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AN ISOMETRIC REPRESENTATION FOR THE LIPSCHITZ-FREE SPACE

OF LENGTH SPACES EMBEDDED IN FINITE-DIMENSIONAL SPACES

GONZALO FLORES

Abstract. For a domain Ω in a finite-dimensional space E, we consider the space M = (Ω, d)
where d is the intrinsic distance in Ω. We obtain an isometric representation of the space
Lip0(M) as a subspace of L∞(Ω;E∗) and we use this representation in order to obtain the
corresponding isometric representation for the Lipschitz-free space F(M) as a quotient of the
space L1(Ω;E). We compare our result with those existent in the literature for bounded domains
with Lipschitz boundary, and for convex domains, which can be then deduced as a corollaries
of our result.

1. Introduction

In recent years, Lipschitz-free spaces have been an active research topic in different con-
texts, such as computer science, optimization and Banach spaces geometry. The construction of
these spaces can be found in these areas with different names for both the space and its norm.
More precisely, Lipschitz-free spaces can be found as Arens-Eells spaces [28, Chapter 3] and
Wasserstein 1 space [27, Chapter 5]. In this context, for a finite diameter metric space X, the
Arens-Eells space is defined starting from molecules defined over X, that is, finitely supported
functions f : X → R such that

∑

p∈X f(p) = 0, while for compact metric spaces, the Wasserstein
1 space is defined in terms of probability measures over X with finite first moment. These spaces
are endowed with the Arens-Eells and Kantorovich-Rubinstein norms, respectively, which makes
them a predual of the space of Lipschitz functions defined over X which vanish at a fixed point
x0.

In general, each area has developed research pointing to results which are specific for the topic
at hand. Nevertheless, some recent results point to the study of these spaces considering the
different areas of research altogether and how some results from one of the areas can be applied
to the others, as can be seen for example in [22, 23, 24, 25]

In the following, we will focus mainly on the study of Lipschitz-free spaces from the perspective
of Banach space geometry and metric geometry. In this sense, we refer to the seminal paper
Lipschitz-free Banach spaces by G. Godefroy and N. Kalton [15], which reestablished Lipschitz-
free spaces as an active research topic. There, we can find the different known results for
these spaces at that time, such as the existence of a unique extension for Lipschitz functions
defined over two given metric spaces on the base space to a linear operator defined between the
corresponding Lipschitz-free spaces, lifting properties, approximation properties, etc. This work
has been complemented with new results pointing in the same direction (see [2, 6, 10]).

In this work, we consider the following definition of the Lipschitz-free space. For a pointed
metric space (M,ρ), that is, a metric space endowed with a distinguished point, usually denoted
by x0, which we refer to as the base point of M . Then we consider the space

Lip0(M) := {f : M → R : f Lipschitz and f(x0) = 0}.
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When endowed with

‖f‖L := sup
x,y∈M,x 6=y

f(y)− f(x)

ρ(x, y)
,

this space becomes a (dual) Banach space. The Lipschitz-free space is then obtained as its
canonical predual, that is, the closed linear span in Lip0(M)∗ of the evaluation functionals.
From this, it can be readily seen that M isometrically embeds into F(M) via the evaluation
functionals.

From this last observation, it is expected that geometric properties of F(M) might be affected
by the geometry of the host space M . When M is embedded in a finite dimensional space,
isometric representations for F(M) can be found in [4, Theorem 2.4] and [7, Theorem 1.1].
More precisely, [4, Theorem 2.4] states that when M = Ω for Ω ⊂ E a bounded domain
with Lipschitz boundary endowed with its intrinsic distance, F(M) is linearly isometric to the
quotient of L1(Ω;E) with respect to the subspace of functions with null divergence in the sense
of distribution in E. On the other hand, [7, Theorem 1.1] states that the same isometric
representation is true when M = Ω ⊂ E is a convex domain endowed with the metric induced
by the norm of E.

It is not difficult to see that none of these results implies the other. Nevertheless, the sets
Ω considered in each case share some properties, such as being connected, having Lipschitz
boundary and being endowed with the intrinsic distance (in the convex case, this distance
coincides with that induced by the norm of E). Having this properties in mind, we propose
a common ground to obtain a generalization for both [4, Theorem 2.4] and [7, Theorem 1.1],
which goes as follows

Theorem. Let Ω ⊂ E be a domain and consider M the set Ω endowed with its intrinsic distance
and fix x0 ∈ Ω as the base point of M . Then, F(M) is linearly isometric to L1(Ω;E)/X, where

X = {h ∈ L1(Ω;E) : div(h) = 0 in D′(E)}.

Moreover, if S is the preadjoint of the linear isometry T in Theorem 3.4, then S[h] = δ(x) if
and only if −div(h) = δx − δx0

in D′(Ω), where for x ∈ Ω, δx is the Dirac distribution centered
at x and [h] stands for the equivalence class of h in L1(Ω;E)/X.

Before continuing in this line, it is worth to mention for contrast some recent results found
in the literature for the case where the metric space M is purely 1-unrectifiable, that is, M
does not contain any curve fragment. In this case, the subspace lip0(M) ⊂ Lip0(M) of locally
flat functions captures the absence of curves. In this context, [1, Theorem B] states that M
is purely 1-unrectifiable if and only if F(M) ≡ (lip0(M))∗. Moreover, [1, Theorem C] states
that in F(M), the Radon-Nikodým, Krein-Milman and Schur properties are equivalent to each
other, which are also equivalent to F(M) containing no isomorphic copy of L1, and also to the
completion of M being purely 1-unrectifiable.

Notice that, in a way, purely 1-unrectifiable spaces are the complete opposite to domains in
E, in the sense that in a domain every two points can be joined by not only a Lipschitz path,
but infinitely many.

This paper is outlined as follows. In Section 2 we establish the notation, some preliminaries
on Lipschitz and locally Lipschitz functions, and finally we establish the tools that will be used
in order to obtain the desired results. In Section 3, we begin by constructing the framework
to obtain a representation for the space Lip0(M), and we show that this space is isometric to
the subspace of L∞(Ω;E∗) consisting on conservative vector fields in the appropriate sense. We
compare this representation with the one obtained in [7, Proposition 3.2]. Using this represen-
tation, we proceed to compute a predual for the subspace of L∞(Ω;E∗) representing Lip0(M)
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and we show that this predual is actually isometric to F(M), obtaining the main result of the
present work. Finally, in Section 4 we review the relation between our results and those found
in [4] and [7].

2. Framework and notation

2.1. Notation. In this section, we specify the notation that will be used in the following pages

• E stands for a finite-dimensional space of dimension n. Ω ⊂ E is a non-empty connected
open set (that is, a domain in E).

• ‖ · ‖ denotes a norm on E.
• |·| is used for the absolute value, the Euclidean norm of a vector or the Lebesgue measure
of a set, depending on the context.

• B(x, r) and B(x, r) denote the open and closed ball centered at x and with radius r,
respectively. The associated space and metric will often be clear from context.

• For U ⊂ E, D(U) denotes the spaces of test (smooth and compactly supported) functions
in U , and D′(U) the corresponding space of distributions.

• ∂i and∇ denote the partial derivative with respect to the ith coordinate and the gradient,
respectively, in the sense of distributions.

• For p ∈ [1,∞], Lp(Ω;E) stands for the space of E valued p-integrable functions when p <
∞, and E valued essentially bounded measurable functions. In particular, (L1(Ω;E))∗ ≡
L∞(Ω;E∗) (since E has the Radon-Nikodým property).

Any additional notation will be clarified when needed.

2.2. Preliminaries. Let M,N be metric spaces, endowed with distances ρ and ρ′, respectively.
A function f : M → N is called Lipschitz whenever there exists a number L > 0 such that

ρ′(f(x), f(y)) ≤ Lρ(x, y).

Any such number is known as a Lipschitz constant for f . The Lipschitz number or Lipschitz norm
of f , denoted by ‖f‖Lip, is the greatest lower bound for the Lipschitz constants, or equivalently,
the least upper bound for the metric slopes of the function

‖f‖Lip := sup
x 6=y

ρ′(f(x), f(y))

ρ(x, y)
.

Notice that in this general context, and despite the name and notation, ‖·‖Lip is not actually a

norm, neither a seminorm, since N is only a metric space and as a consequence Lip(M,N) lacks
a linear structure. Nevertheless, if N is a vector space, the set of N -valued Lipschitz function
become a vector space and ‖·‖Lip becomes a seminorm over that vector space. More precisely,

‖f‖Lip = 0 if and only if f is constant. This abuse of notation will be justified by the context

where ‖·‖Lip is used. In the following lines we state some general properties where N is just
a metric space, which in the sequel will be applied in the case N = R endowed with its usual
metric.

In the same fashion as for a Lipschitz function, we say that f is locally Lipschitz at x ∈ M if
there exists an open set A ⊂ M containing x such that f↾A is Lipschitz. In this case, the local
Lipschitz number is defined as

Lip(f, x) := inf
{

‖f↾A‖Lip : A ⊂ M open and x ∈ A
}

.

If f is locally Lipschitz at every x ∈ M , we simply say that f is locally Lipschitz. For such a
function, we further say that it is uniformly locally Lipschitz if the local Lipschitz numbers are
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bounded in M and we define its uniform local Lipschitz number (or norm) as

‖f‖loc := sup
x∈M

Lip(f, x).

Just as in the case of Lipschitz functions, ‖·‖loc is a seminorm over the vector space of N -
valued uniformly locally Lipschitz functions whenever N is a vector space, which we denote by
Liploc(M,N). In general, Lip(M,N) is contained in Liploc(M,N), with ‖f‖loc ≤ ‖f‖Lip for every

f ∈ Lip(M,N), but the converse is not true without additional requirements, e.g. compactness
of the domain.

Theorem 2.1. [5, Theorem 2.1.6, p. 101] Let (M,ρ), (N, ρ′) be metric spaces, suppose that
(M,ρ) is compact, and let f : M → N be a function. Then, f is Lipschitz whenever it is locally
Lipschitz.

Proof. Suppose that f : M → N is a locally Lipschitz function which is not Lipschitz. Then,
for every n ∈ N there exists xn, yn ∈ M such that

ρ′(f(xn), f(yn)) > nρ(xn, yn).

Notice that for every n ∈ N, xn 6= yn. Since M is compact, we may assume without loss of
generality that both xn and yn are convergent to x and y, respectively. Since f is continuous,
we deduce from the inequality that both sequences converge to the same point z ∈ M . Then,
thanks to f being locally Lipschitz around z, there exists L > 0 and k ∈ N such that for every
n ≥ k

nρ(xn, yn) < ρ′(f(xn), f(yn)) ≤ Lρ(xn, yn),

which implies n < L for every n ≥ k, a contradiction. Thus, f is Lipschitz. �

Remark 2.2. Since every Lipschitz function is uniformly locally Lipschitz, Theorem 2.1 implies
that locally Lipschitz functions defined over M are indeed uniformly locally Lipschitz whenever
M is compact. Then, the lemma implicitly states that Lip(M,N) = Liploc(M,N) whenever M
is compact.

In the case M = [0, 1] with the usual metric, we can go a little further.

Lemma 2.3. Let (N, ρ′) be a metric space and g : [0, 1] → N . Then, if g is locally Lipschitz, g
is uniformly locally Lipschitz and ‖g‖Lip = ‖g‖loc.

Proof. Suppose that g : [0, 1] → N is a locally Lipschitz function. We already know thanks to
Theorem 2.1 that g is Lipschitz, since [0, 1] is compact. Moreover, considering Remark 2.2 we
have that g is uniformly locally Lipschitz. We claim that

‖g‖Lip = ‖g‖loc .

Clearly, ‖g‖loc ≤ ‖g‖Lip, so let us prove the inequality ‖g‖loc ≥ ‖g‖Lip. Let u, v ∈ [0, 1] with

u < v, ε > 0 and consider for every t ∈ [u, v] the radius rt > 0 given by the supremum of radii
0 < δ < v − u such that

Lip(g, t) ≥
∥

∥g↾B(t,δ)

∥

∥

Lip
− ε.

Let t1 = u and while ti 6= v, define ti+1 = min{v, ti +
rti
2 }. If this process is infinite, we see that

the sequence ti would be strictly increasing and bounded. Let t ∈ [u, v] be its limit. Then, if
t− ti < η < rt, we see that rti ≥ rt − η. Indeed, notice that if s ∈ B(ti, rt − η), then

|s− t| ≤ |s − ti|+ |ti − t| < rt,

that is B(ti, rt − η) ⊂ B(t, rt), which leads us to
∥

∥g↾B(ti,rt−η)

∥

∥

Lip
≤
∥

∥g↾B(t,rt)

∥

∥

Lip
≤ Lip(g, t) + ε,
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from which we deduce that rti ≥ rt − η.
Choosing η = rt

2 we see that

lim inf
i→∞

rti ≥
rt
2

> 0.

But

t− u =
∞
∑

i=1

ti+1 − ti =
1

2

∞
∑

i=1

rti .

Since this sum is not convergent, we deduce that the process for obtaining the sequence ti
eventually stops. We have then u = t1 < . . . < tk = v such that ti+1 ∈ B(ti, rti). We see that

ρ′(g(u), g(v))

v − u
≤

k−1
∑

i=1

ρ′(g(ti), g(ti+1))

v − u
=

k−1
∑

i=1

ti+1 − ti
v − u

ρ′(g(ti), g(ti+1))

ti+1 − ti

≤
k−1
∑

i=1

λi

∥

∥

∥
g↾B(ti,rti)

∥

∥

∥

Lip
≤

k−1
∑

i=1

λi(Lip(g, ti) + ε),

where λi =
ti+1−ti
v−u > 0 and their sum is equal to 1. Since g is uniformly locally Lipschitz, we

deduce that
ρ′(g(u), g(v))

v − u
≤ ε+ max

i=1,...,k
Lip(g, ti) ≤ ε+ ‖g‖loc ,

from which we get that ‖g‖Lip ≤ ‖g‖loc, since the last inequality holds for every u, v ∈ [0, 1] and
ε > 0. �

Making use of these lemmas in an specific framework, we can find a broader class of metric
spaces for which Lip(M,N) = Liploc(M,N). For a rectifiably-connected metric space (M,ρ),
the intrinsic (length) metric is defined as

dρ(x, y) = inf{ℓ(γ) : γ ∈ C([0, 1];M), γ(0) = x, γ(1) = y}

where

ℓ(γ) = sup

{

n
∑

i=1

ρ(γ(ti−1), γ(ti)) : 0 = t0 < . . . < tn = 1, n ∈ N

}

It is well known that for every rectifiable path γ : [0, 1] → M there exists an orientation-
preserving reparametrization θ : [0, 1] → M such that θ has constant speed, that is, for every
u < v ∈ [0, 1], the length of θ([u, v]), denoted by ℓuv(θ), satisfies ℓuv(θ) = ℓ(θ)|v − u|, which
is given by the scaling of the length of arc parametrization of γ. Considering this, we will
use directly constant speed paths whenever possible, that is, whenever we are dealing with
parametrization-invariant properties. For more details on rectifiably-connected metric spaces,
length spaces and the related definitions, we refer to [17].

Proposition 2.4. Let (M,ρ) and (N, ρ′) be metric spaces, with M rectifiably-connected. Then,
if ρ is equivalent to dρ, uniformly locally Lipschitz functions are Lipschitz. Moreover, there

exists C > 0 such that ‖f‖loc ≤ ‖f‖Lip ≤ C ‖f‖loc for every f ∈ Lip(M,N) = Liploc(M,N).

Moreover, C can be chosen as the constant such that dρ(x, y) ≤ Cρ(x, y) for every x, y ∈ M .

Proof. It suffices to prove the nontrivial inclusion Liploc(M,N) ⊂ Lip(M,N). Let x, y ∈ M
and γ ∈ C([0, 1];M) a rectifiable path going from x to y. As usual, we assume without loss of
generality that γ has constant speed, that is, ℓst(γ) = ℓ(γ)|t− s| for every s, t ∈ [0, 1]. We claim
that f ◦γ belongs to Liploc([0, 1], N). Indeed, consider t ∈ [0, 1]. Since γ(t) ∈ M and f is locally
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Lipschitz, for every ε > 0 there exists an open neighborhood A ⊂ M of γ(t) such that for every
x, y ∈ A

ρ′(f(x), f(y)) ≤ (Lip(f, γ(t)) + ε)ρ(x, y).

Then, for u, v ∈ γ−1(A)

ρ′(f ◦ γ(u), f ◦ γ(v)) ≤ (Lip(f, γ(t)) + ε)ρ(γ(u), γ(v))

≤ (Lip(f, γ(t)) + ε)ℓuv(γ) =≤ (Lip(f, γ(t)) + ε)ℓ(γ)|v − u|.

From this,
∥

∥f ◦ γ↾γ−1(A)

∥

∥

Lip
≤ (Lip(f, γ(t))+ε)ℓ(γ), which consequently leads to Lip(f ◦ γ, t) ≤

Lip(f, γ(t))ℓ(γ). By virtue of Theorem 2.1, f ◦ γ is Lipschitz in [0, 1], that is

ρ′(f ◦ γ(u), f ◦ γ(v)) ≤ ‖f ◦ γ‖Lip |v − u|.

In particular, for u = 0 and v = 1 we get that

ρ′(f(x), f(y)) ≤ ‖f ◦ γ‖Lip

Thanks to Lemma 2.3 we have that ‖f ◦ γ‖Lip = ‖f ◦ γ‖loc. Then

ρ′(f(x), f(y)) ≤ ‖f ◦ γ‖loc = sup
t∈[0,1]

Lip(f ◦ γ, t) ≤ ℓ(γ) sup
t∈[0,1]

Lip(f, γ(t)).

But since f is uniformly locally Lipschitz, we see that

sup
t∈[0,1]

Lip(f, γ(t)) ≤ sup
x∈M

Lip(f, γ(t)) = ‖f‖loc .

Finally, since γ was an arbitrary constant speed path going from x to y, we get that for C > 0
such that dρ(x, y) ≤ Cρ(x, y) for every x, y ∈ M

ρ′(f(x), f(y)) ≤ ‖f‖loc dρ(x, y) ≤ C ‖f‖loc ρ(x, y).

Hence, f is Lipschitz and ‖f‖loc ≤ ‖f‖Lip ≤ C ‖f‖loc. �

2.3. Framework. In the present article, several classical results on vector calculus and metric
geometry will be necessary, which we recall in the following propositions.

Proposition 2.5. Let Ω ⊂ E be a non-empty open set and g : Ω → E be a continuous vector
field. Then, the following are equivalent

(1) g is conservative (i.e. g has a C1(Ω) potential)
(2) For every pair of rectifiable paths γ1, γ2 : [0, 1] → Ω with common endpoints

∫

γ1

g · d~r =

∫

γ2

g · d~r

(3) For every rectifiable loop γ : [0, 1] → Ω (i.e. such that γ(0) = γ(1))
∮

γ
g · d~r = 0

(4) For every pair of piecewise linear paths γ1, γ2 : [0, 1] → Ω with common endpoints
∫

γ1

g · d~r =

∫

γ2

g · d~r

(5) For every piecewise linear loop γ : [0, 1] → Ω
∮

γ
g · d~r = 0
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The chain of implications of (1) ⇒ (2) ⇒ (3) ⇒ (1) can be widely found in the literature,
involving simple techniques of vector calculus (see e.g. [29, Chapter 9]). The implication (2) ⇒
(4) is trivial, while (4) ⇒ (5) and (5) ⇒ (1) are obtained in the same way as (2) ⇒ (3) and
(3) ⇒ (1), respectively.

From differential geometry, in order to achieve our goal we need a specific result which is
formulated in terms of 1-forms, but can be readily translated to vector fields. More precisely, a
particular version of Poincaré’s Lemma generalizes a well known result for C1 conservative vector
fields in R

3, which states that if Ω ⊂ R
3 is a simply connected domain, then a C1 vector field

is conservative if and only if it is irrotational (it has null curl). We recall the aforementioned
version of Poincaré’s Lemma in terms of vector fields, which will be useful in the sequel.

Lemma 2.6 (Poincaré for 1-forms). Let Ω ⊂ E be a simply connected domain, and g : Ω → E
a C1 vector field. Then

g is conservative ⇐⇒ ∀1 ≤ i, j ≤ n, ∂igj = ∂jgi

It is well known that whenever g : Ω → E is a C1 conservative vector field, its Jacobian matrix
is symmetric, that is

∂igj = ∂jgi in Ω,

since it coincides with the Hessian matrix of any potential for g. The converse is false in general,
which is clear from the following classical example

Example 2.7. Consider the vector field g : R2 \ {0} → R
2 given by

g(x, y) =

(

−y

x2 + y2
,

x

x2 + y2

)

,

which is clearly C1 in its domain and satisfies

∂1g2(x, y) =
y2 − x2

(x2 + y2)2
= ∂2g1(x, y)

But its integral over the path γ(t) = (cos(2πt), sin(2πt)) is given by
∫

g · dγ = 2π

∫ 1

0
sin2(2πt) + cos2(2πt)dt = 2π 6= 0,

which shows that this field is not conservative. Notice that all of this still holds if we replace
the domain by R

2 \B(0, 12) and in that case g is bounded.

Next, we state the following result on measure theory which will come in handy for some of
the proofs below.

Lemma 2.8. [19, Lemma 8.3, p. 161] Let (X,ΣX , µ), (Y,ΣY , ν) be measure spaces and
consider Z be a set of (µ ⊗ ν)-measure 0 in X × Y . Then, for almost all x ∈ X we have
ν(Zx) = 0, where

Zx = {y ∈ Y : (x, y) ∈ Z}.

3. Lipschitz-free space for domains

3.1. Identification of Lipschitz functions over a domain. In the following, we will show
that (in the appropriate sense) conservative essentially bounded vector fields have Lipschitz
potential. Recall that a continuous vector field g is said to be conservative if it has a potential,
that is, there exists a C1 scalar field f such that ∇f = g.

Our goal is to weaken this condition in order to treat with non-continuous vector fields. Since
we want to deal with Lipschitz functions, which will play the role of scalar fields, our definition
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will necessarily impose vector fields to be the gradients of Lipschitz functions. To this end, first
recall the following well known result for Lipschitz functions.

Theorem 3.1. [12, Section 5.8 Theorem 6 (Rademacher)] Let f : Ω ⊂ R
n → R

m be a
locally Lipschitz function. Then, the partial derivatives ∂ifj(x) exists almost everywhere in Ω
with respect to the Lebesgue measure and they are Lebesgue-measurable functions. Moreover,
they coincide with the partial derivatives of f in the sense of distributions.

From now on, whenever Ω ⊂ E is a domain, we will understand that Ω is endowed with the
metric ρ induced by the norm, and we will denote by M the metric space given by Ω endowed
with its intrinsic metric d.

Recall that since Ω is open, ρ and d coincide locally in Ω, thanks to the fact that E is
locally convex. This shows that every Lipschitz function over M is differentiable a.e., since
these functions are locally Lipschitz with respect to ρ. Using this fact, we consider from now on
the operator T : Lip0(M) → L∞(Ω;E∗) given by Tf := ∇f .

Proposition 3.2. The operator T : Lip0(M) → L∞(Ω;E∗) given by Tf := ∇f is well defined
and is an injective bounded linear operator.

Proof. Thanks to Rademacher theorem and the fact that Lip0(M) and Liploc0 (M) functions
coincide thanks to Proposition 2.4 (M is endowed with its intrinsic distance), we deduce that
∇f exists a.e. in Ω. Moreover, if x ∈ Ω is a differentiability point of f and h ∈ E, then

|〈∇f(x), h〉| =

∣

∣

∣

∣

lim
t→0+

f(x+ th)− f(x)

t

∣

∣

∣

∣

= lim
t→0+

|f(x+ th)− f(x)|

t
≤ lim sup

t→0+

‖f‖Lip d(x, x+ th)

t
.

But since Ω is open, d(x, x + th) = ‖x + th − x‖ = t‖h‖ for every t > 0 sufficiently close to 0,
which finally leads to |〈∇f(x), h〉| ≤ ‖f‖Lip ‖h‖. From this, we see that ‖∇f(x)‖∗ ≤ ‖f‖Lip a.e.

in Ω, which shows that ∇f ∈ L∞(Ω;E∗) and ‖Tf‖∞ ≤ ‖f‖Lip. Since the differential operator
∇ is linear, we deduce that T is well defined and is a bounded linear operator.

For the injectivity of T , suppose that Tf = 0, that is, ∇f = 0 a.e. in Ω. Since Ω is
connected, f must be constant. But the only constant function in Lip0(M) is f = 0. Hence, T
is injective. �

Proposition 3.2 shows that T is a bijective bounded linear operator between Lip0(M) and its
image

Im(T ) := {g ∈ L∞(Ω;E∗) : (∃f ∈ Lip0(M)) g = ∇f}.

By virtue of the open mapping theorem, its inverse T−1 is also bounded.
Our goal in the following is to establish a characterization of Im(T ) and to show that the

inverse of T can be described in the expected natural way, that is, in terms of the appropriate
integrals in order to recover f from its gradient. Using the aforementioned characterization for
Im(T ) we will show that T actually defines an isometry between Lip0(M) and its image. In the
following lines we give the details for recovering a smooth Lipschitz function (up to a constant)
from its gradient.

Example 3.3. Suppose that f : Ω → R is a C∞(Ω) function such that ∇f is bounded and
fix x0 ∈ Ω. If γ : [0, 1] → Ω is any Lipschitz path going from x0 to some x ∈ Ω, noticing that
f ◦ γ : [0, 1] → R is continuous and differentiable almost everywhere, we see that

f(γ(1))− f(γ(0)) =

∫ 1

0
(f ◦ γ)′(t)dt =

∫ 1

0
∇f(γ(t)) · γ′(t)dt,
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that is,

f(x) = f(x0) +

∫ 1

0
∇f(γ(t)) · γ′(t)dt.

This shows that the obtained value for f(x) is independent of γ, since field ∇f is conservative
by definition. Moreover, and considering that

f(y)− f(x) =

∫ 1

0
∇f(γxy(t)) · γ

′
xy(t)dt,

where γxy : [0, 1] → Ω is any Lipschitz path going from x to y, we deduce that

|f(y)− f(x)| ≤

∫ 1

0
‖∇f(γxy(t))‖∗‖γ

′
xy(t)‖dt ≤ ‖∇f‖∞

∫ 1

0
‖γ′xy(t)‖dt = ‖∇f‖∞ℓ(γxy).

Since this holds true for any Lipschitz path going from x to y, we deduce that

|f(y)− f(x)| ≤ ‖∇f‖∞d(x, y),

which shows that ‖f‖Lip ≤ ‖Tf‖∞ whenever f is a C∞(Ω) function with bounded gradient.

With this procedure we have stated two facts. First, when restricted to C∞(Ω) functions
vanishing at the base point x0 of M with bounded gradient, T is in fact an isometry onto its
image. Second, the inverse of this restriction of T is defined in terms of integrals over curves in
Ω. These integrals are independent of the chosen path thanks to the fact that we are starting
from the gradient of a C∞(Ω) function, that is, we are dealing with a conservative vector field.

Considering this idea, we claim that T−1 is given by a similar formula, which takes into
account the non-smoothness of the vector fields making use of the C∞ case.

Theorem 3.4. For the operator T : Lip0(M) → L∞(Ω;E∗) the following holds

(1) The range of T is

Y := {g ∈ L∞(Ω;E∗) : (∀k ∈ N) g ∗ uk is conservative}.

(2) The inverse operator T−1 : Y → Lip0(M) is given by

T−1g(x) = lim
k→∞

∫ 1

0
(g ∗ uk)(γ(t)) · γ

′(t)dt,

where for each x ∈ M , γ : [0, 1] → Ω is any Lipschitz path going from the base point
x0 ∈ M to x, u : Rn → R is any positive mollifier and uk(x) = knu(kx). The choice of
γ is irrelevant thanks to the definition of Y .

In particular, T : Lip0(M) → Y is an isometric isomorphism.

Proof. From now on, we will make use of mollifiers, weak derivatives and distributions, and their
properties, for which we refer to [12]. We begin by proving (2). Notice that if g = ∇f for some
f ∈ Lip0(M), then for k ∈ N we see that g ∗ uk ∈ C∞(Ωk;E

∗), where

Ωk =

{

x ∈ Ω : dist(x,Ωc) >
1

k

}

.

Moreover, for x ∈ Ωk

(g ∗ uk)i(x) = (gi ∗ uk)(x) = 〈∂if, uk(x− ·)〉 = 〈f, ∂iuk(x− ·)〉 = ∂i(f ∗ uk)(x),

that is, g ∗ uk = ∇(f ∗ uk), so by definition g ∗ uk is conservative (which in turn proves one of
the inclusions of (1), more precisely that Im(T ) ⊂ Y ). Since by virtue of 3.2 T is a bounded
linear bijection onto its image, in order to prove (2), it suffices to show that the operator given
in (2) is a left inverse for T .
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Let g = ∇f for some f ∈ Lip0(M). Since g ∗ uk = ∇(f ∗ uk), we see that for any Lipschitz
path γ going from the base point x0 ∈ M to x

∫ 1

0
(g ∗ uk)(γ(t)) · γ

′(t)dt = (f ∗ uk)(x)− (f ∗ uk)(x0).

Since f is continuous, f∗uk converges uniformly to f over compact subsets of Ω, and in particular,
it converges pointwise to f . Then, recalling that f(x0) = 0

lim
k→∞

∫ 1

0
(g ∗ uk)(γ(t)) · γ

′(t)dt = f(x).

We deduce from this the desired formula for T−1.
For the remainder inclusion of (1), that is Y ⊂ Im(T ), we will prove that provided g ∗ uk

is conservative for every k ∈ N, there exists f ∈ Lip0(M) such that for every i ∈ {1, . . . , n},
∂if = gi a.e. on Ω. From this we can deduce directly that ∇f = g a.e. on Ω. Let x0 ∈ Ω be the
base point of M and consider for every k ∈ N the set Ωx0

k , defined as the connected component of
Ωk which contains x0. Notice that both Ωk and Ωx0

k are open for every k, and Ωx0

k is non-empty

whenever x0 ∈ Ωk, that is,
1
k < dist(x0,Ω

c). Moreover, Ωx0

k ⊂ Ωx0

k+1 for every k ∈ N and

Ω =
⋃

k∈N

Ωx0

k ,

since for every x ∈ Ω there exists a Lipschitz path γ : [0, 1] → Ω going from x0 to x, whose image
satisfies γ([0, 1]) ⊂ Ωx0

k for every k big enough. We endow each Ωx0

k with its intrinsic distance dk,
which is well defined as long as Ωx0

k 6= ∅, and we denote by Mk the resulting metric spaces. We
see that for every x, y ∈ Ωx0

k , the sequence (di(x, y))i≥k is decreasing. Indeed, since Ωx0

k ⊂ Ωx0

i
for every i ≥ k, we have that di(x, y) is well defined. Moreover, since every Lipschitz path
between x and y in Ωx0

i is also a Lipschitz path in Ωx0

i+1, we deduce that di+1(x, y) ≤ di(x, y).
By a similar reasoning, we deduce that for every x, y ∈ Ω and every k ∈ N big enough (it suffices
that x, y ∈ Ωx0

k ), d(x, y) ≤ dk(x, y). We claim that actually

d(x, y) = inf
k∈N

dk(x, y).

To see this, let x, y ∈ Ω and ε > 0. Then, there exists a Lipschitz path γ : [0, 1] → Ω joining x
and y such that ℓ(γ) ≤ d(x, y) + ε. But then, there exists i ∈ N such that γ([0, 1]) ⊂ Ωx0

k , for
every k ≥ i. Then we see that whenever k ≥ i

d(x, y) ≤ dk(x, y) ≤ ℓ(γ) ≤ d(x, y) + ε,

which leads to d(x, y) = lim
k→∞

dk(x, y) = inf
k∈N

dk(x, y). Having stated this framework in Ω, we

proceed to construct the desired potential for g. For k ≥ m define the functions fm
k : Ωx0

m → R

as

fm
k (x) =

∫ 1

0
(g ∗ uk)(γ(t)) · γ

′(t)dt,

where γ : [0, 1] → Ωx0
m is any Lipschitz path going from x0 to x. Since we are assuming that

g ∗ uk is conservative, the choice of this path is irrelevant in the definition of fm
k . For every

k ≥ m, fm
k ∈ Lip0(Mm), since for every Lipschitz path γxy : [0, 1] → Ωx0

k

|fm
k (y)− fm

k (x)| =

∣

∣

∣

∣

∫ 1

0
(g ∗ uk)(γxy(t)) · γ

′
xy(t)dt

∣

∣

∣

∣

≤

∫ 1

0
‖(g ∗ uk)(γxy(t))‖∗‖γ

′
xy(t)‖dt

≤ ‖g ∗ uk‖∞

∫ 1

0
‖γ′xy(t)‖dt ≤ ‖g‖∞ℓ(γxy).
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From this inequality and the fact that γxy : [0, 1] → Ωx0

k was arbitrary, we deduce that

|fm
k (y)− fm

k (x)| ≤ ‖g‖∞dk(x, y) ≤ ‖g‖∞dm(x, y),

proving that fm
k ∈ Lip0(Mm) for every k ≥ m and also that for fixed m, the sequence (fm

k )k≥m is
bounded by ‖g‖∞ in Lip0(Mm). We proceed to construct then a sequence of functions (fm)m∈N,
with fm ∈ Lip0(Mm) by induction. Suppose without loss of generality that Ωx0

1 6= ∅ and define
f1 as the pointwise limit of a subsequence of (f1

k )k≥1. This is possible thanks to Banach-Alaoglu
theorem, since

∥

∥f1
k

∥

∥

Lip
is bounded, and the fact that the weak-∗ topology of Lip0(M1) coincides

with the topology of pointwise convergence on bounded sets. More precisely, for some increasing
function α1 : N → N we have that

(∀x ∈ Ωx0

1 ) f1(x) = lim
k→∞

f1
α1(k)

(x).

Now, having already defined fm ∈ Lip0(Mm) as

(∀x ∈ Ωx0

m ) fm(x) = lim
k→∞

fm
αm(k)(x),

where αm : N → N is increasing, consider the sequence (fm+1
αm(k))k≥m+1, which is well defined since

αm(k) ≥ k ≥ m+ 1. Since this new sequence remains bounded in Lip0(Mm+1), we can extract
a subsequence which is pointwise convergent in Lip0(Mm+1), that is, there exists αm+1 : N → N

increasing such that (fm+1
αm+1(k)

)k≥m+1 converges pointwise, and define fm+1 as its pointwise limit

(∀x ∈ Ωx0

m+1) fm+1(x) = lim
k→∞

fm+1
αm+1(k)

(x).

We summarize now some properties of the functions defined this way. Notice that every x ∈ Ω
belongs to Ωx0

m for every sufficiently big m ∈ N. We claim that m 7→ fm(x) is constant for every
m ∈ N big enough. Let m ∈ N be such that x ∈ Ωx0

m . Then, by definition, fm
k and fm+1

k coincide

in Ωx0
m for k > m, which implies that fm(x) = fm+1(x) for every x ∈ Ωx0

m , since αm+1 defines a
subsequence of αm. Then, we can define f : Ω → R as

f(x) = lim
m→∞

fm(x).

We will see that this function belongs to Lip0(M). Indeed, let x, y ∈ Ω and take m ∈ N such
that x, y ∈ Ωx0

m . Then, noticing that m 7→ fm(y) − fm(x) is constant and that the functions
fm are weak-∗ limits of functions bounded by ‖g‖∞ in Lip0(Mm), we have that for every big
enough m ∈ N

|f(y)− f(x)| = |fm(y)− fm(x)| ≤ ‖g‖∞dm(x, y),

which leads to |f(y) − f(x)| ≤ ‖g‖∞d(x, y), since d(x, y) = inf
m∈N

dm(x, y), that is, f ∈ Lip0(M)

with ‖f‖Lip ≤ ‖g‖∞.

We claim that f ∈ Lip0(M) satisfies ∂if = gi in L∞(Ω), for every i ∈ {1, . . . , n}. Let
H = [a1, b1] × · · · × [an, bn] be a hyper-rectangle contained in Ω, and denote its elements as
x = (z, t), where z ∈ H ′ ⊂ R

n−1 is formed by all the coordinates of x except for the ith

coordinate, and t = xi. Then, by Fubini’s theorem
∫

∂if(x)1H(x)dx =

∫

H′

∫ bi

ai

∂if(z, t)dtdz =

∫

H′

f(z, bi)− f(z, ai)dz.

Notice that for m ∈ N big enough, H ⊂ Ωx0
m , from which we have that

∫

H′

f(z, bi)− f(z, ai)dz =

∫

H′

lim
k→∞

fm
αm(k)(z, bi)− fm

αm(k)(z, ai)dz
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=

∫

H′

lim
k→∞

∫ 1

0
(g ∗ uαm(k))(z, ai + t(bi − ai)) · (bi − ai)eidt

=

∫

H′

lim
k→∞

∫ bi

ai

(gi ∗ uαm(k))(z, t)dtdz.

Since gi ∗ uαm(k) ∈ L∞(Ω), and thanks to Lemma 2.8, for almost every z ∈ H ′ the functions
t 7→ (gi ∗ uαm(k))(z, t) belong to L∞([ai, bi]) with (gi ∗ uαm(k))(z, t) ≤ ‖g‖∞ for almost every
t ∈ [ai, bi] and converge almost everywhere on t ∈ [ai, bi] to gi(z, t), since gi ∗ uαm(k) converges
almost everywhere in Ω to gi. More precisely, recall that for a function G : H = H ′×[ai, bi] → R,
Lebesgue-measurability in H implies that for almost every z ∈ H ′, the function t 7→ G(z, t) is
Lebesgue measurable in [ai, bi]. Moreover, if G is bounded up to a null measure set, thanks to
Lemma 2.8, the same is true for almost every z ∈ H ′ for the function t 7→ G(z, t). By the same
argument, we can deduce the convergence. From this, we finally see that

∫

∂if(x)1H(x)dx =

∫

g(x)1H(x)dx,

that is, ∂if = gi almost everywhere in Ω, from which we obtain (1).
Finally, we show that for every g ∈ Im(T ),

∥

∥T−1g
∥

∥

Lip
≤ ‖g‖∞, which together with Proposi-

tion 3.2 implies that T : Lip0(M) → Y is an isometric isomorphism. Let x, y ∈ Ω and consider
γx, γy : [0, 1] → Ω Lipschitz paths going from x0 to x and y, respectively. If γxy : [0, 1] → Ω
stands for the path given by rescaling the domain of the concatenation of the reverse of γx and
γy, we see that γxy is a Lipschitz path going from x to y. then

|T−1g(y)− T−1g(x)| = lim
k→∞

∣

∣

∣

∣

∫ 1

0
(g ∗ uk)(γy(t)) · γ

′
y(t)dt−

∫ 1

0
(g ∗ uk)(γx(t)) · γ

′
x(t)dt

∣

∣

∣

∣

= lim
k→∞

∣

∣

∣

∣

∫ 1

0
(g ∗ uk)(γxy(t)) · γ

′
xy(t)dt

∣

∣

∣

∣

= lim
k→∞

∣

∣

∣

∣

∫ 1

0
(g ∗ uk)(γ(t)) · γ

′(t)dt

∣

∣

∣

∣

,

where γ : [0, 1] → Ω is any Lipschitz path going from x to y. The last equality is justified by the
fact that g ∗ uk is conservative in Ωk and that every Lipschitz path γ going from x to y satisfies
that γ([0, 1]) is compact, which implies that γ([0, 1]) ⊂ Ωk for every k big enough. But notice
that for a fixed path γ as such and k big enough

∣

∣

∣

∣

∫ 1

0
(g ∗ uk)(γ(t)) · γ

′(t)dt

∣

∣

∣

∣

≤ sup
z∈Ωk

‖(g ∗ uk)(z)‖∗

∫ 1

0
‖γ′(t)‖dt = sup

z∈Ωk

‖(g ∗ uk)(z)‖∗ℓ(γ).

But considering that for z ∈ Ωk it holds that

‖(g ∗ uk)(z)‖∗ =

∥

∥

∥

∥

∥

∫

|y−x|< 1

k

g(y)uk(x− y)dy

∥

∥

∥

∥

∥

∗

≤

∫

|y−x|< 1

k

‖g(y)‖∗uk(y − x)dy

≤ ‖g‖∞

∫

E
uk(y − x)dy = ‖g‖∞,

we deduce that
∣

∣

∣

∣

∫ 1

0
(g ∗ uk)(γ(t)) · γ

′(t)dt

∣

∣

∣

∣

≤ sup
z∈Ωk

‖(g ∗ uk)(z)‖∗ℓ(γ) ≤ ‖g‖∞ℓ(γ),

which leads to

|T−1g(y) − T−1g(x)| = lim
k→∞

∣

∣

∣

∣

∫ 1

0
(g ∗ uk)(γ(t)) · γ

′(t)dt

∣

∣

∣

∣

≤ ‖g‖∞ℓ(γ).
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But γ was arbitrary, so |T−1g(y) − T−1g(x)| ≤ ‖g‖∞d(x, y). Hence, since the last inequality is
valid for every x, y ∈ Ω and g ∈ Im(T ), we have that

∥

∥T−1g
∥

∥

Lip
≤ ‖g‖∞ for every g ∈ Im(T ).

�

Notice that Theorem 3.4 was written in the form of [7, Proposition 3.2], where Ω is an open
convex subset of E. In order to reinforce this comparison, notice first that if R ∈ D′(Ω) then,
for every ϕ ∈ D(Ω)

〈∂ijR,ϕ〉 = 〈R, ∂jiϕ〉 = 〈R, ∂ijϕ〉 = 〈∂jiR,ϕ〉,

where the second equality is valid thanks to the smoothness of ϕ. In particular, applying this
for f ∈ Lip0(M) and its associated distribution, we see that g = ∇f satisfies

〈∂igj , ϕ〉 = 〈∂ijf, ϕ〉 = 〈∂jif, ϕ〉 = 〈∂jgi, ϕ〉 ∀ϕ ∈ D′(Ω).

Hence, g ∈ Y ⇒ ∂igj = ∂jgi in D′(Ω), but the converse is not true in general. In the next
proposition, we show that the converse becomes true under an extra hypothesis.

Proposition 3.5. Suppose now that Ω is a simply connected domain such that every connected
component of Ωk is simply connected. Then

Y = {g ∈ L∞(Ω;E∗) : ∂igj = ∂jgi in D′(Ω)},

Proof. Since every g ∈ Y satisfies ∂igj = ∂jgi in D′(Ω), we just need to show the other inclusion.
Suppose that g ∈ L∞(Ω;E∗) is such that ∂igj = ∂jgi in D′(Ω), and fix k ∈ N and x ∈ Ωk. We
see that the function ϕ(y) = uk(x− y) belongs to D(Ωk). Hence

〈∂igj, ϕ〉 = 〈∂jgi, ϕ〉 ⇐⇒ 〈gj , ∂iϕ〉 = 〈gi, ∂jϕ〉 ⇐⇒

∫

gj(y)∂iϕ(y)dy =

∫

gi(y)∂jϕ(y)dy.

But we see that ∂iϕ(y) = ∇uk(x− y) · −ei = −∂iuk(x− y) for every i ∈ {1, . . . , n}. From this

⇐⇒

∫

gj(y)∂iuk(x− y)dy =

∫

gi(y)∂juk(x− y)dy

⇐⇒ (gj ∗ ∂iuk)(x) = (gi ∗ ∂juk)(x) ⇐⇒ ∂i(gj ∗ uk)(x) = ∂j(gi ∗ uk)(x).

By virtue of Lemma 2.6, this is equivalent to g ∗ uk being conservative in every connected
component of Ωk, since they are simply connected. Hence, g ∗ uk is conservative. �

Notice that in particular convex domains satisfy the conditions of Proposition 3.5. Then,
Proposition 3.5 in combination to Theorem 3.4, allows us to recover [7, Proposition 3.2].

3.2. Identification of the Lipschitz-free space. In Section 3.1, we have established an isom-
etry between Lip0(M) and the subspace Y of L∞(Ω;E∗), consisting on vector fields whose mol-
lifications are conservative vector fields. This isometry is given by the gradient operator defined
over Lip0(M). Our aim is to use our characterization for Y , which is the image of T , to show
that Y is actually the annihilator of a subspace of L1(Ω;E), which is defined in terms of a differ-
ential operator in the sense of distributions. In order to do this, recall that if V is a vector space
and U,W are subspaces of V and V ∗, respectively, the annihilator of U and the preannihilator
of W are defined respectively as follows

U⊥ := {z ∈ V ∗ : 〈z, u〉 = 0 ∀u ∈ U}

W⊥ := {z ∈ V : 〈w, z〉 = 0 ∀w ∈ W}

From now on, whenever h ∈ L1(Ω;E), div(h) stands for the divergence in the sense of distribu-
tions in E of the extension of h by zero outside Ω.
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Proposition 3.6. Let

X := {h ∈ L1(Ω;E) : div(h) = 0 in D′(E)}.

Then

(1) Y = X⊥ and X = Y⊥ in the standard duality (L1(Ω;E))∗ = L∞(Ω;E∗).
(2) X ∩ C∞

0 (Ω;E) is dense in X.

Proof. This proof goes as follows. First we will prove that Y = (X ∩ C∞
0 (Ω;E))⊥, from which

we deduce that

Y = X ∩ C∞
0 (Ω;E)

⊥
and Y⊥ = X ∩ C∞

0 (Ω;E).

Then, we proceed to show that Y ⊂ X⊥, which allows us to deduce (2), which finally implies
(1).

Let g ∈ (X ∩ C∞
0 (Ω;E))⊥. We need to prove that g ∗ uk is conservative for every k. To this

end, fix k ∈ N and consider Lipschitz closed path γ in Ωk. Then
∫

γ
(g ∗ uk)(γ(t)) · γ

′(t)dt =

∫ 1

0

∫

Ω
g(z)uk(γ(t)− z) · γ′(t)dzdt

=

∫

Ω

[
∫ 1

0
uk(γ(t)− z)γ′(t)dt

]

· g(z)dz =

∫

Ω
h(z) · g(z)dz,

where

h(z) :=

∫ 1

0
uk(γ(t)− z)γ′(t)dt.

We claim that the function h is smooth, compactly supported and has null divergence. Thanks
to the regularity of uk, it is clear that h is smooth. Moreover, it is compactly supported, since
if z /∈ γ +B(0, 1

k ), then for every t ∈ [0, 1]

‖γ(t)− z‖ >
1

k
,

from which uk(γ(t) − z) = 0 for every t ∈ [0, 1], which leads to h(z) = 0. Then, supp(h) ⊂
γ +B(0, 1

k ), which is compact. Finally, we see that

div(h)(z) = −
n
∑

j=1

∫ 1

0
∂juk(γ(t) − z)γ′j(t)dt

= −

∫ 1

0
∇uk(γ(t) − z) · γ′(t)dt = −

∫ 1

0
(uk ◦ (γ − z))′(t)dt

= uk(γ(1) − z)− uk(γ(0) − z) = 0.

Then, h ∈ X ∩ C∞
0 (Ω;E) and we deduce that
∫

γ
(g ∗ uk)(γ(t)) · γ

′(t)dt =

∫

Ω
h(z) · g(z)dz = 〈g, h〉 = 0.

Then, for every closed Lipschitz curve γ ⊂ Ωk, g ∗ uk integrates 0 over γ, that is, g ∗ uk is
conservative by Proposition 2.5. But this is valid for every k ∈ N, which leads to g ∈ Y , that is
(X ∩ C∞

0 (Ω;E))⊥ ⊂ Y .
The proof of the other inclusion is exactly the same as in [7] and we give the details for

completeness. Let g = ∇f for some f ∈ Lip0(M) and choose h ∈ X ∩ C∞
0 (Ω;E). Then

〈g, h〉 =
n
∑

i=1

〈∂if, hi〉 = −
n
∑

i=1

〈f, ∂ihi〉 = −〈f,div(h)〉 = 0,
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that is, g ∈ (X ∩ C∞
0 (Ω;E))⊥. From all this, we have that

Y = (X ∩ C∞
0 (Ω;E))⊥ = X ∩ C∞

0 (Ω;E)
⊥
,

and by virtue of Hahn-Banach theorem,

X ∩ C∞
0 (Ω;E) = Y⊥.

We claim that Y ⊂ X⊥. To this end, we first show that {∇ϕ : ϕ ∈ D(Ω)} ⊂ Y is weak-
∗ dense in Y . To see this, we will prove that for every f ∈ Lip0(M), there exists sequence

(fk)k∈N ∈ D(Ω) such that ∇fk
∗
⇀ ∇f in L∞(Ω;E∗). For k ∈ N, consider the sets

Uk :=

{

x ∈ Ω : dist(x,Ωc) >
1

k
and d(x0, x) < k

}

, Ck = Uk.

Without loss of generality, we can suppose that x0 ∈ Uk, for every k ∈ N. Notice that the sets
Uk are open and bounded, and that Ck ∩ U c

k+1 = ∅. Hence, by virtue of Urysohn’s Lemma,
there exists smooth functions ρk : E → [0, 1] such that ρk↾Ck

= 1 and ρk↾Uc

k+1
= 0. Notice that

the convolution f ∗ uk+2 is well defined in Uk+2, for every k ∈ N. Consider then the functions
fk : Ω → R defined as

fk(x) := ρk(x)(f ∗ uk+2)(x),

where f ∗ uk+2 is extended by 0 outside of Uk+1. Despite this extension, since ρk↾Uc

k+1
= 0,

fk ∈ D(Ω). We claim that ∇fk −∇f
∗
⇀ 0 in L∞(Ω;E∗).

Indeed, as C∞
0 (Ω;E) is dense in L1(Ω;E), it suffices to prove that 〈∇fk − ∇f, ϕ〉 → 0, for

every ϕ ∈ C∞
0 (Ω;E). Fix ϕ ∈ C∞

0 (Ω;E) and let K = supp(ϕ). Since (Uk)k∈N is an increasing
cover of Ω, there exists m ∈ N such that K ⊂ Uk ⊂ Ck, for every k ≥ m. Hence, since for every
k ≥ m, ∇fk(x) = ∇ρk(x)(f ∗ uk+2)(x) + ρk(x)∇(f ∗ uk+2)(x) = ∇(f ∗ uk+2)(x) in K, we see
that

〈∇fk −∇f, ϕ〉 = 〈∇((f ∗ uk)− f), ϕ〉 = 〈(f ∗ uk)− f,−div(ϕ)〉.

Recall that f ∗ uk converges to f uniformly over compact sets. In particular, we see that

〈(f ∗ uk)− f,−div(ϕ)〉 = −

∫

K
[(f ∗ uk)(z) − f(z)]div(ϕ)(z)dz → 0 as k → ∞,

which allows us to deduce that {∇ϕ : ϕ ∈ D(Ω)} is weak-∗ dense in Y .
Returning to the original objective, which was to prove that Y ⊂ X⊥, suppose that g = ∇f for

some f ∈ Lip0(M) and consider a sequence (fk)k∈N in D(Ω) such that ∇fk
∗
⇀ g in L∞(Ω;E∗).

Then, for every h ∈ X

〈g, h〉 = lim
k→∞

〈∇fk, h〉.

Since the extension by 0 outside Ω of fk is smooth and compactly supported, it belongs to D(E).
This implies that for every k ∈ N, 〈∇fk, h〉 = 〈fk,−div(h)〉 = 0, which leads to 〈g, h〉 = 0, that
is, g ∈ X⊥.

Recall that Y = X ∩ C∞
0 (Ω;E)

⊥
. Then, we have now proved that X ∩ C∞

0 (Ω;E)
⊥

⊂ X⊥,

which leads to X = X ∩ C∞
0 (Ω;E). Then, to obtain (2), we need to see that X is closed.

Suppose that a sequence (hk)k∈N ⊂ X converges to h ∈ L1(Ω;E). Since norm convergence
implies weak convergence and ∇ϕ ∈ L∞(E;E∗) for every ϕ ∈ D(E), we see that

〈−div(h), ϕ〉 = 〈h,∇ϕ〉 = lim
k→∞

〈hk,∇ϕ〉 = lim
k→∞

〈−div(hk), ϕ〉 = 0,

which proves that X is closed.
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Hence, X = X = X ∩ C∞
0 (Ω;E), that is, X ∩ C∞

0 (Ω;E) is dense in X, and

Y = X ∩ C∞
0 (Ω;E)

⊥
= X⊥ and Y⊥ = X ∩ C∞

0 (Ω;E) = X,

which finishes the proof.
�

Remark 3.7. The fact that in the definition of X the divergence div(h) is considered in the
sense of distributions over E instead of Ω is of utmost importance, since depending on that, the
obtained sets might be different. This fact can be shown with an example in the case E = R.
Suppose that Ω = (−1, 1) ⊂ R and choose 0 as the base point for the metric space (M,d). Since
Ω is convex, d coincides with the usual metric of R restricted to Ω. In this case, the set

X ′ := {h ∈ L1((−1, 1)) : h′ = 0 in D′((−1, 1))}

contains the constants functions, while on the other hand, X = {0} thanks to connectedness.
Notice that if Proposition 3.6 were true for X ′ instead of X, we would have that

(L1((−1, 1))/X ′)∗ ≡ X ′⊥ = Y ≡ Lip0((−1, 1)).

Then, considering the function f(t) = t (which belongs to Lip0((−1, 1))) we would have that for
every constant function on (−1, 1) (say, h(x) = a)

0 = 〈f ′, h〉 = a

∫ 1

−1
dt = 2a,

which is clearly a contradiction.
More generally, suppose that Ω ⊂ E is a bounded domain with Lipschitz boundary. By the

same argument, considering

X ′ := {h ∈ L1(Ω;E) : div(h) = 0 in D′(Ω)},

if Proposition 3.6 were true for X ′ instead of X, we would have that

L1(Ω;E)/X ′ ≡ X ′⊥ = Y ≡ Lip0(M).

Then, for every f ∈ Lip0(M) ∩ C∞(Ω) and h(x) = v constant in Ω we would have

0 = 〈∇f, h〉 =

∫

Ω
∇f(x) · vdx.

But noticing that
div(fv)(x) = ∇f(x) · v,

by virtue of Gauss’ Theorem [20, Theorem 37.22] we would have that

0 =

∫

Ω
∇f(x) · vdx =

∫

∂Ω
fv · ndS ∀v ∈ E.

Notice that, since Ω has Lipschitz boundary, Ω coincides with the completion of Ω with respect
to d, which implies that f can be continuously extended to ∂Ω, so the integral for the flux of fv
over ∂Ω is well defined. In other words, the net flux of the field fv is 0, whenever f ∈ Lip0(M)
is smooth and v ∈ E, which is certainly false in general.

Recall the following classical result on Banach spaces.

Theorem. [26, Theorem 4.9] Let U be a closed subspace of a Banach space V .

(1) The Hahn-Banach theorem extends each u∗ ∈ U∗ to a functional v∗ ∈ V ∗. Define

σu∗ = v∗ + U⊥.

Then σ is an isometric isomorphism of U∗ onto V ∗/U⊥.
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(2) Let π : V → V/U be the quotient map. Put W = V/U . For each w∗ ∈ W ∗, define

τw∗ = w∗ ◦ π.

Then τ is an isometric isomorphism of W ∗ onto U⊥

Considering this representations for the duals of quotients and subspaces, we proceed to
study the adjoint operator of T . More precisely, since T is an isometry from Lip0(M) onto
Y , T ∗ becomes an isometry from Y ∗ onto (Lip0(M))∗ (see e.g. [26, Theorem 4.10]). In the
following, we study the behavior of T ∗ restricted to L1(Ω;E)/X, seen as a closed subspace of
Y ∗ ≡ X⊥ ⊂ (L∞(Ω;E∗))∗, which finally leads us to the second main result of this work.

Theorem 3.8. Let Ω ⊂ E be a domain and consider M the set Ω endowed with its intrinsic
distance and fix x0 ∈ Ω as the base point of M . Then, F(M) is linearly isometric to L1(Ω;E)/X,
where

X := {h ∈ L1(Ω;E) : div(h) = 0 in D′(E)}.

Moreover, if S is the preadjoint of the linear isometry T in Theorem 3.4, then S[h] = δ(x) if
and only if −div(h) = δx − δx0

in D′(Ω), where for x ∈ Ω, δx is the Dirac distribution centered
at x and [h] stands for the equivalence class of h in L1(Ω;E)/X

Proof. This proof is divided in several stages. We start by showing that (T ∗)−1 maps F(M) ⊂
(Lip0(M))∗ isometrically onto a closed subspace of L1(Ω;E)/X ⊂ (L∞(Ω;E∗))∗/Y ⊥. Then,
we prove a similar result for T ∗, that is, that T ∗ maps L1(Ω;E)/X ⊂ (L∞(Ω;E∗))∗/Y ⊥ iso-
metrically onto a closed subspace of F(M) ⊂ (Lip0(M))∗. From this, we get the first part of
Theorem 3.8, which says that F(M) is linearly isometric to L1(Ω;E)/X. Then, by noticing that
S := T ∗↾L1(Ω;E)/X satisfies S∗ = T , we show the characterization of evaluation functionals in
terms of the operator S.

(1) (T ∗)−1(F(M)) ⊂ L1(Ω;E)/X: Recall that (by definition) if x0 ∈ Ω is the base point for
M , then δ(x0) = 0 in (Lip0(M))∗. From this, given x ∈ Ω and a piecewise linear path
with nodes x0 = y1, . . . , yk = x ∈ Ω, by linearity of (T ∗)−1 we have

(T ∗)−1(δ(x)) =

k−1
∑

i=1

(T ∗)−1(δ(yi+1)− δ(yi)).

Hence, it suffices to show that for any x, y ∈ Ω such that [x, y] ⊂ Ω, there exists
h ∈ L1(Ω;E) such that (T ∗)−1(δ(y) − δ(x)) = [h] in (L∞(Ω;E∗))∗/Y ⊥.

Consider then x, y ∈ Ω such that [x, y] ⊂ Ω. By virtue of compactness of this set,
there exists ε > 0 such that [x, y]+εB ⊂ Ω. Define A = εB∩{y−x}⊥, that is, the closed
ball of E centered at the origin with radius ε restricted to the subspace orthogonal to
y − x, and consider the set H = conv{x, y, x+y

2 +A}. We see that

z ∈ H ⇐⇒ (∃u ∈ A) z ∈

[

x,
x+ y

2
+ u

]

∪

[

x+ y

2
+ u, y

]

.

In other words, H is the union of the images of the paths γu : [0, 1] → Ω given for every
u ∈ A by

γu(t) =

{

x+ t(y − x) + 2tu , t ∈ [0, 12 ]
x+ t(y − x) + 2(1 − t)u , t ∈ [12 , 1]

.

Moreover, by virtue of the choice of ε, H ⊂ Ω. Notice that the volume of H is given by
∫

H
dz =

∫ 1

2

0

∫

A
|y − x|(2t)n−1dudt+

∫ 1

1

2

∫

A
|y − x|(2(1 − t))n−1dudt



AN ISOMETRIC REPRESENTATION FOR F(M) FOR LENGTH SPACES EMBEDDED IN Rn 18

= 2n|A||y − x|

∫ 1

2

0
tn−1dt =

|A||y − x|

n
,

where |A| stands for the (n− 1)-dimensional volume of A and |y − x| for the Euclidean
distance between x and y.

Define now the function hxy : Ω → E as

hxy(z) :=











γ′

u(t)
|A||y−x|(2t)n−1 , z = γu(t) for some u ∈ A, t ∈ (0, 12)

γ′

u(t)
|A||y−x|(2(1−t))n−1 , z = γu(t) for some u ∈ A, t ∈ (12 , 1)

0 , otherwise

.

We see that hxy is well defined, since whenever z ∈ H \ {x, y,A}, there exists a unique
pair (u, t) ∈ A× (0, 1) with t 6= 1

2 such that z = γu(t). Notice that hxy ∈ L1(Ω;E), since
it is direct from its definition that it is measurable, supported in H, and

∫

H
‖hxy(z)‖dz

=

∫

A

(

∫ 1

2

0
‖hxy(γu(t))‖|y − x|(2t)n−1dt+

∫ 1

1

2

‖hxy(γu(t))‖|y − x|(2(1 − t))n−1dt

)

du

=
1

|A|

∫

A

(

∫ 1

2

0
‖y − x+ 2u‖dt+

∫ 1

1

2

‖y − x− 2u‖dt

)

du =
1

|A|

∫

A
‖y − x+ 2u‖du

≤
1

|A|

∫

A
‖y − x‖+ 2‖u‖du ≤ ‖y − x‖+ 2ε.

We claim that (T ∗)−1(δ(y) − δ(x)) = [hxy]. Let g = ∇f for some f ∈ Lip0(M). By
definition of (T ∗)−1 we have that

〈(T ∗)−1(δ(y) − δ(x)), g〉 = 〈δ(y) − δ(x), T−1(∇f)〉

= 〈δ(y) − δ(x), f〉 = f(y)− f(x).

On the other hand, defining v : A× [0, 1] → R as the volume element for H

v(u, t) :=

{

|y − x|(2t)n−1 , t ∈ [0, 12)
|y − x|(2(1 − t))n−1 , t ∈ [12 , 1]

we have by virtue of Fubini’s theorem and Lemma 2.8 that

〈[hxy], g〉 =

∫

Ω
hxy(z) · g(z)dz =

∫

H
hxy(z) · ∇f(z)dz

=

∫

A

∫ 1

0
hxy(γu(t)) · ∇f(γu(t))v(u, t)dtdu =

1

|A|

∫

A

∫ 1

0
∇f(γu(t)) · γ

′
u(t)dtdu

=
1

|A|

∫

A
f(y)− f(x)du = f(y)− f(x).

Since this is valid for every g = ∇f , we deduce that (T ∗)−1(δ(y)− δ(x)) = [hxy]. Taking
into account the remark at the beginning of this part of the proof, we see that for every
x ∈ Ω

(T ∗)−1(δ(x)) =

[

k−1
∑

i=1

hyiyi+1

]

.
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Since span{δ(x) : x ∈ M} is dense in F(M) ⊂ (Lip0(M))∗ and T ∗ is a bijective isometry,
we deduce that (T ∗)−1 maps F(M) isometrically onto

span{[hxy] : x, y ∈ M, [x, y] ⊂ Ω},

which is a closed subspace of L1(Ω;E)/X ⊂ (L∞(Ω;E∗))∗/Y ⊥ by noticing that [hxy] ∩
L1(Ω;E) ∈ L1(Ω;E)/X.

(2) T ∗(L1(Ω;E)/X) ⊂ F(M): Since simple integrable functions are dense in L1(Ω;E), it
suffices to show that T ∗([1Cei]) ∈ F(M) ⊂ (Lip0(M))∗ whenever C = [a1, b1] × . . . ×
[an, bn] is an hyper-rectangle contained in Ω and ei is the ith element of the canonical
basis of E.

In this setting, denote by Ci the product of the intervals [ak, bk], except for [ai, bi].
We see that if f ∈ Lip0(M), then

〈S([1Cei]), f〉 = 〈1Cei,∇f〉 =

∫

C
∂if(z)dz =

∫

Ci

∫ bi

ai

∂if(u, t)dtdu

=

∫

Ci

f(u, bi)− f(u, ai)du

Consider now the function F : Ci → F(M) given by F (u) = δ(u, bi) − δ(u, ai). Notice
that F is separably-valued (since F(M) is separable) and weakly-measurable (since for
every f ∈ Lip0(M) the function 〈f, F (u)〉 = f(u, bi) − f(u, ai) is continuous in Ci).
Then, by virtue of Pettis’s Measurability Theorem [9, Theorem II.1.2] we have that F
is measurable. Moreover, thanks to [9, Theorem II.2.2] it is Bochner integrable, since

∫

Ci

‖F (u)‖du =

∫

Ci

‖δ(u, bi)− δ(u, bi)‖du

=

∫

Ci

d((u, bi), (u, ai))du = |bi − ai|‖ei‖

∫

Ci

du

= |bi − ai||Ci|‖ei‖ = |C|‖ei‖ < ∞.

Then, by virtue of Hille’s Theorem [9, Theorem II.2.6], we deduce that for every f ∈
Lip0(M)

〈S([1Cei]), f〉 =

〈
∫

Ci

δ(u, bi)− δ(u, ai)du, f

〉

.

In other words, S([1Cei]) is the Bochner integral of the the difference between of evalu-
ation functional δ on the faces of C at xi = bi and xi = ai, which belongs to F(M).

Since span{[1Cei] : C ⊂ Ω hyper-rectangle, 1 ≤ i ≤ n} is dense in L1(Ω;E)/X ⊂
(L∞(Ω;E∗))∗/Y ⊥ and T ∗ is a bijective isometry, we deduce that T ∗ maps L1(Ω;E)/X
isometrically onto

span

{
∫

Ci

δ(u, bi)− δ(u, ai)du : C ⊂ Ω hyper-rectangle, 1 ≤ i ≤ n

}

,

which is a closed subspace of F(M) ⊂ (Lip0(M))∗.
(3) L1(Ω;E)/X ≡ F(M): Consider S : L1(Ω;E)/X → F(M) given by the restriction of

T ∗ to L1(Ω;E)/X. By virtue of (2), S is well defined. Moreover, by virtue of (2),
S is surjective. But since T is a bijective isometry, so is T ∗, which implies that S
is a linear isometry. In particular, S is also injective. This shows that S defines an
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isometric isomorphism between L1(Ω;E)/X and F(M). Moreover, for f ∈ Lip0(M) and
[h] ∈ L1(Ω;E)/X

〈S∗f, [h]〉 = 〈f, S[h]〉 = 〈f, T ∗[h]〉 = 〈Tf, [h]〉,

that is, S∗ = T , or in other words, S is the preadjoint of T .
(4) S[h] = δ(x) ⇔ −div(h) = δx − δx0

: In (1), we shown that

(T ∗)−1(δ(x)) =

[

k−1
∑

i=1

hyiyi+1

]

,

where yi ∈ Ω are the nodes of a piecewise linear path going from x0 to x. This is
equivalent to

S

[

k−1
∑

i=1

hyiyi+1

]

= δ(x).

Then, in order to prove that S[h] = δ(x) ⇔ −div(h) = δx − δx0
, it suffices to show that

−div

(

k−1
∑

i=1

hyiyi+1

)

= δx − δx0
.

The reason for this is that

S[h] = δ(x) ⇐⇒ [h] =

[

k−1
∑

i=1

hyiyi+1

]

⇐⇒ div

(

h−
k−1
∑

i=1

hyiyi+1

)

= 0 ⇐⇒ −div(h) = −div

(

k−1
∑

i=1

hyiyi+1

)

.

For ϕ ∈ D(E), we see that f := ϕ − ϕ(x0) restricted to Ω belongs to Lip0(M) and
∇f = ∇ϕ in E. Hence, noticing that each hyiyi+1

is compactly supported in Ω implies
that their sum also is compactly supported in Ω, we see that

〈

−div

(

k−1
∑

i=1

hyiyi+1

)

, ϕ

〉

=

〈

k−1
∑

i=1

hyiyi+1
,∇ϕ

〉

=
k
∑

i=1

〈hxi−1xi
,∇f〉

=

k
∑

i=1

f(xi)− f(xi−1) =

k
∑

i=1

ϕ(xi)− ϕ(xi−1)

= ϕ(x)− ϕ(x0) = 〈δx − δx0
, ϕ〉.

Hence,

−div

(

k−1
∑

i=1

hyiyi+1

)

= δx − δx0
,

which concludes the proof.

�

Remark 3.9. In [7], Proposition 3.4 states that when Ω ⊂ E is a convex domain, there exists
a compactly supported class representative h ∈ L1(Ω;E) such that div(h) = δx0

− δx. In the
proof of Theorem 3.8, the exhibited class representative given by

h :=
k−1
∑

i=1

hyiyi+1
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is compactly supported, being the sum of finitely many compactly supported functions, which
can even be defined in a way such that their supports are pairwise disjoint.

Notice also that in the proof of part (1) of Theorem 3.8, the function hxy associated to x, y ∈ Ω
such that [x, y] ⊂ Ω is defined in a very specific way, using the midpoint of the segment [x, y]
and an (n − 1)-dimensional disk with a fixed radius oriented orthogonally to the segment. It
is important to notice that these choices were made for simplicity, in order to explicitly exhibit
the required function. More precisely, the same construction can be made using any other point
in the segment different from x and y, and the disk can be changed for any other flat (n − 1)-
dimensional surface, as long it has positive measure and the closed convex hull of the sum of the
chosen point with that surface and the points x and y remain contained in Ω. In other words,
for every x ∈ Ω and any piecewise linear curve going from x0 to x, it is possible to find a class
representative of S−1δ(x) which is not only compactly supported, but such as its support is as
close as we want to the chosen curve.

Notice that the only crucial fact in the construction of these functions is that their support
must in some way “collapse” at both x and y, and their values “flow” from x to y, being this
flow tangential in the boundary of its domain.

4. Final comments

In what follows, we state the main results from [4] and [7], which can be viewed as particular
cases of Theorem 3.8. More precisely, we focus on [4, Theorem 2.4] and [7, Theorem 1.1].

First, we refer to [4]. Let K = Ω where Ω is a bounded connected open subset of E with
Lipschitz boundary. K is endowed with the extension of its intrinsic distance to its completion.
Notice that thanks to the Lipschitz boundary condition, the completion of Ω endowed with
its intrinsic distance is simply its closure in E with its correspondent intrinsic distance. For
µ ∈ F(K), define Tµ as the distribution given by

〈Tµ, ϕ〉 = 〈ϕ, µ〉 ∀ϕ ∈ C∞(K).

Theorem. [4, Theorem 2.4] The following equality holds between subsets of D′(K) (the dis-
tributions over K):

{Tµ : µ ∈ F(K)} =
{

−div(h) : h ∈ L1(Ω;E)
}

.

Furthermore, if X denotes the closed subspace

X :=
{

h ∈ L1(Ω;E) : div(h) = 0
}

,

the linear map h ∈ L1(Ω;E)/X 7→ −div(h) ∈ F(K) is an isometry, i.e.:

‖h‖L1(Ω;E)/X = ‖div(h)‖.

We see that the equality in the space of distributions is actually the same obtained in Theorem
3.8 thanks to the definition of Tµ and the fact that K is compact. In this framework, the
requirement of Lipschitz regularity for the boundary of Ω assures that K remains embedded in
E. An example where this is not true is the following

Example 4.1. Consider the open bounded subset of R
2 endowed with ‖ · ‖1 given by Ω =

B(0, 1) \ {(t, 0) : t ≥ 0}. Its closure is clearly B(0, 1). But notice that the intrinsic distance in
Ω is given by

d(x, y) =

{

‖y − x‖1 , [x, y] ⊂ Ω
‖x‖1 + ‖y‖1 , [x, y] 6⊂ Ω

Notice that this metric is not equivalent to the restriction to Ω of the metric induced by the
norm. To see this, it suffice to consider the points in Ω xt = (12 , t) and yt = (12 ,−t) for t ∈ (0, 1).
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L

com
pletion 6≡

closure in R
2

closure in R
3

Figure 1. Ω and its closure in R
2 vs M and its completion embedded in R

3

Clearly, [xt, yt] 6⊂ Ω, from which d(xt, yt) = 1 + 2t. On the other hand, ‖xt − yt‖1 = 2t, from
which we see that as t → 0

d(xt, yt)

‖xt − yt‖
=

1 + 2t

2t
→ ∞.

With a similar procedure, we can obtain actually exhibit a function that is Lipschitz in (Ω, d)
but not in (Ω, ‖ · ‖1). More precisely, this function is given by the distance to (1−, 0+) within
Ω, that is

f(x) =

{

1− x1 + x2 , x2 ≥ 0
1 + |x1| − x2 , x2 < 0

Notice that in this example, although Ω is open and bounded, it does not have Lipschitz bound-
ary, which implies that there are Lipschitz functions in (Ω, d) that cannot be extended to the
closure of Ω. Nevertheless, these functions can be extended to the completion of Ω with respect
to d. This completion is not embedded in R

2 since the metrics are not equivalent, but it can be
easily shown that the aforementioned completion (as a metric space) is isometric to the following
subset of R3 endowed with ‖ · ‖1

MΩ = B(0, 1) ∩ ({(x, y, 0) : x ≤ 0} ∪ {(0, y, z) : yz ≤ 0}).

In other words, MΩ is obtained by embedding Ω in the XY plane of R3 and then folding the flaps
given by the 1st and 4th quadrants upwards and downwards, respectively, as shown in Figure
1. It is not difficult to see that this process (which we denote by a corresponding isometric
embedding L) gives an isometry between Ω and MΩ. Moreover, the completion of MΩ is simply
the closure of this set in R

3.
From this, the extension of Lipschitz functions defined over (Ω, d) and the extension of the

distance itself becomes evident thanks to this embedding.

Now we refer to [7], where a similar result is obtained in a different context.

Theorem. [7, Theorem 1.1] Let Ω ⊂ E be a non-empty convex open set. Then, the Lipschitz
free space F(Ω) is canonically isometric to the quotient space

L1(Ω;E)/X.

Moreover, if x0 ∈ Ω is the base point and x ∈ Ω is arbitrary, then in this identification we have

δ(x) ↔ [h] ⇐⇒ h ∈ L1(Ω;E) and div(h) = δx0
− δx in D′(E),
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where δy denotes the Dirac distribution supported at y.

It is evident the relation between this result and Theorem 3.8 just in the way it is written. It
is important to notice that in [7, Theorem 1.1], the metric used in Ω is the one induced directly
by the norm of E. Since Ω is convex, this metric coincides with the intrinsic metric induced by
the norm, which shows that Theorem 3.8 is a generalization of [7, Theorem 1.1].

In both cases, Lipschitz regularity of the boundary of the domain was used at some point in
the proofs. Our approach avoids completely that assumption. It can be seen, by comparing the
proofs present in this paper against those in [4] and [7], that the use of adequate approximations
is the key difference, since these methods allows us to avoid the explicit study of the behavior
of the functions on the completion of Ω and restrict ourselves to the given domain.

As mentioned in the introduction, domains in finite-dimensional spaces endowed with its in-
trinsic metric are somewhat opposite to purely 1-unrectifiable spaces. In that sense, there are
some intermediate cases for subsets of a finite-dimensional space for which we lack a characteri-
zation. Such cases are, e.g., non-connected open subsets of E and closed subsets of E such that
the closure of its interior is strictly contained in the set itself.

Another question arises for n-dimensional Lipschitz manifolds. In this case, as they are locally
Lipeomorphic to an open connected subset of Rn, it might be possible to adapt the techniques
used in the present work to be applied in the more general setting of Lipschitz manifolds.
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