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POINTWISE DISPERSIVE ESTIMATES FOR SCHRÖDINGER

AND WAVE EQUATIONS IN A CONICAL SINGULAR SPACE

QIUYE JIA AND JUNYONG ZHANG

Abstract. We study the pointwise decay estimates for the Schrödinger and
wave equations on a product cone (X, g), where the metric g = dr2 + r2h and
X = C(Y ) = (0,∞)×Y is a product cone over the closed Riemannian manifold
(Y, h) with metric h. Under the assumption that the conjugate radius ǫ of Y
satisfies ǫ > π, we prove the pointwise dispersive estimates for the Schrödinger
and half-wave propagator in this setting. The key ingredient is the modified
Hadamard parametrix on Y in which the role of the conjugate points does not
come to play if ǫ > π. In a work in progress [24], we will further study the
case that ǫ ≤ π in which the role of conjugate points come. A new finding is
that a threshold of the conjugate radius of Y for Lp-estimates in this setting
is the magical number π.
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1. Introduction and main results

In this paper, we study the pointwise dispersive estimates for the Schrödinger and
wave equations, which continue the investigations about Strichartz estimates carried
out in [18, 52, 53, 54], on the product cone (X, g), where the metric g = dr2 + r2h
and X = C(Y ) = (0,∞) × Y is a n-dimensional product cone over the closed
Riemannian manifold (Y, h) of dimension n−1 with metric h. Let ∆g be the positive
Laplace-Beltrami operator on X , which is the Friedrichs self-adjoint extension from
the domain C∞

c (X) that consist of the compactly supported smooth functions on
the interior of the cone. Consider the Schrödinger operator

H = ∆g + V0(y)r
−2 (1.1)
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2 QIUYE JIA AND JUNYONG ZHANG

in the coordinator (r, y) of the above product cone (X, g). Our purpose of this paper
is to study the pointwise decay estimates of the associated Schrödinger equation

{

i∂tu(t, r, y) +Hu(t, r, y) = 0,

u|t=0 = f(r, y).
(1.2)

As is well known, the free Schrödinger equation in Euclidean space Rn without
potential obeys the decay estimate

‖eit∆f‖L∞(Rn) ≤ C|t|−n
2 ‖f‖L1(Rn), t 6= 0, (1.3)

where the constant C is independent of f and t. Therefore, the Strichartz inequal-
ities on Euclidean space (e.g. see [27]) reads

‖eit∆f‖LpLq(R×Rn) ≤ C‖f‖L2(Rn), (1.4)

where (p, q) is an admissible pair, i.e.

2 ≤ p, q ≤ ∞, 2/p+ n/q = n/2, (p, q, n) 6= (2,∞, 2). (1.5)

It has been known that the geometry (e.g. trapping geodesic, conjugate points) of
the setting plays important role in the study of the dispersion solution of evolution
equation. For example, the Strichartz estimates in [2] on compact manifolds are
local-in-time and have loss of regularity due to the elliptic trapped geodesics, how-
ever the loss of regularity of the local-in-time Strichartz estimate can be recovered in
[3] if the trapped geodesic is hyperbolic, and further be extended to global-in-time
in [55]. From the results of [18, 53, 54], the conjugate points have no effect on the
Strichartz estimates even though one needs elaborate microlocal arguments. How-
ever, the pointwise decay estimates are more delicate than the Strichartz estimates.
It is known that there is an interesting phenomenon the usual Strichartz estimates
are still true even though the classical pointwise decay estimates fail, which is il-
lustrated by [5, 14] about the inverse-square potential and by [16, 18, 53, 54] about
the conjugate points.

In this paper, we study the pointwise decay estimates for the solution of Schrödinger
and wave equations associated with the conical singular operator H given in (1.1).
More precisely, we aim to detect the quantitative influence of the conjugate points
and the inverse-square potential on the decay rate of dispersive estimates, which is
the motivation of this sequence papers. This operator H has attracted researcher’s
interests from different disciplines such as geometry, analysis and physics. Even for
the operator without potential, the diffractive phenomenon of the wave on conical
manifolds was studied by Cheeger and Taylor [10, 11], and later was generalized
to general cones with several conical ends by Ford and Wunsch [13]. Müller and
Seeger[33] studied the regularity properties of wave propagation. For the case with
the inverse-square potential, the asymptotical behavior of Schrödinger propagator
was considered in [9, 48] and Riesz transform was studied in [15].

There are also several other related studies on the pointwise decay estimates on
cones in the literature. In [42, 43], Schlag, Soffer and Staubach proved decay esti-
mates (depending on the angular momentum) for Schrödinger and wave equation
on manifolds with conical ends. In [26], Keeler and Marzuola studied the pointwise
dispersive estimates (also depending on the angular momentum) for Schrödinger
equation on product cones, which are hard to sum in the angular momentum. In
[7], Chen proved the local-in-time dispersive and Strichartz estimates on a general
conic manifold without conjugate points. We also refer the survey [44] by Schlag for
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more about the dispersive estimates. In particular, Y = S1σ = R/2πσZ with radius
σ > 0, which is close to the Euclidean cone of cone angle α, Cα = [0,∞)r×(R/αZ)θ.
This setting X = C(S1σ) is a 2D flat Euclidean cone, in which there is no conju-
gate points. The difficulties in summing angular momentum are simplified by the
straightforward structure of Y = S

1
σ, in which the eigenfunctions and eigenvalues

on Y are explicit. In [12], Ford proved the dispersive estimates (1.3) for Schrödinger
on the flat cone C(S1σ). For wave on C(S1σ), Blair, Ford and Marzuola [4] proved
the decay estimates for sin(t

√

∆g)/
√

∆g while in [4, (1.7), Conjecture 1.1] they

conjectured a pointwise decay estimates for cos(t
√

∆g). Very recently, the last au-
thor [52] constructed the Schwartz kernels of resolvent and spectral measure for the
Laplacian on the 2D flat Euclidean cone, and proved the dispersive estimates for
the Schrödinger and half-wave propagators, which verifies [4, (1.7), Conjecture 1.1]
for wave and provides a simple proof of the results in [12] for Schrödinger. However,
since the pointwise dispersive decay estimates is very sensitive in the geometry prop-
erty and the scaling critical potential perturbation, to our best knowledge, there is
little results about the pointwise decay estimates in a general conical setting.

Motivated by this observation, we aim to study the pointwise decay estimates for
the dispersive equations associated with the operatorH on product cone X = C(Y )
with more general closed manifold Y . One challenge is the potential presence of
conjugate points within our general cone settings. In view of the conjugate points,
Hassell and Wunsch [17] pointed out that the Schrödinger propagator U(t)(z, z′)
may fail to satisfy the classical pointwise dispersive estimate |U(t)(z, z′)| ≤ C|t|− n

2

at some pair of conjugate points. In addition, as mentioned above, the perturbation
of the inverse-square potential is non-trivial since the inverse-square decay of the
potential has the same scaling to the Laplacian operator. Fanelli, Felli, Fontelos
and Primo [14] proved a weighted decay estimates when V0(y) ≡ a ∈ [−1/4, 0)
on R3, and they also addressed an open problem about decay estimates for more
general V0(y) and high dimension n ≥ 4 in [14, Remark 1.12].

In this paper, we focus on a general product cone X = C(Y ) on Y whose
conjugate radius ǫ > π where the conjugate radius ǫ is defined by

ǫ = inf{d(y1, y2) : pairs (y1, y2) where geodesics emanating from y1 focus at y2}.

In future papers, we will consider the complicated case that conjugate radius of
Y , ǫ ≤ π which includes the most interesting case ǫ = π. In fact, we expect the
dispersive estimate (1.7) below to fail generically in its current form in this setting.
This is because that the geodesic flow on X is expected to govern the propagation
phenomena of ∆g. Thus the dichotomy according to the existence of conjugate
point pair within distance π can be seen from the structure of the geodesic flow on
metric cones. Let x = r−1 and y still be a coordinate system on Y . Suppose (see
[31, Section 2,3] for more details)

(x, y, τ, µ)

are coordinates of the scattering cotangent bundle scT ∗X of X , then the rescaled

geodesic flow of g = dx2

x4 + h
x2 takes the form:

x =
x0

sin s0
sin(s+ s0), τ = cos(s+ s0), |µ| = sin(s+ s0),

(y, µ̂) = exp(sH 1
2h
)(y0, µ̂0), s ∈ (−s0,−s0 + π),

(1.6)
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where µ̂ = |µ|−1
h−1µ. In particular, this rescaled flow has a global source-sink struc-

ture with the location where s + s0 = 0 being the source and the location where
s+s0 = π being the sink. The important feature of this rescaling is that on the one
hand the flow has unit speed on Y , while on the other hand the entire travel time
of this flow is always π. Thus, the geometric information on Y that can be detected
through the geodesic flow on X is ‘within distance π’. And the geometric informa-
tion is exp(sH 1

2h
), whose non-degeneracy, which is equivalent to our no conjugate

point assumption, is crucial in the Hadamard parametrix construction. Though
one can still construct parametrix with the presence of conjugate points in the
calculus of Lagrangian distributions, and this degeneracy is harmless to L2−based
estimates, but this is a general phenomena in the theory on the boundedness of
Fourier integral operators that this type of degeneracy (which essentially is the
degeneracy of the projection from the Lagrangian submanifold defined in (3.17) to
the base manifold) is fatal to general Lp−estimates.

Now we state our main results.

Theorem 1.1 (Pointwise estimates for Schrödinger propagator). Let z1 = (r1, y1)
and z2 = (r2, y2) be in product cone X = C(Y ) of dimension n ≥ 3 and let H
be the Schrödinger operator given in (1.1), where V0(y) ∈ C∞(Y ) such that P =
∆h + V0(y) + (n− 2)2/4 is a strictly positive operator on L2(Y ). Assume that the

conjugate radius ǫ of Y satisfies ǫ > π, then, for t 6= 0, the Schwartz kernel of the

Schrödinger propagator eitH(z1, z2) satisfies that

∣

∣eitH(z1, z2)
∣

∣ ≤ C|t|−n
2 ×







(

r1r2
2t

)−n−2
2 +ν0

, r1r2
2t . 1;

1, r1r2
2t ≫ 1,

(1.7)

where ν0 is the positive square root of the smallest eigenvalue of the positive operator

P on the closed manifold Y .

Remark 1.2. In particular, the result applies when Y is a sphere with radius
larger than 1, a closed Riemannian manifold with non-positive sectional curvature,
or their product.

Remark 1.3. It would be interesting to study the same problem when Y is
the unit sphere Sn−1 whose conjugate radius equals π. This is closely related
to the Schrödinger operator with inverse-square potentials −∆+ V0(y)r

−2 (where
y ∈ Sn−1) in the Euclidean space Rn. There is an analogue of the open problem
addressed in [14, Remark 1.12]. In spirt of this, we can not prove the global point-
wise dispersive estimate, but we are able to prove microlocalized decay estimates
and global Strichartz estimates for the scaling critical electromagnetic Schrödinger
equation in [25].

For much of what follows, it is convenient to introduce a different parameteriza-
tion of the operator H

α = −(n− 2)/2 + ν0, (1.8)

where ν0 is given in Theorem 1.1, the positive square root of the smallest eigenvalue
of the positive operator P = ∆h + V0(y) + (n − 2)2/4 on the closed manifold Y .
Define

q(α) =

{

∞, α ≥ 0;

−n
α , −(n− 2)/2 < α < 0,

(1.9)
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and let q′(α) be the dual number of q(α) such that

1

q(α)
+

1

q′(α)
= 1.

As a directly consequence of Theorem 1.1, we have the following results.

Corollary 1.4. Let α be given in (1.8) and t 6= 0. If α ≥ 0, then there exists a

constant such that

‖eitH‖L1(X)→L∞(X) ≤ C|t|−n
2 , (1.10)

and

‖r−α
1 eitHr−α

2 ‖L1(X)→L∞(X) ≤ C|t|−n
2 −α. (1.11)

If −n−2
2 < α < 0, then

‖(1 + rα1 )
−1eitH(1 + rα2 )

−1‖L1(X)→L∞(X) ≤ C|t|−n
2 (1 + |t|−α). (1.12)

Remark 1.5. If the potential V0 is positive, then α ≥ 0, hence one has the classical
dispersive estimates (1.10) and gain more decay in (1.11) by compensating some
weight.

Theorem 1.6. Let α be given in (1.8) and t 6= 0. If α ≥ 0, then there exists a

constant such that

‖eitH‖Lq′(X)→Lq(X) ≤ C|t|−n
2 (1− 2

q ), q ∈ [2,+∞]. (1.13)

If −n−2
2 < α < 0, then

‖eitH‖Lq′ (X)→Lq(X) ≤ C|t|−n
2 (1− 2

q ), q ∈ [2, q(α)). (1.14)

Remark 1.7. The first estimate (1.13) has been proved by directly interpolating
(1.10) and the L2-estimates. In contrast to the direct interpolation result, the
second estimate (1.14) is improved by removing the weight. Thus, for (1.14), we
need additional argument more than the interpolation, see Proposition 6.1.

Remark 1.8. An analogue of (1.14) was proved by Miao, Su and Zheng [29] for the
Schrödinger operator with inverse-square potentials −∆+V0(y)r

−2 with Y = S
n−1

and V0(y) = a ∈ [−(n− 2)2/4, 0) in the Euclidean space Rn.

Remark 1.9. One can produce the Strichartz estimates by using the above de-
cay estimates and Keel-Tao’s abstract methods in [27]. The Strichartz estimates
for Schrödinger and wave in a general conical setting (without assumption on the
conjugate radius of Y ) have been proved by Zheng and the last author in [53, 54].
The method studied the pointwise decay estimates here is quite different from the
one therein.

Next we state our results for wave equation.

Let ϕ ∈ C∞
c (R \ {0}), with 0 ≤ ϕ ≤ 1, suppϕ ⊂ [3/4, 8/3], and

∑

j∈Z

ϕ(2−jλ) = 1, ϕj(λ) := ϕ(2−jλ), j ∈ Z, φ0(λ) :=
∑

j≤0

ϕ(2−jλ). (1.15)

Definition 1.10 (Besov spaces associated with H). For s ∈ R and 1 ≤ p, r < ∞,
the homogeneous Besov norm of ‖ · ‖Ḃs

p,r(X) is defined by

‖f‖Ḃs
p,r(X) =

(

∑

j∈Z

2jsr‖ϕj(
√
H)f‖rLp(X)

)1/r

. (1.16)
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In particular, p = r = 2, we denote the Sobolev norm

‖f‖Ḣs(X) := ‖f‖Ḃs
2,2(X). (1.17)

Theorem 1.11 (Decay estimates for half-wave propagator). Let z1 = (r1, y1) and
z2 = (r2, y2) be in product cone X = C(Y ) of dimension n ≥ 3 and let H be the

Schrödinger operator of Theorem 1.1. Assume that the conjugate radius ǫ of Y
satisfies ǫ > π, then, for t 6= 0, there exists a constant C such that

‖eit
√
Hf‖L∞(X) ≤ C|t|− n−1

2 ‖f‖
Ḃ

n+1
2

1,1 (X)
, (1.18)

provided that α ≥ 0; If −(n− 2)/2 < α < 0, for 2 ≤ q < q(α), then

‖eit
√
Hf‖Lq(X) ≤ C|t|−

n−1
2 (1− 2

q )‖f‖
Ḃ

n+1
2

(1− 2
q
)

q′,2
(X)

. (1.19)

Remark 1.12. In particular, when Y = S1σ in which there is no conjugate points,
Blair, Ford and Marzuola [4] proved the decay estimates for sin(t

√

∆g)/
√

∆g,
while in [4, (1.7), Conjecture 1.1] they conjectured a pointwise decay estimates for

cos(t
√

∆g). This result generalizes their result to half-wave operator eit
√
H .

The plan of the paper is the following. Section 2 is devoted to construction of
the kernel of the Schrödinger propagator, while in Section 3 we provide the proof
the parametrix construction. In Section 4, we prove the main Theorem 1.1. The
Littlewood-Paley theory associated with the Schrödinger operator H is established
in Section 5 and the decay estimates in Corollary 1.4 and Theorem 1.6 are proved
in Section 6. Finally, we prove the decay estimates for wave in Section 7.

Acknowledgments. The authors would like to thank Andrew Hassell for his
helpful discussions and encouragement. The last author is grateful for the hos-
pitality of the Australian National University when he is visiting Andrew Has-
sell at ANU. J. Zhang was supported by National key R&D program of China:
2022YFA1005700, National Natural Science Foundation of China(12171031) and
Beijing Natural Science Foundation(1242011); Q. Jia was supported by the Aus-
tralian Research Council through grant FL220100072.

2. The construction of the Schrödinger propagator

In this section, we construct the representation of Schrödinger propagator in-
spired by Cheeger-Taylor [10, 11]. More precisely, we prove

Proposition 2.1 (Schrödinger kernel). Let H be the Schrödinger operator given

in (1.1) and let z1 = (r1, y1) ∈ X and z2 = (r2, y2) ∈ X. Then the kernel of

Schrödinger propagator can be written as

eitH(z1, z2) = eitH(r1, y1, r2, y2)

=
(

r1r2
)−n−2

2
e−

r21+r22
4it

2it

( 1

π

∫ π

0

e
r1r2
2it cos(s) cos(s

√
P )(y1, y2)ds

− sin(π
√
P )

π

∫ ∞

0

e−
r1r2
2it cosh se−s

√
P (y1, y2)ds

)

,

(2.1)

where P = ∆h + V0(y) + (n− 2)2/4.
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Proof. We construct the Schrödinger propagator by using Cheeger’s functional cal-
culus for which we refer to [10, 46]. We write the Schrödinger operator on X

H = ∆g + V0(y)r
−2 = −∂2r − n− 1

r
∂r +

∆h + V0(y)

r2
,

where ∆h is the Laplacian operator on Y . Since Y is a compact Riemannian mani-
fold, by the spectrum theory, there exist discrete eigenvalues µk and eigenfunctions
ϕk(y) of operator ∆h such that

(

∆h + V0(y)
)

ϕk(y) = µkϕk(y), k ∈ N := {0, 1, 2, . . .}, (2.2)

where we repeat each eigenvalue as many times as its multiplicity. Define

νk =
√

µk + (n− 2)2/4, (2.3)

then

Pϕk(y) = ν2kϕk(y), P = ∆h + V0(y) +
(n− 2)2

4
, k ∈ N = {0, 1, 2, . . .}. (2.4)

By Cheeger’s separation of variables functional calculus (e.g. [46, (8.47)]), we obtain
the kernel K(t, z1, z2) of the operator eitH

K(t, z1, z2) = K(t, r1, y1, r2, y2)

=
(

r1r2
)−n−2

2
∑

k∈N

ϕk(y1)ϕk(y2)Kνk(t, r1, r2),
(2.5)

where ϕk means the complex conjugation of the eigenfunction ϕk and

Kνk(t, r1, r2) =

∫ ∞

0

e−itρ2

Jνk(r1ρ)Jνk(r2ρ) ρdρ. (2.6)

By using spectral theory, if F is a Borel measure function, we identify the operator
with its kernel as in [46] to obtain

F (
√
P ) =

∑

k∈N

F (νk)ϕk(y1)ϕk(y2), (2.7)

which gives an operator on Y . In this sense, let ν =
√
P =

√

∆h + V0(y) +
(n−2)2

4 ,

then we define Kν(t, r1, r2)

Kν(t, r1, r2) : =
(

r1r2
)−n−2

2
∑

k∈N

ϕk(y1)ϕk(y2)Kνk(t, r1, r2)

=
(

r1r2
)−n−2

2

∫ ∞

0

e−itρ2

Jν(r1ρ)Jν(r2ρ) ρdρ

=
(

r1r2
)−n−2

2 lim
ǫց0

∫ ∞

0

e−(ǫ+it)ρ2

Jν(r1ρ)Jν(r2ρ) ρdρ.

(2.8)

By using the Weber second exponential integral [47, Section 13.31 (1)], we show,
for ǫ > 0

∫ ∞

0

e−(ǫ+it)ρ2

Jν(r1ρ)Jν(r2ρ)ρdρ =
e−

r21+r22
4(ǫ+it)

2(ǫ+ it)
Iν
( r1r2
2(ǫ+ it)

)

, (2.9)

where Iν(x) is the modified Bessel function of the first kind

Iν(x) =

∞
∑

j=0

1

j!Γ(ν + j + 1)

(

x/2
)ν+2j

.
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We have two ways to see the Schrödinger kernel (2.5). On one hand, from (2.5)
and (2.9), we have

K(t, z1, z2) =
(

r1r2
)−n−2

2
∑

k∈N

ϕk(y1)ϕk(y2) lim
ǫց0

e−
r21+r22
4(ǫ+it)

2(ǫ+ it)
Iνk

( r1r2
2(ǫ+ it)

)

=
(

r1r2
)−n−2

2
e−

r21+r22
4it

2it

∑

k∈N

ϕk(y1)ϕk(y2)(−i)νkJνk
(r1r2

2t

)

,

(2.10)

where we use the formula Iν(ix) = iνJν(x). Even (2.10) is not need for the proof
of (2.1), we record it here for the purposes of the subsequent sections.

Define

zǫ =
r1r2

2(ǫ+ it)
, ǫ > 0,

and recall the integral representation (see [47, Page 181] or [34, III, Page 186]) of
the modified Bessel function

Iν(z) =
1

π

∫ π

0

ez cos(s) cos(νs)ds − sin(νπ)

π

∫ ∞

0

e−z cosh se−sνds,

then

Kν(t, r1, r2) =
(

r1r2
)−n−2

2 lim
ǫց0

e−
r21+r22
4(ǫ+it)

2(ǫ+ it)
Iν
( r1r2
2(ǫ+ it)

)

=
(

r1r2
)−n−2

2
e−

r21+r22
4it

2it

( 1

π

∫ π

0

e
r1r2
2it cos(s) cos(νs)ds

− sin(νπ)

π

∫ ∞

0

e−
r1r2
2it cosh se−sνds

)

,

(2.11)

which implies (2.1) since ν =
√
P =

√

∆h + V0(y) +
(n−2)2

4 . �

3. The parametrix construction

We consider the parametrix construction for the even wave propagator cos(s
√
P )

and the Poisson wave propagator e(−s+iπ)
√
P in the terminology of Zelditch in [51].

The construction is essentially the Hadamard parametrix construction, but the
main point proven is that they and the composition of P−m can be represented as an
oscillatory integral with certain specific phase function with symbolic amplitudes,
and such a representation is needed in the proof of our main theorem.

Lemma 3.1 (Hadamard parametrix I). Let dh = dh(y1, y2) be the distance between

two points y1, y2 ∈ Y and assume the conjugate radius of Y satisfies ǫ > π. Then,

for |s| ≤ π and ∀N > n+ 2, the kernel of cos(s
√
P ) can be written as

cos(s
√
P )(y1, y2) = KN (s; y1, y2) +RN (s; y1, y2), (3.1)

where RN (s; y1, y2) ∈ CN−n−2([0, π]× Y × Y ) and

KN (s; y1, y2) = (2π)n−1

∫

Rn−1

eidh(y1,y2)1·ξa(s, y1, y2; |ξ|) cos(s|ξ|)dξ

=
∑

±

∫ ∞

0

b±(ρdh)e
±iρdha(s, y1, y2; ρ) cos(sρ)ρ

n−2dρ
(3.2)
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with 1 = (1, 0, . . . , 0) and a ∈ S0:

|∂αs,y1,y2
∂kρa(s, y1, y2; ρ)| ≤ Cα,k(1 + ρ)−k, (3.3)

and

|∂kr b±(r)| ≤ Ck(1 + r)−
n−2
2 −k, k ≥ 0. (3.4)

Remark 3.2. The reason for calling this index N instead of using N − n − 2
directly is that KN is the sum of first (N + 1)-terms in the Hadamard parametrix
construction, which makes N a conceptually more transparent index to use. In
addition, RN satisfies

|∂αs,y1,y2
RN (s; y1, y2)| ≤ Cs2N+3−n−|α|, (3.5)

when |α| ≤ N−n−1, which follows from the same proof as [41, Equation (3.1.25)].

Proof. KN is constructed through the Hadamard parametrix construction, see [41,
Chapter 2][20, Chapter XVII] for standard facts of this method. The concrete form
of the parametrix we adopt here is constructed in [37, Appendix A]. As indicated
in Hörmander [20, Chapter XVII], this method is robust under sub-leading order
(in the differential sense) perturbations, and we explain below why we can use the
same phase function and why the properties of the amplitudes are not affected.

First of all, the phase function is not changed since those perturbations doesn’t
enter the eikonal equation, which determines the phase. (From the point view of
Fourier integral operators, those perturbations don’t change the Lagrangian sub-
manifold that is carrying the wavefront set of this parametrix, hence we can use the
same phase function.) In addition, the smoothness of amplitudes is not affected as
well: in the construction of Hadamard parametrix, the original transport equation
for non-perturbed operator is [41, (2.4.15)-(2.4.16)], which are

ρα0 = 2〈x,∇xα0〉, α0(0) = 1

as well as αν(x), ν = 1, 2, 3.. so that

2ναν − ραν + 2〈x,∇xαν〉+ 2∆gαν−1 = 0,

where αν are undetermined coefficients in the parametrix construction, and

ρ(x) =

n−1
∑

j,k=1

hij(0)a
k(x)xj =

n−1
∑

j,k=1

hij(x)a
k(x)xj , (3.6)

with ak(x) = −|h(x)|−1/2
∑n−1

j=1 h
jk(x)∂j(|h(x)|1/2).

In our case, the new transport equation for the perturbed operator would be

ρα0 = 2〈x,∇xα0〉, α0(0) = 1

as well as αν(x), ν = 1, 2, 3.. so that

2ναν − ραν + 2〈x,∇xαν〉+ 2∆hαν−1 + 2(V0 + (n− 2)2/4) · αν−1 = 0.

Thus two solutions to the transport equations only differ in αν(x), ν = 1, 2, 3..,
which is the reason why (4.12) is true. We also refer the reader to Hörmander [20,
§17.4] for the parametrix of a general second order differential operator with lower
order perturbations.

The last equality of (3.2) follows from the fact that
∫

Sn−2

eidh(y1,y2)ρ1·ωdω =
∑

±
b±(ρdh(y1, y2))e

±iρdh(y1,y2)
(3.7)



10 QIUYE JIA AND JUNYONG ZHANG

which is due to [40, Theorem 1.2.1]. �

Next we show that P−m cos(s
√
P ) and e(−s±iπ))

√
PP−m can be written as the

same type of oscillatory integral as above, but with the amplitudes a replaced by
am, a 2m-th order symbol.

Lemma 3.3 (Modified Hadamard parametrix II). Let dh = dh(y1, y2) be the dis-

tance between two points y1, y2 ∈ Y and assume the conjugate radius of Y ǫ > π.
Then, for |s| ≤ π, ∀m ≥ 0 and ∀N > n + 2, the kernel of P−m cos(s

√
P ) can be

written as

P−m cos(s
√
P )(y1, y2) = Km

N (s; y1, y2) +Rm
N (s; y1, y2), (3.8)

where Rm
N (s; y1, y2) ∈ CN−n−2([0, π]× Y × Y ) and

Km
N (s; y1, y2) = (2π)n−1

∫

Rn−1

eidh(y1,y2)1·ξam(s, y1, y2; |ξ|) cos(s|ξ|)dξ

=
∑

±

∫ ∞

0

b±(ρdh)e
±iρdham(s, y1, y2; ρ) cos(sρ)ρ

n−2dρ
(3.9)

with 1 = (1, 0, . . . , 0) and am ∈ S−2m symbol satisfies

|∂αs,y1,y2
∂kρam(s, y1, y2; ρ)| ≤ Cα,k(1 + ρ)−2m−k, (3.10)

and

|∂kr b±(r)| ≤ Ck(1 + r)−
n−2
2 −k, k ≥ 0. (3.11)

In addition, for s > 0, ∀m ≥ 0 and ∀N > n+2, the kernel of Poisson-wave operator

e(−s±iπ))
√
PP−m can be written as

P−me(−s±iπ))
√
P = K̃m

N (s; y1, y2) + R̃m
N (s; y1, y2), (3.12)

where R̃m
N (s; y1, y2) ∈ CN−n−2([0,+∞)× Y × Y ) and

K̃m
N (s; y1, y2) = (2π)n−1

∫

Rn−1

eidh(y1,y2)1·ξãm(s, y1, y2; |ξ|)e−(s∓iπ)|ξ|dξ

=
∑

±

∫ ∞

0

b±(ρdh)e
±iρdh ãm(s, y1, y2; ρ)e

−(s∓iπ)ρρn−2dρ
(3.13)

with 1 = (1, 0, . . . , 0) and ãm ∈ S−2m symbol satisfies

|∂αs,y1,y2
∂kρ ãm(s, y1, y2; ρ)| ≤ Cα,k(1 + ρ)−2m−k. (3.14)

Proof. We give the parametrix constructed in Lemma 3.1 a Fourier integral operator
interpretation, so that the fact that P−m cos(s

√
P ) can be written as an oscillatory

integral of the same form becomes clear.
To do this, we observe cos(s|ξ|) = 1

2 (e
is|ξ| + e−is|ξ|), from (3.1) and (3.2), so the

part KN(s, y1, y2) in cos(s
√
P ) can be written as

L+ + L−,

where

L± = C

∫

Rn−1

ei[dh(y1,y2)1·ξ∓s|ξ|]a0(s, y1, y2; |ξ|)dξ, (3.15)
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with the same amplitude a0 = a in (3.2). Next we show that L± are Fourier integral
operators associated to L±:

L± ∈ I−
1
4 (R× Y × Y,L±), (3.16)

where the Lagrangian submanifolds are given by

L± :={(s, y2, y1, τ, µ2,−µ1) ∈ T ∗(R× Y × Y ) :

τ = −|µ1|, (y2, µ2) = exp(±sHp)(y1, µ1)}.
(3.17)

Here we use p = |µ|2 to denote the homogeneous principal symbol of P , and

Hp = (2|µ|)−1Hp (3.18)

is the rescaled Hamilton vector field. The order− 1
4 of (3.16) is because a0 ∈ S0((R×

Y × Y ) × Rn−1) and 0 = − 1
4 + 1+(n−1)+(n−1)

4 − n−1
2 (see [21, Proposition 25.1.5]

for details of this numerology). So it remains to prove that the phase functions in
(3.15)

φ±(s, y1, y2; ξ) = (ξ · 1)dh(y1, y2)∓ s|ξ| (3.19)

parametrizes L± of (3.17) respectively in the sense that L± are images of the map

Λ± → T ∗(R× Y × Y )

(s, y1, y2; ξ) → (s, y1, y2, ds,y1,y2φ±),
(3.20)

where the critical set

Λ± := {(s, y2, y1; ξ) ∈ (R× Y × Y )× ((Rn−1) \ {0}) : dξφ± = 0}.
We only prove φ+ parametrizes L+, that is,

L+ =
{

(s, y2, y1, τ, µ2,−µ1) ∈ T ∗(R× Y × Y ) :

τ = dsφ+, µ1 = −dy1φ+, µ2 = dy2φ+, dξφ+ = 0
}

,
(3.21)

since the other case about φ− and L− can be shown similarly. Then

φ+(s, y1, y2; ξ) = (ξ · 1)dh(y1, y2)− s|ξ|, (3.22)

which is equivalent to:

dh(y1, y2)− s
ξ1
|ξ| = 0, s

ξj
|ξ| = 0, j ≥ 2. (3.23)

And this is in turn equivalent to

ξ = |ξ|(1, 0, ..., 0), s = dh(y1, y2). (3.24)

Recalling the assumption that the conjugate radius of Y ǫ > π and s = dh(y1, y2)
in (3.24), we can use the geodesic normal coordinate system centered at y1 so that

y2 − y1 = dh(y1, y2)µ̂1 = sµ̂1, µ̂1 = µ1/|µ1| ∈ S
n−2, (3.25)

provided dh(y1, y2) ≤ π. In addition, we can make a change of coordinates on Y
(and change coordinates on momentum variables according to its symplectic lift)
so that

µ1 = |µ1|(1, 0, ..., 0). (3.26)

Now we verify that the characterization of momentum variables in (3.21) coin-
cides with that in (3.17): using (3.25), we have

dy1(dh(y1, y2)) = (−1, 0, ..., 0), dy2(dh(y1, y2)) = (1, 0, ..., 0). (3.27)
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Thus we further see

τ = dsφ = −|ξ| = −|µ1|,
µ1 = −dy1φ+ = |ξ|(1, 0, ..., 0),
µ2 = dy2φ+ = |ξ|(1, 0, ..., 0),

(3.28)

which implies that requirements in (3.21)(3.17) are equivalent (since we are using
geodesic normal coordinates with y1 = 0), hence φ+ parametrizes L+.

Let Ψm(Y ) denote the class of m-order pseudodifferential operators on Y . Since
P is elliptic (due to the smallest eigenvalue ν20 > 0), we can find a microlocal

parametrix P̃−1 ∈ Ψ−2(Y ) of P such that P−1 and P̃−1 differ only by a smooth-

ing error. (In fact one can take P̃−1 = P−1 since P is strictly positive, see [39,
Theorem 8.2].) Notice that the canonical relation associated to a pseudodifferen-
tial operator is the identity map, then by the composition law of Fourier integral
operators (see [23, Section 4]), we know

(P̃−1)mL± ∈ I−2m− 1
4 (R× Y × Y,L±), (3.29)

and in addition they can be written in the form (3.15) with the same amplitude
modulo smoothing terms. This follows from the reduction process from the expres-
sion of the composition:

[

(P̃−1)mL±
]

(y1, y2)

=

∫

ei(y1−y′)·µ′

p̃−m(y1, µ
′)eiφ±(s,y′,y2,ξ)a0(s, y

′, y2, |ξ|)dµ′dy′dξ,
(3.30)

where p̃−m is the left full symbol of (P̃−1)m and ξ is the same as in (3.15). The
reduction process from (3.30) to the form with φ± being the phase function is a
stationary phase argument with respect to the µ′, y′−integral. In particular, this
does not involve the s|ξ|−term in φ±, which is the only difference between L±.
Thus, the final amplitude obtained from this reduction process for L+ and L− are
the same, but with phase functions φ± respectively. The error term in the stationary
phase expansion is collected into the Rm

N−part and modulo such a smooth term we
can rewrite (3.30) as

[

(P̃−1)mL±
]

(y1, y2) =

∫

Rn−1

ei[dh(y1,y2)1·ξ∓s|ξ|]am(s, y1, y2; ξ)dξ, (3.31)

where am ∈ S−2m((R × Y × Y ) × Rn−1), which follows from the order in (3.29).

Thus they can be summed (notice eiφ+ + eiφ− = 2eidh(y
′,y2)1·ξ cos(s|ξ|)) to give

(3.2).
In addition, we can replace am by an amplitude that depends only on |ξ|, which

we still denote by am, modulo a smooth error term, which we collect in the Rm
N -term.

This is because one can apply the method of stationary phase again to the ξ-variable
as in the derivation of (3.24), and the only critical point is at ξ = |ξ|(1, 0, ..., ). Thus
the expansion only has contributions from am and derivatives of itself and the phase
function, at this point, which depends only on |ξ|, s, y1, y2.

For the statement about e(−s±iπ))
√
PP−m, we prove it for P−me(−s+iπ))

√
P for

definiteness, and the proof with the other sign is similar. We consider the case
m = 0 first. We define Imdp(R × Y × Y ;Lπ), where Lπ stands for the part of L+
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with s = π, to be the class of operators that has Schwartz kernel of the form

A :=

∫

Rn−1

eidh(y1,y2)1·ξa(s, y1, y2; |ξ|)e(−s+iπ)|ξ|dξ, (3.32)

modulo a smooth function, and a ∈ Sm(R× Y × Y × Rn−1) that is symbolic in ξ.
And in turn we call

σm(A ) = [a] ∈ Sm(R× Y × Y × R
n−1)/Sm−1 (3.33)

its principal symbol. And by definition

σm(A ) = 0 if and only if A ∈ Im−1
dp (R× Y × Y ;Lπ). (3.34)

We will write a for the equivalence class [a] when there is no confusion. We
call this space of A as the damped Fourier integral operators associated to Lπ.
We are not investigating a geometrically invariant calculus of this type of integral
operators, but only following parametrix construction for (∂s +

√
P ) in a fixed

coordinate chart:

(∂s +
√
P )K̃(s; y1, y2) ∈ I−∞

dp (R× Y × Y ;Lπ), K̃(0, y1, y2) = eiπ
√
P , (3.35)

where I−∞
dp (R × Y × Y ;Lπ) =

⋂

m∈Z
Imdp(R × Y × Y ;Lπ), and eiπ

√
P has the

representation

eiπ
√
P = (2π)n−1

∫

Rn−1

eidh(y1,y2)1·ξã0(π, y1, y2; |ξ|)eiπ|ξ|dξ +RN (3.36)

with RN ∈ CN−n−2(Y × Y ), by the same argument as above for cos(s
√
P ). In

addition we have I−∞
dp (R× Y × Y ;Lπ) ⊂ C∞([0,∞)× Y × Y ) since differentiation

only introduces |ξ|-factors, which can be absorbed by the amplitude, which has
arbitrarily high polynomial decay.

Then we construct the solution to (3.35) by a similar argument to the Hörmander
type parametrix construction through an asymptotic sum:

K̃ =
∞
∑

j=0

K̃j , (3.37)

where

K̃j = (2π)n−1

∫

Rn−1

eidh(y1,y2)1·ξAj(s, y1, y2; |ξ|)e(−s+iπ)|ξ|dξ, (3.38)

where Aj ∈ S−j , A0(0, y1, y2; |ξ|) = ã0(π, y1, y2; |ξ|), Aj(0, y1, y2; |ξ|) = 0 for j ≥ 1,
and most importantly

(∂s +
√
P )

(

N
∑

j=0

K̃j

)

∈ I−1−N
dp (R× Y × Y ;Lπ). (3.39)

Now we construct K̃N inductively. Since (3.39) is equivalent to

σ−N

(

(∂s +
√
P )K̃N

)

= −σ−N

(

(∂s +
√
P )

(

(∂s +
√
P )

N−1
∑

j=0

K̃j

)

)

, (3.40)

and this becomes a transport equation of σ−N (K̃N ) by the same argument as in the
real phase case because our phase function satisfies conditions in [30], thus we can
apply [30, Theorem 2.3], which is the stationary phase lemma with complex phase

to the composition
√
PK̃j. More concretely, by the result of [38],

√
P ∈ Ψ1(Y ).
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Denoting the variables of the Schwartz kernel of
√
P by (y1, y

′
1) and that of K̃j

by (y′1, y2) as above, then we apply the stationary phase lemma to the y′1-integral.
Thus AN exists for s ∈ [0, δ1] with δ1 independent of N .

Notice that the contribution of the oscillatory integral outside any neighborhood
of 0 is a smooth function, thus one can extend AN above smoothly while remaining
in the same symbol class and keep the parametrix property to hold.

The only thing remain to show is that K̃ only differ to e(−s+iπ)
√
P by a smooth

term. Denote

R(s) := K̃ − e(−s+iπ)
√
P ,

then it solves

(∂s +
√
P )R = f, R(0) = 0, (3.41)

where f ∈ C∞([0,∞)× Y × Y ). Applying (∂s −
√
P ) to both sides, we have

(∂2s − P )R = f̃ , R(0) = 0, (3.42)

where f̃ = (∂s −
√
P )f .

Next we show that |ξ1| is comparable to |ξ2| near WF(e(−s+iπ)
√
P ), where ξi are

dual variables to yi.

For s > 0, e(−s+iπ)
√
P has smooth kernel, and for s = 0, it follows from the

oscillatory integral representation (3.36) and a non-stationary phase argument (see,
for example, the proof of [23, Proposition 2.5.7]) with respect to the y1, y2-regularity.
In addition, the regularity in s can be transferred to the regularity in y1 since

∂se
(−s+iπ)

√
P = −

√
Pe(−s+iπ)

√
P . The same argument applies to WF(K̃), showing

that |ξ1| is comparable to |ξ2| near it. Consequently, |ξ1| is comparable to |ξ2| near
WF(R) and ∂2s − P is elliptic near it. Thus one can select P that is fully elliptic
(not only when |ξ1| is comparable to |ξ2|), but coincide with ∂2s − P near WF(R),
and [20, Theorem 17.3.2] to it. Though the theorem there is local in in (y1, y2), but
that is sufficient for us since we are only concerning smoothness, and in fact the
control can be upgraded to a global one by the compactness of Y × Y . In addition,
the cited theorem only concern up to the second order derivatives, but one can
apply ∂s,

√
P iteratively to both sides of (3.42) to obtain the same form of equation

for P kR, ∂ks R, and conclude arbitrary order of smoothness of R.

Finally, the integral representation of P−me(−s±iπ))
√
P , or equivalently P−me(−s±iπ))

√
P ∈

I−2m
dp (R× Y × Y ;Lπ), follows from the application of [30, Theorem 2.3] as above,

with
√
P replaced by P−m. �

4. The proof of Theorem 1.1

In this section, we prove Theorem 1.1 by using Proposition 2.1 and the properties
of the Hadamard parametrix on Y shown in Section 3. To this end, we divide this
section into two parts. The first part is devoted to deal with the case that r1r2

|t| . 1

by establishing Proposition 4.1 , and in the second part, we prove Proposition 4.2
in the case that r1r2

|t| ≫ 1 under the assumption that the conjugate radius ǫ of Y

satisfies ǫ > π.

4.1. Part I: The case that r1r2
|t| . 1. By (2.10), Theorem 1.1 is a consequence of

the following proposition.
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Proposition 4.1. Let P be the operator in Proposition 2.1 and let z1 = (r1, y1)
and z2 = (r2, y2) in X = C(Y ). Suppose that z := r1r2

2|t| . 1, then there exists a

constant C such that

z−
n−2
2

∣

∣

∣

∑

k∈N

ϕk(y1)ϕk(y2)(−i)νkJνk
(r1r2

2t

)

∣

∣

∣
≤ Cz−

n−2
2 +ν0 . (4.1)

where ϕk(y) is the eigenfunction of the operator P corresponding eigenvalue ν2k and

ν0 is the positive square root of the smallest eigenvalue of the operator P .

The proof of Proposition 4.1. Wemainly use the asymptotic estimates of eigenfunc-
tion and Bessel function to prove (4.1). Recall (2.2) and the eigenfunction estimate
(see [41, (3.2.5)-(3.2.6)])

‖ϕk(y)‖L∞(Y ) ≤ C(1 + ν2k)
n−2
4 , (4.2)

and the Weyl’s asymptotic formula (e.g. see [50])

ν2k ∼ (1 + k)
2

n−1 , k ≥ 1, =⇒ ‖ϕk(y)‖2L∞(Y ) ≤ C(1 + k)
n−2
n−1 . (4.3)

For our purpose, we recall that the Bessel function Jν(r) of order ν > −1/2 satisfies

|Jν(z)| ≤
Czν

2νΓ(ν + 1
2 )Γ(

1
2 )

(

1 +
1

ν + 1
2

)

, (4.4)

where C is an absolute constant independent of z and ν. Therefore, from (4.3) and
the facts that z ≤ C and νk ≥ ν0, we have

LHS of (4.1) ≤ Cz−
n−2
2

∑

k∈N

(1 + k)
n−2
n−1

zν0Cνk

2νkΓ(νk + 1
2 )

≤ Cz−
n−2
2 +ν0

∑

k∈N

(1 + k)
n−2
n−1 (C/2)νk

Γ(νk + 1
2 )

.

Recall that νk ∼ (1 + k)
1

n−1 , then the summation in k ∈ N converges. Hence we
complete the proof of (4.1). �

4.2. Part II: The case that r1r2
|t| ≫ 1. In this subsection, we mainly use (2.1) to

prove Theorem 1.1 in the case r1r2
|t| ≫ 1. We want to prove

Proposition 4.2. Let P be the operator in Proposition 2.1 and let z1 = (r1, y1)
and z2 = (r2, y2) in X = C(Y ). Suppose that z := r1r2

2|t| ≫ 1, if the conjugate radius

ǫ of Y satisfies ǫ > π, then there exists a constant C such that

z−
n−2
2

∣

∣

∣

1

π

∫ π

0

e−iz cos(s) cos(s
√
P )(y1, y2)ds

− sin(π
√
P )

π

∫ ∞

0

eiz cosh se−s
√
P (y1, y2)ds

∣

∣

∣
≤ C.

(4.5)

Proof. The proof is more delicate than the above case that z . 1. To this end, we
introduce a smooth cutoff function χδ ∈ C∞([0, π]) with small 0 < δ ≪ 1 such that

χδ(s) =

{

1, s ∈ [0, δ];

0, s ∈ [2δ, π],
χc
δ(s) = 1− χδ(s). (4.6)
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We aim to consider three terms:

IG(z; y1, y2) :=
z−

n−2
2

π

∫ π

0

e−iz cos(s)χc
δ(π − s) cos(s

√
P )ds, (4.7)

IGD(z; y1, y2) :=
z−

n−2
2

π

(

∫ π

0

e−iz cos(s)χδ(π − s) cos(s
√
P )ds

− sin(π
√
P )

∫ ∞

0

eiz cosh(s)χδ(s)e
−s

√
P ds

)

,

(4.8)

and

ID(z; y1, y2) := −z
−n−2

2 sin(π
√
P )

π

∫ ∞

0

eiz cosh(s)χc
δ(s)e

−s
√
Pds. (4.9)

Therefore, the Proposition 4.2 is proved if we could prove that the three terms
IG(z; y1, y2), IGD(z; y1, y2) and ID(z; y1, y2) are uniformly bounded when z ≫ 1.

�

The rest of subsection is to prove the three terms IG(z; y1, y2), IGD(z; y1, y2) and
ID(z; y1, y2) are uniformly bounded when z ≫ 1.

The contribution of (4.7). By using the Hadamard parametrix (3.1), we need to
consider two terms associated with KN (s; y1, y2) and RN (s; y1, y2) respectively. It
is easy to see the contribution of the term associated with RN is

z−
n−2
2

∣

∣

∣

∫ π

0

e−iz cos(s)χc
δ(π − s)RN (s; y1, y2)ds

∣

∣

∣
. 1 (4.10)

due to the fact that one can choose N large enough such that

|RN (s, y1, y2)| ≤ |s|2N+2−n . 1, 0 ≤ s ≤ π.

Now we consider term associated with KN(s; y1, y2). Recall (3.2), we want to
estimate

z−
n−2
2

∣

∣

∣

∫ π

0

e−iz cos(s)χc
δ(π − s)

×
∫ ∞

0

b±(ρdh)e
±iρdha(s, y1, y2; ρ) cos(sρ)ρ

n−2dρ ds
∣

∣

∣
≤ C

To this end, we need a lemma about the integration.

Lemma 4.3. Let z ≫ 1, dh = dh(y1, y2). For k ≥ 0, suppose that

|∂kr b±(r)| ≤ Ck(1 + r)−
n−2
2 −k, (4.11)

and let and a ∈ S0 zero order symbol in sense that

|∂αs,y1,y2
∂kρa(s, y1, y2; ρ)| ≤ Cα,k(1 + ρ)−k. (4.12)

Then there exists a constant C independent of z, y1, y2 such that
∣

∣

∣

∫ π

0

e−iz cos(s)χc
δ(π − s)

×
∫ ∞

0

b±(ρdh)e
±iρdha(s, y1, y2; ρ) cos(sρ)ρ

n−2dρ ds
∣

∣

∣
≤ Cz

n−2
2 .

(4.13)

�
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The proof of Lemma 4.3. Let us fix a bump function β ∈ C∞
0 ((1/2, 2)) satisfying

∞
∑

ℓ=−∞
β(2−ℓs) = 1, s > 0, (4.14)

and we set

βJ (s) =
∑

ℓ≤J

β(2−ℓs) ∈ C∞
0 ((0, 2J+1)),

for J ∈ N+ to be determined. To prove (4.13), we consider two cases.

Case 1. dh(y1, y2) ≤ C1z
− 1

2 . In this case, we take J large enough so that
2J−1 ≥ 2C1 and we want to show that

z−
n−2
2

∣

∣

∣

∫ π

0

e−iz cos(s)χc
δ(π − s)

(

βJ(z
1/2s) +

∑

j≥J+1

β(2−jz1/2s)
)

×
∫ ∞

0

b±(ρdh)e
±iρdha(s, y1, y2; ρ) cos(sρ)ρ

n−2dρ ds
∣

∣

∣
. 1.

(4.15)

For the term associated with βJ , we have |s| . z−
1
2 ≪ 1 due to the compact

support of βJ . If we also have ρ ≤ 4z1/2, thus the integral in (4.15) with βJ is
always bounded by

z−
n−2
2

∫

|s|.z− 1
2

ds

∫

ρ≤4z
1
2

ρn−2dρ . z−
n−2
2 z−1/2z

n−1
2 . 1. (4.16)

On the other hand, if we have ρ ≥ 4z1/2, we do integration by parts in ds. Notice
that the terms at the boundary (s = 0, π) vanish, then each time we gain a factor
of ρ−1 from the function cos(sρ), and we at most lose a factor of

z sin s, or z1/2,

which is always less than z1/2 up to a constant. Indeed, furthermore, we have
∣

∣

∣

( d

ds

)N(

e−iz cos(s)χc
δ(π − s)βJ (z

1/2s)
)∣

∣

∣
≤ CNz

N
2 .

So, after integration by parts N times for N ≥ n, the integral in (4.15) is bounded
by

z−
n−2
2 z−1/2zN/2

∫ ∞

z1/2

ρn−2−Ndρ . 1.

In sum, we have proved

z−
n−2
2

∣

∣

∣

∫ π

0

e−iz cos(s)χc
δ(π − s)βJ(z

1/2s)

×
∫ ∞

0

b±(ρdh)e
±iρdha(s, y1, y2; ρ) cos(sρ)ρ

n−2dρds
∣

∣

∣
. 1.

(4.17)

For the terms with β(2−jz1/2s), j ≥ J , we have 2j−1z−1/2 ≤ s ≤ 2j+1z−1/2 and
2j . z1/2 on the support of this β−factor. In this case, we will show that

z−
n−2
2

∣

∣

∣

∫ π

0

e−iz cos(s)χc
δ(π − s)β(2−jz1/2s)

×
∫ ∞

0

b±(ρdh)e
±iρdha(s, y1, y2; ρ) cos(sρ)ρ

n−2dρds
∣

∣

∣
. 2−j(n−2),

(4.18)
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which would give us desired bounds after summing over j when n ≥ 3. Now we
repeat the previous argument, if in this case we have ρ ≤ 2−jz1/2, then we do not
do any integration by parts, the integral in (4.18) is always bounded by

z−
n−2
2 (z−

1
2 2j)(2−jz

1
2 )n−1 . 2−j(n−2).

On the other hand, if we have ρ ≥ 2−jz1/2, we write cos(sρ) = 1
2

(

eisρ + e−isρ
)

,
then we do integration by parts in dρ instead, then each time we gain a factor of
ρ−1, and we at most lose a factor of (s ± dh)

−1. Recalling that J is large enough
so that 2J−2 is larger than C1, then we have

(s± dh)
−1 .

(

(2j−1 − C1)z
− 1

2

)−1

.
(

(2j−2 + 2J−2 − C1)z
− 1

2

)−1

∼ 2−jz
1
2 ,

so after integration by parts N times for N ≥ n, the integral in (4.18) is bounded
by

z−
n−2
2 (z−

1
2 2j)

(

2−jz
1
2

)N
∫ ∞

2−jz1/2

ρn−2−Ndρ . 2−j(n−2).

Case 2. dh(y1, y2) ≥ C1z
− 1

2 . In this case, taking J = 0, we will show that

z−
n−2
2

∣

∣

∣

∫ π

0

e−iz cos(s)χc
δ(π − s)

(

β0(zdh|s− dh|) +
∑

j≥1

β(2−jzdh|s− dh|)
)

×
∫ ∞

0

b±(ρdh)e
±iρdha(s, y1, y2; ρ) cos(sρ)ρ

n−2dρ ds
∣

∣

∣
. 1,

(4.19)

where β0 and β are same to the above ones (4.14).

For the term associated with β0, we have |s− dh| ≤ (zdh)
−1 . z−

1
2 due to the

compact support of β0. If we also have ρ ≤ zdh, thus the integral in (4.19) with β0
is always bounded by

z−
n−2
2

∫

|s−dh|.(zdh)−1

ds

∫

ρ≤zdh

(1 + ρdh)
− n−2

2 ρn−2dρ

. z−
n−2
2 (zdh)

−1(zdh)
n−2
2 +1d

−n−2
2

h . 1.

(4.20)

On the other hand, if we have ρ ≥ zdh, we do integration by parts in ds. Due to
the support of χc

δ(π − s), the term at the boundary s = π still vanishes. While at
s = 0, the boundary term also vanishes. Indeed, due to the support of β0, one has
|s− dh| ≤ 2(zdh)

−1 ≤ 2C−1
1 z−1/2 which implies s ≥ C1

(

1− 2C−2
1

)

z−1/2 > 0 if C1

is large enough. So each time we gain a factor of ρ−1 from the function cos(sρ),
and we at most lose a factor of

z sin s, or zdh,

which is always less than zdh up to a constant due to that

z sin s . z(dh + z−
1
2 ) . zdh.

Indeed, furthermore, we have
∣

∣

∣

( d

ds

)N(

e−iz cos(s)χc
δ(π − s)β0(zdh|s− dh|)

)∣

∣

∣
≤ CN (zdh)

N .

So after integration by parts N times for N ≥ n, the integral in (4.19) is bounded
by

z−
n−2
2 (zdh)

−1(zdh)
Nd

−n−2
2

h

∫ ∞

zdh

ρ
n−2
2 −Ndρ . 1.
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In sum, we have proved

z−
n−2
2

∣

∣

∣

∫ π

0

e−iz cos(s)χc
δ(π − s)β0(zdh|s− dh|)

×
∫ ∞

0

b±(ρdh)e
±iρdha(s, y1, y2; ρ) cos(sρ)ρ

n−2dρds
∣

∣

∣
. 1.

(4.21)

For the terms associated with β(2−jzdh|s − dh|), j ≥ 1, we have |s − dh| ≈
2j(zdh)

−1, due to the support condition of β, and 2j . zdh since s, dh are bounded.
In this case, we will show that

z−
n−2
2

∣

∣

∣

∫ π

0

e−iz cos(s)χc
δ(π − s)β(2−jzdh|s− dh|)

×
∫ ∞

0

b±(ρdh)e
±iρdha(s, y1, y2; ρ) cos(sρ)ρ

n−2dρds
∣

∣

∣
. 2−j n−2

2 ,

(4.22)

which would give us desired bounds (4.19) after summing over j ≥ 1. Now we
repeat the previous argument, if in this case we have ρ ≤ 2−jzdh, then we do not
do any integration by parts, the integral in (4.22) is always bounded by

z−
n−2
2

∫

|s−dh|∼2j(zdh)−1

∫

ρ≤2−jzdh

(1 + ρdh)
−n−2

2 ρn−2 dρ

. z−
n−2
2 ((zdh)

−12j)(2−jzdh)
n−2
2 +1d

−n−2
2

h . 2−j n−2
2 .

On the other hand, if we have ρ ≥ 2−jzdh, we write cos(sρ) = 1
2

(

eisρ + e−isρ
)

,

then we do integration by parts in dρ again, then each time we gain a factor of ρ−1,
and we at most lose a factor of

(s± dh)
−1 . 2−jzdh,

so after integration by parts N times for N ≥ n, the integral in (4.22) is bounded
by

z−
n−2
2 2j(zdh)

−1
(

2−jzdh
)N

∫ ∞

2−jzdh

ρ
n−2
2 −Nd

−n−2
2

h dρ

. (zdh)
−n−2

2 −12j
(

2−jzdh
)N(

2−jzdh
)

n−2
2 +1−N

. 2−j n−2
2 .

Therefore we have proved (4.13). �

The contribution of (4.8). We remark that this term contains the boundary term
s = π which does not vanish. In contrast to (4.7), the proof needs to overcome
the issues from the first term when s → π and the second term when s → 0. The
fortunate fact is that the boundary term of the first term at s = π is same to the
boundary term of the second term at s = 0, which leads to the cancellation of the
singularity at the boundary.

Recall

IGD(z; y1, y2) :=
1

π

∫ π

0

e−iz cos sχδ(π − s) cos(s
√
P )ds

− sin(π
√
P )

π

∫ ∞

0

eiz cosh sχδ(s)e
−s

√
P ds.

(4.23)

Before estimating it, we use the integration by parts to obtain the following property
of IGD(z; y1, y2).
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Proposition 4.4. For any m ∈ N, it holds that

IGD(z; y1, y2)

=
(−1)m

π

∫ π

0

( ∂

∂s

)2m
(

e−iz cos sχδ(π − s)
)cos(s

√
P )

Pm
ds

− sin(π
√
P )

π

∫ ∞

0

( ∂

∂s

)2m
(

eiz cosh sχδ(s)
)e−s

√
P

Pm
ds,

(4.24)

where P = ∆h + V0(y) +
(n−2)2

4 .

The proposition is a direct consequence of the following lemma and the spectral
expansion.

Lemma 4.5. For any m ∈ N, then we can write

1

π

∫ π

0

e−iz cos sχδ(π − s) cos(νs)ds− sin(νπ)

π

∫ ∞

0

eiz cosh sχδ(s)e
−sνds

=
(−1)m

π

∫ π

0

( ∂

∂s

)2m
(

e−iz cos sχδ(π − s)
))cos(νs)

ν2m
ds

− sin(νπ)

π

∫ ∞

0

( ∂

∂s

)2m
(

eiz cosh sχδ(s)
)e−sν

ν2m
ds.

(4.25)

Proof. This lemma, a variant of [36, (5.30)], can be proved by using integration by
parts and the induction argument. We first verify m = 1. By integration by parts,
we have

1

π

∫ π

0

e−iz cos sχδ(π − s) cos(νs)ds − sin(νπ)

π

∫ ∞

0

eiz cosh sχδ(s)e
−sνds

=
1

π

(

e−iz cos sχδ(π − s)
) sin(νs)

ν

∣

∣

∣

s=π

s=0

+
(−1)

π

∫ π

0

( ∂

∂s

)

(

e−iz cos sχδ(π − s)
) sin(νs)

ν
ds

+
sin(νπ)

π

(

eiz cosh sχδ(s)
)e−sν

ν

∣

∣

∣

∞

s=0
− sin(νπ)

π

∫ ∞

0

( ∂

∂s

)

(

eiz cosh sχδ(s)
)e−sν

ν
ds.

We note that the boundary term

1

π

(

e−iz cos sχδ(π − s)
) sin(νs)

ν

∣

∣

∣

s=π

s=0
+

sin(νπ)

π

(

eiz cosh sχδ(s)
)e−sν

ν

∣

∣

∣

∞

s=0

=
1

π

(

e−iz cos sχδ(π − s)
) sin(νs)

ν

∣

∣

∣

s=π
− sin(νπ)

π

(

eiz cosh sχδ(s)
)e−sν

ν

∣

∣

∣

s=0
= 0.

By integration by parts again, we have

1

π

∫ π

0

e−iz cos sχδ(π − s) cos(νs)ds − sin(νπ)

π

∫ ∞

0

eiz cosh sχδ(s)e
−sνds

=
1

π

( ∂

∂s

)

(

e−iz cos sχδ(π − s)
)cos(νs)

ν2

∣

∣

∣

s=π

s=0

+
(−1)

π

∫ π

0

( ∂

∂s

)2
(

e−iz cos sχδ(π − s)
)cos(νs)

ν2
ds

+
sin(νπ)

π

( ∂

∂s

)

(

eiz cosh sχδ(s)
)e−sν

ν2

∣

∣

∣

∞

s=0
− sin(νπ)

π

∫ ∞

0

( ∂

∂s

)2
(

eiz cosh sχδ(s)
)e−sν

ν2
ds.
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If the derivative hits e−iz cos s and eiz cosh s, it will brings sin s and sinh s respectively,
the boundary term vanishes due to the fact sinπ = sinh 0 = 0 and ν ≥ ν0 > 0.
More precisely we observe that the boundary term

1

π

( ∂

∂s

)

(

e−iz cos sχδ(π − s)
)cos(νs)

ν2

∣

∣

∣

s=π

s=0
+

sin(νπ)

π

( ∂

∂s

)

(

eiz cosh sχδ(s)
)e−sν

ν2

∣

∣

∣

∞

s=0

=
1

π

( ∂

∂s

)

(

e−iz cos sχδ(π − s)
)cos(νs)

ν2

∣

∣

∣

s=π
− sin(νπ)

π

( ∂

∂s

)

(

eiz cosh sχδ(s)
)e−sν

ν2

∣

∣

∣

s=0

vanishes due to the fact sinπ = sinh 0 = sinh s e−νs
∣

∣

s=∞ = 0. Therefore, we have

proved (4.25) with m = 1. Now we assume (4.25) holds for m = k, that is,

1

π

∫ π

0

e−iz cos sχδ(π − s) cos(νs)ds− sin(νπ)

π

∫ ∞

0

eiz cosh sχδ(s)e
−sνds

=
(−1)k

π

∫ π

0

( ∂

∂s

)2k
(

e−iz cos sχδ(π − s)
)cos(νs)

ν2k
ds

− sin(νπ)

π

∫ ∞

0

( ∂

∂s

)2k
(

eiz cosh sχδ(s)
)e−sν

ν2k
ds,

we aim to prove (4.25) when m = k + 1. To this end, it suffices to check the
boundary terms vanish. Indeed,

(−1)k

π

( ∂

∂s

)2k
(

e−iz cos sχδ(π − s)
) sin(νs)

ν2k+1

∣

∣

∣

s=π

s=0

+
sin(νπ)

π

( ∂

∂s

)2k
(

eiz cosh sχδ(s)
) e−sν

ν2k+1

∣

∣

∣

∞

s=0

=
(−1)k

π

( ∂

∂s

)2k
(

e−iz cos sχδ(π − s)
) sin(νs)

ν2k+1

∣

∣

∣

s=π

− sin(νπ)

π

( ∂

∂s

)2k
(

eiz cosh sχδ(s)
) e−sν

ν2k+1

∣

∣

∣

s=0
= 0,

and

(−1)k+1

π

( ∂

∂s

)2k+1
(

e−iz cos sχδ(π − s)
)cos(νs)

ν2k+2

∣

∣

∣

s=π

s=0

+
sin(νπ)

π

( ∂

∂s

)2k+1
(

eiz cosh sχδ(s)
) e−sν

ν2k+2

∣

∣

∣

∞

s=0

=
(−1)k+1

π

( ∂

∂s

)2k+1
(

e−iz cos sχδ(π − s)
)cos(νs)

ν2k+1

∣

∣

∣

s=π

− sin(νπ)

π

( ∂

∂s

)2k+1
(

eiz cosh sχδ(s)
) e−sν

ν2k+2

∣

∣

∣

s=0
= 0,

where we used following facts similar to equations in [36, Pag. 420]:

(−1)k
( ∂

∂s

)2k
(

e−iz cos sχδ(π − s)
)

∣

∣

∣

s=π
=

( ∂

∂s

)2k
(

eiz cosh sχδ(s)
)

∣

∣

∣

s=0
, (4.26)

and

(−1)k+1
( ∂

∂s

)2k+1
(

e−iz cos sχδ(π − s)
)

∣

∣

∣

s=π
=

( ∂

∂s

)2k+1
(

eiz cosh sχδ(s)
)

∣

∣

∣

s=0
.

(4.27)

Since both equations concern only the jet structure of these functions on the left and
right hand sides at π and 0 respectively, near which the χδ−factors are identically
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1, hence having no effect. Thus we only need to show identities without χδ. Now
setting

Ez(s) := e−i cos s, (4.28)

then we have

eiz cosh s = Ez(is+ π). (4.29)

By the even property of Ez at π, and correspondingly the even property of Ez(is+π)
at 0, we know that the odd order terms vanishes, hence (4.27) holds. And (4.26)
holds by the fact that the 2k−th term in the Taylor expansion of Ez(s) at π and
Ez(is+ π) at 0 differs by a i2k = (−1)k−factor. �

By (2.7), for a fixed κ to be chosen later, we introduce an operator

χ[0,κ](
√
P ) =

∑

k∈N

χ[0,κ](νk)ϕk(y1)ϕk(y2),

to split the kernel IGD(z; y1, y2) into two parts

IGD(z; y1, y2) = I<κ
GD(z; y1, y2) + I>κ

GD(z; y1, y2) (4.30)

where

I<κ
GD(z; y1, y2) =χ[0,κ](

√
P )

( 1

π

∫ π

0

e−iz cos sχδ(π − s) cos(s
√
P )ds

− sin(π
√
P )

π

∫ ∞

0

eiz cosh sχδ(s)e
−s

√
P ds

)

,

(4.31)

and

I>κ
GD(z; y1, y2) =

(

1− χ[0,κ](
√
P )

)

( 1

π

∫ π

0

e−iz cos sχδ(π − s) cos(s
√
P )ds

− sin(π
√
P )

π

∫ ∞

0

eiz cosh sχδ(s)e
−s

√
Pds

)

=
(

1− χ[0,κ](
√
P )

)

( (−1)m

π

∫ π

0

( ∂

∂s

)2m
(

e−iz cos sχδ(π − s)
)cos(s

√
P )

Pm
ds

− sin(π
√
P )

π

∫ ∞

0

( ∂

∂s

)2m
(

eiz cosh sχδ(s)
)e−s

√
P

Pm
ds
)

.

(4.32)

To control the contribution of (4.8), as arguing (4.7), we need the Hadamard
parametrix. Notice that

sin(π
√
P )e−s

√
P = Im

(

e(−s+iπ))
√
P
)

,

we need the Hadamard parametrix of the even-wave operator P−m cos(s
√
P ) and

the Poisson-wave operator P−me(−s+iπ))
√
P respectively, which are considered in

Lemma 3.3.
Now we return to the proof of the uniform boundedness of (4.8). Similarly

as in the proof of the uniform boundedness of (4.7), we consider two cases that

dh(y1, y2) ≤ C1z
− 1

2 and dh(y1, y2) ≥ C1z
− 1

2 where C1 ≫ 1. In each case, we choose
different κ in the argument.

Case 1. dh(y1, y2) ≤ C1z
− 1

2 . In this case, we take κ = 4z
1
2 . We first consider

I<κ
GD(z; y1, y2). For this low frequency term, since we do not do integration by parts
in ds (the boundary issue mentioned above will not be involved), so we use the
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modified Hadamard parametrix with m = 0. For the first term of (4.31), we can
use the same argument as arguing (4.15). For the second term of (4.31), by using
the modified Hadamard parametrix, we need to consider two terms associated with
K̃0

N(s; y1, y2) and R̃
0
N (s; y1, y2) respectively. It is easy to see the contribution of the

term associated with R̃0
N is

z−
n−2
2

∫ ∞

0

eiz cosh sχδ(s)R̃
0
N (s; y1, y2)ds . 1. (4.33)

For the term associated with K̃0
N , we want to show that

z−
n−2
2

∣

∣

∣

∫ ∞

0

eiz cosh sχδ(s)
(

βJ (z
1/2s) +

∑

j≥J+1

β(2−jz1/2s)
)

×
∫ κ

0

b±(ρdh)e
±iρdha0(s, y1, y2; ρ)e

−(s±iπ)ρρn−2dρ ds
∣

∣

∣
. 1,

(4.34)

where β and βJ are in (4.14) with 2J−2 ≥ C1. For the term associated with βJ , we

have |s| . z−
1
2 ≪ 1 due to the compact support of βJ . Due to that ρ ≤ κ = 4z1/2,

thus the integral in (4.34) with βJ is always bounded by

z−
n−2
2

∫

|s|.z− 1
2

ds

∫

ρ≤4z
1
2

ρn−2dρ . z−
n−2
2 z−1/2z

n−1
2 . 1. (4.35)

For the terms with β(2−jz1/2s), j ≥ J , we have s ≈ 2jz−1/2, and 2j . z1/2, due to
the compact support of β. In this case, we will show that

z−
n−2
2

∣

∣

∣

∫ ∞

0

eiz cosh sχδ(s)β(2
−jz1/2s)

×
∫ κ

0

b±(ρdh)e
±iρdha0(s, y1, y2; ρ)e

−(s±iπ)ρρn−2dρ ds
∣

∣

∣
. 2−j(n−2),

(4.36)

which would give us desired bounds after summing over j. Now we repeat the
previous argument, if in this case we have ρ ≤ 2−jz1/2, then we do not do any
integration by parts, the integral in (4.36) is always bounded by

z−
n−2
2 (z−

1
2 2j)(2−jz

1
2 )n−1 . 2−j(n−2).

On the other hand, if we have ρ ≥ 2−jz1/2, we use the factor e−(s±iπ)ρ to do
integration by parts in dρ instead, then each time we gain a factor of ρ−1, and we
at most lose factors of

|s± iπ|−1, dh . 1

so after integration by parts N times for N ≥ n, the integral in (4.36) is bounded
by

z−
n−2
2 (z−

1
2 2j)

∫ ∞

2−jz1/2

ρn−2−Ndρ . z−
n−2
2 (2−jz1/2)n−2−N . 2−j(n−2)

due to that 2j . z1/2.
Next we consider I>κ

GD(z; y1, y2). For this high frequency term, we use the mod-
ified Hadamard parametrix with m large enough. For the first term of (4.32), by
using the modified Hadamard parametrix, since the term Rm

N (s; y1, y2) is smoothing
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as before, we only need to consider the term associated with Km
N (s; y1, y2). We aim

to show that

z−
n−2
2

∣

∣

∣

∫ π

0

( ∂

∂s

)2m
(

e−iz cos(s)χδ(π − s)
)

(

βJ(z
1/2s) +

∑

j≥J+1

β(2−jz1/2s)
)

×
∫ ∞

κ

b±(ρdh)e
±iρdham(s, y1, y2; ρ) cos(sρ)ρ

n−2dρ ds
∣

∣

∣
. 1.

(4.37)

For the term associated with βJ , we have |s| . z−
1
2 ≪ 1 due to the compact

support of βJ . Therefore, we have
∣

∣

∣

( d

ds

)2m(

e−iz cos(s)χδ(π − s)
)∣

∣

∣
≤ Cmz

2m|s| ≤ Cmz
m.

So for 2m ≥ n, the integral in (4.37) is bounded by

z−
n−2
2 z−1/2zm

∫ ∞

z1/2

ρn−2−2mdρ . 1.

In sum, we have proved (4.37) with βJ .
For the terms with β(2−jz1/2s), we have 2j−1z−1/2 ≤ s ≤ 2j+1z−1/2 and 2j .

z1/2 on its support. And by our construction we have j ≥ J + 1, hence 2j−2 > C1.
Therefore, we have

∣

∣

∣

( d

ds

)2m(

e−iz cos(s)χδ(π − s)
)∣

∣

∣
≤ Cm(z sin s)2m ≤ Cm22mjzm.

In this case, we will show that

z−
n−2
2

∣

∣

∣

∫ π

0

( ∂

∂s

)2m
(

e−iz cos(s)χδ(π − s)
)

β(2−jz1/2s)

×
∫ ∞

κ

b±(ρdh)e
±iρdham(s, y1, y2; ρ) cos(sρ)ρ

n−2dρ ds
∣

∣

∣
. 2−j(n−2),

(4.38)

which would give us desired bounds after summing over j. Now we modify the
previous argument, since ρ ≥ κ = 4z1/2, we write cos(sρ) = 1

2

(

eisρ + e−isρ
)

, then

we do integration by parts in dρ instead, then each time we gain a factor of ρ−1,
and we at most lose a factor of (by our choice of J , s will dominate dh)

(s± dh)
−1 . 2−jz

1
2 ,

so after integration by parts N times for N ≥ n + 2m, the integral in (4.38) is
bounded by

z−
n−2
2 (z−

1
2 2j)

(

22mjzm
)(

2−jz
1
2

)N
∫ ∞

4z1/2

ρn−2−2m−Ndρ . 2−j(n−2),

which proves (4.37) for n ≥ 3.
To treat the second term of (4.32), we closely follow the above argument but

with minor modifications. By using the modified Hadamard parametrix, since the
term with R̃m

N (s; y1, y2) is easy as before, we only consider the term associated with

K̃m
N (s; y1, y2). We aim to show that

z−
n−2
2

∣

∣

∣

∫ π

0

( ∂

∂s

)2m
(

eiz cosh sχδ(s)
)

(

βJ(z
1/2s) +

∑

j≥J+1

β(2−jz1/2s)
)

×
∫ ∞

κ

b±(ρdh)e
±iρdham(s, y1, y2; ρ)e

−(s±iπ)ρn−2dρ ds
∣

∣

∣
. 1.

(4.39)
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For the term associated with βJ , we have |s| . z−
1
2 ≪ 1 due to the compact

support of βJ . Therefore, we have
∣

∣

∣

( d

ds

)2m(

eiz cosh sχδ(s)
)
∣

∣

∣
≤ Cmz

m.

So for 2m ≥ n, the integral in (4.39) is bounded by

z−
n−2
2 z−1/2zm

∫ ∞

z1/2

ρn−2−2mdρ . 1.

For the terms with β(2−jz1/2s), we have s ≈ 2jz−1/2, and 2j . z1/2, due to the
compact support of β. Therefore, we have

∣

∣

∣

( d

ds

)2m(

eiz cosh sχδ(s)
)∣

∣

∣
≤ Cm(z sinh s)2m ≤ Cm22mjzm.

Since ρ ≥ κ = 4z1/2, we use the factor e−(s±iπ) to do integration by parts in dρ
instead, then each time we gain a factor of ρ−1, and we at most lose factors of

(s± iπ)−1, dh . 1 . 2−jz
1
2 ,

so after integration by parts N times for N ≥ n + 2m, the integral in (4.39) with
β(2−jz1/2s) is bounded by

z−
n−2
2

∣

∣

∣

∫ π

0

( ∂

∂s

)2m
(

eiz cosh sχδ(s)
)

β(2−jz1/2s)

×
∫ ∞

κ

b±(ρdh)e
±iρdham(s, y1, y2; ρ)e

−(s±iπ)ρn−2dρ ds
∣

∣

∣

. z−
n−2
2 (z−

1
2 2j)

(

22mjzm
)(

2−jz
1
2

)N
∫ ∞

4z1/2

ρn−2−2m−Ndρ . 2−j(n−2).

which would give us desired bounds (4.39) after summing over j provided n ≥ 3.

Case 2. dh(y1, y2) ≥ C1z
− 1

2 . In this case, we take κ = zdh and J = 0 in βJ
(4.14). We first consider I<κ

GD(z; y1, y2). As in the proof of (4.19), one can control
the first term of (4.31), since we do not use the integration by parts in ds. We
omit the details. For the second term of (4.31), by using the modified Hadamard
parametrix, we repeat the above argument to estimate the term associated with
K̃0

N(s; y1, y2) only. We want to show that

z−
n−2
2

∣

∣

∣

∫ ∞

0

eiz cosh sχδ(s)
(

β0(zdh|s− dh|) +
∑

j≥1

β(2−jzdh|s− dh|)
)

×
∫ κ

0

b±(ρdh)e
±iρdha0(s, y1, y2; ρ)e

−(s±iπ)ρρn−2dρ ds
∣

∣

∣
. 1.

(4.40)

For the term associated with β0, we have |s− dh| ≤ (zdh)
−1 . z−

1
2 ≪ 1 due to the

compact support of β0. Due to that ρ ≤ κ = zdh, thus the integral in (4.40) with
β0 is always bounded by

z−
n−2
2

∫

|s−dh|.(zdh)−1

ds

∫

ρ≤zdh

(1 + ρdh)
− n−2

2 ρn−2dρ

. z−
n−2
2 (zdh)

−1(zdh)
n−2
2 +1d

−n−2
2

h . 1.

(4.41)
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For the terms associated with β(2−jzdh|s − dh|), we have |s − dh| ≈ 2j(zdh)
−1,

j ≥ 1 and 2j . zdh, due to the compact support of β. In this case, we want to
show that

z−
n−2
2

∣

∣

∣

∫ ∞

0

eiz cosh sχδ(s)β(2
−jzdh|s− dh|)

×
∫ κ

0

b±(ρdh)e
±iρdha0(s, y1, y2; ρ)e

−(s±iπ)ρρn−2dρ ds
∣

∣

∣
. 2−j n−2

2 ,

(4.42)

which would give us desired bounds (4.40) after summing over j. If in this case we
have ρ ≤ 2−jzdh, then we do not do any integration by parts, the integral in (4.22)
is always bounded by

z−
n−2
2

∫

|s−dh|∼2j(zdh)−1

∫

ρ≤2−jzdh

(1 + ρdh)
−n−2

2 ρn−2 dρ

. z−
n−2
2 ((zdh)

−12j)(2−jzdh)
n−2
2 +1d

−n−2
2

h . 2−j n−2
2 .

On the other hand, if we have ρ ≥ 2−jzdh, we use the factor e−(s±iπ) to do
integration by parts in dρ instead, then each time we gain a factor of ρ−1, and we
at most lose factors of

(s± iπ)−1, dh . 1 . 2−jzdh,

so after integration by parts N times for N ≥ n, the integral in (4.42) is bounded
by

z−
n−2
2 2j(zdh)

−1
(

2−jzdh
)N

∫ ∞

2−jzdh

ρ
n−2
2 −Nd

−n−2
2

h dρ

. (zdh)
−n−2

2 −12j
(

2−jzdh
)N(

2−jzdh
)

n−2
2 +1−N

. 2−j n−2
2 .

Next we consider I>κ
GD(z; y1, y2). For this high frequency term, we use the mod-

ified Hadamard parametrix with m large enough. For the first term of (4.32), by
using the modified Hadamard parametrix, since the term with Rm

N (s; y1, y2) is easy
as before, we only need to consider the term associated with Km

N (s; y1, y2). We aim
to show that

z−
n−2
2

∣

∣

∣

∫ π

0

( ∂

∂s

)2m
(

e−iz cos(s)χδ(π − s)
)

(

β0(zdh|s− dh|) +
∑

j≥1

β(2−jzdh|s− dh|)
)

×
∫ ∞

κ

b±(ρdh)e
±iρdham(s, y1, y2; ρ) cos(sρ)ρ

n−2dρ ds
∣

∣

∣
. 1.

(4.43)

For the term associated with β0, we have |s− dh| ≤ (zdh)
−1 . z−

1
2 ≪ 1 due to the

compact support of β0. Therefore, s = dh + (zdh)
−1, we have

∣

∣

∣

( d

ds

)2m(

e−iz cos(s)χδ(π − s)
)∣

∣

∣
≤ Cm(z sin s)2m . (zdh)

2m.

So for 2m ≥ n, the integral in (4.43) is bounded by

z−
n−2
2 (zdh)

−1(zdh)
2m

∫ ∞

zdh

(1 + ρdh)
−n−2

2 ρn−2−2mdρ . 1.
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Hence, we have proved (4.43) with β0. For the terms with β(2−jzdh|s−dh|), we have
|s − dh| ≈ 2j(zdh)

−1, and 2j . zdh, due to the compact support of β. Therefore,
s = dh + 2j(zdh)

−1, we have
∣

∣

∣

( d

ds

)2m(

e−iz cos(s)χδ(π − s)
)∣

∣

∣
≤ Cm(z sin s)2m ≤ Cm(zdh + 2jz(zdh)

−1)2m,

which is less than (zdh)
2m + (2jz

1
2 )2m. In this case, we will show that

z−
n−2
2

∣

∣

∣

∫ π

0

( ∂

∂s

)2m
(

e−iz cos(s)χδ(π − s)
)

β(2−jzdh|s− dh|)

×
∫ ∞

κ

b±(ρdh)e
±iρdham(s, y1, y2; ρ) cos(sρ)ρ

n−2dρ ds
∣

∣

∣
. 2−j(n−2),

(4.44)

which would give us desired bounds after summing over j. Now we modify the
previous argument, since ρ ≥ κ = zdh, we write cos(sρ) = 1

2

(

eisρ + e−isρ
)

, then we

do integration by parts in dρ instead, then each time we gain a factor of ρ−1, and
we at most lose a factor of

(s± dh)
−1 . 2−jzdh,

so after integration by parts N times for N ≥ n + 2m, the integral in (4.38) is
bounded by

z−
n−2
2 (2j(zdh)

−1)
[

(zdh)
2m + (2jz

1
2 )2m

](

2−jzdh
)N

∫ ∞

zdh

(1 + ρdh)
−n−2

2 ρn−2−2m−Ndρ

. 2−j(N−2m−1).

Therefore, we have proved (4.37) for n ≥ 3.
To treat the second term of (4.32), we closely follow the above argument but

with minor modifications. By using the modified Hadamard parametrix, since the
term with R̃m

N (s; y1, y2) is easy as before, we only consider the term associated with

K̃m
N (s; y1, y2). We aim to show that

z−
n−2
2

∣

∣

∣

∫ π

0

( ∂

∂s

)2m
(

eiz cosh sχδ(s)
)

(

β0(zdh|s− dh|) +
∑

j≥1

β(2−jzdh|s− dh|)
)

×
∫ ∞

κ

b±(ρdh)e
±iρdham(s, y1, y2; ρ)e

−(s±iπ)ρn−2dρ ds
∣

∣

∣
. 1.

(4.45)

For the term associated with β0, we have |s− dh| ≤ (zdh)
−1 . z−

1
2 ≪ 1 due to the

compact support of β0. Therefore, s = dh + (zdh)
−1 . dh, we have

∣

∣

∣

( d

ds

)2m(

eiz cosh sχδ(s)
)∣

∣

∣
≤ Cm(zdh)

2m.

So for 2m ≥ n, the integral in (4.39) is bounded by

z−
n−2
2 (zdh)

−1(zdh)
2m

∫ ∞

zdh

ρn−2−2mdρ . 1.

For the terms with β(2−jzdh|s− dh|), we have |s− dh| ≈ 2j(zdh)
−1, and 2j . zdh,

due to the compact support of β. Therefore, s = dh + 2j(zdh)
−1 ∈ [0, δ], we have

∣

∣

∣

( d

ds

)2m(

eiz cosh(s)χδ(s)
)
∣

∣

∣
≤ Cm(z sinh s)2m ≤ Cm(zdh + 2jz(zdh)

−1)2m,
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which is less than (zdh)
2m + (2jz

1
2 )2m. In this case, we will show that

z−
n−2
2

∣

∣

∣

∫ π

0

( ∂

∂s

)2m
(

eiz cosh(s)χδ(s)
)

β(2−jzdh|s− dh|)

×
∫ ∞

κ

b±(ρdh)e
±iρdham(s, y1, y2; ρ)e

−(s±iπ)ρρn−2dρ ds
∣

∣

∣
. 2−j(n−2),

(4.46)

which would give us desired bounds after summing over j. Now we modify the
previous argument, since ρ ≥ κ = zdh, we use the factor e−(s±iπ) to do integration
by parts in dρ instead, then each time we gain a factor of ρ−1, and we at most lose
factors of

(s± iπ)−1, dh . 1 . 2−jzdh,

so after integration by parts N times for N ≥ n + 2m, the integral in (4.46) is
bounded by

z−
n−2
2 (2j(zdh)

−1)
[

(zdh)
2m + (2jz

1
2 )2m

](

2−jzdh
)N

∫ ∞

zdh

(1 + ρdh)
−n−2

2 ρn−2−2m−Ndρ

. 2−j(N−2m−1).

which would give us desired bounds (4.39) after summing over j provided n ≥ 3. �

The contribution of (4.9). This term is easier than the above two terms. By the
definition of ID(z; y1, y2) in (4.9), it is a direct consequence of the following lemma.
Indeed, for n ≥ 3, we have

ID(z; y1, y2) . z−
n−2
2

∫ ∞

δ

|e−(s±iπ)
√
P |ds .δ 1,

by following lemma:

Lemma 4.6. Let dh = dh(y1, y2) be the distance on Y . If s ≥ δ where 0 < δ ≪ 1,
then the Poisson-wave operator satisfies that

|e−(s±iπ)
√
P | .

{

s−
n
2 +1, δ ≤ s ≤ 2π,

s−n+1, s ≥ 2π.
(4.47)

Proof. We recall the classical subordination formula:

e−s
√
x =

s

2
√
π

∫ ∞

0

e−
s2

4σ e−σxσ− 3
2 dσ, s, x > 0. (4.48)

We extend s in the complex plane to ζ = s− ib with s > 0 to obtain

e−ζ
√
x =

ζ

2
√
π

∫ ∞

0

e−
ζ2

4σ e−σxσ− 3
2 dσ, Re(ζ), x > 0. (4.49)

In particular, choosing b = ±π and x = P , we have

e−(s±iπ)
√
P =

(s± iπ)

2
√
π

∫ ∞

0

e−
(s±iπ)2

4σ e−σPσ− 3
2 dσ, s, P > 0

=
(s± iπ)

2
√
π

∫ ∞

0

e−
(s±iπ)2

4σ
1

|B(y1,
√
σ)|e

− d2
h
(y1,y2)

cσ σ− 3
2 dσ,

(4.50)

where we use the heat kernel

e−σP ∼ 1

|B(y1,
√
σ)|e

−d2h(y1,y2)

cσ . (4.51)
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Therefore, we obtain

e−(s±iπ)
√
P =

(s± iπ)

2
√
π

∫ ∞

0

e−
(s±iπ)2

4σ e−σPσ− 3
2 dσ, s, P > 0

=
(s± iπ)

2
√
π

∫ ∞

0

e−
(s±iπ)2

4σ
1

|B(y1,
√
σ)|e

− d2h(y1,y2)

cσ σ− 3
2 dσ,

=
(s± iπ)

2
√
π

∫ ∞

0

e−
(s±iπ)2

4σ
1

σ
n−1
2

e−
d2
h
(y1,y2)

cσ σ− 3
2 dσ

≤ |s± iπ|
2
√
π

∫ ∞

0

e−
(s±iπ)2+d2h

4cσ σ−n
2
dσ

σ

≤ |s± iπ|
2
√
π((s± iπ)2 + d2h)

n
2

∫ ∞

0

e−
1

4cσ σ− n
2
dσ

σ

(4.52)

gives the desired result (4.47) due to the fact that

|s± iπ|
2
√
π|(s± iπ)2 + d2h|

n
2

.
(s2 + π2)

1
2

(

(s2 + d2h − π2)2 + (2πs)2
)

n
4

.

{

s−
n
2 +1, δ ≤ s ≤ 2π,

s−n+1, s ≥ 2π.

(4.53)

�

In summary, we have shown that (4.7)(4.8)(4.9) are uniformly (in terms of large
z) bounded, concluding the proof. �

5. The Littlewood-Paley theory

associated with the Schrödinger operator H

In this section, we study the Bernstein inequalities and the square function in-
equalities associated with the Schrödinger operatorH for our next purpose. As well
as Killip, Miao, Visan, Zheng and the last author [28], in which the Schrödinger op-
erator on Euclidean space with inverse-square potential was studied, the Littlewood-
Paley theory has its own independent interest. Here we provide a bit different
method based on the heat kernel estimates

∣

∣e−tH(r1, y1; r2, y2)
∣

∣ ≤ C
[

min
{

1,
(r1r2

2t

)}]α

t−
n
2 e−

d2((r1,y1),(r2,y2))

ct , (5.1)

proved in [19, Theorem 1.1].

Now we study the Littlewood-Paley theory, including the Bernstein inequalities
and the square function inequalities, associated with the Schrödinger operator H .
More precisely, we prove the following propositions.

Proposition 5.1 (Bernstein inequalities). Let ϕ(λ) be a C∞
c bump function on R

with support in [ 12 , 2] and let α and q(α) be given in (1.8) and (1.9) respectively,

then it holds for any f ∈ Lq(X) and j ∈ Z

‖ϕ(2−j
√
H)f‖Lp(X) . 2nj

(

1
q− 1

p

)

‖ϕ(2−j
√
H)f‖Lq(X), q

′(α) < q ≤ p < q(α). (5.2)

In addition, if α ≥ 0, the range can be extended to 1 ≤ q < p ≤ +∞ including the

endpoints.
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Proposition 5.2 (The square function inequality). Let {ϕj}j∈Z be a Littlewood-

Paley sequence given by (1.15) and let α and q(α) be given in (1.8) and (1.9)
respectively. Then for q′(α) < p < q(α), there exist constants cp and Cp depending

on p such that

cp‖f‖Lp(X) ≤
∥

∥

∥

(

∑

j∈Z

|ϕj(
√
H)f |2

)
1
2
∥

∥

∥

Lp(X)
≤ Cp‖f‖Lp(X). (5.3)

The proof of Proposition 5.1. If α ≥ 0, from (5.1), the operatorH obeys the Gauss-
ian heat kernel upper bounds and so the result follows from general results covering
this class of operators; see, for example [1].

In the spirit of [49, Proposition 4.1], we provide a simple argument which can be
generalized to the case that the heat kernel of H satisfies (5.1). Let ψ(x) = ϕ(

√
x)

and ψe(x) := ψ(x)e2x. Then ψe is a C∞
c -function on R with support in [ 14 , 4] and

then its Fourier transform ψ̂e belongs to Schwartz class. We write

ϕ(
√
x) = ψ(x) = e−2xψe(x) = e−2x

∫

R

eix·ξψ̂e(ξ) dξ

= e−x

∫

R

e−x(1−iξ)ψ̂e(ξ) dξ.

Therefore, by the functional calculus, we obtain

ϕ(
√
H) = ψ(H) = e−H

∫

R

e−(1−iξ)H ψ̂e(ξ) dξ,

furthermore,

ϕ(2−j
√
H) = ψ(2−2jH) = e−2−2jH

∫

R

e−(1−iξ)2−2jH ψ̂e(ξ) dξ.

By using (5.1) with t = 2−2j and letting zi,j = (2jri, yi) with i = 0, 1, 2 and writing
zi = zi,0, we have
∣

∣

∣
ϕ(2−j

√
H)(z1, z2)

∣

∣

∣

. 22nj
∫

X

[

min
{

1,
( r1r0
2× 2−2j

)}

min
{

1,
( r0r2
2× 2−2j

)}]α

e−
d2(z1,z0)+d2(z0,z2)

c2−2j rn−1
0 dr0dy0

∫

R

ψ̂e(ξ) dξ

. 2nj
∫

X

[

min
{

1,
(2jr1r0

2

)}

min
{

1,
(r02

jr2
2

)}]α

e−
d2(z1,j ,z0)+d2(z0,z2,j)

c rn−1
0 dr0dy0

. 2nje−
22jd2(z1,z2)

4c K(2jr1, y1; 2
jr2, y2)

. 2nj(1 + 2jd(z1, z2))
−NK(2jr1, y1; 2

jr2, y2), ∀N ≥ 0

where we use the fact that

d2(z1,j , z0) + d2(z0, z2,j) ≥
1

2
(d(z1,j , z0) + d(z0, z2,j))

2 ≥ 1

2
d2(z1,j, z2,j)

and the notation that

K(2jr1, y1; 2
jr2, y2)

=

∫

X

[

min
{

1,
(2jr1r0

2

)}

min
{

1,
(2jr2r0

2

)}]α

e−
d2(z1,j ,z0)+d2(z0,z2,j)

4c rn−1
0 dr0dy0.
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To prove (5.2), we only need to prove (5.2) with j = 0 by the scaling argument. If
α ≥ 0, then

∣

∣K(r1, y1; r2, y2)
∣

∣ . 1. Therefore, by Young’s inequality, we obtain

‖ϕ(
√
H)f‖Lp(X) .

∥

∥

∫

X

(1 + d(z1, z2))
−Nf(z2)dg(z2)

∥

∥

Lp(X)
. ‖f‖Lq(X),

which implies (5.2) when α ≥ 0. If −(n− 2)/2 < α < 0, then
∣

∣K(r1, y1; r2, y2)
∣

∣

.

∫

X

[

min
{

1, r1r0, r2r0, r1r2r
2
0

}]α

e−
d2(z1,z0)+d2(z0,z2)

4c rn−1
0 dr0dy0

. max
{

1, rα1 , r
α
2 , (r1r2)

α
}

.

Notice d(z1, z2) ≥ |r1 − r2|, therefore we obtain

‖ϕ(
√
H)f‖Lp(X) .

∥

∥

∫

X

(1 + |r1 − r2|)−N max
{

1, rα1 , r
α
2 , (r1r2)

α
}

f(z2)dg(z2)
∥

∥

Lp(X)
.

Let χ ∈ C∞
c ([0,+∞)) be defined as

χ(r) =

{

1, r ∈ [0, 12 ],

0, r ∈ [1,+∞)
(5.4)

and let us set χc = 1− χ. Hence, when q′(α) < q ≤ p < q(α), we have

‖ϕ(
√
H)f‖Lp(X)

.
∥

∥

∫

X

(1 + |r1 − r2|)−Nχc(r1)χ
c(r2)f(r2, y2)r

n−1
2 dr2dy2

∥

∥

Lp(X)

+
∥

∥

∫

X

(1 + |r1 − r2|)−Nrα1 χ(r1)χ
c(r2)f(r2, y2)r

n−1
2 dr2dy2

∥

∥

Lp(X)

+
∥

∥

∫

X

(1 + |r1 − r2|)−Nrα2 χ
c(r1)χ(r2)f(r2, y2)r

n−1
2 dr2dy2

∥

∥

Lp(X)

+
∥

∥

∫

X

(r1r2)
αχ(r1)χ(r2)f(r2, y2)r

n−1
2 dr2dy2

∥

∥

Lp(X)
. ‖f‖Lq(X),

which gives (5.2) when −(n− 2)/2 < α < 0. �

The proof of Proposition 5.2. In order to prove the square function estimates (5.3),
by using the Rademacher functions and the argument of Stein [45, Appendix D], it
suffices to show that the Littlewood-Paley operator satisfies

‖ϕ(
√
H)f‖Lp(X) . ‖f‖Lp(X), q′(α) < p < q(α),

which can be done by repeating the above argument of Proposition 5.1. We also
refer the reader to [1] for result that the square function inequality (5.3) can be
derived from the heat kernel with Gaussian upper bounds. �

6. The decay estimates for the Schrödinger propagator

In this section, we prove the decay estimates in Corollary 1.4 and Theorem 1.6
by using the main Theorem 1.1.
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The proof of Corollary 1.4. Since α ≥ 0, (1.10) and (1.11) follow from (1.7) di-
rectly. If −n−2

2 < α < 0, we obtain (1.12) from (1.7) and the fact that

(1 + rα1 )
−1(1 + rα2 )

−1(1 + |t|−α)−1 ≤ min
{

1,
( |t|
r1r2

)α}

.

�

The proof of Theorem 1.6 . By the spectral theorem, one has the L2-estimate

‖eitH‖L2(X)→L2(X) ≤ C. (6.1)

To prove this, we need a property of the Hankel transform. For f ∈ L2(X), as [5,
Page 523], we define the Hankel transform of order µ

(Hµf)(ρ) =

∫ ∞

0

(rρ)−
n−2
2 Jµ(rρ)f(r) r

n−1dr. (6.2)

Then we have the unitary property ‖Hµf‖L2
ρn−1dρ

(R+) = ‖f(r)‖L2
rn−1dr

(R+). By the

functional calculus as in (2.5), we also obtain the kernel K(t, z1, z2) of the operator
eitH

K(t, z1, z2) = K(t, r1, y1, r2, y2)

=
(

r1r2
)−n−2

2
∑

k∈N

ϕk(y1)ϕk(y2)Kνk(t, r1, r2),

where ϕk means the complex conjugation of the eigenfunction ϕk and

Kνk(t, r1, r2) =

∫ ∞

0

e−itρ2

Jνk(r1ρ)Jνk(r2ρ) ρdρ.

For f ∈ L2, we expand

f =
∑

k∈N

ck(r)ϕk(y), (6.3)

then, by orthogonality and the unitarity of the Hankel transform, we obtain

‖eitHf‖L2(X) =
(

∑

k∈N

∥

∥Hνk

(

e−itρ2

(Hνkck)
)

(r)
∥

∥

2

L2

rn−1dr

)1/2

=
(

∑

k∈Z,
m∈N

∥

∥ck(r)
∥

∥

2

L2
rn−1dr

)1/2

= ‖f‖L2(X).

So, if α ≥ 0, we obtain (1.13) by interpolating (6.1) and (1.10). If α < 0, one
can obtain (1.13) but with some weight by interpolating (6.1) and (1.12). To
prove (1.14), we need to strength it to get rid of the weight when q ∈ [2, q(α)).
Intuitively, as arguing Proposition 5.1, we can prove (1.14) by replacing the heat
kernel estimates (5.1) by the estimates (1.7). Unfortunately, it doesn’t work due
to the lack of exponent decay in (1.7), so we have to decompose the Schrödinger
propagator.

To this end, we introduce the orthogonal projections on L2

Pk : L2(X) → L2(rn−1dr) ⊗ hk(Y ), (6.4)

and

P< : L2(X) →
⊕

{k∈N:νk<(n−2)/2}
L2(rn−1dr) ⊗ hk(Y ), P≥ = I − P<. (6.5)
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Here the space hk(Y ) is the linear span of {ϕk(y)} defined in (2.2). Then we can
decompose the Schrödinger propagator as

eitHf = eitHP<f + eitHP≥f. (6.6)

By (2.5), we see that the kernels

eitHP< =
(

r1r2
)−n−2

2
∑

{k∈N:νk<(n−2)/2}
ϕk(y1)ϕk(y2)Kνk(t, r1, r2), (6.7)

and

eitHP≥ =
(

r1r2
)−n−2

2
∑

{k∈N:νk≥ 1
2 (n−2)}

ϕk(y1)ϕk(y2)Kνk(t, r1, r2). (6.8)

Since the kernel eitHP≥ is at high angular moment, thus we can repeat the argument
of Proposition 4.1 and Proposition 4.2 to obtain

∣

∣eitHP≥
∣

∣ ≤ C|t|− n
2 .

Therefore, as same as the case α ≥ 0, we can prove (1.14) for eitHP≥ with q ≥ 2.
Thus it remains to consider eitHP<, in which we are restricted at small angular
moment. Due to the Weyl’s asymptotic formula (e.g. see [50])

ν2k ∼ (1 + k)
2

n−1 , k ≥ 1,

the summation in the kernel eitHP< in (6.7) is finite. Hence, to prove (1.14) for
eitHP<, we only need to prove (1.14) for eitHPk with each k such that νk < (n−2)/2.
By using the Littlewood-Paley square function inequality (5.3) and the Minkowski
inequality, it suffices to show

∥

∥

∥
ϕj(

√
H)eitHPkf

∥

∥

∥

Lq(X)
≤ Ck|t|−

n
2 (1− 2

q )
∥

∥

∥
ϕ̃j(

√
H)Pkf

∥

∥

∥

Lq′ (X)
, (6.9)

provided q ∈ [2, q(α)) where we choose ϕ̃ ∈ C∞
c ((0,+∞)) such that ϕ̃(λ) = 1 if

λ ∈ suppϕ and ϕ̃ϕ = ϕ. In the following argument, since ϕ̃ has the same property
of ϕ, without confusion, we drop off the tilde above ϕ for brief.

For the purpose of (6.9), we need a proposition.

Proposition 6.1. Let 0 < ν ≤ n−2
2 and σ(ν) = −(n − 2)/2 + ν. Let Tν be the

operator defined as

(Tνg)(t, r1) =

∫ ∞

0

K l
ν(t; r1, r2)g(r2) r

n−1
2 dr2 (6.10)

and

K l
ν(t, r1, r2) = (r1r2)

−n−2
2

∫ ∞

0

eitρ
2

Jν(r1ρ)Jν(r2ρ)ϕ(ρ) ρdρ,

where ϕ is given in (1.15). Then, for 2 ≤ q < q(σ), the following estimate holds

‖Tνg‖Lq(rn−1
1 dr1)

≤ Cν |t|−
n
2 (1− 2

q )‖g‖
Lq′

r
n−1
2

dr2

. (6.11)

We postpone the proof of Proposition 6.1 for a moment. Recalling (6.3) and

letting c̃k(r) = ϕj(
√
H)ck(r), similarly as (2.5), we write

ϕj(
√
H)eitHPkf = ϕk(y)2

jn

∫ ∞

0

K l
νk
(22jt; 2jr1, 2

jr2)c̃k(r2) r
n−1
2 dr2

= ϕk(y)
(

Tνk c̃k(2
−jr2)

)

(22jt, 2jr1).
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Notice that q(α) ≤ q(σ), we use (6.11) and the eigenfunction’s estimates to obtain
that
∥

∥

∥
ϕj(

√
H)eitHPkf

∥

∥

∥

Lq(X)
≤ Ck‖

(

Tνk c̃k(2
−j ·)

)

(22jt, 2jr1)‖Lq

r
n−1
1 dr1

‖ϕk(y)‖Lq(Y )

≤ Ck|t|−
n
2 (1− 2

q )‖c̃k(r)‖Lq′

rn−1dr

‖ϕk(y)‖Lq′ (Y ) ≤ Ck|t|−
n
2 (1− 2

q )
∥

∥

∥
ϕj(

√
H)Pkf

∥

∥

∥

Lq′ (X)
,

where we used ‖ϕk(y)‖Lq(Y ) ≤ C‖ϕk(y)‖Lq′ (Y ) since Y is compact and we are only

concerning finitely many ϕk such that corresponding νk ∈ (0, n−2
2 ]. This completes

the proof of the desirable estimate (6.9).
�

Before proving Proposition 6.1, we record a lemma about the property of the
Bessel function, e.g. see [6, Lemma 5.1]

Lemma 6.2. For all r, ν ∈ R+, there exist constants Cν and Cν,N depending only

on ν and ν,N respectively such that

|Jν(r)| ≤ Cνr
ν(1 + r)−ν− 1

2 , (6.12)

|J ′
ν(r)| = |Jν−1(r) − νJν(r)/r| ≤ Cνr

ν−1(1 + r)−ν+ 1
2 . (6.13)

Moreover we can write

Jν(r) = r−1/2(eira+(r) + e−ira−(r)) (6.14)

for two functions a± depending on ν, r and satisfying for all N ≥ 1 and r ≥ 1

|a±(r)| ≤ Cν,0, |∂Nr a±(r)| ≤ Cν,N r
−N−1. (6.15)

The proof of Proposition 6.1. Our proof is modified from [6], in which the disper-
sive estimates of Dirac equation in Aharonov-Bohm magnetic fields were studied.

But we have to overcome the difficulties from the propagator multiplier eitρ
2

. Re-
calling χ ∈ C∞

c ([0,+∞) defined by (5.4) and χc = 1 − χ, then we decompose the
kernel K l

ν(t; r1, r2) into four terms as follows:

K l
ν(t; r1, r2) =χ(r1)K

l
ν(t; r1, r2)χ(r2) + χc(r1)K

l
ν(t; r1, r2)χ(r2)

+ χ(r1)K
l
ν(t; r1, r2)χ

c(r2) + χc(r1)K
l
ν(t; r1, r2)χ

c(r2).
(6.16)

This yields a corresponding decomposition for the operator Tν = T 1
ν +T

2
ν +T

3
ν +T

4
ν .

We thus estimate separately the norms ‖T j
νg‖Lq

r1dr1
for j = 1, 2, 3, 4.

Now we estimate T 1
ν . From (6.12), one has

|χ(r1)K l
ν(t; r1, r2)χ(r2)| . (r1r2)

σχ(r1)χ(r2). (6.17)

Therefore, as long as 2 ≤ q < q(σ), if |t| ≤ 1, we can show

‖T 1
ν g‖Lq

r
n−1
1

dr1

≤ Cν

(

∫ 1

0

rσqrn−1dr
)2/q

‖g‖
Lq′

r
n−1
2 dr2

≤ Cν‖g‖Lq′

r
n−1
2

dr2

. |t|−n
2 (1− 2

q )‖g‖
Lq′

r
n−1
2

dr2

.
(6.18)
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For the case that |t| ≥ 1, we perform integration by parts in dρ to obtain

|χ(r1)K l
ν(t; r1, r2)χ(r2)|

.
(

r1r2
)−n−2

2 χ(r1)χ(r2)|t|−N

∫ ∞

0

∣

∣

∣

( ∂

∂ρ

)( ∂

ρ∂ρ

)N−1(

Jν(r1ρ)Jν(r2ρ)ϕ(ρ)
)∣

∣

∣
dρ

.
(

r1r2
)ν−n−2

2 χ(r1)χ(r2)|t|−N ,

(6.19)

where in the last inequality we use the fact that
∣

∣

∣

( ∂

∂ρ

)( ∂

ρ∂ρ

)N−1(

Jν(r1ρ)Jν(r2ρ)ϕ(ρ)
)
∣

∣

∣
. (r1r2)

ν

provided r1, r2 ≤ 1. Finally, if |t| ≥ 1 and taking N large enough, as before, we
obtain

‖T 1
ν g‖Lq

r
n−1
1 dr1

≤ Cν |t|−N
(

∫ 1

0

rσqrn−1dr
)2/q

‖g‖
Lq′

r
n−1
2 dr2

. |t|−n
2 (1− 2

q )‖g‖
Lq′

r
n−1
2 dr2

.

(6.20)

Since T 2
ν and T 3

ν are similar, we only deal with T 3
ν . Using (6.14), we are reduced

to estimate two integrals

I± = (r1r2)
−n−2

2

∫ ∞

0

ρϕ(ρ)Jν(r1ρ)(r2ρ)
−1/2eitρ

2

e±ir2ρa±(r2ρ)dρ. (6.21)

If |t| ≤ 1, by using integration by parts and recalling σ = ν − (n− 2)/2, we obtain

I± . (r1r2)
−n−2

2 r
− 1

2−N
2

∫ ∞

0

∣

∣

∣

( ∂

∂ρ

)N(

Jν(r1ρ)a±(r2ρ)ϕ(ρ)ρ
1/2eitρ

2
)∣

∣

∣
dρ

. rσ1 r
−n−1

2 −N
2 .

Hence if |t| ≤ 1 and 2 ≤ q < q(σ), by choosing N large enough, we have

‖T 3
ν g‖Lq

r
n−1
1

dr1

.
(

∫ 1

0

rσq1 rn−1
1 dr1

)1/q(
∫ +∞

1
2

r
−( n−1

2 +N)q
2 rn−1

2 dr2

)1/q

‖g‖
Lq′

r
n−1
2

dr2

. ‖g‖
Lq′

r
n−1
2

dr2

. |t|−n
2 (1− 2

q )‖g‖
Lq′

r
n−1
2

dr2

.

(6.22)

It remains to consider the region |t| ≥ 1. In this case, letting r̄i = ri/
√
t with

i = 1, 2, from (6.21), we write

I± = |t|−n
2 (r̄1r̄2)

−n−2
2

∫ ∞

0

ρϕ(ρ/
√
t)Jν(r̄1ρ)(r̄2ρ)

−1/2eiρ(ρ±r̄2)a±(r̄2ρ)dρ

= |t|−n
2

∫ ∞

0

eiρ(ρ±r̄2)ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ)ρ
n−1dρ,

(6.23)

where

ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ) = ϕ(t−
1
2 ρ)(r̄1ρ)

−n−2
2 Jν(r̄1ρ)(r̄2ρ)

−n−1
2 a±(r̄2ρ). (6.24)

Since r̄1ρ . 1 and σ = ν − n−2
2 , therefore we obtain

∣

∣

∣

( ∂

∂ρ

)N(

ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ)
)
∣

∣

∣
. (r̄1ρ)

σ(r̄2ρ)
−n−1

2 ρ−N . rσ1 r
− n−1

2
2 ρ−N , (6.25)
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since ρ ∼
√
t on the support of ϕ(t−

1
2 ρ).

Lemma 6.3. Let

Ĩ±(t, r̄1, r̄2) =

∫ ∞

0

eiρ(ρ±r̄2)ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ)dρ,

where ã± is given by (6.24) and satisfies (6.25). Then, for t ≥ 1, the integral

satisfies that
∣

∣Ĩ±(t, r̄1, r̄2)
∣

∣ . rσ1 r
− n−1

2
2 + rσ1χA, (6.26)

where χA is the characteristic function on the set A := {r2 ∼ t}.
If we could prove this lemma, then we see for |t| ≥ 1

‖T 3
ν g‖Lq

r
n−1
1 dr1

. |t|−n
2

(

∫ 1

0

rσq1 rn−1
1 dr1

)1/q(
∫ +∞

1
2

r
−( (n−1)q

2
2 rn−1

2 dr2 +

∫

r2∼t

rn−1
2 dr2

)1/q

‖g‖
Lq′

r
n−1
2 dr2

. |t|−n
2

(

1 + |t|nq )‖g‖
Lq′

r
n−1
2

dr2

. |t|−n
2 (1− 2

q )‖g‖
Lq′

r
n−1
2

dr2

(6.27)

provided
2n

n− 1
< q < q(σ) =

2n

n− 2− 2ν
.

We can extend this estimate for 2 ≤ q < q(σ) by interpolating this and

‖T 3
ν g‖L2

r
n−1
1 dr1

≤ ‖χ(r1)Hνe
itρ2

ϕ(ρ)Hνχ
c(r2)g‖L2

r
n−1
1 dr1

≤ C‖g‖L2

r
n−1
2 dr2

, (6.28)

which can be proved by the fact that the Hankel transform (6.2) is unitary on
L2
rn−1dr.

We finally deal with T 4
ν by modifying the argument of T 3

ν . Using (6.14) again,
we are reduced to estimate the two integrals

I± = (r1r2)
−n−2

2

∫ ∞

0

ρϕ(ρ)(r1r2ρ
2)−1/2eitρ

2

e±i(r1±r2)ρa±(r1ρ)a±(r2ρ)dρ. (6.29)

If |t| ≤ 1, by using integration by parts, we obtain

I± . (r1r2)
−n−1

2 (1 + |r1 ± r2|)−N

∫ ∞

0

∣

∣

∣

( ∂

∂ρ

)N(

a±(r1ρ)a±(r2ρ)ϕ(ρ)e
itρ2

)∣

∣

∣
dρ

. (r1r2)
−n−1

2 (1 + |r1 ± r2|)−N .

Since r1, r2 ≥ 1/2, hence if |t| ≤ 1, we have

‖T 4
ν g‖L∞

r
n−1
1 dr1

. ‖g‖L1

r
n−1
2

dr2

. |t|−n
2 ‖g‖L1

r
n−1
2

dr2

. (6.30)

Now we consider the region |t| ≥ 1. As before, letting r̄i = ri/
√
t with i = 1, 2,

from (6.29), we write

I± = |t|−n
2

∫ ∞

0

ϕ(ρ/
√
t)(r̄1r̄2ρ

2)−
n−1
2 eiρ[ρ±(r̄1±r̄2)]a±(r̄1ρ)a±(r̄2ρ)ρ

n−1dρ

= |t|−n
2

∫ ∞

0

eiρ[ρ±r̄2)]ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ)ρ
n−1dρ,

(6.31)
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where

ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ) = ϕ(t−
1
2 ρ)(r̄1r̄2ρ

2)−
n−1
2 a±(r̄1ρ)a±(r̄2ρ). (6.32)

Therefore we obtain
∣

∣

∣

( ∂

∂ρ

)N(

ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ)
)
∣

∣

∣
. (r̄1r̄2ρ

2)−
n−1
2 ρ−N

. (1 + r1)
−n−1

2 (1 + r2)
−n−1

2 ρ−N ,

(6.33)

since ρ ∼
√
t on the support of ϕ(t−

1
2 ρ). So as before, we have

‖T 4
ν g‖L∞

r
n−1
1 dr1

. |t|−n
2 ‖g‖L1

r
n−1
2 dr2

. (6.34)

By interpolating this with L2-estimate for T 4
ν , we obtain

‖T 4
ν g‖Lq

r
n−1
1 dr1

≤ C|t|−n
2 (1− 2

q )‖g‖
Lq′

r
n−1
2

dr2

, q ≥ 2 (6.35)

Collecting the estimates on the terms T j
ν , yields (6.11) and the proof is concluded.

�

The proof of Lemma 6.3. Let ϕj and φ0 be given (1.15). Due to the fact that

ρ ∼
√
t ≥ 1, we decompose

Ĩ±(t, r̄1, r̄2) =

∫ ∞

0

eiρ(ρ±r̄2)ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ)
(

1− φ0(4r̄2ρ)
)

ρn−1dρ

+
∑

j≥1

∫ ∞

0

eiρ(ρ±r̄2)ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ)ϕj(ρ)φ0(4r̄2ρ)ρ
n−1dρ

=: Ĩ±,1 + Ĩ±,2.

(6.36)

Let us define

Φ(ρ, r̄2) = ρ(ρ± r̄2)), L = L(ρ, r̄2) = (2ρ− r̄2)
−1∂ρ.

Since the second integral on the right hand side is supported where ρ ≤ (4r̄2)
−1 and

ρ ≥ 1/2, the integrand is only nonzero when r̄2 ≤ 1/2. Hence |∂ρΦ| = 2ρ−r̄2 ≥ ρ/2.
By (6.25) and using the integration by parts, for N large enough, we obtain

Ĩ±,2 ≤
∑

j≥1

∣

∣

∣

∫ ∞

0

LN
(

eiρ(ρ±r̄2)
)

ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ)ϕj(ρ)φ0(4r̄2ρ)ρ
n−1dρ

∣

∣

∣

≤
∑

j≥1

rσ1 r
− n−1

2
2

∫

ρ∼2j
ρ−2Nρn−1dρ . rσ1 r

− n−1
2

2 ,

(6.37)

which gives the first term of (6.26). Finally we consider Ĩ±,1. We further make a
decomposition based on the size of |∂ρΦ|

Ĩ±,1 ≤
∣

∣

∣

∫ ∞

0

eiρ(ρ±r̄2)ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ)φ0(2ρ− r̄2)
(

1− φ0(4r̄2ρ)
)

ρn−1dρ
∣

∣

∣

+
∑

j≥1

∣

∣

∣

∫ ∞

0

eiρ(ρ±r̄2)ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ)ϕj(2ρ− r̄2)
(

1− φ0(4r̄2ρ)
)

ρn−1dρ
∣

∣

∣

:= Ĩ±,1< + Ĩ±,1>.

(6.38)
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Now we estimate Ĩ±,1<. If r̄2 ≤ 10, then for the integrand of Ĩ±,1< to be nonzero

we must have 1 ≤ t1/2 ∼ ρ ≤ 10, due to the supports of φ0 and ϕ(ρ/
√
t). Then

|Ĩ±,1<| . rσ1 r
− n−1

2
2

∫

ρ∼1

ρn−1dρ . rσ1 r
−n−1

2
2 ,

which is controlled by the first term of (6.26). If r̄2 ≥ 10, one has r̄2 ∼ ρ since
|2ρ− r̄2| ≤ 1. Then it gives

|Ĩ±,1<| . rσ1 r
−n−1

2
2

∫

|2ρ−r̄2|≤1

ρn−1dρ . rσ1 r
−n−1

2
2 r̄n−1

2 . rσ1
(r2
t

)

n−1
2 . (6.39)

Next we estimate Ĩ±,1>. Integrating by parts, we show by (6.25)

Ĩ±,1> .
∑

j≥1

∣

∣

∣

∫ ∞

0

LN
(

eiρ(ρ±r̄2)
)

ã±(t
− 1

2 ρ, r̄1ρ, r̄2ρ)ϕj(2ρ− r̄2)
(

1− φ0(4r̄2ρ)
)

ρn−1dρ
∣

∣

∣

. rσ1 r
− n−1

2
2

∑

j≥1

2−jN

∫

|2ρ−r̄2|∼2j
(ρ−N + 2−jN )ρn−1dρ.

(6.40)

If r̄2 ≤ 2j+1, then 1 ≤ ρ ≤ 2j+2 on the support of the integrand. Then the above
is bounded by

Ĩ±,1> . rσ1 r
− n−1

2
2

∑

j≥1

2−jN

∫

ρ≥1

ρ−N+n−1dρ . rσ1 r
−n−1

2
2 ,

which is accepted by the first term of (6.26). Otherwise, r̄2 ≥ 2j+1 =⇒ ρ ∼ r̄2,
then the above is bounded by

Ĩ±,1> . rσ1 r
− n−1

2
2

∑

j≥1

2−2jN

∫

|2ρ−r̄2|∼2j
ρn−1dρ . rσ1 r

− n−1
2

2 r̄n−1
2 . rσ1

(r2
t

)
n−1
2 .

(6.41)
Note that we always have ρ ∼

√
t due to the factor ϕ(ρ/

√
t), if r̄2 ∼ ρ, then

r̄2 = r2/
√
t ∼

√
t =⇒ r2 ∼ t. Hence, from (6.39) and (6.41), it gives the second

term of (6.26). We remark that this term is supported on the set A := {r2 ∼ t}.
�

7. The decay estimates for the half-wave propagator

In this section, we mainly prove the decay estimate (1.18). Instead, we mainly
prove the following frequency localized results:

Proposition 7.1. Let ϕ be in (1.15) and α = ν0 − (n− 2)/2. If α ≥ 0, then there

exists a constant C such that
∥

∥ϕ(2−j
√
H)eit

√
Hf

∥

∥

L∞(X)

≤ C2jn
(

1 + 2j|t|
)−n−1

2 ‖ϕ(2−j
√
H)f‖L1(X).

(7.1)

If −(n− 2)/2 < α < 0, for q ∈ [2, q(α)), then
∥

∥ϕ(2−j
√
H)eit

√
Hf

∥

∥

Lq(X)

≤ C2jn(1−
2
q )
(

1 + 2j|t|
)−n−1

2 (1− 2
q )‖ϕ(2−j

√
H)f‖Lq′ (X).

(7.2)
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Indeed, if we could prove (7.1), then (1.18) follows from
∥

∥eit
√
Hf

∥

∥

L∞(X)
≤

∑

j∈Z

∥

∥ϕ(2−j
√
H)eit

√
Hf

∥

∥

L∞(X)

≤ C|t|−n−1
2

∑

j∈Z

2
n+1
2 j‖ϕ(2−j

√
H)f‖L1(X) ≤ C|t|−n−1

2 ‖f‖
Ḃ

n+1
2

1,1 (X)
.

If −(n−2)/2 < α < 0, the estimate (7.2) and the Littlewood-Paley square function
estimate (5.3) show (1.19)

∥

∥eit
√
Hf

∥

∥

2

Lq(X)
≤

∑

j∈Z

∥

∥ϕ(2−j
√
H)eit

√
Hf

∥

∥

2

Lq(X)

≤ C|t|−(n−1)(1− 2
q )
∑

j∈Z

2j(n+1)(1− 2
q )‖ϕ(2−j

√
H)f‖2

Lq′ (X)

≤ C|t|−(n−1)(1− 2
q )‖f‖2

Ḃ
n+1
2

(1− 2
q
)

q′,2
(X)

.

The rest of this section is to prove this proposition. For this purpose, we follow
the argument of [8, 49], in which we need the subordination formula and Bernstein
inequalities associated with the operator H . We state them here for convenience
but omit the proof. The following proposition about the subordination formula are
from [32, Proposition 4.1] and [8, Proposition 2.2], and we use the one formulated
in [49].

Proposition 7.2. If ϕ(λ) ∈ C∞
c (R) is supported in [ 12 , 2], then, for all j ∈ Z, t, x >

0 with 2jt ≥ 1, we can write

ϕ(2−j
√
x)eit

√
x

= ρ
( tx

2j
, 2jt

)

+ ϕ(2−j
√
x)
(

2jt
)

1
2

∫ ∞

0

χ(s, 2jt)e
i2jt
4s ei2

−jtsx ds,
(7.3)

where ρ(s, τ) ∈ S(R × R) is a Schwartz function and and χ ∈ C∞(R × R) with

suppχ(·, τ) ⊆ [ 1
16 , 4] such that

sup
τ∈R

∣

∣∂αs ∂
β
τ χ(s, τ)

∣

∣ .α,β (1 + |s|)−α, ∀α, β ≥ 0. (7.4)

If this is proven, then by the spectral theory for the non-negative self-adjoint
operator H , we can have the representation of the microlocalized half-wave propa-
gator

ϕ(2−j
√
H)eit

√
H

= ρ
(tH

2j
, 2jt

)

+ ϕ(2−j
√
H)

(

2jt
)

1
2

∫ ∞

0

χ(s, 2jt)e
i2jt
4s ei2

−jtsH ds.
(7.5)

The proof of Proposition 7.1 . We estimate the microlocalized half-wave propaga-
tor

∥

∥ϕ(2−j
√
H)eit

√
Hf

∥

∥

L∞(X)

by considering two cases that: |t|2j ≥ 1 and |t|2j ≤ 1. In the following argument,
as before, we can choose ϕ̃ ∈ C∞

c ((0,+∞)) such that ϕ̃(λ) = 1 if λ ∈ suppϕ and
ϕ̃ϕ = ϕ. Since ϕ̃ has the same property of ϕ, without confusion, we drop off the
tilde above ϕ for brief. Without loss of generality, in the following argument, we
assume t > 0.
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We first consider the case that α ≥ 0.

Case 1: t2j . 1. By the spectral theorem, similarly as (6.1), one has the
L2-estimate

‖eit
√
H‖L2(X)→L2(X) ≤ C.

Together with this, we use the Bernstein inequality (5.2) to prove

∥

∥ϕ(2−j
√
H)eit

√
Hf

∥

∥

L∞(X)

. 2
nj
2 ‖eit

√
Hϕ(2−j

√
H)f‖L2(X)

. 2
nj
2 ‖ϕ(2−j

√
H)f‖L2(X) . 2nj‖ϕ(2−j

√
H)f‖L1(X).

In this case 0 < t ≤ 2−j, we have

∥

∥ϕ(2−j
√
H)eit

√
Hf

∥

∥

L∞(X)

. 2nj(1 + 2jt)−N‖ϕ(2−j
√
H)f‖L1(X), ∀N ≥ 0,

(7.6)

which shows (7.1).

Case 2: t2j ≥ 1. In this case, we can use (7.5) to obtain the microlocalized
half-wave propagator

ϕ(2−j
√
H)eit

√
H

= ρ
(tH

2j
, 2jt

)

+ ϕ(2−j
√
H)

(

2jt
)

1
2

∫ ∞

0

χ(s, 2jt)e
i2jt
4s ei2

−jtsH ds.

We first use the spectral theorem and the Bernstein inequality again to estimate

∥

∥ϕ(2−j
√
H)ρ

( tH

2j
, 2jt

)

f
∥

∥

L∞(X)
.

Indeed, since ρ ∈ S(R× R), then

∥

∥ρ
( tH

2j
, 2jt

)∥

∥

L2→L2 ≤ C(1 + 2jt)−N , ∀N ≥ 0.

Therefore, we use the Bernstein inequality in Proposition 5.1 and the spectral
theorem to show

∥

∥ϕ(2−j
√
H)ρ

( tH

2j
, 2jt

)

f
∥

∥

L∞(X)
. 2

nj
2

∥

∥

∥
ρ
( tH

2j
, 2jt

)

ϕ(2−j
√
H)f

∥

∥

∥

L2(X)

. 2
nj
2 (1 + 2jt)−N

∥

∥

∥
ϕ(2−j

√
H)f

∥

∥

∥

L2(X)
. 2nj(1 + 2jt)−N

∥

∥

∥
ϕ(2−j

√
H)f

∥

∥

∥

L1(X)
.

If ν0 ≥ n−2
2 i.e. α ≥ 0, we use the dispersive estimates of Schrödinger propagator

(see (1.10))

∥

∥eitHf
∥

∥

L∞(X)
≤ C|t|−n

2

∥

∥f
∥

∥

L1X)
, t 6= 0,

to estimate

∥

∥ϕ(2−j
√
H)

(

2jt
)

1
2

∫ ∞

0

χ(s, 2jt)e
i2j t
4s ei2

−jtsHf ds
∥

∥

L∞(X)
.
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For t 6= 0, then we obtain

∥

∥ϕ(2−j
√
H)

(

2jt
)

1
2

∫ ∞

0

χ(s, 2jt)e
i2jt
4s ei2

−jtsHf ds
∥

∥

L∞(X)

.
(

2jt
)

1
2

∫ ∞

0

χ(s, 2jt)|2−jts|−n
2 ds

∥

∥ϕ(2−j
√
H)f

∥

∥

L1(X)

.
(

2jt
)

1
2 (2−jt)−

n
2

∫ ∞

0

χ(s, 2jt) ds
∥

∥ϕ(2−j
√
H)f

∥

∥

L1(X)

. 2nj
(

2jt
)−n−1

2
∥

∥ϕ(2−j
√
H)f

∥

∥

L1(X)
. 2nj

(

1 + 2jt
)−n−1

2
∥

∥ϕ(2−j
√
H)f

∥

∥

L1(X)

due to the fact that s ∈ [ 1
16 , 4] on the support of χ.

For the case that −(n − 2)/2 < α < 0, we repeat the above argument to prove

(7.2) by replacing L∞ by Lq and L1 by Lq′ for q ∈ [2, q(α)). It worths to mention

that the Lq′ − Lq estimate (1.14) is used to replace (1.10) in this case.
Therefore, we have completed the proof of Proposition 7.1.

�
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[51] S. Zelditch, Eigenfunctions of the Laplacian on a Riemannian manifold. CBMS Regional

Conference Series in Mathematics, 125.
[52] J. Zhang, Resolvent and spectral measure for Schrodinger operators on flat Euclidean cones,

J. Funct. Anal. 282(2022), 109311.
[53] J. Zhang and J. Zheng, Global-in-time Strichartz estimates and cubic Schrödinger equation

in a conical singular space, arXiv:1702.05813v3.
[54] J. Zhang and J. Zheng, Strichartz estimates and wave equation in a conic singular space,

Math. Ann., 376(2020),525–581.
[55] J. Zhang and J. Zheng, Global-in-time Strichartz estimate on scattering manifold, Commu.

in PDE, 42(2017), 1962-1981.

Mathematical Sciences Institute, the Australian National University;

Email address: Qiuye.Jia@anu.edu.au;

Department of Mathematics, Beijing Institute of Technology, Beijing 100081;

Email address: zhang junyong@bit.edu.cn;

http://arxiv.org/abs/2309.07649
http://arxiv.org/abs/1702.05813

	1. Introduction and main results
	2. The construction of the Schrödinger propagator
	3. The parametrix construction
	4. The proof of Theorem 1.1 
	4.1. Part I: The case that r1r2|t|1
	4.2. Part II: The case that r1r2|t|1

	5. The Littlewood-Paley theory  associated with the Schrödinger operator H
	6. The decay estimates for the Schrödinger propagator
	7. The decay estimates for the half-wave propagator
	References

