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ALMOST-FUCHSIAN REPRESENTATIONS IN PU(2, 1)

SAMUEL BRONSTEIN

Abstract. In this paper, we study nonmaximal representations of surface groups in PU(2, 1).
We show the existence in genus large enough, of convex-cocompact representations of non-
maximal Toledo invariant admitting a unique equivariant minimal surface, which is holo-
morphic and of second fundamental form arbitrarily small. These examples can be obtained
for any Toledo invariant of the form 2− 2g + 2

3
d, provided g is large compared to d. When

d is not divisible by 3, this yields examples of convex-cocompact representations in PU(2, 1)
which do not lift to SU(2, 1).
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1. Introduction

Let Σ be a closed oriented surface of genus g at least 2 endowed with a hyperbolic metric.
Let G = PU(2, 1) the isometry group of the complex hyperbolic plane. Xia [Xia00] counted
the connected components of the character variety of π1Σ into PU(2, 1). He proved that
there are 6g− 5 connected components, indexed by the Toledo invariant τ(ρ) which belongs
to 2

3
Z and satisfies a Milnor–Wood type inequality:

(1.1) 2− 2g ≤ τ(ρ) ≤ 2g − 2 .

Date: 2023.
1

http://arxiv.org/abs/2411.16261v1


2 SAMUEL BRONSTEIN

When |τ(ρ)| = 2g−2, the representation is maximal, and preserves a totally geodesic copy of
H1

C
in H2

C
, cf Toledo [Tol79]. This has later been generalized to representations in any Her-

mitian group, see Burger–Iozzi–Wienhard and Burger–Iozzi–Labourie–Wienhard [BIW03,
BILW05, BIW10]. Here we only deal with the case of PU(2, 1). Among those representations,
an important family is those admitting equivariant holomorphic maps. These representations
are weight 2 Hodge variation structures, exist provided the Toledo invariant is nonpositive,
and have been parametrized in Loftin–McIntosh [LM19]. We lack of a criterion, or a de-
scription in general of which are those holomorphic maps are embeddings. In this regard, a
sufficient condition can be written in term of the second fundamental form. This criterion
comes originally for Uhlenbeck [Uhl83], and has been considered for Lagrangian immersions
by Loftin–McIntosh [LM13], and can also be applied to holomorphic maps (see [Bro23b]).
Namely, if the second fundamental form of a complete holomorphic immersion is bounded
by η < 1, then it is properly embedded in the complex hyperbolic space. A representa-
tion admitting such an equivariant immersion will then always be convex-cocompact, so in
particular discrete and faithful. We call these representations almost-fuchsian. Our main
result is the existence of almost-fuchsian representations admitting holomorphic equivariant
immersions with nonmaximal Toledo invariant:

Theorem (A). Let d > 0 and η > 0. There is a genus g0 such that for every closed surface of

genus g > g0, there exists a representation ρ : π1(Σg) → PU(2, 1) almost-fuchsian, admitting

an equivariant holomorphic map f , verifying:

sup ‖IIf‖2 < η and Tol(ρ) = 2− 2g +
2

3
d .

This yields examples of nonmaximal representations which are nonetheless convex-cocompact.
Goldman–Kapovich–Leeb [GKL01] have constructed examples of convex-cocompact rep-
resentations with any integer Toledo invariant, but this is the first example of convex-
cocompact representation in PU(2, 1) which have non-integer Toledo invariant, hence don’t
lift to SU(2, 1).

Corollary 1.1. Provided the genus g is large enough, there are convex-cocompact represen-

tations of a genus g surface in PU(2, 1) which do not lift to SU(2, 1).

Another application is the construction of holomorphic immersions with small second
fundamental form, yet which are not totally geodesic. These holomorphic maps bound a
quasicircle in ∂∞H

2
C
, which is of Hausdorff dimension arbitrarily close to 1, if η is chosen

close to zero.

Corollary 1.2. For any η > 0, there is a holomorphic embedding H1
C
→ H2

C
whose second

fundamental form verifies sup ‖IIf‖2 < η, yet f is not totally geodesic.

This corollary hints at the analogous question for holomorphic embeddings Hk
C
→ H2k

C
.

Cao–Mok [CM90] have proven that any holomorphic immersion from Hn
C
to Hm

C
is totally

geodesic if m < 2n. Koziarz–Maubon [KM17] have proven the rigidity of maximal represen-
tation for higher dimensional complex hyperbolic lattices, yet the question remains open for
eventual nonmaximal representations of lattices of PU(k, 1), k ≥ 2.

1.1. Comparison with the case of SO(4, 1). In the paper [Bro23a], the author proved
the existence of almost-fuchsian representations in SO(4, 1), whose corresponding hyperbolic
4-manifold is a degree 1 line bundle, and admitting an equivariant superminimal immersion
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f with small second fundamental form. While this shares some similarities with the case
studied here, the argument presented here is more synthetic and does not rely on a study
of the Moser–Trudinger inequality, enabling to deal directly with degree d disc bundles
rather than degree 1. We also bring a sufficient non-asymptotic criterion for the existence
of almost-fuchsian equivariant immersions, which was not discussed in the H4-case. The
methods applied here actually also apply to H4, and show the existence of almost-Fuchsian
representations admitting superminimal equivariant embeddings, such that the uniformized
hyperbolic 4-manifold is diffeomorphic to a degree d disc bundle over the surface, as is
discussed in the appendix.

1.2. Some Context: Complex hyperbolic geometry and almost-Fuchsian repre-

sentations.

1.2.1. convex-cocompact representations in PU(2, 1). Xia [Xia00] has counted the connected
components of the character variety of a surface group in PU(2, 1). He showed that they are
indexed by their Toledo invariant, denoted Tol, which belongs to 2

3
Z∩ [2−2g, 2g−2]. Among

these representations, a special family is that of convex-cocompact representations. These are
discrete and faithful representations, leaving invariant a convex subset of H2

C
on which they

act cocompactly. These representations all admit equivariant minimal surfaces. In [GKL01],
Goldman–Kapovich–Leeb have showed that for all components with Toledo invariant in
Z∩ [2g− 2, 2g− 2], there are convex-cocompact representations with this prescribed Toledo
invariant. They also make a construction for noninteger Toledo invariant, but it doesn’t lead
to faithful representations. Note that an integer Toledo invariant corresponds to when the
representation lifts to SU(2, 1). This lead Loftin–McIntosh [LM19] to ask the question

Question 1.3. Are there convex-cocompact representations in PU(2, 1) which do not lift to
SU(2, 1) ?

We bring a positive answer to that question, at least when the genus of the surface is
large enough. It remains unclear yet if every component of the character variety contains
convex-cocompact representations. Note that from results of Tholozan–Toulisse [TT21], the
analogous question is not true for the punctured sphere case.

1.2.2. almost-Fuchsian representations. Almost-Fuchsian representations were first studied
by Uhlenbeck [Uhl83]. It is there defined as a representation from a surface group into
PSL(2,C) admitting an equivariant minimal surface in H3 whose principal curvatures are
uniformly in (−1, 1). She then proceeded to show that such a representation is always
kleinian, i.e. discrete and faithful, and that the equivariant minimal surface is unique.
Since then, almost-fuchsian representations have had a rich history,[Eps86, GHW10, Sep16,
EES22], with applications to several important geometric problems, such as the counting
of minimal surfaces [KM12, KW21, CMN22, Jia22, LN24] or to the foliation problem of
hyperbolic 3-manifolds [CMS23]. A natural question we are interested in is the following:

Question 1.4. Which topological manifolds can be obtained as ρ\X for ρ : π1S → Isom(X)
an almost-fuchsian representation ?

It turns out, when X is a rank 1 symmetric space, that such a manifold is always dif-
feomorphic to the total space of a vector bundle over the surface S. When X is H

3, the
3-manifold is always S×R. However, in [Bro23a], we showed that if the surface S has genus
large enough, the degree 1 disc bundle over S can be obtained as the quotient of H4 by
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an almost-Fuchsian representation. Here we will show a slightly more general statement in
PU(2, 1), obtaining degree 1− g + d disc bundles over S, provided g is large enough.

1.2.3. holomorphic equivariant immersions in PU(2, 1). From the non-abelian Hodge cor-
respondence, there is an identification betweeen equivariant minimal surfaces in H2

C and
polystable PU(2, 1)-Higgs bundles whose Higgs field ϕ satisfies Tr(ϕ2) = 0. Hence there is a
C∗-action on that moduli space defined by z ·(E , ϕ) = (E , zϕ). Simpson [Sim91] characterized
the fixed points of that action as complex Hodge variation structures. In the case of PU(2, 1),
they come in several flavors, described by Loftin–McIntosh [LM19]. As these representations
are assumed to have special geometric significance, it is natural to look at almost-Fuchsian
representations in them, in the same way as we did in [Bro23a]. Loftin–McIntosh [LM13]
already looked at Lagrangian almost-Fuchsian representations, corresponding to weight 3
Hodge variation structures, and these are all Toledo 0 representations and are deformation
of discrete and faithful representations in PO(2, 1) →֒ PU(2, 1). A weight 2 Hodge variation
would correspond to a holomorphic almost-Fuchsian representation, that is a representation
admit a holomorphic or anti-holomorphic equivariant minimal surface. From the results
of Toledo [Tol79], we cannot deform representations in PU(1, 1) →֒ PU(2, 1) to obtain irre-
ducible representations. So we have to look at nonmaximal representations, and these cannot
be deformations of representations admitting a totally geodesic equivariant immersion. Not
that every connected component of the character variety contains a weight 2 or a weight 3
Hodge variation structure.

1.3. Acknowledgments. The author is thankful for the support of the Max Planck Institut
for Mathematics in the Sciences (MPIMIS) in his research. He is also thankful to Nicolas
Tholozan and Andrea Seppi for their help and insights over this topic.

2. Holomorphic immersions in the complex hyperbolic plane

2.1. The curvature equations. Let S be a Riemann surface, not necessarily compact,

and consider f : S̃ → H2
C
be a holomorphic immersion equivariant for some representation

ρ : π1S → Isom(H2
C
) = PU(2, 1). Then the first and second fundamental form satisfy some

relations, which we could call ”holomorphic Gauss–Codazzi equations”. We present here
an analytic way of understanding holomorphic curves in H2

C
. Note first that it is a classical

result that the induced metric on a holomorphic submanifold will be negatively curved, hence

S̃ ≈ H2 is biholomorphic to the Poincaré disc. We will denote by ghyp its hyperbolic metric.
Let L be a holomorphic line bundle over S. Consider gL a metric on L and λ ∈ R some
constant such that F (gL) = λghyp;

Theorem 2.1. Let β ∈ H0(K3L−1), and u, v : S → R satisfying

(2.1)

{
∆u = 2e2u − 1 + e−4ue2v|β|2
∆v = 3e2u − λ

Then there is a holomorphic immersion S̃ → H2
C
, equivariant for some representation π1S →

PU(2, 1) satisfying:

(1) The induced metric is a lift of e−2ughyp.

(2) The complexification of the normal bundle to f is the universal cover of KL−1, its

induced metric is (e−2ughyp)
∗ ⊗ (e2vgL)

∗

(3) The (2, 0)-part of the second fundamental form of f is a lift of β.
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Conversely, for any holomorphic equivariant immersion S̃ → H2
C
, these equations are satis-

fied for the induced metrics on the tangent and normal vector bundles.

Proof. Assume that (u, v, β) satisfy the aforementioned properties. Consider the vector
bundle E = K−1 ⊕KL−1 ⊕O, endowed with the metric e−2ughyp ⊕ (e−2ughyp)

∗)(e2vgL)
∗ ⊕ 1,

1 denoting the standard flat metric on O. The the following connection on E is projectively
flat:

(2.2) ∇ =




∇ −β∗ 1
β ∇ 0
1∗ 0 ∇




Indeed, we just develop the following identities:

F (K−1, e−2ughyp) = e−2u(−∆u− 1)(−iω)(2.3)

F (L, e2vgL) = e−2u(−∆v + λ)(−iω)(2.4)

ββ∗ = e−6ue2v|β|2(−iω)(2.5)

11∗ = (−iω)(2.6)

And then it comes:

(2.7) F (E,∇) =




F (K−1)− β∗β + 11∗

β∗β + F (KL−1)
F (O) + 1∗1



 = −11∗ ⊗ 1End(E) .

Hence (E,∇) is a projectively flat bundle, which reduces to a PU(2, 1)-principal bundle
preserving the bilinear form B = 1 ⊕ 1 ⊕ −1 and the previously mentioned metric. Also,
since β is holomorphic, we get that the metric is harmonic, so corresponds to a harmonic

map f : S̃ → H2
C
whose (1, 0)-part of the differential is given by 1 ∈ H0(KHom(O, K−1)).

In particular, ∂f = 0 and f is a holomorphic immersion, equivariant under the holonomy
representation π1S → PU(2, 1). Finally, its normal bundle is given by Hom(O, KL−1) =
KL−1 and the complexification of the second fundamental form has no (1, 1)-part, its (2, 0)-
part is given by β ∈ H0(K3L−1. �

Remark (Comparison with the Higgs bundles parametrization). (1) With the given no-
tations, the Higgs bundle (E, ∂,Φ) will satisfy the projective Yang-Mills equations,
where Φ = 1 ∈ H0(KHom(O, K−1) and

(2.8) ∂ =




∂ −β∗ 0
0 ∂ 0
0 0 ∂



 .

In that case, the Donaldson–Uhlenbeck–Yau proof of the non-abelian Hodge corre-
spondence states that the existence of a solution to the projective Yang–Mills equa-
tions is equivalent to the poly-stability of (E, ∂,Φ). This leads to a parametrization
of the space of equivariant holomorphic maps, and even of the equivariant minimal
surfaces in H2

C
, as it was made in Loftin–McIntosh [LM19]. Here our parametriza-

tion is really in terms of germs of first and second fundamental form, and we have
no general result of existence. However, we will be able in some cases to explicitly
bound the second fundamental form and get some nice geometric properties.
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(2) A priori, there is no reason to consider only the case when u and v are bounded.
However, we will assume it to be the case, as by results of Ahlfors and Yau, u

bounded corresponds to completeness of the induced metric, and when v is assumed
bounded, the λ such that F (L, gL) = λ(−iω) is uniquely defined. Now in general,
we don’t know of the geometric significance of the existence of λ and gL such that
the conformal factor e2v is bounded, and whether it necessarily holds for complete
holomorphic immersions in H2

C
.

(3) When Σ is a closed Riemann surface of genus g, then λ = deg(L)
2g−2

can take only
discretely many values, and is related to the Toledo invariant of the holonomy repre-
sentation by the formula Tol = −2

3
deg(L). Also, we see that the presented bundle is

projectively equivalent to a flat SU(2, 1)-bundle if and only if L is of degree divisible
by 3, which is equivalent to the Toledo invariant being an integer.

2.2. Stability conditions from the associated Higgs bundle. Let (E,∇, H) denote
our projectively flat bundle with H = hK−1 ⊕ hKL−1 ⊕ 1 the hermitian metric involved.
Decomposing our connection as a sum of H-unitary and self-adjoint part, we get:

(2.9) ∇E =




∂ 0 0
β ∂ 0
0 0 ∂


+




∂ −β∗ 0
0 ∂ 0
0 0 ∂


+




0 0 1
0 0 0
0 0 0


+




0 0 0
0 0 0
1∗ 0 0




Denoting this decomposition ∇ = ∂+ ∂+ θ+ θ∗, (E, ∂, θ) is the corresponding Higgs bundle
to the harmonic metric H . (The harmonicity of H is encapsulated in ∂θ = 0).

Proposition 2.2. Assume that β∗ 6= 0. The Higgs bundle (E, ∂, θ) is stable if and only if

0 < deg(L) < 3g − 3.

Proof. Because of the shape of the Higgs field, invariant line subbundles are the ones in the
kernel of the Higgs field, so subbundles of K−1 ⊕KL−1. The only holomorphic subbundle
in the kernel is K−1. It is a holomorphic subbundle of slope 2 − 2g, while the slope of E is
−1
3
deg(L). As such the first stability condition is:

(2.10) deg(L) ≤ 6g − 6 .

A rank 2 subbundle θ-invariant is either K−1 ⊕KL−1, or the direct sum of a line subbundle
of K−1 ⊕KL−1 and of O. Among these, the only holomorphic subbundles are K−1 ⊕KL−1

and K−1 ⊕O. The Higgs bundle is then stable if and only if:

(2.11)

{
−1

2
deg(L) < −1

3
deg(L)

1− g < −1
3
deg(L)

Hence it is stable if and only if 0 < deg(L) < 3g − 3. �

Remark. (1) When deg(L) = 3g − 3, the representation is maximal, and K−1 ⊕ O is
an invariant Higgs bundle of same slope. Hence the only possibility to obtain a
polystable projective Higgs bundle is when β = 0. This is symptomatic of the rigidity
of maximal representations, which are all valued in a copy of PU(1, 1) in PU(2, 1).
This statement is due to Toledo,[Tol79].

(2) When deg(L) = 0, there is no representation admitting an equivariant holomorphic
immersion. However, there is another special family of immersions to consider, called
Lagrangian immersions. Almost-fuchsian Lagrangian immersions were already stud-
ied by Loftin–McIntosh [LM13]. It turns out their study is quite similar to the study
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of minimal surfaces in H3, as it boils down to the study of the Donaldson functional,
see Huang–Lucia–Tarantello [HLT23].

3. Almost-Fuchsian immersions in the complex hyperbolic plane

In this section we study a specific class of representations in PU(2, 1), called almost-

Fuchsian. Loftin and McIntosh already considered the specific notion of Lagrangian almost-
Fuchsian immersions, but most of the story holds without considering the Lagrangian as-
sumption. Let X denote a surface. Denote by gH2

C
the symmetric metric on H

2
C
, normalized

so that the sectional curvature of H2
C is bounded between −4 and −1.

Definition 3.1. LetX be a surface. An immersion f : X → H2
C
is said to be almost-Fuchsian

if f ∗gH2

C
is complete and sup |IIf | < 1.

The main theorem is an application of [Bro23b].

Theorem 3.2. Let f : X → H2
C
be an almost-Fuchsian immersion. Then X is diffeomorphic

to a disc, (X, f ∗gH2

C
) is quasi-isometric to the hyperbolic plane H, f is an embedding, a quasi-

isometric embedding H → H2
C
and the exponential map of f defines a diffeomorphism

(3.1) expf : NfX ≈ H
2
C
.

As a corollary, we get a sufficient criterion for convex-cocompactness of a representation.

Corollary 3.3. Let S be a closed surface, and ρ : π1S → PU(2, 1) be a representation

admitting an equivariant almost-Fuchsian immersion. Then ρ is convex-cocompact.

Note that the completeness assumption on f is redundant with the equivariance, since S

is assumed compact. The immersion assumption on f cannot be weakened, as the examples
of nonfuchsian representations preserving a copy of PU(1, 1) in PU(2, 1). Those may admit
a totally geodesic equivariant holomorphic map, but it will not be an immersion, and the
representation cannot be convex-cocompact.

When that equivariant almost-Fuchsian immersion can be made minimal, we say the
representation is almost-Fuchsian:

Definition 3.4. A representation ρ : π1S → PU(2, 1) is said to be almost-Fuchsian if it

admits an equivariant, minimal, almost-Fuchsian immersion f : S̃ → H2
C
.

Almost-Fuchsian representations admit a unique equivariant minimal surface. This is
a classical result from Uhlenbeck [Uhl83] for Kleinian representations, see also El-Emam–
Seppi [EES22], here we deduce it from Theorem 1.3. of [Bro23b].

Theorem 3.5. Let ρ : π1S → PU(2, 1) be an almost-Fuchsian representation. Denote by

f the equivariant minimal almost-Fuchsian immersion f Then the image of f is the unique

ρ-equivariant minimal surface in H
2
C
.

3.1. Constraints on almost-fuchsian representations. As far as we know, a character-
ization of the connected components containing almost-Fuchsian representations does not
exist, neither does one of the connected components containing an almost-Fuchsian repre-
sentation with holomorphic equivariant map, which is the topic here. To deal with almost-
fuchsian representations, it will be useful to have a scalar interpretation of the curvature
equations, requiring some notations, that will be used throughout this paper.
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Notation 3.6. Let S denote a Riemann surface of genus g, with hyperbolic metric h. We
denote by ∆ its Laplace–Beltrami operator, and by ω the hyperbolic volume form. For any
Hermitian line bundle L over S of nonzero degree, we denote by hL its uniformizing metric,
that is the unique metric whose curvature form satisfies:

(3.2)
i

2π
F (L, hL) =

degL

2g − 2
ω .

For α a holomorphic section of L, we denote by |α|2 the square of its pointwise norm with
regard to the metric hL.

The curvature equations of an almost-fuchsian holomorphic immersion can be re-written
as an additional boundedness assumption on our curvature equations:

Theorem 3.7. Let L be a Hermitian line bundle over Σg, and u, v : Σg → R be smooth

solutions of

(3.3)

{
∆u = 2e2u − 1 + e−4ue6v|β|2
∆v = deg(L)

2g−2
− 3e2u

with the additional control

(3.4) sup e−6ue2v|β|2 ≤ η < 1 .

Then there is an almost-fuchsian representation ρ : π1Σg → PU(2, 1) with equivariant holo-

morphic map f : Σ̃g → H2
C

whose second fundamental form is a lift of β. The Toledo

invariant of the representation ρ depends on the degree of L in the following way:

(3.5) Tol(ρ) = −2

3
deg(L) .

Proof. First we apply the fundamental theorem for holomorphic immersions, Theorem 2.1.

This yields an equivariant holomorphic immersion f : Σ̃g → H2
C
, whose second fundamental

form is a lift of β. Then by construction e−6ue2v|β| is the norm of the second fundamental
form for the induced metric by f , hence it being less than η < 1 implies that f is an almost-
fuchsian immersion, and the representation ρ for which it is equivariant is almost-fuchsian.

It only remains to compute the Toledo invariant of ρ. This can be done directly from the
expression of the projectively flat bundle, which as a PU(2, 1)-bundle splits as U ⊕ V with
U = K ⊕KL−1 and V = O. Hence the standard expression of the Toledo invariant (see for
instance [BGPG03]).

Tol(ρ) =
2

3
(deg(U)− 2 deg(V)) = −2

3
deg(L) .

�

Almost-fuchsian representations with equivariant holomorphic maps can appear only when
the Toledo invariant is close to being maximal, as the following Proposition makes precise:

Proposition 3.8. Let ρ : π1Σg → PU(2, 1) be an almost-Fuchsian representation admitting

an equivariant holomorphic map f . Then the Toledo invariant of ρ satisfies

2− 2g ≤ Tol(ρ) <
4− 4g

3
.
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Proof. Let ρ : π1Σg → PU(2, 1) denote such a representation. With the previously introduced
notations, there are u,v solutions of

{
∆u = 2e2u − 1 + e−4ue2v|β|2
∆v = deg(L)

2g−2
− 3e2u

Because it is almost-Fuchsian, we know that e−6ue2v|β|2. This allows us to get the following
estimate on the volume of the induced metric:

0 = 2

ˆ

Σ

e2udVol(g)−2π(2g−2)+

ˆ

Σ

e−4ue2v|β|2dVol(g) ≤ 2

ˆ

Σ

e2udVol(g)−2π(2g−2)+

ˆ

Σ

e2udVol(g) .

In other words,

2π(2g − 2) ≤ 3

ˆ

Σ

e2udVol(g) .

However, integrating the second equation yields:

0 = 2π deg(L)− 3

ˆ

Σ

e2udVol(g) .

Combining them, this implies that

deg(L) ≥ 2g − 2

Recall that Tol(ρ) = −2
3
deg(L), hence the desired inequality. It remains to check the

inequality case. If deg(L) = 2g − 2, then it forces the pointwise equality e−6ue2v|β|2 = 1,
which is impossible since β must admit zeroes. Hence the strict inequality. �

4. The curvature equations of holomorphic immersions

We present here some analysis of the curvature equations, necessary for the existence
theorems we will prove after.

4.1. The Gauss Equation of a holomorphic immersion. Let f : H → H2
C
be a holo-

morphic immersion. With the notations of the previous section, the curvature of the induced
metric satisfies an equation of the type:

(4.1) ∆u = 2e2u − 1 + e−4uf .

where f is a positive function. This equation can be solved when f is small enough, thanks
to the sub- and supersolution method.

Proposition 4.1. Let α > 0, η ∈ (0, 1) and f be a α-Hölder function on H satisfying:

(4.2) 0 ≤ f ≤ η

(2 + η)3
.

Then there is a unique C2-regular solution u to Equation 4.1 satisfying

(4.3) e−6uf ≤ η .

Furthermore, it satisfies the estimates

− ln(2 + η)

2
≤ u ≤ − ln(2)

2
(4.4)

|∆u|∞ ≤ η

2 + η
(4.5)
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Proof. The constant function − ln 2
2

is a supersolution to equation 4.1. Because f ≤ η

(2+η)3
,

one can check that the constant function − ln(2+η)
2

is a subsolution to the same equation. By
the sub-supersolution method, there exists a solution u to GaussEq satisfying

− ln(2 + η)

2
≤ u ≤ − ln(2)

2
.

In particular, it verifies e−6uf ≤ η and the other controls claimed.
It remains to prove uniqueness of such a function. If u and v are both C2-regular solutions

of the stated problem, Then w = u− v satisfies the inequality:

∆w ≥ 2e2vw − fe−4vw .

So in particular,

∆w ≥ ηe2vw .

Now w is assumed bounded, so applying the Omori–Yau maximum principle, we deduce that

w ≥ 0

Interchange the roles of u and v, and one gets w ≤ 0. Hence w = 0 and u = v, as claimed. �

By the elliptic regularity principles, solving this equation yields a continuous operator
F : U ⊂ C0,α(H) → C2,α(H).

Definition 4.2. Let U be the following subset of C2,α(H)× C0,α(H):

(4.6) U = {(u, f) : f ≥ 0, ,∆u = 2e2u − 1 + e−4uf, sup e−6uf < 1} .
Proposition 4.3. The map Φ : U → C0,α(H), defined by Φ(u, f) = f is a homeomorphism

onto its image.

Proof. We have already proven that Φ is injective. It only remains to check that Φ is a local
homeomorphism. Let F be the functional defined on the Banach space C2,α(H)× C0,α(H):

F(u, f) = −∆u + 2e2u − 1 + e−4uf .

Then its partial derivative has the explicit expression:

∂uF(u, f)u̇ = −∆u̇+ 4e2u(1− e−6uf)u̇ = Lu̇

We claim that, when (u, f) belongs to U , L is a linear isomorphism between C2,α(H) and
C0,α(H).

First, L is injective: If Lu̇ = 0, then u̇ is bounded and because 1−e−6uf > 0, an application
of Omori–Yau’s maximum principle shows that u̇ = 0.

L is also surjective. Let w ∈ C0,α(H). Choose z0 ∈ H and let Br(z0) denote the open ball
of hyperbolic radius r around z0. Because 1− e−6uf > 0, the problem Lv = w can be solved
in any compact set, cf Gilbarg–Trudinger [GT01], Theorem 6.8.. Hence for every r > 0 there
exists vr ∈ C

2,α
0 (Br(z0)) such that Lvr = w|Br(z0). Applying the Schauder estimates to L

enables to state the following: There is C > 0 such that, for any s > r + 1,

‖vs‖C2,α(Br(z0)) ≤ C(‖vs‖C0 + ‖Lvs‖C0,α)

Again, from the Omori–Yau maximum principle we show that

‖vs‖C0 ≤ 2 + η

4η
‖Lvs‖C0
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Hence we deduce that, provided s > r + 1:

‖vs‖C2,α(Br(z0)) ≤ C(1 +
2 + η

4η
)‖w‖C0,α .

Applying the Arzela–Ascoli compactness principle, we get a subsequence of vr which con-
verges on every compact set in the C2,β-topology (β < α) towards some limit v ∈ C2,α(H).
This limit function then necessarily verifies

Lv = w .

So we have proven that L is bijective. By the closed graph theorem, L is then a linear
isomorphism, hence ∂uF is invertible. Applying the implicit function theorem, this directly
shows that Φ is a local homeomorphism, as desired. �

Study of a ray of solutions. Here we consider a ray of solutions (ut) to the PDEs

(4.7) ∆ut = 2e2ut − 1 + e−4uttf .

We go on with a concavity statement concerning the volume of the metrics e2uth0. This
is heavily inspired from the work in [BS24], in which the authors parametrize the space of
almost-fuchsian discs by a convex set of quadratic differentials. Here we consider a ray of
solutions, and show a concavity property of the volume. While this can be deduced from
[BS24], we give another proof here, as the context is slightly different.

Proposition 4.4. Assume that for every t > 0, e−6uttf < 1, and that f is not the zero

function. Then the function

(4.8) F (t) =

ˆ

Σ

e2utdω ,

is a nonincreasing concave function on [0, 1].

Proof. The fact that (ut) is a smooth path in C2,α(Σ) can be deduced from the local in-
vertibility of the equation and the uniqueness of solutions with the sup norm less than one.
Differentiating in t, we get the control

∆u̇t = 4(e2ut − e−4uttf)u̇t + e−4utf(4.9)

∆üt = 4(e2ut − e−4uttf)üt + 4(2e2ut + 4e−4uttf)u̇2
t − 8te−4utfu̇t(4.10)

Now the control on the first derivative implies

∆u̇t ≥ 4e2ut(1− |e6uttf |∞)u̇t ,

Hence by the Omori–Yau maximum principle, u̇t ≤ 0. Now this means that the second
derivative satisfies

∆üt ≥ 4e2ut(1− |e−6uttf |∞)üt ,

and so by the maximum principle, üt ≤ 0. But this won’t be a sufficient control to obtain
concavity of the volume. Using the convexity property of the Laplacian, we get the inequality

∆(üt + 2u̇2
t ) ≥ ∆üt + 4u̇t∆u̇t

≥ 4(e2ut − e−4uttf)üt + 24e2utu̇2
t − 8te−4utfu̇t + e−4utf

≥ 4(e2ut − e−4uttf)(üt + 2u̇2
t ) + 16e2utu̇2

t
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From the maximum principle we deduce that üt+2u̇2
t ≤ 0. Finally, we must write the second

derivative of the volume:

F ′′(t) =

ˆ

Σ

2e2ut(2u̇2
t + üt)dω

Hence because 2u̇2
t + üt ≤ 0, F is concave, as desired.

Finally, we can check that F ′(0) has the following expression:

F ′(0) =

ˆ

Σ

2u̇0e
2u0dω =

ˆ

Σ

u̇0dω .

We have already shown that u̇0 ≤ 0, and it is straightforward that u̇0 = 0 if and only if
f = 0. Hence whenever f is nonzero, F ′(0) < 0 and F is nonincreasing, as desired. �

This concavity gives us a precious bound on the volume of solutions to Gauss equations:

Proposition 4.5. Assume that for every t, |e−6uttf |∞ < 1. Then the volume F (1) satisfies:

(4.11)

 

e2u1dω ≤ 1

2
− 2t

 

fdω .

Proof. We have already proven that F is concave. Hence applying the slope inequality, we
get

F (1) ≤ F (0) + tF ′(0) .

Now u0 is the constant function such that e2u0 = 1
2
, hence F (0) = Vol(Σ)

2
. Also, u̇0 is solution

of

∆u̇0 = 2u̇0 + 4f .

Hence the following value of F ′(0)

F ′(0) =

ˆ

Σ

u̇0dω = −2

ˆ

Σ

fdω .

Finally, dividing by the volume of the surface we obtain
 

e2u1dω ≤ 1

2
− 2t

 

fdω ,

as claimed. �

This leads naturally to the consideration of the following ratio.

Definition 4.6 (Balance ratio). Let (Σ, g) be a closed hyperbolic surface. Let f : Σ → R+ be
a measurable, bounded function. Then we call the Balance ratio of f the following quantity:

(4.12) bal(f) =

ffl

f

|f|∞
.

Let L → S be a Hermitian line bundle over Σ and α ∈ H0(L). Call h0 the uniformizing
metric on L. Then we call the Balance ratio of α the quantity:

(4.13) bal(α) =

ffl

|α|2h0
|α|2∞,h0

.

A direct corollary of our discussion is that the Gauss equation can be solved with prescribed
volume provided the given data is sufficiently balanced:
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Corollary 4.7. Let R > 0 and η ∈ (0, 1). Consider f ∈ C0,α(Σ) a nonnegative function

such that:

(4.14) bal(f) ≥ (2 + η)3R

2η
.

Then there exists a unique u ∈ C2,α(Σ) and t > 0 such that

∆u = 2e2u − 1 + e−4utf(4.15)

sup e−6utf ≤ η(4.16)
 

e2udω =
1

2
−R(4.17)

This corollary shows the interest into finding balanced sections of Hermitian line bundles.
Note that the analogous statement for the Gauss equation of a minimal surface in H

3,
∆u = e2u−1+e−2uf , will show that a control on the balance ratio allows to consider almost-
Fuchsian surfaces with defect R in the volume of the induced metric. This ratio also appeared
in [Bro23a] in the construction of almost-Fuchsian structures on degree 1 disc bundles over a
surface. Here we will use it to build examples of almost-Fuchsian representations in PU(2, 1)
with nonmaximal Toledo invariant.

Lemma 4.8 (Regularity of the solution). Let R > 0 and η ∈ (0, 1) as in Corollary 4.7. Let

UR,η denote the subset in C0,α(Σ):

(4.18) UR,η = {f ∈ C0,α(Σ) : f ≥ 0, bal(|f|) > (2 + η)3R

2η
} .

Then the induced map

(4.19) Ψ : UR,η → C2,α(Σ)× R

which to f gives the solution (u, t) from Corollary 4.7 is continuous.

Proof. Let f ∈ UR,η and (u, t) = Ψ(f). Because f is nonzero, we know that the volume
function is strictly nonincreasing along rays, and it is a submersion at f , and this shows that
the second projection of Ψ t = p2 ◦ Ψ(f) is continuous on UR,η. But u = p1 ◦ Ψ(f) can be
obtained as p1◦Φ−1◦(p2◦Ψ(f)·f), with Φ the functional considered in Proposition 4.3, which
we have proven to be a local homeomorphism. Hence we conclude that Ψ is continuous, as
desired. �

4.2. Study of the Poisson Equation. We don’t pretend here to give an exhaustive study
of the Poisson equation on a hyperbolic surface. We just state the results we will use, with
some idea of the proofs, which are very classical. Recall (Σ, h) be a closed hyperbolic surface.
We consider f a positive function, r > 0 and we wish to solve the equation

(4.20) ∆v = r − f .

Contrasting with the study of the Gauss Equation, the estimates we will give here will
depend more on the intrinsical geometry of the surface. In particular, two quantities will be
extensively used:
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Notation 4.9 (Systole, Spectral Gap). We denote by δ the systole of (Σ, h), that is the
length of the smallest nontrivial closed curve in (Σ, h). We denote by Λ the spectral gap of
(Σ, h), that is the largest constant such that, for any zero-average function u ∈ C1(Σ):

(4.21) ‖u‖22 ≤ Λ−1‖∇u‖22 .
A necessary condition for the existence of a solution, is that

(4.22)

ˆ

Σ

fdVol(g) = rVol(Σ) .

Proposition 4.10. Let f ∈ C0,α(Σ) and r > 0 satisfying condition 4.22. Then there is a

unique zero-average function v ∈ C2,α(Σ) satisfying

(4.23) ∆v = r − f .

Moreover, its sup norm may be controlled in the following way:

(4.24) |v|∞ ≤ C(δ,Λ)|r − f |2 .
Proof. The existence statement can easily proven by sub-and supersolution, because f is
bounded. The uniqueness statement is because any bounded harmonic function on Σ is
constant, hence if it is zero-average, it must vanish. We go on with the estimate of |v|∞.
First, we use the Morrey–Sobolev embedding W 2,2(Σ) → L∞(Σ). Because this statement is
a local one and Σ is a hyperbolic surface, this constant may be controlled only by the systole
of the surface, δ. It remains to show that

|v|2,2 ≤ C(Λ)|r − f |2 .
A short proof of that goes in the following way: By the Poincaré inequality,

|v|22 ≤ Λ−1|∇v|22 .
Also, by the Bochner identity,

|∇2v|22 = |∇v|22 + |∆v|22 .
All in all, this means

|v|22,2 ≤ |r − f |22 + (2 + Λ−1)|∇v|22 .
Finally, the Cauchy-Schwarz inequality ensures that

|v|22 ≤ Λ−1|∇v|22 ≤ Λ−1|v|2|r − f |2 .
From which we deduce that |v|2 ≤ Λ−1|r − f |2, and in turn

|∇v|22 ≤ Λ−2|r − f |22 .
This shows the explicit control:

|v|2,2 ≤
√
1 + 2Λ−2 + Λ−3|r − f |2 .

Hence we get
|v|∞ ≤ C(δ,Λ)|r − f |2 ,

as claimed. �

Once again, it is straightforward that the induced map C
0,α
0 (Σ) → C2,α(Σ) is continuous

(smooth). Conveniently, the image of this map is bounded in C2,α(Σ), which sits compactly
in C0,α(Σ), by Arzela–Ascoli.
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5. Construction of balanced sections of line bundles

In this section, we consider the notion of balanced sequence of sections of line bundles:

Definition 5.1. A sequence (Σg, Ng, βg), where Σg is a genus g hyperbolic surface, Ng is
a Hermitian line bundle over Σg and αg ∈ H0(Ng) is said to be balanced if the following
conditions are satisfied:

inf δ(Σg) > 0

inf Λ(Σg) > 0

inf bal(αg) > 0 .

To prove our main result we need the following existence statement:

Theorem 5.2. Let d > 0, n > 0 There exists a balanced sequence (Σg, Ng, βg) such that Ng

is of degree n(g − 1) + d.

Proof. The construction is made in the following way: Consider Σ2 a genus 2 hyperbolic
surface, and Σg → Σ2 a degree g − 1 cover of Σ2, such that Λ(Σg) > ε for some genus-
independent constant ε > 0. Such a sequence exists as a corollary of the works of Magee–
Naud–Puder [MNP22]. By construction, its systole is always larger than the systole of Σ2.

It only remains to construct a balanced family of line bundles and holomorphic sections
of it, which is the done in the following way: Denote by Kg the cotangent bundle of Σg, of

degree 2g − 2. Let s2 be a holomorphic section of K
n

2

2 , and lift this section to a sequence

sg of sections of K
n

2

g . Finally, consider a sequence of points zg ∈ Σg, and consider the line
bundles

Ng = K
n

2

g O(zg)
d .

We observe first that Ng is of degree n(g − 1) + d, as desired. Also, denoting by fg a
holomorphic section of O(zg), we get that sgf

d
g is a holomorphic section of Ng. It remains to

prove that this is a balanced sequence. This relies on the elliptic study of |fg|2, cf [Bro23a],
Proposition 3.9, that we report here for the reader’s convenience:

Proposition 5.3. Let r > 0 be smaller than half the systole δ of Σ. Then there are constants

C1, C2 depending only on (δ,Λ, r) and λ > 0 such that

(5.1)

{ |λfg|2 ≤ C2(rg, δg,Λg) on D(zg, r)
1

C1(rg ,δg,Λg)
≤ |λfg|2 ≤ C1(rg, δg,Λg) on Σg −D(zg, r)

As a consequence, we can show that the sequence (sgf
d
g ) is balanced. Indeed, fix r small

enough so that every disk of radius r in Σg is the lift of a radius r disk in Σ2. Then, on one
side, we can estimate the sup norm:

1

Cd
1

|sg|2∞ ≤ |sgf d
g |2∞ ≤ max(C1, C2)

d|sg|2∞ .

And also we have the lower bound on the L2-norm:
ˆ

Σg

|sgf d
g |2dVol(g) ≥

(g − 2)

Cd
1

ˆ

Σ2

|s2|2 .

In particular, this shows

bal(sgf
d
g ) ≥

1

Cd
1 max(C1,C2)d

g − 2

g − 1
bal(s2) .
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Hence the sequence is balanced, as claimed. �

6. Existence of almost-Fuchsian holomorphic maps

In this section, we prove the following result:

Theorem 6.1. Let d > 0, η ∈ (0, 1). There is a genus g0 > 1 such that for any g ≥ g0,

there exists a representation ρ : π1Σg → PU(2, 1) and an equivariant holomorphic map

f : Σ̃g → H2
C
satisfying:

(1) The second fundamental form of f satisfies |IIf | ≤ η.

(2) The Toledo invariant of ρ is 2− 2g + 2d
3
.

As a consequence of this theorem, the representation ρ is almost-Fuchsian, hence convex-
cocompact, hence discrete and faithful, yet lifts to SU(2, 1) if and only if d is a multiple of
3.

Corollary 6.2. In sufficiently large genus, there are convex-cocompact representations of a

genus g surface in PU(2, 1) which do not lift to SU(2, 1).

This answers a question raised by Loftin and McIntosh in [LM13]. The main ingredient of
the proof of theorem 6.1 is the following fixed-point theorem. Let (Σ, g) be a finite volume
hyperbolic surface with systole δ and spectral gap Λ. Denote by C(δ,Λ) the constant such
that, for any zero-average function v ∈ C2,α(Σ):

(6.1) |v|∞ ≤ C(δ,Λ)|∆v|2
Let η ∈ (0, 1) and R > 0. Then we have the following criterion:

Theorem 6.3. Assume there exists A > 0 and f ∈ C0,α(Σ) a nonnegative function satisfying

bal(f) ≥ A(6.2)

A · exp
(−12C(δ,Λ)η

√
Vol(Σ)

2(2 + η)

)
≥ (2 + η)3R

2η
(6.3)

Then there exists u, v ∈ C2,α(Σ) and t ∈ R+ satisfying:

(6.4)





∆u = 2e2u − 1 + e−4ue2vtf

∆v = 3
2
− 3R− 3e2u

sup |e−6ue2vtf | ≤ η .

Proof. Consider the following chain of continuous maps:

U1
Φ1→ U2

Φ2→ U3 .

Where

U1 = {f̂ ∈ C0,α(Σ), f̂ ≥ 0, bal(f) ≥ (2 + η)3R

2η
}

U2 = {û ∈ C0,α(Σ),

 

e2û =
1

2
−R,

1

2 + η
≤ e2û ≤ 1

2
}

U3 = {v̂ ∈ C0,α(Σ),

 

v = 0, |v|∞ ≤ 3C(δ,Λ)
η
√
Vol(Σ)

2(2 + η)
}
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U1 is a closed convex subset of C0,α(Σ). Φ1 is the continuous map obtained from Lemma 4.8
which to such an f associates û ∈ U2 satisfying

∆û = 2e2û − 1 + e−4ûf̂ .

Φ2 is the continuous map which to û associates the zero-average solution of the Poisson
equation:

∆v̂ =
3

2
− 3R− 3e2û .

we now exhibit a continuous map Φ3 : U3 → U1. This map is the following: Φ3(v̂) = f̂ = e2v̂f .

We need to estimate the Balance ratio of f̂ to show that Φ3(v̂) belongs to U1:

bal(̂f) ≥ e−4|v̂|∞bal(f) ≥ A · exp
(−12C(δ,Λ)η

√
Vol(Σ)

2(2 + η)

)

The main hypothesis of the theorem then ensures that

bal(̂f) ≥ (2 + η)3R

2η

So f̂ ∈ U1 as claimed. Also, due to elliptic regularity, the image of Φ2 has compact closure
in C0,α(Σ). Hence Φ3 ◦ Φ2Φ1 has a fixed point in U1, by the Banach–Schauder fixed point

theorem. Denote f̃ this fixed point, and u = Φ1(f̃), v = Φ2 ◦ Φ1(f̃). Then the fixed point
property means that

f̃ = e2vf .

And by construction, u and v satisfy, for some t > 0:
{

∆u = 2e2u − 1 + e−4ue2vtf

∆v = 3
2
− 3R− 3e2u

Finally, by construction of the map Φ1, we have the desired upper bound:

sup |e−6ue2vtf | ≤ η .

�

Combined with the existence of nicely balanced sections shown in the previous sections,
we are now equipped to prove Theorem 6.1:

Proof of Theorem 6.1. Fix d > 0. From Theorem 5.2, there exists a balanced sequence
(Σg, Ng, αg) with Ng a line bundle of degree 3g − 3 + d over Σg, and αg ∈ H0(Ng). Denote
by Kg the cotangent bundle to Σg, and by Lg = K3N−1

g the line bundle of degree 3g−3−d.
Denote by δ0,Λ0 and A0 the nonzero constants such that, for every g,

δ(Σg) ≥ δ0

Λ(Σg) ≥ Λ0

bal(αg) ≥ A0 .

We want to apply Theorem 6.3 with f = |αg|2, and with the volume constant fixed by the
degree of Lg: It must satisfy:

3

2
− 3R =

deg(L)

2g − 2
=

3

2
− d

2g − 2
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We need to obtain R = Rg =
d

6g−6
. In order to do so, we need to find a sequence ηg ∈ (0, 1),

such that the condition

A0 · exp
(−12C(δ0,Λ0)ηg

√
Vol(Σg)√

2(2 + ηg)

)
≥ (2 + ηg)

3Rg

2ηg

will be verified, at least in the limit of g large.
Because Vol(Σg) = 2π(2g−2), we observe that if we pick a sequence ηg ∈ (0, 1) such that:

ηgg → +∞ and ηg
√
g → 0 .

Then the condition above will be verified, as the left-hand side converges to A0 while the
right-hand side converges to 0. Hence there is g0 such that in genus larger than g0 the above
condition will be verified, and by Theorem 6.3 we get the existence of t > 0 and smooth
functions u, v : Σ → R verifying:






∆u = 2e2u − 1 + e−4ue6vt|βg|2
∆v = 3

2
− d

2g−2
− 3e2u

sup e−6ut|βg|2 ≤ ηg < 1

In particular, applying Theorem 3.7, we get the existence of an almost-fuchsian representa-

tion ρ : π1Σg → PU(2, 1) with an equivariant holomorphic embedding f : Σ̃g → H
2
C
satisfying

sup |IIf | ≤ η, and whose Toledo invariant verifies Tol(ρ) = −2
3
deg(Lg) = 2 − 2g + 2d

3
, as de-

sired. �

It is tempting to conjecture that this proof could be carried for a sequence of line bundles
(Lg) whose degrees satisfy the following asymptotics:

dg√
g
→ 0 .

However, to complete that proof one would need the existence of balanced sections of Lg

with that prescribed degree, which remains an open problem up to now.

Appendix A. Superminimal surfaces in H4

In the paper [Bro23a], the author studied almost-Fuchsian representations in SO0(4, 1).
In particular, the following theorem was shown:

Theorem A.1. Let η ∈ (0, 1). There is a genus g0 > 0 such that, for every genus g > g0,

there exists a representation ρ : π1Σg → SO0(4, 1) satisfying:

(1) ρ is almost-Fuchsian, with equivariant minimal map f : H2 → H4.

(2) The embedding f is superminimal, i.e. its normal Gauss map is a conformal map to

the space of geodesic discs of H4.

(3) f satisfies ‖IIf‖ ≤ η.

(4) The hyperbolic manifold ρ\H4 is diffeomorphic to the total space of a degree 1 disc

bundle over Σg.

While the argument in [Bro23a] relies heavily on the degree 1 particularity, as one can
then use the Moser–Trudinger to solve the Ricci equation, with the study carried out in this
paper we can get rid of this degree 1 specificity, and show:

Theorem A.2. Let η > 0 and d > 0. There is a genus g0 > 0, such that for every g > g0,

there exists a representation ρ : π1Σg → SO0(4, 1) satisfying:
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(1) ρ is almost-Fuchsian, with equivariant minimal map f satisfying ‖IIf‖ ≤ η.

(2) f is a superminimal map in H4.

(3) The hyperbolic manifold ρ\H4 is diffeomorphic to the total space of a degree d disc

bundle over Σg.

The idea is that we can prove this theorem in the same way as we constructed nonmaxi-
mal almost-Fuchsian representations with equivariant holomorphic maps. Indeed, to get an
equivariant superminimal immersion in H4 we need to find a solution of the following PDE
system (see Proposition 2.11. of [Bro23a])

Proposition A.3. Let η > 0 Let Σ be a closed hyperbolic surface of genus g. Denote by ω

its volume form. Consider N a line bundle of degree d ≥ 0 endowed with its uniformizing

metric hN of curvature form cω = d
2g−2

ω. Let α ∈ H0(K2N) and u, v smooth functions on

Σ satisfying:

(A.1)






∆u = e2u − 1 + e−2ue2v|α|2
∆v = c− e−2ue2v|α|2
sup e−4ue2v|α|2 ≤ η < 1 .

Then there is a convex-cocompact representation ρ : π1Σ → SO0(4, 1) and a minimal, super-

minimal, ρ-equivariant and η-almost-fuchsian immersion f such that:

(1) The induced metric by f is a lift of e2uω.

(2) The hyperbolic manifold ρ\H4 is diffeomorphic to a degree d disc bundle over Σ.
(3) The induced metric on the normal bundle to f is e2vhN .

(4) The holomorphic second fundamental form of f is a lift of α.

In order to prove Theorem A.2, we need to show the existence, in genus large enough, of
u, v solutions to Equations A.1. The trick is then to introduce w = u+ v. Hence we see that
u, v is a solution to Equations A.1 if and only if u, w is a solution to these Equations:

(A.2)






∆u = e2u − 1 + e−4ue2w|α|2
∆w = c− 1 + e2u

sup e−6ue2w|α|2 ≤ η < 1 .

We then mimic the proof of the existence of almost-Fuchsian equation. On the first equation,
we can write the following Theorem

Lemma A.4. Let R > 0 and η ∈ (0, 1
2
). Let f ∈ C0,α(Σ) belong to the set VR,η:

(A.3) VR,η =
{
f ∈ C0,α(Σ), f ≥ 0 bal(f) ≥ (8 + η)3

16η
R
}
.

Then there exists a unique u ∈ C2,α(Σ) and t > 0 such that

(A.4)






∆u = e2u − 1 + e−4utf

sup e−6utf ≤ η < 1
ffl

e2u = 1−R .

The resulting map Φ : VR,η → C2,α(Σ) is continuous.
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Proof. This is a direct application of Corollary 4.7 with data R̃ = R
2
, η̃ = η

2
and f̃ = f

4
. We

get then t̃ > 0 and a function ũ satisfying:




∆ũ = 2e2ũ − 1 + e−4ũ( tf
4
)

sup e−6ũtf̃ ≤ η̃
ffl

e2ũ = 1
2
− R̃ .

Then it is clear that u = ũ+ ln 2
2

and t = t̃ satisfy the prescribed conditions.
The regularity of the map Φ corresponds to the regularity statement of Lemma 4.8. �

Also, remark that every element in the image of Φ satisfies

(A.5)
4

4 + η
≤ e2u ≤ 1 .

Then, adapting Theorem 6.3 to the H4-setup, we have the following criterion:

Theorem A.5. Let 0 < η < 1
2
, and R > 0. Let C(δ,Λ) be the constant defined in Prop. 4.10

Assume there exists A > 0 and f ∈ C0,α(Σ) a nonnegative function satisfying:

(A.6)

{
bal(f) ≥ A

A · exp
(
− 4C(δ,Λ)

√
Vol(Σ)η

4+η

)
≥ (8+η)3

16η
R .

Then there exist (u, w) ∈ C2,α(Σ) and t > 0 satisfying:

(A.7)






∆u = e2u − 1 + e−4ue2wtf

∆w = R − 1 + e2u

sup e−6ue2vtf ≤ η < 1 .

Proof. We use a fixed-point argument, à la Banach-Schauder. Let VR,η and Φ = (Φu,Φt) be
the functional constructed in Lemma A.4. The image of Φu is valued in the set:

Wη = {u ∈ C2,α(Σ) :
4

4 + η
≤ e2u ≤ 1}

In particular, we can bound the L2-norm:

|R− 1 + e2u|2 ≤
η

4 + η

√
Vol(Σ) .

Applying Prop. 4.10, we know there is a unique zero-average function w = Ψ(u) in C2,α(Σ)
such that

∆w = r − 1 + e2u ,

and it satisfies

|w|∞ ≤ C(δ,Λ)
η

4 + η

√
Vol(Σ) .

The resulting map Ψ : Wη → C2,α(Σ) is smooth, and has bounded image in C2,α(Σ), so
relatively compact in C0,α(Σ).

Finally, consider F (w) = e2wf . The written condition ensures that F ◦ Ψ(Wη) ⊂ VR,η.
Hence F ◦ Ψ ◦ Φu is a continuous self map of the closed convex set VR,η, with relatively

compact image. By the Banach–Schauder fixed point theorem, it admits a fixed point f̂ .
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Denote by u = Φu(f̂), t = Φt(f̂) and w = Ψ ◦ Φu(f̂), then from the fixed point property we
get 




∆u = e2u − 1 + e−4ue2wtf

∆w = R − 1 + e2u

sup e−6ue2wtf ≤ η < 1 ,

as desired. �

It remains to prove Theorem A.2

Proof of Theorem A.2. Fix d > 0, and η > 0. Without loss of generality we may assume η <
1
2
. Let (Σg, Lg, αg) be a balanced sequence with deg(Lg) = 4g− 4− d. Denote Ng = K−2

g Lg,

so that αg ∈ H0(K2Ng). Denote by δ0,Λ0 the lower bounds on the systoles and spectral
gaps of Σg. Also, consider A0 > 0 the infimum of the Balance ratios bal(αg).

We want to apply Theorem A.5 to fg = |αg|2 with Rg = d
2g−2

. To do so, we need to find
0 < ηg < η such that:

A0 · exp
(
− 4C(δ0,Λ0)

√
Vol(Σg)ηg

4 + ηg

)
≥ (8 + ηg)

3

16ηg

d

2g − 2
.

The fact that
√

Vol(Σg) grows like
√
g shows that if we choose (ηg) a sequence satisfying:

ηg · g → +∞ ηg
√
g → 0 ,

then that condition will be satisfied for every g ≥ g0 large enough. Without loss of generality,
we can take g0 large enough such that ηg ≤ η also. Hence applying,Theorem A.5, for every
g > g0 we get u, w, t solutions of





∆u = e2u − 1 + e−4ue2wt|αg|2
∆w = d

2g−2
− 1 + e2u

sup(e−6ue2wtf) ≤ ηg ≤ η .

Denoting v = w − u, we get that (u, v, t) is a solution of





∆u = e2u − 1 + e−2ue2vt|αg|2
∆v = d

2g−2
− e−2ue2vt|αg|2

sup(e−4ue2vt|αg|2) ≤ ηg ≤ η .

From Prop.A.3 we then get that there is ρ : π1Σg → SO0(4, 1) an η-almost-Fuchsian repre-
sentation with equivariant superminimal immersion f , and whose normal bundle is a degree
d disc bundle, proving our Theorem. �
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