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Quantum Convolutional Neural Networks (QCNNs) have emerged as promising models for
quantum machine learning tasks, including classification and data compression. This paper
investigates the performance of QCNNs in comparison to the hardware-efficient ansatz (HEA)
for classifying the phases of quantum ground states of the transverse field Ising model and
the XXZ model. Various system sizes, including 4, 8, and 16 qubits, through simulation were
examined. Additionally, QCNN and HEA-based autoencoders were implemented to assess
their capabilities in compressing quantum states. The results show that QCNN with RY gates
can be trained faster due to fewer trainable parameters while matching the performance of
HEAs.

I. INTRODUCTION

Quantum machine learning (QML) leverages quan-
tum computing’s principles to enhance classical machine
learning algorithms’ performance and efficiency. Among
various QML models, Quantum Convolutional Neural
Networks (QCNNs) have shown significant potential in
classification tasks, including both quantum [1] and clas-
sical data [2]. Inspired by classical convolutional neural
networks, QCNNs exploit quantum parallelism and en-
tanglement to process quantum data with short range
entanglement structure effectively, and avoids the noto-
rious barren plateau problem by construction due to its
logarithmic circuit depth [3].

In this study, we seek to demonstrate the extent of
its efficiency and advantage over the hardware-efficient
ansatz (HEA), by comparing their performances on
two primary machine learning tasks: phase classifica-
tion and compression of quantum data. The ground
states of transverse field Ising (TFI) model and the XXZ
model serve as benchmarks for phase classification, while
autoencoder architectures based on QCNN and HEA
are evaluated for their compression capabilities of TFI
ground states. We also investigate using quantum simu-
lation the impact of different system sizes, i.e. number
of qubits, and classical optimizers on the models’ perfor-
mance.

II. METHODOLOGY

A. Models

Hardware-Efficient Ansatz (HEA) is a versatile
quantum circuit design that can be adapted to various
QML tasks. It typically consists of alternating layers
of single-qubit rotations and entangling gates, tailored
to the hardware’s connectivity. Our preliminary bench-
marks showed that for these datasets, the HEA with
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RY gates obtained similar performances compared to the
more general HEA with RX-RZ-RX gates but required
only a fraction of the training time. Therefore, we fo-
cused on the HEA with RY gates for more detailed bench-
mark studies against QCNNs.

Quantum Convolutional Neural Networks (QC-
NNs) extend the concept of classical CNNs to quantum
data. They consist of layers of quantum gates that per-
form convolution and pooling operations on quantum
states. Inspired from the competitive performance of
HEA with RY gates and together with the observation
that these quantum states are real-valued, we hypothe-
sized that real-valued quantum classifiers that are suffi-
ciently expressible would be able to perform the classifi-
cation task well. To test this hypothesis, we propose and
investigate real variants of the original (complex-valued)
QCNN with different levels of expressibility and inversely,
the number of trainable parameters, leading to trade-offs
between performance and training times.

B. QML Tasks

Phase Classification. The phase classification task
involves distinguishing between different quantum phases
of the ground states of the TFI and XXZ model,
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We adopt the conventional quantum classifier setup, in
which the test state |ψtest⟩ with label l = ±1, is passed
into the trained model U(θ) with optimized parameters
θ. The label predicted by the model p, is given by p =
sign

〈
ψtest|U†(θ)Z0U(θ)|ψtest

〉
. We use the mean squared

error between l and p over the training dataset as the cost
function (see Fig. 1).

Data Compression. For the data compression task,
we design quantum autoencoders using QCNN and HEA
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FIG. 1: Framework of quantum phase classification (left) and data compression (right) for 4 qubits.

architectures. These quantum autoencoders [4, 5] aim to
compress input quantum states into lower-dimensional
representations and then reconstruct the original states
with minimal loss. Our setup for each autoencoder in-
volves an encoding phase and a decoding phase. In the
former, the test state |ψtest⟩ is passed into the trained
encoder U(ϕ) with optimized parameters ϕ, and finally
applying reset gates to the qubits to be discarded to ob-
tain the encoded state |ψenc⟩ of the remaining qubits. In
the latter, the |ψenc⟩ is passed with the |0⟩ states of the
discarded qubits into the trained decoder U†(ϕ) to obtain
the decoded test state |ψ̃test⟩. The quality of the encod-
ing, can then be determined by the overlap |⟨ψ̃test|ψtest⟩|2
(see Fig. 1).

In training of the autoencoder, only the encoder part
needs to be trained, as the decoder circuit is the inverse
of the encoder. The encoder is trained by minimizing the
following cost function:

C =
1

2

(
−
∑
i∈Nd

Zi + nd

)
, (3)

where Nd and nd = |Nd| is the set and number of dis-
carded qubits respectively. Its global minimum occurs
when the output state is |0⟩⊗nd ⊗ |ψenc⟩, indicating that
the discarded qubits can be successfully set to |0⟩⊗nd and
|ψtest⟩ can be compressed to |ψenc⟩.

C. Simulation Setup

For the classification task, we conducted experiments
with system sizes of 4, 8, and 16 qubits. The train-
ing was done using the Qibo library [6] on Nvidia A100
GPUs. For 4- and 8-qubit systems, we generated la-
belled datasets of groundstates by performing exact diag-
onalization to solve the TFI and XXZ models, Eqs. (1)
and (2) respectively, for a range of values of h across
their respective phase boundaries. For the 16-qubit case,
we used optimized variational circuits provided in the
tensorflow-quantum repository [7].

For the data compression task, five input states of
4 and 8 qubits corresponding to the ground states of
the TFI model, across the phase boundary of h = 1,
were used. QCNN architecture is naturally suited for
data compression as each successive layers of QCNN
downscales the number of qubits by half, thus nd =
N(1− 1/2l), there l is the number of QCNN layers. For

HEA, there are no fixed requirement on downscaling, and
hence nd can be varied from 1 to N−1. With the trained
encoder U(ϕ̃), the decoder can be constructed by the in-
verse of the encoder circuit U†(ϕ̃).

III. RESULTS

Our results in Fig. 2 indicate that QCNN with RY
gates showed competitive performance compared to the
best performing HEA, with the added benefit of a dra-
matic reduction in training times due to substantially
fewer trainable parameters. For the same number of
trainable parameters therefore, QCNN with RY gates is
the most efficient architecture for classifying these quan-
tum ground states. The relatively poorer performance of
the more expressible QCNN variants can be attributed
to trainability issues. HEAs on the other hand, show
an increasing performance with expressibility (i.e. num-
ber of layers), as well as a corresponding increasing run-
ning time per training data (approximately linearly with
number of layers). A more detailed analysis was also
performed by generating the receiver operating charac-
teristic curve and computing the area under curve.

The autoencoder architectures were assessed on their
ability to compress and reconstruct quantum states.
Firstly, we note that the generally high reconstruction
fidelities imply that all the evaluated models are capable
of compressing TFIM ground states to a smaller number
of qubits. However, QCNNs demonstrated faster train-
ing convergence, due to the lower number of trainable
parameters in the QCNN models. This demonstrates one
key advantage of the QCNN architecture for this task —
lower number of trainable parameters leading to faster
convergence and lesser trainability issues, with minimal
tradeoff in compression capability.

IV. DISCUSSION AND CONCLUSION

This study highlights the effectiveness of QCNNs, par-
ticularly those limited to RY gates, in quantum phase
classification and data compression tasks. Consistent
across both tasks, we find that QCNNs not only achieve
similar performance to HEAs but also benefit from
shorter training times due to their simpler structure.
The choice of classical optimizer significantly impacts the
training efficiency and final model performance. Further-
more, during our simulations we observed that Powell is
one of the most reliable optimizers for these tasks. The
simulation results obtained will subsequently be com-
pared against implementation on hardware using the
Qibolab software library [8].



3

0 10 20 30 40 50 60
Number of training samples

0.6

0.7

0.8

0.9
Te

st
 a

cc
ur

ac
y

(a)

QCNN [Nparams = 85]
QCNN (real) [Nparams = 29]
QCNN (RY) [Nparams = 17]
HEA (1L) [Nparams = 49]
HEA (2L) [Nparams = 81]
HEA (3L) [Nparams = 113]
HEA (4L) [Nparams = 145]

0 10 20 30 40 50 60
Number of training samples

0

50

100

150

200

250

300

Tr
ai

ni
ng

 ti
m

e 
pe

r t
ra

in
in

g 
sa

m
pl

e 
(s

) (b)

FIG. 2: The results of (a) test accuracy for 16 qubits as a function of number of training samples, with their
respective training time per training sample shown in (b). In the case of HEA, nL denotes n layers. The number of

parameters (Nparams) for each model are shown as well.

Best Models Test Accuracy Training Time / sample Nparams

QCNN (RY) 0.931 18.7s 17
HEA (3L) 0.938 188.7s 113

TABLE I: Performance metrics for best QCNN and VQC models for Nsamples = 60.

[1] Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quan-
tum convolutional neural networks. Nature Physics,
15(12):1273–1278, December 2019.

[2] Tak Hur, Leeseok Kim, and Daniel K Park. Quantum con-
volutional neural network for classical data classification.
Quantum Machine Intelligence, 4(1):3, February 2022.

[3] Arthur Pesah, M. Cerezo, Samson Wang, Tyler Volkoff,
Andrew T. Sornborger, and Patrick J. Coles. Absence
of barren plateaus in quantum convolutional neural net-
works. Phys. Rev. X, 11:041011, Oct 2021.

[4] Jonathan Romero, Jonathan P Olson, and Alan Aspuru-
Guzik. Quantum autoencoders for efficient compression
of quantum data. Quantum Science and Technology,
2(4):045001, aug 2017.

[5] Carlos Bravo-Prieto. Quantum autoencoders with en-
hanced data encoding. Machine Learning: Science and
Technology, 2(3):035028, jul 2021.

[6] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-
Prieto, Adrián Pérez-Salinas, Diego García-Martín, Ar-
tur Garcia-Saez, José Ignacio Latorre, and Stefano Car-

razza. Qibo: a framework for quantum simulation with
hardware acceleration. Quantum Science and Technology,
7(1):015018, dec 2021.

[7] Michael Broughton, Guillaume Verdon, Trevor McCourt,
Antonio J. Martinez, Jae Hyeon Yoo, Sergei V. Isakov,
Philip Massey, Ramin Halavati, Murphy Yuezhen Niu,
Alexander Zlokapa, Evan Peters, Owen Lockwood, An-
drea Skolik, Sofiene Jerbi, Vedran Dunjko, Martin Leib,
Michael Streif, David Von Dollen, Hongxiang Chen, Shux-
iang Cao, Roeland Wiersema, Hsin-Yuan Huang, Jar-
rod R. McClean, Ryan Babbush, Sergio Boixo, Dave Ba-
con, Alan K. Ho, Hartmut Neven, and Masoud Mohseni.
Tensorflow quantum: A software framework for quantum
machine learning, 2021.

[8] Stavros Efthymiou, Alvaro Orgaz-Fuertes, Rodolfo
Carobene, Juan Cereijo, Andrea Pasquale, Sergi Ramos-
Calderer, Simone Bordoni, David Fuentes-Ruiz, Alessan-
dro Candido, Edoardo Pedicillo, Matteo Robbiati,
Yuanzheng Paul Tan, Jadwiga Wilkens, Ingo Roth,
José Ignacio Latorre, and Stefano Carrazza. Qibolab: an
open-source hybrid quantum operating system. Quantum,
8:1247, February 2024.


	Benchmarking Quantum Convolutional Neural Networks for Classification and Data Compression Tasks
	Abstract
	Introduction
	Methodology
	Models
	QML Tasks
	Simulation Setup

	Results
	Discussion and Conclusion
	References


