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Abstract

Let Γ be a discrete and torsion-free subgroup of PU(n, 1), the group of biholomorphisms

of the unit ball in Cn, denoted by Hn

C . We show that if Γ is Abelian, then Hn

C/Γ is a Stein

manifold. If the critical exponent δ(Γ) of Γ is less than 2, a conjecture of Dey and Kapovich

predicts that the quotient Hn

C/Γ is Stein. We confirm this conjecture in the case where Γ
is parabolic or geometrically finite. We also study the case of quotients with δ(Γ) = 2 that

contain compact complex curves and confirm another conjecture of Dey and Kapovich. We

finally show that Hn

C/Γ is Stein when Γ is a parabolic or geometrically finite group preserving

a totally real and totally geodesic submanifold of Hn

C , without any hypothesis on the critical

exponent.

In this article we study the existence of non-constant holomorphic functions on quotients of
the complex hyperbolic space Hn

C
of dimension n, thought of as the unit ball in Cn, by discrete

and torsion-free subgroups Γ of PU(n, 1). More precisely, we give sufficient conditions for Hn
C
/Γ

to be holomorphically convex or Stein. These conditions involve the group structure of Γ or its
critical exponent δ(Γ), which is defined by

δ(Γ) := inf{s ∈ R+ |
∑

γ∈Γ

e−sd(o,γo) <∞}, (1)

where o is an arbitrary point of Hn
C

and d the complex hyperbolic distance on the ball, normalized
so that the associated Riemannian metric has sectional curvature pinched between −4 and −1.
This number δ(Γ), which does not depend on the choice of o ∈ Hn

C
, has been first related with

the analytical properties of Hn
C
/Γ by Dey and Kapovich in [DK20]. These authors have proposed

the following conjecture, and have solved it for convex-cocompact subgroups of PU(n, 1).

Conjecture ([DK20]). Let Γ be a discrete and torsion-free subgroup of PU(n, 1). If δ(Γ) < 2,
then Hn

C
/Γ is a Stein manifold.

Our first main result confirms in particular this conjecture for geometrically finite subgroups
of PU(n, 1).

Theorem 1. Let Γ be a geometrically finite and torsion-free subgroup of PU(n, 1).

(a) If Γ is Gromov-hyperbolic, then Hn
C
/Γ is holomorphically convex.

(b) If Γ is a free group or if δ(Γ) < 2, then Hn
C
/Γ is a Stein manifold.

(c) If Γ preserves a totally real and totally geodesic submanifold of Hn
C
, then Hn

C
/Γ is a Stein

manifold.
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We recall that a parabolic subgroup of PU(n, 1) is a subgroup of PU(n, 1) that fixes a point
at infinity and does not contain any hyperbolic element. To establish Theorem 1, we need to
understand when the quotient of the complex hyperbolic space by a discrete parabolic subgroup
is Stein. For unipotent parabolic subgroups this has been done in [Mie24], and we settle the
general case, obtaining the following result.

Theorem 2. Let Γ be a discrete and torsion-free parabolic subgroup of PU(n, 1).

(a) If δ(Γ) < 2 or Γ preserves a totally real and totally geodesic submanifold Hk
R
⊂ Hn

C
, then Γ

is virtually Abelian.

(b) If Γ is virtually Abelian, then Hn
C
/Γ is a Stein manifold.

The second point of Theorem 2 is a consequence of Theorem 13, stated in Section 2, which pro-
vides a complete characterisation of discrete and torsion-free parabolic subgroups Γ of PU(n, 1)
for which Hn

C
/Γ is Stein, and whose proof consists in reducing the problem to the unipotent

case solved earlier in [Mie24]. In complex dimension 2, this characterisation takes the following
simpler form: a parabolic quotient H2

C
/Γ is Stein if and only if Γ is virtually Abelian (Corollary

16).
In [DK20], Dey and Kapovich have shown on the one hand that Hn

C
/Γ does not contain any

compact analytic subset of positive dimension if δ(Γ) < 2 and on the other hand that Hn
C
/Γ is

holomorphically convex if Γ is convex-cocompact. By contrast, when Γ is geometrically finite,
the manifold Hn

C
/Γ is not always holomorphically convex. Using techniques from [Che13], we get

the following characterization.

Theorem 3. Let Γ be a geometrically finite and torsion-free subgroup of PU(n, 1). The following
are equivalent:

1. The manifold Hn
C
/Γ admits a plurisubharmonic exhaustion function.

2. For any parabolic subgroup P < Γ, the quotient Hn
C
/P is holomorphically convex, or equiv-

alently a Stein manifold.

3. The manifold Hn
C
/Γ is holomorphically convex.

The strategy for proving Theorem 1 is to use Theorems 2 and 3 by showing that if Γ satisfies
one of the assumptions of Theorem 1, then its parabolic subgroups are virtually Abelian. We do
not recall the definition of a geometrically finite group in this article, but instead refer the reader
to [Bow95], or to the description given in [Che13, p. 1031]. In connection with the conjecture of
Dey and Kapovich, we also show that quotients Hn

C
/Γ with δ(Γ) < 2 always admit non-constant

holomorphic functions, as a particular case of Proposition 6 below.
We provide in Section 2 an example showing that the constant 2 in Theorem 2 is optimal,

and an example of a unipotent parabolic group Γ for which Hn
C
/Γ is biholomorphic to a bundle

of punctured disks over a non-compact Cousin manifold, and is not holomorphically convex. By
a Cousin manifold, we mean a quotient of Cn−1 by a discrete subgroup, which does not admit
any non-constant holomorphic function, see [Cou10; Kop64; AK01]. The critical exponent of this
example is equal to 5

2 .
A complex Fuchsian group is a discrete and torsion-free subgroup Γ of PU(n, 1) which acts

cocompactly on a Γ-invariant complex geodesic. If Γ is a complex Fuchsian group, then its
critical exponent is equal to 2, and the quotient Hn

C
/Γ contains a compact subvariety1 of positive

dimension. When Γ is a convex-cocompact and torsion-free subgroup of PU(n, 1) with critical

1Here and throughout all this article we use the word subvariety as a synonym of closed analytic subset.
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exponent δ(Γ) = 2, Dey and Kapovich conjecture that Hn
C
/Γ is non-Stein if and only if Γ is

a complex Fuchsian group, see [DK20, Conjecture 17]. Using techniques from [CMW23], we
confirm this conjecture as follows.

Theorem 4. Let Γ be a discrete and torsion-free subgroup of PU(n, 1) with δ(Γ) = 2. Suppose
that Hn

C
/Γ contains a compact subvariety of positive dimension. Then Γ is a complex Fuchsian

group.

We now discuss the relation of our results with earlier works. Theorem 1 applies in particular
to representations of free groups seen as finite-index subgroups of the examples in [GP92; FP03].
They also apply to Schottky quotients, recovering [MO18, Theorem 4.3]. Theorem 2, together
with the fact that the quotient of Hn

C
by a loxodromic cyclic group is Stein (see for example

[dFab98], [Che13] or Section 1 below), implies that the quotient of the complex hyperbolic space
by any discrete and torsion-free Abelian subgroup of PU(n, 1) is a Stein manifold. In [Che13],
Chen asks whether the quotient of Hn

C
by a discrete and torsion-free subgroup of PO(n, 1) is

Stein. Theorems 1 and 2 yields a positive answer to this question for geometrically finite or
parabolic subgroups.

Here are some earlier results about the analytic properties of quotients of the complex hy-
perbolic space Hn

C
. It is known that the quotient of Hn

C
by an infinite discrete cyclic group is a

Stein manifold [dFab98; dFI01; Mie10]. The article [Che13] gives criteria for a quotient of Hn
C

by
a discrete subgroup to be Stein, and in particular shows that a quotient of the complex hyper-
bolic space by a unipotent Abelian parabolic group is Stein. It also contains results in the more
general setting of quotients of Kähler-Hadamard manifolds. The case of quotients by unipotent
parabolic subgroups is completely solved in [Mie24]. Finally, as mentioned above, the article
[DK20] in which the above conjecture appears contains the analogue of Theorem 1 in the case
of convex-cocompact groups. Section 9 of the overview article [Kap22] also contains interesting
results on the ends of Hn

C
/Γ, which are related to the analytic properties of this manifold.

In another direction, we generalise the results of Dey and Kapovich to non-symmetric spaces.
In the following two propositions and the subsequent corollaries, which provide an alternative
proof of the results of [DK20], (X,ω) is a simply connected complete Kähler manifold with sec-
tional curvature bounded above by −1, and Γ a group acting freely and properly discontinuously
by holomorphic isometries on X . One can define the critical exponent δ(Γ) of Γ by the same
Formula (1) as for discrete subgroups of PU(n, 1), by choosing an arbitrary point o of X and
with d the Riemannian distance associated with ω. This number does not depend on the choice
of o ∈ X . Moreover, in this context, pinched means, when referring to the sectional curvature
of (X,ω), that it is bounded below by −b, and when referring to the Ricci curvature, that it is
bounded below by −bω(·, J ·), for some constant b > 1.

Proposition 5. Let C be a Γ-invariant closed and geodesically convex subset of X. Then the
compact connected subvarieties of positive dimension of X/Γ are included in C/Γ. Moreover, if
the action of Γ on C is cocompact, then X/Γ is holomorphically convex.

Proposition 6. Assume that δ(Γ) < 2. Then X/Γ admits a strictly plurisubharmonic function
and in particular does not contain any compact subvariety of positive dimension. If moreover X
has pinched Ricci curvature, then holomorphic functions on X/Γ separate points and define local
coordinates at all points of X/Γ.

Corollary 7. Assume that δ(Γ) < 2 and Γ is convex-cocompact. Then X/Γ is a Stein manifold.

The proof of Proposition 6 uses Patterson-Sullivan theory, of which we give a brief account
in the article, referring to [Rob03; Nic89] for more details. Our next corollary, proven in Section

3



1, also involves an assumption on the Patterson-Sullivan measure (µx)x∈X . This is a family of
finite measures on ∂X , indexed by points x ∈ X whose construction is recalled in Section 1. It
is said to have subexponential growth if for all η > 0, there is a constant Cη > 0 such that

∀x ∈ X, µx(∂X) ≤ Cηe
ηd(x,o),

for some basepoint o ∈ X , see [CMW23, §1.4]. For instance, if X has pinched sectional curvature,
X/Γ has positive injectivity radius and if the Bowen-Margulis measure ν associated with (µx)x∈X
is finite, then the total masses µx(∂X) are uniformly bounded, see [CMW23, Theorem 1.15]. We
also refer to the latter article for a definition of the Bowen-Margulis measure ν.

Corollary 8. Assume that δ(Γ) < 2, X has pinched sectional curvature and the Patterson-
Sullivan measure (µx)x∈X has subexponential growth. Then X/Γ is a Stein manifold.

This article is organised as follows. In the first section, we recall what holomorphically convex
and Stein manifolds are, we give the definition and some basic properties of Patterson-Sullivan
measures, we prove Propositions 5, 6 and Corollaries 7, 8 and we give criteria for asserting that
a quotient of the form X/Γ does not admit any compact subvariety of positive dimension, with
X and Γ as above. Theorem 2 is proved in Section 2. Section 3 contains the proof of Theorem
3 from which is deduced the proof of Theorem 1. Section 4 is independant from Sections 2 and
3, and contains two proofs of Theorem 4.

Acknowledgments. I thank Pierre Py for his constant support and help throughout this work.
I would also like to thank Christian Miebach for interesting conversations in Calais.
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1 Quotients of negatively curved Kähler-Hadamard mani-

folds

We begin by recalling some definitions from complex analysis and then review some results of
negative curvature geometry. After that, we prove Propositions 5 and 6 in Subsections 1.3 and
1.4, then prove Corollaries 7 and 8 in Subsection 1.5. Finally, we summarize known criteria for
asserting that X/Γ does not admit a compact subvariety of positive dimension in Subsection 1.6.

1.1 Generalities about Stein manifolds

We first recall the definition of plurisubharmonic and strictly plurisubharmonic functions, and
we refer to [Dem] for more details. Let X be a complex manifold. A C2 function f : X → R is
plurisubharmonic (resp. strictly plurisubharmonic) if the (1, 1)-form i∂∂̄f is nonnegative (resp.
positive). A continuous function f : X → R is plurisubharmonic if for every chart φ : V ⊂ X →
W ⊂ Cn, every a ∈W and every ξ ∈ Cn such that |ξ| < d(a, cW ), we have

f ◦ φ−1(a) ≤
1

2π

∫ 2π

0

f ◦ φ−1(a+ eiθξ)dθ.
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It is strictly plurisubharmonic if for every x ∈ X there are holomorphic coordinates (z1, . . . , zn)
defined on some neighborhood of x and a constant c > 0 such that z 7→ f(z)− c‖z‖2 is plurisub-
harmonic.

A complex manifold X is said to be holomorphically convex if the holomorphic hull K̂ of any
compact subset K of X , which is defined by

K̂ := {x ∈ X | ∀f ∈ O(X), |f(x)| ≤ sup
K

|f |},

is compact. The manifold X is Stein if it is holomorphically convex and if, in addition, for
any pair of distinct points x, y of X , there is a holomorphic function f : X −→ C such that
f(x) 6= f(y). Grauert’s theorem asserts that a manifold is Stein if and only if it admits a strictly
plurisubharmonic exhaustion function, see [Gra58]. Alternatively, a manifold is Stein if and only
if it is holomorphically convex and does not contain any compact subvariety of positive dimension.
This follows from the existence of the Remmert reduction of a holomorphically convex manifold
[Pet94, Theorem 2.1]. We will also use the following result, that we subsequently refer to as
Grauert’s theorem, since it derives from it.

Theorem ([Gra58], [Pet94, Corollary 2.4]). Let X be a complex manifold admitting an exhaus-
tion function which is smooth and strictly plurisubharmonic outside a compact set. Then X is
holomorphically convex.

We will also use the following version of Docquier-Grauert’s theorem.

Theorem ([DG60], [Siu78, Theorem 5.2]). The union of an increasing 1-parameter family of
Stein manifolds is Stein

1.2 Convexity, Busemann functions and Patterson-Sullivan measures

For the remainder of the section, (X,ω) denotes a simply connected complete Kähler manifold
with complex structure denoted by J and sectional curvature bounded above by −1, and Γ is a
group acting freely and properly discontinuously by holomorphic isometries on X . Let d be the
Riemannian distance associated with ω. We recall that if φ : X → R is a function of class C2,
then the form i∂∂φ is related to the Riemannian Hessian D2(φ) of φ by

2i∂∂φ(v, Jv) = D2(φ)(v, v) +D2(φ)(Jv, Jv), (2)

see [GW73].
Fix a point o ∈ X . For all ξ ∈ ∂X , the Busemann function at ξ is the function defined by

∀x ∈ X,Bξ(x) := Bξ(x, o) := lim
z→ξ

(d(x, z)− d(o, z)).

The Busemann function at ξ depends on o ∈ X only up to an additive constant. This fonction is
of class C2, see [HH77, Proposition 3.1], and it depends continuously on ξ ∈ ∂X . It is moreover
strictly plurisubharmonic and more precisely we have

i∂∂Bξ ≥ ω. (3)

This inequality is a consequence of [GW79, Proposition 2.28], see also [SY82; Che13]. We also
call (ξ, x, y) ∈ ∂X ×X2 7−→ Bξ(x, y) ∈ R the Busemann function on X .

In this article, we will also use Patterson-Sullivan theory. It is used in the proofs of Proposition
6, Corollary 8, and Theorem 4. We now recall the definition and some basic properties of
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Patterson-Sullivan measures, and we refer the reader to [Rob03; Pat76; Sul79; Nic89] for more
details. Let X and Γ be as above, and δ be the critical exponent of Γ, whose definition was
recalled in the introduction. We also assume that Γ is non-elementary, which means that Γ does
not stabilize a geodesic of X , nor a point of ∂X . A Patterson-Sullivan measure is a Γ-conformal
density of dimension δ, which means that it is a family of measures (µx)x∈X on ∂X such that
γ∗µx = µγx for all x ∈ X and γ ∈ Γ, and such that

∀x, y ∈ X,
dµx
dµy

= e−δB•(x,y). (4)

We now recall a construction of a Patterson-Sullivan measure when Γ has divergent type, i.e.
when the series ∑

γ∈Γ

e−δd(o,γo)

diverges. The general case is explained for instance in [Nic89, Section 3.1]. Fix an arbitrary
point o ∈ X and for s > δ, set

Φ(s) :=
∑

γ∈Γ

e−sd(o,γo).

The space of probability measures on X := X ∪ ∂X being compact for the weak topology, define
µo as an accumulation point as s > δ tends towards δ of the probability measures

1

Φ(s)

∑

γ∈Γ

e−sd(o,γo)δγo,

where δγo denotes the Dirac measure at γo. It can be verified that this measure is supported on
∂X . The other measures µx for x ∈ X are defined from µo by means of Formula (4). All these
measures are finite and we denote by ‖µx‖ := µx(∂X) the total mass of the measure µx. It is
not difficult to see that these measures are supported on the limit set Λ(Γ) of Γ. Since Λ(Γ) is
the smallest non-empty closed and Γ-invariant subset of ∂X , we deduce that the support of the
Patterson-Sullivan measures is exactly Λ(Γ).

1.3 Proof of Proposition 5

Proposition 5 is proven by an application of the next lemma to the square of the distance function
to C/Γ ⊂ Hn

C
/Γ. In this lemma, a continuous function φ from a complete Riemannian manifold

M to R is called convex if for all geodesic η : R → M , the function φ ◦ η is convex, and it is
called strictly convex if for any compact subset K ⊂M , there exists a constant α > 0 such that,
for any unit-speed geodesic η : [0, 1] → K, the function t ∈ [0, 1] 7→ φ ◦ η(t)− αt2 is convex.

Lemma 9. Let (M,ω) be a Kähler manifold. Assume that there exists a continuous function
φ :M → R which is convex on M , and strictly convex on M\φ−1(0). Then the compact connected
subvarieties of positive dimension of M are included in the level set φ−1(0). If moreover φ is an
exhaustion, then M is holomorphically convex.

Proof. We are going to use that on a Kähler manifold (M,ω), every continuous convex function
is plurisubharmonic [GW73, Theorem 3], from which it follows that a strictly convex function
f : M → R is strictly plurisubharmonic. Indeed, let x be a point in M and (z1, . . . , zn) be
holomorphic coordinates defined in a neighborhood Ω of x. Then for any open subset V with
V ⊂ Ω, there exists a constant c > 0 such that z 7→ f(z) − c‖z‖2 is convex, and therefore

6



plurisubharmonic, on V . Thus f is strictly plurisubharmonic. When f is of class C2, these
statements are a simple consequence of Formula (2).

Let φ : M → R be a continuous function which is convex on M , and strictly convex on
M \ φ−1(0). Then φ is plurisubharmonic on M and strictly plurisubharmonic on M \ φ−1(0).
Moreover for any connected compact subvariety A of M , the function φ|A is constant by the
maximum principle, so A is included in φ−1(0) or in M \ φ−1(0). Notice that A cannot be
contained inM\φ−1(0) because in that case φ|A would be constant and strictly plurisubharmonic.
Thus A ⊂ φ−1(0). If moreover φ is an exhaustion, then by Richberg’s theorem [Dem, Theorem
I.5.21], there exists a continuous plurisubharmonic function φ̃ : M → R which is smooth and
strictly plurisubharmonic on M \ φ−1(0) and such that φ̃ ≥ φ on M \ φ−1(0). In particular φ̃ is
an exhaustion, and by Grauert’s theorem, M is holomorphically convex.

Proof of Proposition 5. Let d2C : X → R+ be the square of the distance function to C. This
function is convex on X , and it is strictly convex on X \C. This is proved in [BH23, Lemma 4.5],
and for the sake of completeness we now outline a proof of the strict convexity of d2C on X \ C.
Fix some ǫ > 0 and let γ : [0, L] → X be a unit-speed geodesic such that d(γ(0), C) ≥ ǫ and
d(γ(L), C) ≥ ǫ. Denote by x and y the projections of γ(0) and γ(L) in C and let η : [0, L′] → X
be the unit-speed geodesic joining x and y. Using [KS93, Corollary 2.1.3 - Formula 2.1(iv)], we
get :

2d2C

(
γ

(
L

2

))
− d2C(γ(0))− d2C(γ(L)) ≤ −

1

2
(L− L′)2.

Finally, since X has sectional curvature bounded above by −1, there is a positive constant a
depending only on ǫ such that (L − L′)2 ≥ aL2. Using [GW76, Lemma 1], we conclude that d2C
is strictly convex on X \ C.

To conclude, notice that the function d2C is Γ-invariant, so it defines a convex function φ :
X/Γ → R, which is strictly convex outside C/Γ. The proposition is obtained by applying Lemma
9 with the function φ.

Remark. Proposition 5 provides an alternative proof of [Kap22, Proposition 5]: suppose that X
has negatively pinched curvature and that there is a surjective holomorphic map f : X/Γ → B
with compact fibers on a complex manifold B with dim(B) < dim(X). Then Λ(Γ) = ∂X . In
particular X/Γ cannot have convex ends.

1.4 Proof of Proposition 6

The next lemma, used in the proof of Proposition 6, asserts that a certain function defined
in [CMW23] is strictly plurisubharmonic when the critical exponent of Γ is less than 2. This
function and the flow it defines also play an important role in Section 4. An alternative proof
of the first point of Proposition 6, which uses comparison arguments from [GW79] is outlined
below.

Lemma 10. Let (X,ω) be a simply connected complete Kähler manifold with sectional curvature
bounded above by −1, and Γ be a non-elementary group acting freely and properly discontinuously
by holomorphic isometries on X. Denote by δ the critical exponent of Γ, by (µx)x∈X a Patterson-
Sullivan measure associated with Γ and by ‖µx‖ the total mass of the measure µx for every x ∈ X.
Then the Γ-invariant function on X defined by f(x) := − ln‖µx‖ satisfies

i∂∂f ≥ δ(1−
δ

2
)ω.

7



Proof. For every x ∈ X , let µx be the normalized probability measure µx = µx

‖µx‖
. Fixing a

point p ∈ X , denote by Bθ := Bθ(·, p) the Busemann function at a point θ ∈ ∂X which vanishes
at p. From dominated convergence together with the C2-regularity of Busemann functions and
Formula (4), it follows that f is of class C2. Moreover, a computation using Formula (4) shows
that the Hessian D2(f) at a point x ∈ X is given by

D2(f)(v, v) = δ

∫

∂X

D2Bθ(v, v)dµx(θ) + δ2

((∫

∂X

dBθ(v)dµx(θ)

)2

−

∫

∂X

dBθ(v)
2dµx(θ)

)
.

Using Identity (2), we get

i∂∂f(v, Jv) ≥ δ

∫

∂X

i∂∂Bθ(v, Jv)dµx(θ)−
δ2

2

∫

∂X

(dBθ(v)
2 + dBθ(Jv)

2)dµx(θ).

It is easily verified that for all tangent vector v,

dBθ(v)
2 + dBθ(Jv)

2 ≤ ‖v‖2,

where ‖v‖2 := ω(v, Jv). Using this minoration together with Inequality (3), we deduce that

i∂∂f ≥ δ(1−
δ

2
)ω.

Proof of Proposition 6. If Γ is elementary, the result is already known, see [Che13, Theorem 1.1
and Proposition 1.3]. Assume that Γ is non-elementary and that δ < 2. Then the function f
defined in Lemma 10 is strictly plurisubharmonic. Suppose moreover that there is a constant
C > 0 such that

Ricci(ω) ≥ −Cω(·, J ·).

Then there is a constant C′ > 0 such that

i∂∂(C′f) + Ricci(ω)(·, J ·) ≥ 0.

Using [Che13, Proposition 4.1], we obtain that the holomorphic functions on X/Γ separate points
and give local coordinate systems.

Remark. A strictly plurisubharmonic function on X/Γ can also be constructed following Dey
and Kapovich’s ideas, providing an alternative proof for the first point of Proposition 6. Here is
an outline of the argument. Let φ be the function defined on X by φ(x) := tanh(d(o, x))2 for
some basepoint o ∈ X . An application of the comparison result [GW79, Theorem A] together
with Formula (2) gives that φ is strictly plurisubharmonic on X : this is obtained by comparing
the Hessian of φ with the Hessian of the function φ̃ defined on H2n

R
, the real hyperbolic space of

dimension 2n, by φ̃(x) := tanh(d hyp(õ, x))
2 for some basepoint õ of H2n

R
. Then because

0 ≤ 1− φ ≤ 4e−2d(o,·),

we deduce that the convergence of the series
∑

γ∈Γ

e−2d(o,γo)

implies that ∑

γ∈Γ

(φ(γ · x)− 1)

converges uniformly on compact subsets of X to a strictly plurisubharmonic and Γ-invariant
function ψ. When X = Hn

C
, φ is the squared euclidean norm on the unit ball, and the above

series is the one constructed in [DK20].
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1.5 Proofs of Corollaries 7 and 8

Proof of Corollary 7. This follows directly from Propositions 5 and 6, using that a manifold is
Stein if and only if it is holomorphically convex and does not contain any compact subvariety
of positive dimension. Alternatively, each one of the three strictly plurisubharmonic functions
φ + ef , φ + eψ and f is an exhaustion on X/Γ, with φ as in the proof of Proposition 5, f as in
the proof of Proposition 6 and ψ as in the remark above. For the function f , this can be shown
using that (X ∪ Ω(Γ))/Γ is compact, where Ω(Γ) ⊂ ∂X is the discontinuity subset of Γ.

Proof of Corollary 8. Let f be the Γ-invariant function defined in Lemma 10 and o be a point of
X/Γ. By [Tam10] or [Cho+10, §4 of Ch. 26], there is a constant C > 0 and a smooth function
g : X/Γ → R such that g ≥ d(·, o) and D2(g) ≥ −Cω(·, J ·). Using Identity (2), we deduce that
i∂∂g ≥ −Cω. Now define

φ = g + C′f,

where C′ is a positive constant such that

−C + C′δ(1−
δ

2
) > 0.

Then φ is strictly plurisubharmonic by Lemma 10. Since (µx)x∈X has subexponential growth,
there is a constant C′′ > 0 such that

f ≥ −
1

2C′
d(·, o) − lnC′′.

We deduce that

φ ≥
1

2
d(·, o) − lnC′′,

which implies that φ is proper. Thus X/Γ is a Stein manifold.

Remark. The hypothesis of bounded sectional curvature can be weakened to bounded Ricci
curvature together with an assumption on the ball volumes, see [Hua19].

1.6 Compact subvarieties of positive dimension of X/Γ

We now summarize known criteria for asserting that X/Γ does not admit a compact subvariety
of positive dimension.

Proposition 11. Let (X,ω) be a simply connected complete Kähler manifold with sectional
curvature bounded above by −1, and Γ a group acting freely and properly discontinuously by
holomorphic isometries on X. Denote by d the Riemannian distance associated with ω. Then
each one of the following condition is sufficient to assert that X/Γ does not admit a compact
subvariety of positive dimension.

(a) The group Γ is parabolic.

(b) The critical exponent of Γ satisfies δ(Γ) < 2.

(c) There exists a Γ-invariant geodesically convex subset C of X which is included in a totally
real submanifold M of X.

(d) The Kähler form ω is exact on X/Γ.

(e) The cohomology group H2(Γ,R) vanishes.
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(f) There is a complete vector field on X/Γ whose flow contracts complex subspaces.

Proof. (a) If Γ is parabolic, there is a Busemann function at some point ξ ∈ ∂X which is
invariant under the action of Γ, see [EO73, Proposition 7.8]. As a consequence X/Γ admits
a strictly plurisubharmonic function.

(b) This follows from [DK20] for the complex hyperbolic space and from Proposition 6 in the
general case.

(c) This is a consequence of Proposition 5. Indeed, let A be a compact connected subvariety of
positive dimension included in X/Γ. Then A ⊂ C/Γ, and taking a smooth point x of the
lift Ã of A in X , we obtain that TxÃ ∩ J(TxÃ) ⊂ TxM , which contradicts the hypothesis
that M is totally real. Alternatively, it can be shown that in this case the distance squared
function to the convex core is strictly plurisubharmonic, see [Che13].

(d) This is a well known fact about Kähler geometry.

(e) The manifold X/Γ is a K(Γ, 1), and in particular its cohomology identifies with that of Γ.
Therefore, if H2(Γ,R) = 0, the Kähler form ω is exact on X/Γ. This argument appears in
a dual version in [MO18, Lemma 4.2], and also in [Kap22, page 27].

(f) See for instance [CMW23, Proof of Theorem 1.5].

Examples. 1. When X = Hn
C

and Γ is a discrete and torsion-free subgroup of PO(n, 1), em-
bedded in PU(n, 1) so as to stabilize a copy of Hn

R
, the quotient Hn

C
/Γ does not contain

a compact subvariety of positive dimension by the third point. In particular, as proven
in [Che13], the quotient of X by the group generated by a hyperbolic element is a Stein
manifold.

2. Let Γ = π1(Σg) be a surface group and ρ : Γ → PU(n, 1) be a discrete and faithful
representation of Γ in PU(n, 1). The Toledo invariant τ of ρ is the real number

τ :=
1

2π
[φ∗ω] ∈ H2(Σg,R) ≃ R,

where φ : Σg → X/ρ(Γ) is any homotopy equivalence between Σg and X/ρ(Γ). Then ω is
exact on X/ρ(Γ) if and only if τ = 0. This example appears in [Kap22, page 27].

3. If Γ is a free group, then H2(Γ,R) = 0 so X/Γ does not contain any compact subvariety of
positive dimension.

To conclude this section, let us note that the question of finding sufficient conditions on the
group Γ for the quotient X/Γ to be Stein admits a natural generalization to the case where
X is a higher rank Hermitian symmetric space and Γ is a group acting freely and properly
discontinuously by holomorphic isometries on X . Here is a family of examples of quotients of
the bidisk D× D that are easily proven to be Stein manifolds.

Example. Let Γ = π1(Sg) be a cocompact lattice in PSL2(R). Define the following action of Γ
on the bidisk D× D

∀γ ∈ Γ, ∀(z, w) ∈ D× D, γ · (z, w) := (γ · z, γ · w).

Then ∆ := {(z, z) | z ∈ D} is a totally real geodesically convex subset of D×D, on which Γ acts
cocompactly. Using [Che13, Proposition 3.2], we get that (D× D)/Γ is a Stein manifold.
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2 Discrete parabolic subgroups of PU(n, 1)

This section is organised as follows. We first recall the definition of the complex hyperbolic
distance on the ball, and describe the stabilizer of a point at infinity. Then we state and prove
Theorem 13 which characterises the discrete and torsion-free parabolic subgroups of PU(n, 1) for
which Hn

C
/Γ is a Stein manifold, and which implies Theorem 2-(b). We then show that if Γ is a

discrete parabolic subgroup which satisfies δ(Γ) < 2 or preserves a totally real geodesic subman-
ifold of Hn

C
, then Γ is virtually Abelian, thus completing the proof of Theorem 2. Afterwards

we give an example of a discrete parabolic subgroup with δ(Γ) = 2 and for which Hn
C
/Γ is not

Stein. We also construct a complex hyperbolic bundle of punctured disks over a non-compact
Cousin manifold. This complex hyperbolic bundle is not holomorphically convex, but holomor-
phic functions separate points by [Mie24, Theorem 1.1]. Notice that a parabolic quotient Hn

C
/Γ

is Stein if and only if it is holomorphically convex, as follows from Proposition 11-(a).

2.1 The parabolic biholomorphisms of the ball

Let h be the Hermitian form on Cn+1 associated with the quadratic form

q(z1, . . . , zn+1) := −|z1|
2 +

n+1∑

i=2

|zi|
2,

and [·] : Cn+1 \ {0} → CPn denote the projection onto the complex projective space CPn. The
open subset of CPn defined by

HnC := {[v] ∈ CPn | q(v) < 0}

is biholomorphic to the unit ball of Cn. It can be endowed with a complete Kähler metric of
negative sectional curvature pinched between −4 and −1, for which the distance between two
points x, y ∈ Hn

C
is given by the formula

cosh2 d(x, y) =
h(x̃, ỹ)h(ỹ, x̃)

h(x̃, x̃)h(ỹ, ỹ)
,

where x̃, ỹ ∈ Cn+1 denote lifts of x, y. Moreover, every biholomorphism of the ball is an isometry
for this metric, and the group of biholomorphic isometries of Hn

C
is isomorphic to PU(n, 1). The

action of PU(n, 1) on Hn
C

extends to an action by homeomorphisms on the closed ball Hn
C
∪∂Hn

C
,

where
∂HnC := {[v] ∈ CPn | q(v) = 0}.

Let us fix a point ξ ∈ ∂Hn
C
. There exists a basis fξ = (f1, f2, e1, . . . , en−1) of Cn+1 such that

ξ = [f1] and in which the quadratic form q has the following expression

q

(
af1 + bf2 +

n−1∑

i=1

uiei

)
= 2ℜ(ab) +

n−1∑

i=1

|ui|
2.

The biholomorphism
{

{(a, u) ∈ C× Cn−1 | 2ℜ(a) + ‖u‖2 < 0} −→ Hn
C

(a, u) 7−→ [af1 + f2 + u]
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defines a global chart of Hn
C
, in which Busemann functions at [f1] are the translates of the

function b defined by

e2b(a,u) =
−2

2ℜ(a) + ‖u‖2
.

A horoball at [f1] is a sublevel set of b.
In the basis fξ, let us define three subgroups M,A and N of PU(n, 1) by the associated groups

of matrices

M =








1 0 0
0 1 0
0 0 T


 | T ∈ U(n− 1)



 ,

A =








et 0 0
0 e−t 0
0 0 In−2


 | t ∈ R



 ,

N =








1 a −tb
0 1 0
0 b In−2


 | b ∈ Cn−1, a ∈ C, ‖b‖2 = −2ℜ(a)



 .

Then the stabilizer of a point ξ ∈ ∂Hn
C

in PU(n, 1) decomposes as

Stabξ(H
n
C) =MAN.

For T ∈ U(n− 1), b ∈ Cn−1 and c ∈ R, let (T, b, c) denote the element of the group MN defined
in the basis fξ by the matrix




1 − ‖b‖2

2 + ic −〈T ·, b〉
0 1 0
0 b T


 .

The group law on MN is given by

(T, b, c) · (T ′, b′, c′) = (TT ′, b+ Tb′, c+ c′ + ℑ〈b, T b′〉),

where 〈·, ·〉 is the standard Hermitian product on Cn−1. This group identifies with a semi-direct
product U(n − 1) ⋉N , and N is isomorphic to the Heisenberg group of real dimension 2n − 1.
The center Z(N) of N is the set of elements of the form (Id, 0, c), with c ∈ R. We denote by π the
projection of U(n−1)⋉N onto U(n−1), and by Π the morphism U(n−1)⋉N → U(n−1)⋉Cn−1

which to (T, b, c) ∈ U(n− 1)⋉N associates the holomorphic isometry z 7→ Tz + b of Cn−1.
A subgroup Γ of PU(n, 1) acts freely and properly discontinuously on Hn

C
if and only if it is

torsion-free and discrete in PU(n, 1). It is said to be parabolic if it fixes a point ξ in ∂Hn
C

and if
all the eigenvalues of its elements are of modulus 1, which amounts to saying that, in the model
described above, Γ is a subgroup of U(n− 1)⋉N , or equivalently that Γ preserves horoballs at
ξ. We write for all γ ∈ Γ

γ = (π(γ), b(γ), c(γ)), with π(γ) ∈ U(n− 1), b(γ) ∈ Cn−1, c(γ) ∈ R, and

Π(Γ) = (π(γ), b(γ)).

The parabolic group Γ is said to be unipotent if π(Γ) is trivial.
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2.2 A characterization of Stein parabolic quotients of the ball

As explained in Subsection 2.1, we identify a parabolic subgroup of PU(n, 1) with a subgroup of
U(n− 1)⋉N , and we denote by π, respectively Π, the projection of U(n− 1)⋉N onto U(n− 1),
respectively U(n− 1)⋉ Cn−1. The following lemma is probably classical, and we give its proof,
after the statement of Theorem 13, for the reader’s convenience.

Lemma 12. Let Γ be a discrete and torsion-free parabolic subgroup of PU(n, 1). Then there
exists a finite-index subgroup Γ1 of Γ such that Π(Γ1) is Abelian.

Let Γ and Γ1 be as in this lemma. Set

V1 :=
⋂

γ∈Γ1

ker(Id−π(γ)),

and let p : Cn−1 → V1 be the orthogonal projection onto V1. Finally, define

W1 := Span({p(b(γ)) | γ ∈ Γ1}),

where b(γ) = Π(γ) · 0 ∈ Cn−1. In the following statement, a linear subspace W of Cn−1 is said
to be totally real if W ∩ iW = {0}.

Theorem 13. Let Γ be a discrete and torsion-free parabolic subgroup of PU(n, 1), and let Γ1, p, V1
and W1 be as above. Then Hn

C
/Γ is a Stein manifold if and only if W1 is totally real.

Proof of Lemma 12. As in Subsection 2.1, let us fix a basis of Cn+1 which induces an identi-
fication between Γ and a discrete subgroup of U(n − 1) ⋉ N . By Margulis Lemma, Γ is vir-
tually nilpotent. The existence of Γ1 follows from the classical fact that a nilpotent subgroup
of U(n − 1) ⋉ Cn−1 is virtually Abelian. To show this fact, the first observation, that we will
not prove here, is that a nilpotent subgroup of U(n − 1) is virtually Abelian. Let Γ1 be a
finite-index nilpotent subgroup of Γ such that π(Γ1) is Abelian. Seeking a contradiction, let us
assume that the nilpotent group Π(Γ1) is not Abelian. There is a non-trivial element z in the
center of Π(Γ1) which can be written as a product of commutators z = [x1, y1] . . . [xk, yk], with
x1, . . . , xk, y1, . . . , yk ∈ Π(Γ1). Let us write

xi = (π(xi), b(xi)),

yi = (π(yi), b(yi)),

z = (Id, b(z)),

with π(xi), π(yi) ∈ U(n − 1) which commute, and b(xi), b(yi), b(z) ∈ Cn−1. We will now show
that b(z) = 0, which means that z is trivial, a contradiction. Given π1, π2 ∈ U(n − 1) which
commute and b1, b2 ∈ Cn−1, we compute that

[(π1, b1), (π2, b2)] = (π1, b1) (π2, b2) (π
−1
1 ,−π−1

1 b1) (π
−1
2 ,−π−1

2 b2)

= (π1π2, b1 + π1b2)(π
−1
1 π−1

2 ,−π−1
1 b1 − π−1

1 π−1
2 b2)

= (Id, b1 + π1b2 + (π1π2)(−π
−1
1 b1 − π−1

1 π−1
2 b2))

= (Id, (Id−π2)b1 − (Id−π1)b2).

Therefore

b(z) =

k∑

i=1

(Id−π(yi))b(xi)− (Id−π(xi))b(yi). (5)
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Moreover, z commutes with all elements of E := {x1, . . . , xk, y1, . . . , yk}, which implies that

∀γ ∈ E, π(γ)b(z) = b(z). (6)

Choose a basis e = (e1, . . . , en−1) that diagonalizes all elements of π(E) and express π(γ) in this
basis as Diag(a1(γ), . . . , an−1(γ)) for γ ∈ E. For all j ∈ {1, . . . , n − 1}, if there exists γ ∈ E
such that aj(γ) 6= 1, then the jth coordinate bj(z) of b(z) in the basis e must vanish according
to Formula (6), and if aj(γ) = 1 for all γ ∈ E, then bj(z) = 0 according to Formula (5). Thus
b(z) = 0, which gives the contradiction we were looking for and proves that Π(Γ1) is Abelian.

Proof of Theorem 13. Let Γ1 be as in Lemma 12. Since Hn
C
/Γ1 is a finite covering of Hn

C
/Γ, one

of these two manifolds is Stein if and only if the other one is. To simplify the notation, we can
thus assume without loss of generality that Γ1 = Γ.

Step 1. Separation of the elliptic and unipotent parts of Γ.
The group π(Γ) is Abelian, hence there is an orthonormal basis e = (e1, . . . , en−1) of Cn−1

as well as morphisms a1, . . . , an−1 from Γ to the unit circle in C such that, in the basis e

π(γ) = Diag(a1(γ), . . . , an−1(γ)).

For γ ∈ Γ, let (b1(γ), . . . , bn−1(γ)) be the coordinates of b(γ) in the basis e. Up to permuting
the elements of e, we can assume that (ek+1, . . . , en−1) forms a basis of V1 for some integer
k ∈ {0, . . . , n− 1}. For all i ∈ {1, . . . , k}, there is an element γi ∈ Γ such that ai(γi) 6= 1. Set

λi :=
bi(γi)

1− ai(γi)
.

As Π(Γ) is Abelian, we have

∀γ ∈ Γ, ∀i ≤ k, bi(γ) = λi(1 − ai(γ)).

We set Λ := t(λ1, . . . , λk, 0, . . . , 0) ∈ Cn−1, so that

∀γ ∈ Γ, (π(γ)− Id)Λ = t(−b1(γ), . . . ,−bk(γ), 0, . . . 0).

Let TΛ be the element (Id,Λ, 0) of U(n − 1) ⋉N and, for all γ ∈ Γ, define φ(γ) := T−1
Λ γTΛ. A

computation shows that for all γ ∈ Γ, we have

φ(γ) = (π(γ), b(φ(γ)), c(φ(γ))), where b(φ(γ)) = b(γ) + (π(γ)− Id)Λ ∈ V1 and c(φ(γ)) ∈ R.

Set
φ(γ)e := (π(γ), 0, 0) and φ(γ)u := (Id, b(φ(γ)), c(φ(γ))).

Using that b(φ(γ)) ∈ V1 for all γ ∈ Γ, we get

∀γ, γ′ ∈ Γ, [φ(γ)e, φ(γ
′)u] = Id .

It is also easily verified that φ(γ) = φ(γ)eφ(γ)u for all γ ∈ Γ. More generally, U(k), seen as
a subgroup of U(n − 1) fixing V1 pointwise, commutes with φ(γ)u for γ ∈ Γ. In particular,
φ(Γ)E := {φ(γ)e | γ ∈ Γ} and φ(Γ)U := {φ(γ)u | γ ∈ Γ} are groups and φ(Γ)U < N . Moreover,
φ(Γ)U is discrete in N . Indeed, let (γk)k∈N be a sequence in Γ such that φ(γk)u −→

k→+∞
Id. After

passing to a subgroup, we can assume that the sequence φ(γk)e converges to a limit M ∈ U(n−1).
Thus φ(γk) converges to M , and since φ(Γ) is discrete, this sequence has to be stationary. Hence
φ(Γ)U is discrete in N .
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Step 2 Characterization of Stein quotients.
We can rewrite W1 as

W1 = SpanR({b(φ(γ)) | γ ∈ Γ}).

From [Mie24, Theorem 1.4], we obtain that the quotient Hn
C
/φ(Γ)U is Stein if and only if W1 is

totally real.
Assume that W1 is totally real. Then Hn

C
/φ(Γ)U is a Stein manifold, so it has a strictly

plurisubharmonic exhaustion function ψU : Hn
C
/φ(Γ)U → R+. Moreover, the holomorphic action

of U(k) on Hn
C

descends to the quotient Hn
C
/φ(Γ)U , and by averaging ψU over the orbits of U(k),

we can assume that ψU is U(k)-invariant. Then ψU lifts to a strictly plurisubharmonic function
ψ̃U : Hn

C
→ R+ which is invariant by φ(Γ)U and U(k). This function descends to a strictly

plurisubharmonic function ψ : Hn
C
/φ(Γ) → R+, which is an exhaustion. Thus, Hn

C
/φ(Γ), and

therefore Hn
C
/Γ, are Stein.

Conversely, if Hn
C
/Γ, hence Hn

C
/φ(Γ), is a Stein manifold, then Hn

C
/φ(Γ) admits a strictly

plurisubharmonic exhaustion function. This implies that Hn
C
/φ(Γ)U has a strictly plurisubhar-

monic exhaustion function, thus Hn
C
/φ(Γ)U is a Stein manifold. Therefore, W1 is totally real.

Using Theorem 13, we obtain as a corollary the second point of Theorem 2.

Corollary 14. Let Γ be a discrete and torsion-free parabolic subgroup of PU(n, 1). If Γ is
virtually Abelian, then Hn

C
/Γ is a Stein manifold.

Proof. As in the proof of Theorem 13, we assume without loss of generality that Γ is Abelian
and we decompose φ(Γ) into an elliptic part φ(Γ)E and a unipotent part φ(Γ)U . Then φ(Γ)U
is a discrete and Abelian parabolic subgroup of PU(n, 1). It is known that the quotient of the
complex hyperbolic space by such a subgroup is a Stein manifold, see [Che13]. This is also a
particular case of [Mie24, Theorem 1.4], because with the notations of Step 1 above, it can be
verified that for all γ, γ′ ∈ Γ, the identity [φ(γ), φ(γ′)] = Id implies that

ℑ〈b(φ(γ)), b(φ(γ′))〉 = 0,

and this implies that W1 is totally real, so that Hn
C
/Γ is a Stein manifold.

2.3 Proof of Theorem 2

We first recall a formula for the critical exponent of a discrete and torsion-free parabolic subgroup
Γ of PU(n, 1), for which we refer to [CI99] or [DOP00, §3]. Let Γ1 be a finite-index subgroup of
Γ such that Π(Γ1) is Abelian. Define l ∈ {0, 1} as the dimension of the real subspace spanned
by Z(N) ∩ Γ1, where Z(N) ≃ R is the center of R, and k ∈ {0, . . . 2n− 2} as the dimension of
the subspace of Cn−1 spanned by Π(Γ1). Then

δ(Γ) =
2l+ k

2
. (7)

Proof of Theorem 2. The second point of the theorem is given by Corollary 14. For the first
point, let Γ be a discrete and torsion-free parabolic subgroup of PU(n, 1) which is not virtually
Abelian. We will show that δ(Γ) ≥ 2 by finding two elements x, y ∈ Γ that generate a group of
critical exponent equal to 2. Let us fix, as in Subsection 2.1, a basis f of Cn+1 which induces an
identification between Γ and a subgroup of U(n− 1)⋉N . Let Γ1 be a finite-index subgroup of Γ
such that Π(Γ1) is Abelian, given by Lemma 12. Since the set of commutators of elements of Γ1

is included in the kernel of Π, which coincides with the center Z(N) of N , and Γ1 is not Abelian,
we deduce that Γ contains two elements x and y such that Π(x) and Π(y) commute, but x and
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y do not. Then according to Formula (7), the critical exponent of the group generated by x and
y is 2l+k

2 , where l ∈ {0, 1} is the dimension of the R-span of the elements c(γ) for γ ∈ Γ and
k ∈ {0, 1, 2} is the dimension of the R-span of π(x) and π(y). Since x and y do not commute,
we see that l = 1 and k = 2. Thus δ(〈x, y〉) = 2.

Corollary 15. Let Γ be a discrete and torsion-free parabolic subgroup of PU(n, 1). If Γ preserves
a totally real geodesic submanifold of Hn

C
, then Hn

C
/Γ is Stein.

Proof. We can realize Γ as a discrete and virtually nilpotent subgroup of

P((O(k − 1)⋉Rk−1)× U(n− k))

for some integer k ∈ {1, . . . , n}. Consequently, Γ is virtually Abelian. We deduce from Theorem
13 that Hn

C
/Γ is a Stein manifold.

Corollary 16. Let Γ be a discrete and torsion-free parabolic subgroup of PU(2, 1). Then H2
C
/Γ

is Stein if and only if Γ is virtually Abelian.

Proof. If Γ is not virtually Abelian, choose two elements x, y ∈ Γ as in the proof of Theorem 2.
Since x and y do not commute, we get that ℑ〈b(x), b(y)〉 6= 0, and thus W := SpanR(b(x), b(y)) ⊂
C is equal to C. In particular W is not totally real and using Theorem 13, we deduce that Hn

C
/Γ

admits a covering Hn
C
/〈x0, y0〉 which is not Stein. As any covering of a Stein manifold is Stein,

see [Ste56; Siu78], this implies that Hn
C
/Γ is not Stein.

2.4 Examples of parabolic quotients of the ball

In the following two examples, we fix, as in Subsection 2.1, a basis f = (f1, f2, e1, . . . , en−1) of
Cn+1 which induces an identification between parabolic subgroups of PU(n, 1) fixing [f1] and
subgroups of U(n− 1)⋉N .

Example. Here is an example of a discrete unipotent subgroup Γ of PU(n, 1) with δ(Γ) = 2,
for which Hn

C
/Γ is not holomorphically convex. The group Γ generated by γ1 := (Id, e1, 0) and

γ2 := (Id, ie1, 0) is the set of all elements of the form

(Id, (k1 + ik2)e1, 2ℓ− k1k2),

where (k1, k2, ℓ) ∈ Z3. In particular, Γ is discrete, and Formula (7) shows that δ(Γ) = 2.
Finally, the quotient Hn

C
/Γ naturally identifies with a bundle of punctured disks over the base

B := C/(Z+ iZ)×Cn−2. If Hn
C
/Γ were holomorphically convex, it would be Stein by Proposition

11-(a) and we would deduce that B is a Stein manifold by [CD97, Lemma 1.6], which is not the
case. Therefore, Hn

C
/Γ is not holomorphically convex.

Example. Here is an example of a complex hyperbolic bundle of punctured disks over a Cousin
group. We work in dimension n = 3, but this example generalizes to any dimension n ≥ 3. Using
the identification introduced before the previous example, define three vectors in C2 = Ce1⊕Ce2
by v1 = e1, v2 = e2, and v3 = ae1 + be2 for (a, b) ∈ C2 two complex numbers such that

{
λ := ℑ(a) = ℑ(b) 6= 0,
ℜ(a)−ℜ(b) /∈ Q.

The fact that ℑ(a) 6= 0 and ℑ(b) 6= 0 implies that v1, v2 and v3 are R-linearly independent,
and both conditions together imply that 1, a and b are Z-linearly independent. We deduce that
the subgroup Γ0 of C2 generated by v1, v2 and v3 is discrete, and that the quotient C2/Γ0 has
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no compact factor and does not admit any non-constant holomorphic function (see for example
[Nap90, pages 451-452]). Let Γ be the subgroup of U(n−1)⋉N generated by the three elements
γi = (Id, vi, 0) for i = 1, 2 and 3. The equality ℑ(a) = ℑ(b) = λ implies that

[γ3, γ1] = [γ3, γ2] = (Id, 0, 2λ).

Any element of Γ is of the form γk21 γk22 γk33 [γ3, γ1]
ℓ, with (k1, k2, k3, ℓ) ∈ Z4, and we deduce that

Γ is the set of all elements of the form

(Id, k1v2 + k2v2 + k3v3, ((k1 + k2)k3 + 2ℓ)λ).

with (k1, k2, k3, ℓ) ∈ Z4. Consequently, Γ is discrete, and H3
C
/Γ is biholomorphic to a bundle of

punctured disks over C2/Γ0. Since C2/Γ0 is not Stein, we deduce as in the previous example
that H3

C
/Γ is not holomorphically convex. Additionally, Formula (7) shows that δ(Γ) = 5

2 .

3 Holomorphic convexity and geometrically finite subgroups

We begin by reviewing the structure of a geometrically finite quotient of the ball, then we prove
Theorems 3 and 1.

3.1 A description of geometrically finite quotients of the ball

We first recall some general concepts about discrete subgroups of PU(n, 1). Let Γ be a discrete
subgroup of PU(n, 1). Its limit set Λ(Γ) is the closed subset of ∂Hn

C
defined as the accumulation

set of an orbit Γo, for some point o ∈ Hn
C
, and it does not depend on the choice of the point

o ∈ Hn
C
. The domain of discontinuity Ω(Γ) of Γ is an open subset of ∂Hn

C
which can be defined

as the complement of the limit set. These sets are invariant under the action of Γ on ∂Hn
C
, and

in particular, the closed geodesic convex hull of the limit set forms a Γ-invariant closed subset of
Hn

C
. The quotient CΓ of this convex hull by Γ is a closed subset of Hn

C
/Γ, called convex core of

Hn
C
/Γ.
We now pass to geometrically finite groups, for the definition of which we refer to [Bow95].

Let Γ be a geometrically finite and torsion-free subgroup of PU(n, 1). We are going to use the
following description of XΓ := Hn

C
/Γ. This manifold has a boundary ∂XΓ := Ω(Γ)/Γ and it

decomposes as

XΓ =: Q ∪
k⋃

i=1

Ei,

where Q is relatively compact in XΓ ∪ ∂XΓ, k is an integer, and for i ∈ {1, . . . , k}, each Ei is
an open subset of XΓ biholomorphic to the quotient of a horoball b−1

i ((−∞, 0)) by a maximal
parabolic subgroup Pi of Γ, for some Busemann function bi. Moreoever CΓ ∩Q is compact.

3.2 Proof of Theorem 3

For the proof of Theorem 3, we will need the following lemma about parabolic quotients of the
ball.

Lemma 17. Let P be a discrete and torsion-free parabolic subgroup of PU(n, 1), and ξ ∈ ∂Hn
C

a point fixed by P . The following statements are equivalent:

1. Hn
C
/P is a Stein manifold.
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2. For any horoball H ⊂ Hn
C

at ξ, the quotient H/P is a Stein manifold.

3. There exists a horoball H ⊂ Hn
C

at ξ for which H/P is a Stein manifold.

Proof. (1 =⇒ 2) If Hn
C
/P is a Stein manifold, it admits a strictly plurisubharmonic exhaustion

function ψ : Hn
C
/P → R+. The Busemann function b : Hn

C
→ R at ξ is invariant under the action

of P . Let Hλ := b−1((−∞, λ)) be a horoball at ξ. The function ψ + 1
λ−b defined on Hλ/P is

a strictly plurisubharmonic exhaustion function on Hλ/P , which shows that Hλ/P is a Stein
manifold.

The implication 2 =⇒ 3 is immediate. We now show that 3 =⇒ 2. We fix, as in Subsection
2.1, a basis f = (f1, f2, e3, . . . , en+1) of Cn+1 which induces an identification between parabolic
elements of PU(n, 1) fixing ξ = [f1] and elements of U(n − 1)⋉ N . The elements of P , seen as
biholomorphisms of CPn, commute with the biholomorphisms Lt : CPn → CPn defined for all
real numbers t in the basis f by the matrices



1 t 0
0 1 0
0 0 In−1


 .

With the notations of Subsection 2.1, it is easily checked that for any pair (λ, µ) of real numbers,
the map Lt with t = e−2λ − e−2µ sends the horoball Hλ := b−1((−∞, λ)) to the horoball
Hµ := b−1((−∞, µ)). We deduce that the quotients of horoballs at ξ by P are all biholomorphic.

(2 =⇒ 1) The manifold Hn
C
/P is the union of a one-parameter family of Stein manifolds, so

it is Stein by the theorem of Docquier-Grauert recalled in Subsection 1.1.

We now come to the proof of Theorem 3.

Proof of Theorem 3. (1 =⇒ 2) Suppose that Hn
C
/Γ admits a plurisubharmonic exhaustion

function φ : Hn
C
/Γ → R. Let P be a maximal parabolic subgroup of Γ. There exists a Busemann

function b, invariant under P , such that the set C := b−1((−∞, 0))/P is biholomorphic to an
open subset of Hn

C
/Γ. The function φ|C + −1

b
is a strictly plurisubharmonic exhaustion function

of C, and therefore C is a Stein manifold. Using Lemma 17, we deduce that Hn
C
/P is a Stein

manifold. If now P is any parabolic subgroup of Γ, it is contained in a maximal parabolic
subgroup P0 of Γ. The manifold Hn

C
/P is a covering of Hn

C
/P0, which is Stein, and therefore

Hn
C
/P is Stein.
(2 =⇒ 3) This proof is inspired by [Che13, Proof of Theorem 1.4]. Suppose that, for every

maximal parabolic subgroup P < Γ, the quotient Hn
C
/P is a Stein manifold. As explained in

Subsection 3.1, the manifold XΓ := Hn
C
/Γ decomposes as

XΓ =: Q ∪
k⋃

i=1

Ei,

where Q is relatively compact in XΓ ∪ ∂XΓ, k is an integer, and for i ∈ {1, . . . , k}, each Ei is
an open subset in XΓ biholomorphic to the quotient of a horoball b−1

i ((−∞, 0)) by a maximal
parabolic subgroup Pi of Γ, for some Busemann function bi. We also define E′

i ⊂ Ei as the
quotient of the horoball b−1

i ((−∞,−1)) by Pi. Moreover, the convex core CΓ of XΓ has compact
intersection with Q. By the arguments given in the proofs of Proposition 6 and Lemma 9, we get
that the squared distance function to the convex hull C(Γ) of the limit set descends to a convex
function φ on XΓ, which is strictly convex outside CΓ. By Richberg’s theorem, there exists a
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continuous plurisubharmonic function φ̃ which is smooth and strictly plurisubharmonic outside
CΓ, and such that

φ ≤ φ̃ ≤ φ+
1

2
,

see [Dem, Theorem I.5.21]. Moreover, Lemma 17 implies that for any i ∈ {1, . . . , k}, the open
subset Ei of XΓ is a Stein manifold, and admits a strictly plurisubharmonic exhaustion function.
Let Ψi be a smooth non-negative function that coincides with this function on E′

i and vanishes
outside Ei. For any integer j ∈ N, let T ij be the compact subset of XΓ defined by

T ij := {x ∈ Ei \ E
′
i | j ≤ φ̃(x) ≤ j + 1}.

Then, as soon as j ≥ 1, the function φ̃ is strictly plurisubharmonic on T ji , so there exists a
constant βij > 0 such that i∂∂̄Ψi ≥ −βiji∂∂̄φ̃ on T ij . It follows that there exists a strictly
increasing convex function λ : R+ → R+ such that λ(t) −→

t→+∞
+∞ and such that

N := λ ◦ φ̃+

k∑

i=1

Ψi

is strictly plurisubharmonic on the set
k⋃

i=1

⋃

j≥1

T ij .

On Q, this function N coincides with λ ◦ φ̃ and it is strictly plurisubharmonic on Q ∩ XΓ \

CΓ. On each E′
i, since Ψi is strictly plurisubharmonic and φ̃ is plurisubharmonic, N is strictly

plurisubharmonic. In conclusion, N is strictly plurisubharmonic outside the compact set

(CΓ ∩Q) ∪
k⋃

i=1

T i0.

Moreover, N is an exhaustion function. Indeed, if (xn)n∈N is a sequence in XΓ without accu-
mulation point, then, after extracting a subsequence, it converges to the boundary ∂XΓ or has
values in one of the open sets E′

i. In the first case where xn −→ x∞ ∈ Ω(Γ)/Γ, we claim that
φ(xn) −→ +∞. Assuming the contrary, we obtain a sequence (x̃n)n∈N in Hn

C
converging to an

element x̃∞ ∈ Ω(Γ), which remains at bounded distance from C(Γ), and thus another sequence
(cn)n∈N in C(Γ) converging to x̃∞. Thus, x̃∞ ∈ Ω(Γ) ∩ ∂C(Γ). This is a contradiction, because
∂C(Γ) = Λ(Γ), see [And83]. In the case where the sequence lies in E′

i, it does not accumulate
and therefore, after after passing to a subsequence, we have Ψ(xn) → +∞. Thus N is an ex-
haustion function. Finally, a second application of Richberg’s theorem shows that there exists
a continuous exhaustion function Ñ : XΓ → R which is smooth and strictly plurisubharmonic
outside a compact set. Therefore, X is holomorphically convex.

The implication 3 =⇒ 1 is classical, see for example [Dem, Theorem I.6.14].

Remark. If we replace Hn
C

by a simply connected complete Kähler manifold (X,ω) with negatively
pinched sectional curvature, and assume that Γ is a group acting freely and geometrically finitely
by holomorphic isometries on X , I do not know if Lemma 17 remains true (the proof uses the
holomorphic maps Lt whose existence is specific to the complex hyperbolic case). In Theorem
3, it remains true that 1 ⇐⇒ 3. To show that 1 =⇒ 3, one argues as in the proof above,
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noticing that if X/Γ admits a plurisubharmonic exhaustion φ, then the open sets Ei appearing
in the decomposition

X/Γ = Q ∪
k⋃

i=1

Ei

are Stein manifolds, with a strictly plurisubharmonic exhaustion given by φ + −1
bi

, where bi is a
Busemann function on X associated to a parabolic point corresponding to the cusp Ei.

3.3 Proof of Theorem 1

For the proof of Theorem 1-(a), we will need the following lemma, which is presumably classical,
and the proof of which we include for completeness.

Lemma 18. Let X be a complete simply connected Riemannian manifold with negatively pinched
curvature, and P a discrete and torsion-free parabolic subgroup of isometries of X. Then P is
cyclic or contains a copy of Z2.

Proof of Lemma 18. By Margulis’ lemma, P contains a finite-index nilpotent subgroup P ′. More-
over, P ′ is finitely generated according to [Bow93]. We distinguish two cases:

• If P ′ is Abelian, then P ′ is cyclic or contains a copy of Z2. Since a virtually cyclic torsion-free
group is cyclic, we deduce that P is cyclic or contains a copy of Z2.

• Otherwise, let g be a non-trivial element in the center of P ′, and h an element of P ′ which
does not belong to the center of P ′. Then g and h generate a subgroup isomorphic to Z or Z2.
Suppose, by contradiction, that this group is cyclic. Then g and h are powers of an element
k ∈ P ′. In a torsion-free and finitely generated nilpotent group, the centralizers of an element
and its powers coincide, and consequently g and h have the same centralizer in P ′. This yields
a contradiction, and consequently P contains a copy of Z2.

Proof of Theorem 1. Let Γ be a geometrically finite and torsion-free subgroup of PU(n, 1). As-
sume first that Γ is Gromov-hyperbolic. Then Γ does not contain a copy of Z2, see [BH99,
Corollary III.Γ.3.10], so according to Lemma 18, the non-trivial parabolic subgroups of Γ are
cyclic. The quotient of the complex hyperbolic space by the action of a cyclic parabolic group is
a Stein manifold, as follows, for example, from Theorem 2, see also [dFI01] or [Mie10]. Theorem
3 implies that Hn

C
/Γ is holomorphically convex.

In particular, if Γ is free, then Hn
C
/Γ is holomorphically convex. Using Proposition 11-(e), we

deduce that Hn
C
/Γ is Stein.

Suppose now that δ(Γ) < 2. For any parabolic subgroup P < Γ, we have δ(P ) ≤ δ(Γ) < 2,
so Hn

C
/P is Stein according to Theorem 2. Using Theorem 3, we deduce that Hn

C
/Γ is holomor-

phically convex. Since δ(Γ) < 2, this manifold does not contain any compact analytic subvariety
of positive dimension according to [DK20, Theorem 15] or Proposition 6. We deduce that Hn

C
/Γ

is Stein.
Finally, suppose that Γ preserves a totally real and totally geodesic submanifold Hk

R
⊂ Hn

C
.

Then according to Corollary 15, for any parabolic subgroup P of Γ, the quotient Hn
C
/P is a Stein

manifold. Using Theorem 3, we deduce that Hn
C
/Γ is holomorphically convex. This manifold

does not contain any compact analytic subvariety of positive dimension, according for example
to Proposition 11-(c). Thus Hn

C
/Γ is Stein.

We conclude this section by a remark which follows from Lemma 18.
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Remark. Let X be a complete simply connected Riemannian manifold with negatively pinched
curvature, and Γ a group containing no copy of Z2. If Γ acts faithfully, discretely, and geomet-
rically finitely by isometries on X , then Γ is Gromov-hyperbolic. Indeed, a geometrically finite
group is hyperbolic relative to its parabolic subgroups. Under the assumption that Γ contains
no copies of Z2, the parabolic subgroups of Γ are cyclic, and in particular Gromov-hyperbolic.
This implies that Γ itself is Gromov-hyperbolic, see [Osi06]. We can use this fact to exhibit
finitely generated groups which admit a discrete and faithful representation in PU(n, 1) but no
discrete, faithful, and geometrically finite representation of N in PU(n, 1). To do this, let first
Γ0 be a cocompact arithmetic lattice of the simplest type of PU(n, 1), for the definition of which
we refer to [BW00, §VIII.5]. Then there exists a finite-index torsion-free subgroup Γ < Γ0 and a
morphism φ : Γ → Z such that N := ker(φ) is finitely generated but not hyperbolic, see [LP24],
and also [IMM23] for related results. As a subgroup of Γ, the group N cannot contain a copy of
Z2. Thus, there exists by construction a discrete and faithful representation of N in PU(n, 1),
but there is no discrete, faithful, and geometrically finite representation of N in PU(n, 1).

4 Discrete subgroups with critical exponent equal to 2

In this section we give two proofs of Theorem 4, using the techniques developped in [CMW23].
The first one uses the function f defined in Lemma 10. The second one involves the natural flow,
which is defined by the complete vector field X = ∇f .

Proof of Theorem 4. Let Γ be a discrete and torsion-free subgroup of PU(n, 1) with critical
exponent δ = 2 and assume that Hn

C
/Γ contains a compact subvariety A of positive dimension.

First, we remark that Γ is non-elementary, as a consequence of Proposition 11-(a) and (c). Thus
Γ admits a Patterson-Sullivan measure (µx)x∈Hn

C
. Fix a point p ∈ Hn

C
and, for all θ ∈ ∂Hn

C
, denote

by Bθ := Bθ(·, p) the Busemann function at θ which vanishes at p. Let f be the Γ-invariant
function defined on Hn

C
by f(x) := − ln‖µx‖. By Lemma 10, for all tangent vector v at a point

x ∈ Hn
C
, we have

i∂∂f(v, Jv) ≥ 0.

Let Ã ⊂ Hn
C

be the lift of A, x be a regular point of Ã and v be a non-zero vector in TxÃ. Then
the plurisubharmonic function f |

Ã
is constant and consequently i∂∂f(v, Jv) = 0. The inequality

given by Lemma 10 is thus an equality for this vector v. Using that Patterson-Sullivan measures
are supported on Λ(Γ), one sees that this equality can only happen when

∀θ ∈ Λ(Γ), dBθ(v)
2 + dBθ(Jv)

2 = ‖v‖2.

This is possible if and only if v ∈ Cvxθ for all θ ∈ Λ(Γ) and all v ∈ TxÃ, where vxθ ∈ TxH
n
C

is
the unit vector at x pointing in the direction of θ. We deduce that A has dimension 1 and that

∀θ ∈ Λ(Γ), vxθ ∈ TxÃ.

Let D be the unique complex geodesic containing x for which TxD = TxÃ. Then Λ(Γ) ⊂ ∂D,
and hence the convex hull of Λ(Γ) is contained in D. We deduce that Γ preserves D. Moreover
A ⊂ D/Γ by Proposition 5. To conclude, notice that D/Γ is a Riemann surface containing
a compact subvariety of positive dimension, so D/Γ is compact and Γ is a complex Fuchsian
group.

Remark. We now outline a second proof of Theorem 4, inspired by [CMW23, Theorem 1.5].
According to [CMW23, Lemma 2.2], the vector field X defined by ∇f on Hn

C
/Γ is complete, and
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defines a smooth flow (φt)t∈R. If x ∈ Hn
C

and (Y1, . . . , Yk) is a k-frame of TxHnC which spans
a subspace V , then the infinitesimal contraction rate of this frame by (φt)t∈R is given by the
real number tr(∇df(x)|V ) (see [CMW23, Lemma 2.5] for a precise statement). For x ∈ Hn

C
and

θ ∈ ∂Hn
C
, there is a real basis (e1, e2, . . . , e2n) of TxHnC with e1 = vxθ the unit vector pointing in

the direction of θ and e2 = Je1, in which the matrix of Lθ + J∗Lθ is Diag(2− δ, 2− δ, 2, . . . , 2).
In particular, if δ(Γ) = 2 and V ⊂ TxH

n
C

is a complex subspace, then

tr(Lθ|V ) =
1

2
tr ((Lθ + J∗Lθ)|V ) ≥ 0,

with equality if and only if V has complex dimension 1 and V = Cvxθ. Let Ã be the lift in Hn
C

of a compact subvariety of positive dimension A ⊂ Hn
C
/Γ. Then we have for all regular point x

of Ã

tr(∇df |
TxÃ

) ≥

∫

∂Hn

C

tr(L
θ|TxÃ

)dµx(θ) ≥ 0.

If, for some regular point x of Ã, the above inequality was strict, then φ−t would contract A
for sufficiently small t > 0, which would contradict the fact that A is a volume minimizer in its
homology class. Fixing from now on a regular point x of Ã, we deduce that A has dimension 1
and, since Patterson-Sullivan measures of Γ are supported on the limit set Λ(Γ) of Γ, we get

∀θ ∈ Λ(Γ), vxθ ∈ TxÃ.

We conclude as in the first proof.
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