)

)

; dimR ⊲⊳f J/P > 1}
= min{r|∃p ∈ SuppR

(

Hr
ae(R ⊲⊳f J)

)

; dimR/p > 1}
= min{r|∃p ∈ SuppR

(

Hr
a(R ⊲⊳f J)

)

; dimR/p > 1}
= min{r|∃p ∈ SuppR (Hr

a(R)⊕Hr
a(J)) ; dimR/p > 1}

= min{g-depth(a, R), g-depth(a, J)}.
The first and last equality hold by Lemma 2.1, while the second one holds by the
above observation. The third equality follows by the Independence Theorem of
local cohomology [7, Theorem 4.2.1], and the forth equality obtained using the
R-module isomorphism R ⊲⊳f J ∼= R⊕ J [10, Lemma 2.3].

�

Generalized f -modules were introduced in [18] as modules for which every system
of parameters is a generalized regular sequence. A ring is called a generalized f -ring
if it is a generalized f -module over itself. For more details we refer the reader to
[17] and [18]. We define a finitely generated R-module M to be maximal generalized
f -module if g-depth(p,M) = dim(R) − dim(R/p), for any p ∈ SuppM satisfying
dimR/p > 1. This definition has stem in the following proposition.

Proposition 2.3. Assume that M is a finitely generated R-module such that
dimM > 1. Then the following statements are equivalent:

(1) M is a generalized f -module.
(2) g-depth(p,M) = dim(M) − dim(R/p) for each p ∈ SuppM satisfying

dimR/p > 1.
(3) g-depth(I,M) = dim(M)−dim(R/I) for any proper ideal I of R satisfying

I ⊇ Ann(M) and dimR/I > 1.

Proof. (1) ⇒ (2) and (3) ⇒ (1) is by [18, Proposition 2.5]. The proof of (2) ⇒ (3)
is similar to the proof of [14, Remark 4.2], using [17, Proposition 4.3 (ii)] and [18,
Proposition 2.5]. �

We use the above proposition to investigate when R ⊲⊳f J is a generalized f -
ring, which is one of our main results. Recall that a finitely generated module M
over a Noetherian local ring (R,m) is called a maximal Cohen-Macaulay R-module
if depthM = dimR. In the sequel, when we consider J as a module, we always
consider it as an R-module via the homomorphism f : R → S. In particular, by
Supp J we mean SuppR J .

Theorem 2.4. The following statements are equivalent:

(1) R ⊲⊳f J is a generalized f -ring.
(2) R is a generalized f -ring and J is a maximal generalized f -module.
(3) R is a generalized f -ring and Jp is maximal Cohen-Macaulay for any p ∈

Supp(J) satisfying dimR/p > 1.
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Proof. We first assume that dim J > 1. The process of proof shows that the
opposite assumption, dim J ≤ 1, leads to trivial cases.
(1) ⇒ (2) Assume that R ⊲⊳f J is a generalized f -ring and pick p ∈ Spec(R)
satisfying dimR/p > 1. By [11, Lemma 3.6], ιR : R → R ⊲⊳f J is an integral
extension. Hence, by lying over property, p = pec, hence that dimR ⊲⊳f J/pe =
dimR/p > 1. Now, by Proposition 2.3 and Lemma 2.2, we have:

dimR− dimR/p = dimR ⊲⊳f J − dimR ⊲⊳f J/pe

= g-depth(pe, R ⊲⊳f J)

≤ g-depth(p, R)

≤ dimR− dimR/p.

Again we use Proposition 2.3 to see that R is a generalized f -ring, and a similar
argument will show that J is a maximal generalized f -module.

(2) ⇒ (1) Suppose that R is a generalized f -ring and J is a maximal gener-
alized f -module. Then, from Lemma 2.2 and Proposition 2.3, we deduce that
g-depth(pe, R ⊲⊳f J) = g-depth(p, R), for any p ∈ Spec(R). Now, let P ∈ Spec(R ⊲⊳f

J) and dimR ⊲⊳f J/P > 1. Then dimR/Pc > 1 and, by Lemma 2.2 and Proposi-
tion 2.3, we have:

dimR ⊲⊳f J − dimR ⊲⊳f J/P = dimR− dimR/Pc

= g-depth(Pc, R)

= g-depth(Pce, R ⊲⊳f J)

≤ g-depth(P , R ⊲⊳f J)

≤ dimR ⊲⊳f J − dimR ⊲⊳f J/P .

Thus inequalities are equality, and another appeal to Proposition 2.3 gives the
desired conclusion.

(2) ⇒ (3) Let p ∈ Supp(J) with the property dimR/p > 1. In order to show
that Jp is maximal Cohen-Macaulay, observe that [17, Proposition 4.4] together
with our assumptions yields the following inequalities:

depth Jp ≥ g-depth(p, J) = dimR− dimR/p ≥ dimRp ≥ depth Jp.

(3) ⇒ (2) Let p ∈ Supp(J) satisfying dimR/p > 1. Then, using [17, Proposition
4.4] and [8, Proposition 1.2.10(a)], we get a prime ideal q containing p such that q ∈
Supp(J), dimR/q > 1, and g-depth(p, J) = depth Jq. The following inequalities
complete the proof:

g-depth(p, J) = depth Jq = dimRq ≥ g-depth(q, R) =
dimR− dimR/q ≥ dimR− dimR/p ≥ g-depth(p, J).

�

Recall that if f := idR is the identity homomorphism on R, and I is an ideal of
R, then R ⊲⊳ I := R ⊲⊳idR I is called the amalgamated duplication of R along I.
The next corollary deals with this case.

Corollary 2.5. R ⊲⊳ I is a generalized f -ring if and only if R is a generalized f -
ring and I is maximal generalized f -module if and only if R is a generalized f -ring
and Ip is maximal Cohen-Macaulay for any p ∈ Supp(I) satisfying dimR/p > 1.
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Let M be an R-module. Nagata (1955) considered a ring extension of R called
the the idealization of M in R , denoted here by R ⋉ M [16, page 2]. As in [10,
Remark 2.8], if S := R⋉M , J := 0⋉M , and ι : R → S be the natural embedding,
then R ⊲⊳ι J ∼= R ⋉M . It is easy to check that, as R-modules, 0 ⋉M ∼= M . The
following corollary shows when the idealization is generalized f -ring.

Corollary 2.6. If M is a finitely generated R-module, then R⋉M is a generalized
f -ring if and only if R is a generalized f -ring and M is a maximal generalized f -
module if and only if R is a generalized f -ring and Mp is maximal Cohen-Macaulay
for any p ∈ SuppM satisfying dimR/p > 1.

In the remaining part of the paper we investigate when R ⊲⊳f J is an f -ring.
The arguments are the same as the ones in the case of generalized f -ring. But,
for the reader’s convenience, we give brief proofs and refer the reader to previous
arguments.

The notion of M -filter regular sequence is defined as a sequence x1, . . . , xn of
elements in m such that xi /∈ p for all p ∈ Ass(M/(x1, . . . , xi−1)M) \ {m} and
for all i = 1, . . . , n. The filter depth, f-depth(I,M), of I on M is defined as the
length of any maximal M -filter regular sequence in I. Here, we use the following
characterization for f-depth(I,M) (see [15, Theorem 3.1] and [14, Theorem 3.10]):

f-depth(I,M) = inf{r | Hr
I (M) is not an Artinian R-module}.

The following lemma expresses f-depth(pe, R ⊲⊳f J), the f-depth of extension of a
prime ideal p of R in R ⊲⊳f J . For the proof, we use the elementary fact that being
Artinian as an R ⊲⊳f J-module is the same as being Artinian as an R-module.

Lemma 2.7. Let p ∈ Spec(R). Then the following holds:

f-depth(pe, R ⊲⊳f J) = min{f-depth(p, R), f-depth(p, J)}.
Proof. By [14, Theorem 3.10] (and arguments similar to Lemma 2.2), we have:

f-depth(pe, R ⊲⊳f J) = inf{r|Hr
pe(R ⊲⊳f J) is not Artinian R ⊲⊳f J-module}

= inf{r|Hr
pe(R ⊲⊳f J) is not Artinian R-module}

= inf{r|Hr
p(R ⊲⊳f J) is not Artinian R-module}

= inf{r|Hr
p(R)⊕Hr

p(J) is not Artinian R-module}
= min{f-depth(p, R), f-depth(p, J)}.

�

In [9], the authors introduced f-modules as modules for which every system of
parameters is a filter regular sequence. The ring R is called an f -ring if it is
an f -module over itself. This structure is a well-known structure in commutative
algebra and have applications in algebraic geometry. For more details we refer the
reader to [9], [21], and [14]. We define an R-module M to be maximal f -module if
f-depth(p,M) = dim(R) − dim(R/p), for any p ∈ SuppM \ {m}. This definition
has stem in the following proposition [14, Theorem 4.1 and Remark 4.2]:

Proposition 2.8. For a finitely generated R-module M , the following statements
are equivalent:

(1) M is an f -module
(2) for any p ∈ SuppM \ {m}, f-depth(p,M) = dim(M)− dim(R/p)
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(3) for any proper ideal I of R with the property I ⊇ Ann(M) and
√
I 6= m,

f-depth(I,M) = dim(M)− dim(R/I)

We use the above proposition to investigate when R ⊲⊳f J is f -ring, which is our
final result.

Theorem 2.9. The following statements are equivalent:

(1) R ⊲⊳f J is an f -ring.
(2) R is an f -ring and J is a maximal f -module.
(3) R is an f -ring and Jp is maximal Cohen-Macaulay for any p ∈ Supp(J) \

{m}.
Proof. (1) ⇒ (2) Assume that R ⊲⊳f J is an f -ring and pick p ∈ Spec(R) \ {m}. As
before, the extension ιR : R → R ⊲⊳f J is integral, and so p = pec. Thus

√
pe 6= m′f

and dimR ⊲⊳f J/pe = dimR/p. Then Proposition 2.8 gives the desired conclusion,
just as in the proof of Theorem 2.4.

(2) ⇒ (1) Suppose that R is an f -ring and J is a maximal f -module, and let
P ∈ Spec(R ⊲⊳f J) \ {m′f}. Then Pc ∈ Spec(R) \ {m} and Proposition 2.8 gives
the desired conclusion, as in the case of Theorem 2.4.

(2) ⇔ (3) The proof of this part is the same as the proof in Theorem 2.4, using
the following equality instead of [17, Proposition 4.4]:

f-depth(p, J) = min{depth(pRq, Jq) | q ∈ Supp(J/pJ) \ {m}}.
For the proof the equality, see the proof of [14, Theorem 3.10]. �

Corollary 2.10. (cf. [19, Theorem 3.5].) R ⊲⊳ I is an f -ring if and only if R is an
f -ring and I is maximal f -module if and only if R is an f -ring and Ip is maximal
Cohen-Macaulay for any p ∈ Supp(I) \ {m}.
Corollary 2.11. If M is a finitely generated R-module, then R ⋉M is an f -ring
if and only if R is an f -ring and M is a maximal f -module if and only if R is an
f -ring and Mp is maximal Cohen-Macaulay for any p ∈ Supp(M) \ {m}.
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