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(GENERALIZED) FILTER PROPERTIES OF THE
AMALGAMATED ALGEBRA

Y. AZIMI

ABSTRACT. Let R and S be commutative rings with unity, f : R — S a
ring homomorphism and J an ideal of S. Then the subring R >/ J :=
{(a,f(a) +j) | a € Rand j € J} of R x S is called the amalgamation of R
with S along J with respect to f. In this paper, we determine when R i<f J
is a (generalized) filter ring.

1. INTRODUCTION

Throughout this paper, let R and S be two commutative rings with identity, J
be a non-zero proper ideal of S, and f : R — S be a ring homomorphism.

D’Anna, Finocchiaro, and Fontana in [10] and [11] have introduced the following
subring (with standard component-wise operations)

Roa! J:={(r,f(r)+j)|r € Rand j € J}

of R x S, called the amalgamated algebra (or amalgamation) of R with S along J
with respect to f. This construction generalizes the amalgamated duplication of
a ring along an ideal (introduced and studied in [13]). Moreover, several classical
constructions such as Nagata’s idealization (cf. [16] page 2]), the R+X S[X] and the
R+ X S[X] constructions can be studied as particular cases of this construction (see
[10, Example 2.5 and Remark 2.8]). Recently, many properties of amalgamations
investigated in several papers (e.g. [20], [4], [6], [3], etc.) and the construction
has proved its worth providing numerous (counter)examples in commutative ring
theory.

In [9], Cuong et al. introduced the notion of filter regular sequence as an exten-
sion of regular sequence, and via this notion, they studied f-modules, as an exten-
sion of (generalized) Cohen-Macaulay modules. This structure is a well-known
structure in commutative algebra and have applications in algebraic geometry.
Then, in [I7], Nhan extended this notion to generalized regular sequence, which
in turn, leads to the introduction of generalized f-modules in [I8]. We have the
following implications:

Gorenstein ring = Cohen-Macaulay ring = generalized Cohen-Macaulay ring
= f-ring = generalized f-ring.

It has already investigated that when R </ J is one of the three first in the above

list ([, [5],[6], [2]). In this paper, we investigate when it is one of the two last

properties.
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The proofs for the two case is almost the same, but for f-modules easier. There-
fore we deal with case of generalized f-modules in details, and the same proof with
minor modifications works in the case of f-modules. We provide a sketch of proof
for this case and leave details for the reader.

2. RESULTS

Let us first fix some notation which we shall use throughout the paper: As
mentioned above, R and S are two commutative rings with identity, J is an ideal
of the ring S, and f : R — S is a ring homomorphism. In the sequel, we consider
contractions and extensions with respect to the natural embedding 1z : R — R xf
J defined by tg(x) = (z, f(z)), for every z € R.

Let I be an ideal of R, and M be a finitely generated R-module such that
M # IM. We shall refer to the length of a maximal M-sequence contained in I as
the depth of M in I, and we shall denote this by depth(I, M). It will be convenient
to use depth M to denote depth(m, M) when (R, m) is a local ring.

(Generalized) f-modules are defined in the context of Noetherian local rings for
finitely generated modules. Thus we always assume that (R, m) is a Noetherian
local ring and J is finitely generated as an R-module. We will also assume that
J C Jac(S). When this is the case, (R </ J,m'7) is also a Noetherian local ring
(see [10, Proposition 5.7] and [12] Corollary 2.7]).

The notion of M-generalized regular sequence of M is defined as a sequence
Z1,...,Z, of elements in m such that, for all ¢ = 1,...,n, z; ¢ p for all p €
Ass(M/(x1,...,2xi—1)M) satisfying dim R/p > 1. The length of a maximal gen-
eralized regular sequence of M in I is called the generalized depth of M in I and
denoted by g-depth(Z, M). In this paper, we use the following characterization for
g-depth(I, M) by the support of local cohomology module H#(M):

Lemma 2.1. Let I be an ideal of R, and M be a finitely generated R-module. Then
the following equality holds.

g-depth(I, M) = min{r | there exists p € Suppr(H(M)) such that dim R/p > 1}.

Proof. If dim M/IM > 1, then the assertion holds by [I7, Proposition 4.5]. If
dim M/IM < 1, then by definition, g-depth(I, M) = co. The other side is also
infinite since Supp(H}(M)) C Supp(M) N Supp(R/I) = Supp(M/IM). O

The following lemma, which has the key role in the proof of Theorem 2.4l links
the g-depth of R >/ J in the extension ideal a® to the g-depth of R and J in the
prime ideal a.

Lemma 2.2. Let a € Spec(R). Then the following holds:
g-depth(a®, R >4/ J) = min{g-depth(a, R), g-depth(a, J)}.

Proof. We first show that the existence of some P € Suppp..s; (Hie (R </ J))
with the property dim R s<f J/P > 1 is equivalent to the existence of some
p € Suppy (Hi.(R><! J)) with the property dimR/p > 1. To achieve this,
first we note that, by [I1, Lemma 3.6], the extension tz : R — R f J is
integral since we assume that J is finitely generated as an R-module. There-
fore, for any P € Spec(R >/ J), we have dimR >/ J/P > 1 if and only if
dim R/P¢ > 1. Next, let P € Supppess (Hie(R</ J)), say a/1 is a non-zero
element of (HZ.(R >/ J))P. If r € R such that ra = 0, then f(r) € P, i.e. r € PC.
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We have thus proved P¢ € Suppg (Hj. (R </ J)).

Suppose conversely that p € Suppp (ng (R </ J)) Then, for some ideal Z of R >/
J, with the property R >/ J/Z C Hl.(R >/ J), we have p € Suppg (R >/ J/T).
From this we have Z¢ C p. By lying over property, there exists P € Spec(R </
J) such that Z C P and P® = p, hence that P € Suppp.s; (R J/I) C

SUpp poor s (Hie (R J)). This completes the proof of our claim. Now we have:
g-depth(a®, R <! J) = min{r|3P € Supppoes; (Hie(R>< J)) 5 dim R J/P > 1}
= min{r|3p € Suppy, (HL. (R<! J)); dimR/p > 1}
= min{r|3p € Suppp (H;(Re<! J)); dimR/p > 1}
= min{r|3p € Suppy (H;(R)® H;(J)); dimR/p > 1}
= min{g-depth(a, R), g-depth(a, J)}.

The first and last equality hold by Lemma 2.1l while the second one holds by the
above observation. The third equality follows by the Independence Theorem of
local cohomology [7, Theorem 4.2.1], and the forth equality obtained using the
R-module isomorphism R >/ J = R@ J [10, Lemma 2.3].

O

Generalized f-modules were introduced in [I8] as modules for which every system
of parameters is a generalized regular sequence. A ring is called a generalized f-ring
if it is a generalized f-module over itself. For more details we refer the reader to
[17] and [18]. We define a finitely generated R-module M to be mazimal generalized
f-module if g-depth(p, M) = dim(R) — dim(R/p), for any p € Supp M satisfying
dim R/p > 1. This definition has stem in the following proposition.

Proposition 2.3. Assume that M is a finitely generated R-module such that
dim M > 1. Then the following statements are equivalent:

(1) M is a generalized f-module.

(2) g-depth(p, M) = dim(M) — dim(R/p) for each p € Supp M satisfying
dim R/p > 1.

(3) g-depth(I, M) = dim(M) —dim(R/I) for any proper ideal I of R satisfying
I D Ann(M) and dim R/I > 1.

Proof. (1) = (2) and (3) = (1) is by [I8, Proposition 2.5]. The proof of (2) = (3)
is similar to the proof of [I4] Remark 4.2], using [I7, Proposition 4.3 (ii)] and [I8|
Proposition 2.5]. O

We use the above proposition to investigate when R </ J is a generalized f-
ring, which is one of our main results. Recall that a finitely generated module M
over a Noetherian local ring (R, m) is called a mazimal Cohen-Macaulay R-module
if depth M = dim R. In the sequel, when we consider J as a module, we always
consider it as an R-module via the homomorphism f : R — S. In particular, by
Supp J we mean Suppp J.

Theorem 2.4. The following statements are equivalent:
(1) Ro<f J is a generalized f-ring.
(2) R is a generalized f-ring and J is a mazimal generalized f-module.
(3) R is a generalized f-ring and J, is mazimal Cohen-Macaulay for any p €
Supp(J) satisfying dim R/p > 1.
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Proof. We first assume that dimJ > 1. The process of proof shows that the
opposite assumption, dim J < 1, leads to trivial cases.

(1) = (2) Assume that R </ J is a generalized f-ring and pick p € Spec(R)
satisfying dim R/p > 1. By [II, Lemma 3.6], tp : R — R </ J is an integral
extension. Hence, by lying over property, p = p°°, hence that dim R >/ J/p¢ =
dim R/p > 1. Now, by Proposition 23] and Lemma [Z2] we have:

dim R — dim R/p = dim R >/ J — dim R >/ J/p®
= g-depth(p®, R’ J)
< g-depth(p, R)
< dim R — dim R/p.
Again we use Proposition to see that R is a generalized f-ring, and a similar
argument will show that J is a maximal generalized f-module.

(2) = (1) Suppose that R is a generalized f-ring and J is a maximal gener-
alized f-module. Then, from Lemma and Proposition 23] we deduce that
g-depth(p®, R </ J) = g-depth(p, R), for any p € Spec(R). Now, let P € Spec(R >/
J) and dim R </ J/P > 1. Then dim R/P°¢ > 1 and, by Lemma 2 and Proposi-
tion 23] we have:

dim R </ J — dim R</ J/P = dim R — dim R/P°¢
= g-depth(P¢, R)
= g-depth(P°¢, R/ J)
< g-depth(P, R/ J)
< dim R/ J —dim R/ J/P.
Thus inequalities are equality, and another appeal to Proposition gives the
desired conclusion.
(2) = (3) Let p € Supp(J) with the property dim R/p > 1. In order to show

that J, is maximal Cohen-Macaulay, observe that [I7, Proposition 4.4] together
with our assumptions yields the following inequalities:

depth J, > g-depth(p, J) = dim R — dim R/p > dim R, > depth J,.

(3) = (2) Let p € Supp(J) satisfying dim R/p > 1. Then, using [17, Proposition
4.4] and [, Proposition 1.2.10(a)], we get a prime ideal q containing p such that q €
Supp(J), dim R/q > 1, and g-depth(p, J) = depth J;. The following inequalities
complete the proof:

g-depth(p, J) = depth J; = dim Ry > g-depth(q, R) =
dim R —dim R/q > dim R — dim R/p > g-depth(p, J).

O

Recall that if f := idg is the identity homomorphism on R, and I is an ideal of
R, then R < I := R <% [ is called the amalgamated duplication of R along I.
The next corollary deals with this case.

Corollary 2.5. R 1 is a generalized f-ring if and only if R is a generalized f-
ring and I is mazimal generalized f-module if and only if R is a generalized f-ring
and I, is mazimal Cohen-Macaulay for any p € Supp(l) satisfying dim R/p > 1.
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Let M be an R-module. Nagata (1955) considered a ring extension of R called
the the idealization of M in R , denoted here by R x M [16l page 2]. As in [10]
Remark 2.8),if S:= Rx M, J:=0x M, and ¢ : R — S be the natural embedding,
then Rt J =2 R x M. It is easy to check that, as R-modules, 0 x M = M. The
following corollary shows when the idealization is generalized f-ring.

Corollary 2.6. If M is a finitely generated R-module, then Rx M is a generalized
f-ring if and only if R is a generalized f-ring and M is a mazimal generalized f-
module if and only if R is a generalized f-ring and My is mazimal Cohen-Macaulay
for any p € Supp M satisfying dim R/p > 1.

In the remaining part of the paper we investigate when R </ J is an f-ring.
The arguments are the same as the ones in the case of generalized f-ring. But,
for the reader’s convenience, we give brief proofs and refer the reader to previous
arguments.

The notion of M-filter reqular sequence is defined as a sequence z1,...,x, of
elements in m such that «; ¢ p for all p € Ass(M/(z1,...,2,—1)M) \ {m} and
for all ¢ = 1,...,n. The filter depth, f-depth(I, M), of I on M is defined as the
length of any maximal M-filter regular sequence in I. Here, we use the following
characterization for f-depth(I, M) (see [15, Theorem 3.1] and [14] Theorem 3.10]):

f-depth(I, M) = inf{r | Hf (M) is not an Artinian R-module}.
The following lemma expresses f-depth(p¢, R >/ J), the f-depth of extension of a

prime ideal p of R in R/ J. For the proof, we use the elementary fact that being
Artinian as an R ></ J-module is the same as being Artinian as an R-module.

Lemma 2.7. Let p € Spec(R). Then the following holds:
f-depth(p®, R </ J) = min{f-depth(p, R), f-depth(p, J)}.
Proof. By [14, Theorem 3.10] (and arguments similar to Lemma [2:2)), we have:
f-depth(p®, R<’/ J) = inf{r|H}. (R > J) is not Artinian R </ J-module}
= inf{r|H}. (R </ .J) is not Artinian R-module}
= inf{r|H;(R </ J) is not Artinian R-module}
= inf{r[H, (R) ® Hy(J) is not Artinian R-module}
= min{f-depth(p, R), f-depth(p, J)}.
O
In [9], the authors introduced f-modules as modules for which every system of
parameters is a filter regular sequence. The ring R is called an f-ring if it is
an f-module over itself. This structure is a well-known structure in commutative
algebra and have applications in algebraic geometry. For more details we refer the
reader to [9], [21], and [14]. We define an R-module M to be mazimal f-module if

f-depth(p, M) = dim(R) — dim(R/p), for any p € Supp M \ {m}. This definition
has stem in the following proposition [14, Theorem 4.1 and Remark 4.2]:

Proposition 2.8. For a finitely generated R-module M, the following statements
are equivalent:

(1) M is an f-module

(2) for any p € Supp M \ {m}, f-depth(p, M) = dim(M) — dim(R/p)
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(3) for any proper ideal I of R with the property I O Ann(M) and VI # w,
f-depth(I, M) = dim(M) — dim(R/I)

We use the above proposition to investigate when R </ J is f-ring, which is our
final result.

Theorem 2.9. The following statements are equivalent:
(1) Ro<f J is an f-ring.
(2) R is an f-ring and J is a mazimal f-module.
(3) R is an f-ring and J, is mazimal Cohen-Macaulay for any p € Supp(J) \

{m}.

Proof. (1) = (2) Assume that R </ J is an f-ring and pick p € Spec(R)\ {m}. As
before, the extension tr : R — R/ J is integral, and so p = p°°. Thus \/p¢ # m's
and dim R >/ J/p® = dim R/p. Then Proposition gives the desired conclusion,
just as in the proof of Theorem 2.4

(2) = (1) Suppose that R is an f-ring and J is a maximal f-module, and let
P € Spec(R </ J) \ {m/s}. Then P¢ € Spec(R) \ {m} and Proposition 2. gives
the desired conclusion, as in the case of Theorem [2.41

(2) < (3) The proof of this part is the same as the proof in Theorem [2.4] using
the following equality instead of [I7, Proposition 4.4]:

f-depth(p, J) = min{depth(pRg, Jq) | g € Supp(J/pJ) \ {m}}.
For the proof the equality, see the proof of [I14] Theorem 3.10]. O

Corollary 2.10. (¢f. [19, Theorem 3.5].) Rt I is an f-ring if and only if R is an
f-ring and I is mazimal f-module if and only if R is an f-ring and I, is mazimal
Cohen-Macaulay for any p € Supp(I) \ {m}.

Corollary 2.11. If M is a finitely generated R-module, then R x M is an f-ring
if and only if R is an f-ring and M is a mazimal f-module if and only if R is an
f-ring and M, is mazimal Cohen-Macaulay for any p € Supp(M) \ {m}.
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