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THE HOROSPHERICAL p-CHRISTOFFEL-MINKOWSKI AND
PRESCRIBED p-SHIFTED WEINGARTEN CURVATURE PROBLEMS
IN HYPERBOLIC SPACE

YINGXIANG HU, HAIZHONG LI AND BOTONG XU

ABSTRACT. The L,-Christoffel-Minkowski problem and the prescribed L,-Weingarten cur-
vature problem for convex hypersurfaces in Euclidean space are important problems in geo-
metric analysis. In this paper, we consider their counterparts in hyperbolic space. For the
horospherical p-Christoffel-Minkowski problem first introduced and studied by the second and
third authors, we prove the existence of smooth, origin-symmetric, strictly horospherically
convex solutions by establishing a new full rank theorem. We also propose the prescribed
p-shifted Weingarten curvature problem and prove an existence result.

1. INTRODUCTION

The regular Christoffel-Minkowski problem aims to find a smooth, closed and strictly convex
hypersurface in the (n + 1)-dimensional Euclidean space R"*! with the prescribed k-th area
measure. Equivalently, for any given smooth positive function f on S", it is to find strictly
convez solutions of the equation

Po—ik(D?*h+ho) = f onS",

with (D?h + ho) > 0 on S™. Here o is the round metric on the n-dimensional unit sphere S",
D its Levi-Civita connection, and p,_j is the normalized (n — k)th elementary symmetric
polynomial of the eigenvalues of its argument. The solution A is known as the support
function of a strictly convex hypersurface in Euclidean space, and the eigenvalues of the
matrix (D2h + ho) are the principal radii of curvature of the hypersurface. When k = 0, it is
the equation for the famous Minkowski problem, which has been completely resolved, see e.g.
[Nir53, CY76, Pog78, Lew83, Caf90]; When k& = n — 1, it is the equation for the Christoffel
problem, which is also completely settled in [Fir67, Ber69, LWW21]. For the intermediate
Christoffel-Minkowski problem (1 < k < n —2), under a sufficient condition on the prescribed
function f, Guan and Ma [GMO03] proved the existence of a unique strictly convex solution
up to translations.

By calculating the variation of quermassintegrals of convex bodies along Firey’s p-sums
[Fir62], Lutwak [Lut93] introduced the k-th p-area measure of convex bodies for p > 1.
The prescribed k-th p-area measure problem for 1 < k < n — 1 is called the L,-Christoffel-
Minkowski problem, which reduces to the classical one when p = 1. In the regular case, this
problem can be reduced to the following nonlinear PDE:

Y Pp,_1(D*h + ho) = f on S, (1.1)

with (D?h+ ho) > 0 on S™ For p > n—k+1, equation (1.1) was investigated by Hu, Ma and
Shen [HMS04]. For 1 < p < n — k + 1, by imposing the even assumption on f, this equation
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was studied by Guan and Xia [GX18]. For 0 < p < 1, it was recently discussed by Bianchini,
Colesanti, Pagnini and Roncoroni [BCPR23].

One of the main ingredients in the proof of the existence of convex solutions to the L,-
Christoffel-Minkwski problem is the constant rank theorem, which has profound implications
for the geometry of solutions to equation (1.1). This technique was devised to deal with
the convexity property for the homotopy method of deformation by Caffarelli and Friedman
[CF85], see also [SWYYR85]. Later, it was extended to the Christoffel-Minkowski problem
and the prescribed Weingarten curvature problem for embedded hypersurfaces in Euclidean
space [GMO03, GLM06, GMZ06], as well as the more general fully nonlinear elliptic equations
by [CGMO07, BG09]. The deformation lemma was also adapted to the prescribed curvature
measure problems in [GLM09, GLL12]. Recently, Bryan, Ivaki and Scheuer [BIS23] presented
a new approach to the constant rank theorem by applying the strong maximum principle to
a linear differential inequality (in a viscosity sense) for the subtraces of a linear map, instead
of the nonlinear test functions as in [BG09].

It is natural to study the analog of such prescribed measure problems for closed hypersur-
faces in hyperbolic space. A bounded domain (as well as its boundary) in hyperbolic space
is called strictly horospherically convex if the principal curvatures are greater than 1 on its
boundary. The geometry of horospherically convex domains has attracted much attention in
the decades, see e.g. [ACW21, BM99, GRST08, HLW22, NT97, NSW22, WX14].

Recently, Li and Xu [L.X22] introduced a summation of two sets in hyperbolic space called
the hyperbolic p-sum, and they introduced the horospherical k-th p-area measure by calcu-
lating the variation of the k-th modified quermassintegrals (see [ACW21]) of horospherically
convex domains along the hyperbolic p-sum. They proposed the associated horospherical
p-Christoffel-Minkowski problem [LX22, Prob. 5.2]. This problem aims to find strictly horo-
spherically convex solutions to equation

o P pooi(Alg]) = f on 8™, (1.2)

where A[y] is a symmetric 2-tensor on S™ defined by

1|Dy|? 1 1
A[tﬁ]:zDzw—J i 0+—<<p—;>a,

2 o 2

and a positive function ¢ on S™ is called strictly horospherically convex if A[p] > 0 on S".
The strict horospherical convexity of ¢ is equivalent to the fact that log ¢ is the horospherical
support function of a strictly horospherically convex hypersurface. When £ =1 and p = —n,
equation (1.2) is the Christoffel problem in hyperbolic space proposed by [EGMO09].

We first focus on the case 1 < k < n — 1 of equation (1.2). By employing the volume
preserving curvature flows, Li and Xu [LX22, Thm. 7.3] proved the existence of solutions to
equation (1.2) for p > —n, up to a constant:

Theorem A ([LX22]). Let n > 2 and 1 < k < n —1 be integers, and let p > —n be a real
number. Let f(z) be a smooth, positive and even function defined on S™.

(1) If p = —n, we assume that f is a positive constant function on S™.
(2) If —n <p < —”TH“, then we assume that

2
D2 fwE %|Df‘ﬁ|a+ (Z—Li) fako > 0.
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(3) If — ”+k < p < —k, then we assume that

1
—3k—2p)? |Df nE|?
(n P’ |DfTTEP L ntp

R R T R A T M

D2 fwE —

(4) If =k < p <n — 2k, then we assume that
L|Df P

f_ner
(5) If p > n — 2k, then we assume that

D2 n}rp — o+ f n+P0‘ > 0.

4 1Df P -k, 1
n+p — — 0'+

D2
2 n+p

Then there exists a constant v > 0 such that the following equation admits a smooth, even
and strictly horospherically convexr solution,

e P pn_i(Alp(2)]) = v£(2). (1.3)

Due to the lack of homogeneity of the horospherical p-area measures, it is in general difficult
to remove the normalizing constant 7 in (1.3) via the flow approach. Recently, Chen [Che24]
removed the constant v for equation (1.2) with k = n—1 and p = —n via a full rank theorem
for the corresponding semilinear elliptic equation.

In this paper, by establishing the full rank theorem (Theorem 5.1) for the fully nonlin-

ear equation (1.2), we improve Theorem A by removing the constant . For simplicity, we
introduce the following assumptions on the function f in equation (1.2):

Assumption 1.1. Let n > 2 and 1 < k < n — 1 be integers. Let p > —n be a real number
and f(z) be a smooth and positive function on S™.

(1) If p = —n, then we assume that
9 1 _ 1 f_ﬁ
Def~n=F —3|Df nF|o + —a > 0.
2 + 8 (max,egn f(2))nF

(2) If -n<p<— ”+k , then we assume that

D2f—nik_73k ZP‘Df——, <”+p> FEg > 0.
n — n

—k
(3) If =24k < p < —k, then we assume that

1
—3k—2p)? |Df nF|?
(n P’ |IDfTEP L ntp

R R ) R T M.

D2 fwE —

(4) If =k < p < n — 2k, then we assume that

L 1|Dfp

D?f " — o+ f o > 0.

2 f n+p
(5) If p > n — 2k, then we assume that

kf_"iipa > 0.
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Assumption 1.2. Letn > 1 and 0 < k < n—1 be integers. Let p > n — 2k be a real number

and f(z) be a smooth, positive function on S*. We assume that 0 < f < 287" if p = n — 2k,
2k+p—n

and 0 < f < (2k+p—n)~ 2 (n—k:)"_k/(n—l—p)%p if p>n—2k.

Theorem 1.1. Let n > 2 and 1 < k < n — 1 be integers, and let p > —n be a real number.
Assume that [ is a positive, even function on S™ that satisfies Assumption 1.1. If p > n — 2k,
we assume in addition that [ satisfies Assumption 1.2. Then the horospherical p-Christoffel-
Minkowski problem (1.2) admits a smooth, even and strictly horospherically convex solution.

Let us make the following remarks on the assumption of f in the above Theorem 1.1.

(1) When 1 <k <n—1and p > —n, the convexity assumption of f in Assumption 1.1 is
surprisingly the same as that of Theorem A, even though they are derived from two
different ways. The former one is obtained from the full rank theorem for the fully
nonlinear elliptic equation (1.2) that would be established in Theorem 5.1, and the
latter one was derived from the pinching estimates for a volume preserving curvature
flow (see [LX22, Prop. 7.1]). When k =n — 1 and p = —n, Theorem 1.1 reduces to
[Che24, Theorem 1.1].

(2) When p > n — 2k, Assumption 1.2 of f is natural. By the work of Li-Xu [L.X22] and
Hu-Wei-Zhou [HWZ23], the origin-centered geodesic spheres are the unique solutions
to equation (1.2) when p > —n, and they are also the unique even solutions to (1.2)
when p = —n. This means that, when p > —n and f is a positive constant function
on S™, the even solution ¢ to (1.2) must be a constant. Moreover, the argument in
[LX22, p. 99] has already classified all the solutions when f is constant. In particular,
(1.2) admits no h-convex solution either p = n — 2k and f = ¢; with ¢; > 2F7, or

P > 2k —n and f = Co with co > (n _ k,)n—k;(2k +p . n)2k+§77l/(n +p)nJ2rp‘
(3) When 1 < k <n—1 and p = —n, the evenness assumption of f in Theorem 1.1 is

natural. When k& = n — 1 and p = —n, Espinar, Gélvez and Mira [EGMO09] proved
a Kazdan-Warner type obstruction for equation (1.2) by showing the relationship
between this equation with the Nirenberg problem. Later, Li and Xu [LX22, Thm.
9.1] demonstrated this obstruction for the case that 0 < k <n—1and p = —n. In
particular, equation (1.2) admits no solution when 0 <k <n—1,p=—n,and fisa
monotone rotationally symmetric function on S™.

Let us also mention that the progress on the counterpart of L,-Christoffel-Minkowski prob-
lem, which is the prescribed L, Weingarten curvature problem: Given a smooth positive
function f on S”, is there a closed, strictly convex hypersurface M in R"*! such that

Puok W (@))) = ' Pf o & 7

Here n: M — S" is the Gauss map of M, and W = (hg) = (g?%hy;) is the Weingarten matrix
at the point n='(z) € M. This is equivalent to

pn(D?h + ho)
Pk (D2h + hO’)

When k£ = 0, it is the well-known L, Minkowski problem, which was put forward by Lutwak
[Lut93] in his seminal work on the L, Brunn-Minkowski theory, see e.g., [CW06, GLW22,
HLYZ05, JLZ16, LYZ04] and a comprehensive survey by Boroczky [Bor23]. For 1 <k <n-—1
and p = 1, the existence of the solution to (1.4) was first studied by Guan and Guan [GG02]
under some group-invariant assumption on f (e.g., f is even). For p > n—k+1 and without the
evenness assumption on f, the existence of a strictly convex solution to (1.4) was established
through an elliptic method by [GRW15], as well as a flow approach by [BIS21]. The existence

= hP7lf onS™ (1.4)
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of origin-symmetric strictly convex solution to (1.4) withp=n—k+land 1 <p<n—Fk+1
was recently proved by Lee [Lee24] and Hu-Ivaki [HI24], respectively.

The following question can be considered as the natural analog of the prescribed L,-
Weingarten curvature problem in hyperbolic space:

Given a smooth positive function f on S™, is there a smooth, strictly horospherically convex
hypersurface M satisfying equation

F(2) "y f (WG (2)) —0) = 12 (1.5)

Here logp : S"™ — R is the horospherical support function of M defined by (2.1), and G :
M"™ — S™ is the horospherical Gauss map. Equation (1.5) can be equivalently rewritten as

pn(Alg])
Pe(Alp])

We call the above problem the prescribed p-shifted Weingarten curvature problem in hyper-
bolic space. When k = 0, it is the horospherical p-Minkowski problem proposed by Li and
Xu [LX22, Prob. 5.1], who also proved the existence of origin-symmetric solution for all
p € (—00,+00) up to a constant [LX22, Thm. 7.2]. Note that

[Jac G| = (det Alp]) ™ = ¢(2)"Pa(W(G ' (2)) — 0),

where |Jac G| denotes the determinant of the Jacobian of the horospherical Gauss map G.
Hence, equation (1.5) is called the prescribed horospherical surface area measure problem
when k£ = 0 and p = 0. For more recent progress on the horospherical p-Minkowski problem,
readers may refer to [Che23a, LW23, LWX23]. Another special case of equation (1.5) is
p = —n, which is called the prescribed shifted Weingarten curvature equation, was recently
studied by Chen [Che23b].

In the second part of this paper, we prove the existence result of the prescribed p-shifted
Weingarten curvature problem (1.5) for all 0 <k <n—1 and p > —n.

= P f(2) on S™

Theorem 1.2. Let n > 2 and 1 < k < n — 1 be integers, and let p > —n be a real number.
Assume that f(z) is a smooth, positive and even function on S™. If p > n — 2k, we assume in
addition that f satisfies Assumption 1.2. Then the prescribed p-shifted Weingarten curvature
problem (1.5) admits a smooth, even and strictly horospherically convez solution.

Remark 1.1. When p = —n, Theorem 1.2 reduces to Theorem 1.1 in [Che23b].

Just as the L, Minkowski problem is the intersection of the L,-Christoffel-Minkowski prob-
lem (1.1) and the prescribed Weingarten curvature problem (1.4) in Euclidean space, the horo-
spherical p-Minkowski problem is the intersection of the horospherical p-Christoffel-Minkowski
problem (1.2) and the prescribed p-shifted Weingarten curvature problem (1.5) in hyperbolic
space.

Theorem 1.3. Let n > 2 be an integer. Let f(z) be a smooth, positive and even function on
S™. Assume that one of the following conditions holds:
(1) —=n <p<n;
(2) p=n, assume that 0 < f < 27";
p—n
(8) p>n, assume that 0 < f < (p_")%
(p+n) 2~

Then the horospherical p-Minkowski problem (i.e. k=0 in (1.2))
¢ Pou(Alpl) = f onS"

admits a smooth, even and strictly horospherically convex solution.
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Remark 1.2. By assuming f satisfies Assumption 1.2 when p > n, Theorem 1.8 removes
the constant vy for the case p > —n in [LX22, Thm. 7.2]. When —n < p < n, Theorem 1.3
reduces to [Che23a, Thm. 1.3].

With the uniqueness result of the isotropic solution to horospherical p-Minkowski problem
in hyperbolic plane [LW24], we establish the following existence result.

Theorem 1.4. Let n = 1. Let f(z) be a smooth, positive and even function on S'. Assume
that one of the following conditions holds:

(2) p=1, assume that 0 < f < 27%;
FES

(8) p>1, assume that 0 < f < b=b) 7
(p+1) 2~

Then the horospherical p-Minkowski problem in hyperbolic plane

1 2 _ -1
P <9069——ﬁ+7(p ? )Zf on St
2 ¢ 2

admits a smooth, even and strictly horospherically convex solution.

Remark 1.3. The range of p in Theorem 1.4 is optimal in view of the invertiblity of the
linearized operator in degree theory, see Remark 6.2.

The paper is organized as follows. In Section 2, we will collect some basic properties of
horospherically convex hypersurfaces and elementary symmetric polynomials. In Section 3,
we will derive the a priori C? estimates for h-convex solutions to equations (1.2) and (1.5).
In Section 4, we will establish a deformation lemma for equation (1.2), and then use it to
obtain a full rank theorem for (1.2) in Section 5. In Section 6, we will use the degree theory
for nonlinear elliptic operators to prove Theorems 1.1-1.4.

Acknowledgments. Y. Hu was supported by the National Key Research and Development
Program of China 2021YFA 1001800, the NSFC Grant No.12101027 and the Fundamental Re-
search Funds for the Central Universities. H. Li was supported by NSFC Grant No.12471047.
The research leading to these results is part of a project that has received funding from the
European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 101001677).

2. PRELIMINARIES

2.1. Horospherically convex hypersurfaces. Let (S”, 0, D) denote the n-dimensional unit
sphere S™ equipped with its canonical metric o and Levi-Civita connection D. The Minkowski
space R™*11 is an (n 4 2)-dimensional vector space equipped with the Lorentzian metric

n+1
<X7 Y> = Z TiYi — Tnt2Yn+2,
i=1
where X = (z1,...,Zn41,Tnt2) and Y = (Y1, .., Yn+1, Yn+2)-

Let (H"*! g, V) denote the_(n + 1)-dimensional hyperbolic space equipped with the metric
g and Levi-Civita connection V. The hyperboloid model of the hyperbolic space H"*! is given
by
H'™ = {X = (2,242) € RV | (X,X) = —1, 2040 > 0},
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where X = (z,xn42) = (21,22, "+ ,Tn+1,Tnt2). The horospheres are complete hypersurfaces
in H"*t! with principal curvatures equal to 1 everywhere, and the set of horospheres can be
parameterized by S™ x R:

H,(s) ={X e H"™ | —(X,(2,1)) =€}, 2€S" scR,

where s is the signed geodesic distance from the north pole N = (0, 1) to H,(s), and z is called
the center of H,(s). It is worth noting that, in the Poincaré ball model B"*! of the hyperbolic
space, the horosphere H.(s) is a sphere tangential to 9B"*! at z. Define the horo-ball B.,(s)
enclosed by H,(s) as

B.(s)={X eH""' | - (X,(z,1)) <¢€”}, z€S" seR.

Sometimes, it is also convenient to express the hyperbolic space H"*! as the warped product
(0,00) x S™ equipped with the metric

g = dr? +sinh®ro,

where r is the geodesic distance to the north pole N = (0,1). It is known that V = V coshr =

sinh 70, is a conformal Killing field, i.e., V(sinh0,) = coshrg.

A bounded domain Q (as well as its boundary M = 9Q) in H"*! is called horospherically
convex (h-convez for short) if for each X € M, there is a horosphere enclosing 2 and touching
Q at X. When 2 is smooth, it is equivalent to the fact that the principal curvatures of M
are greater than or equal to 1. We call a smooth domain € (or M = 9Q) strictly h-conver if
the principal curvatures of M are greater than 1. A result of Curry [Cur89] shows that an
h-convex, complete, immersed hypersurface in hyperbolic space is necessarily embedded and,
if noncompact, it must be a horosphere. Therefore, any strictly h-convex hypersurface must
be closed and hence it is uniformly h-convex, which means that all the principal curvatures
exceed 1+ § for some § > 0.

Now we collect some definitions and properties related to h-convex hypersurfaces in hyper-
bolic space. We refer to [ACW21, Sect. 5], [LX22, Sect. 2], and [EGMO09] for details. Let
(M, g) be a smooth, strictly h-convex hypersurface in H**!. Denote by v the unit outward
normal of M. Then the horospherical Gauss map G : M — S™ is defined by the unique point
z = G(X) € S™ such that

X —v=ez1),
where A € R is the signed geodesic distance from N = (0, 1) to the horosphere tangential to
M at X in H*"!. Note that the uniform h-convexity of M implies that the horospherical
Gauss map G is a diffeomorphism. The horospherical support function of M is then defined
by
u(z) == log(—(G71(2), (2,1))), z€S™ (2.1)
Then A(G~'(2)) = u(z). For convenience, we set o(z) := e“*). Denote by h;; the second
fundamental form of M, and let h;7 = h;;¢". Then
. ) 1
(hi? (G (2)) = 67) Ajilp(2)] = —=ou, VzeS", (2.2)
o(2)
where A[y] is a symmetric 2-tensor on S™ defined by

1|Dopl? 1 1
A[@]::D2gp——’ (p’0+—<<,0——>0.
2 o 2 ®

Hence, the strict h-convexity of M implies that A[p] is positive definite on S™. Conversely, for
any positive ¢ € C?(S™) with A[p] > 0, we can recover the hypersurface M in H"*! through
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the embedding

|Dg|?

¥
S" =(=2z,1
9zn—>2( z, )+< 20

1
+ %> (2,1) — (Dg,0) € H" 1, (2.3)
Denote by kK = (K1, ... an) the principal curvatures of M, which are the eigenvalues of
the Weingarten matrix (hi]). Then the shifted principal curvature & = (K1,...,R,) = (k1 —
1,...,kp — 1) are the eigenvalues of the matrix (hy —6;7). In view of (2.2), the matrix
(R (G71(2)) — 6;7) is the inverse matrix of o(2)o7' Ay;[p(2)].

Now, we derive some useful formulas for A[p]. For simplicity, we take

1|Dpl2 1 1
w52k L (D). (24)
2 p 2 %)
Then we have
Aijle] = @ij + (p — ¥)oij. (2.5)

In the following, we take an orthonormal basis and assume that A;; = A;;[¢] is diagonal at
the point where we calculate; that is, o;; = d;; and A;; = A;045.

Lemma 2.1. We have

i Aii
o = g, = 28 (2.6)
2 2
Ajji— Ay = _ﬂAlléij + ﬂAjﬂsila (2.7)
2 2

A Ai @} @1 o7
Yi=—"+@W—9)— —27FA;+ D> —Aui+ ) —5Au 2.8
@ ( ) o P ZI: @ Zl: ©? (28)

and

l 1
Azz ao T aa it —Z% ii,l aa,l) + ;(A?z - Aia)
l

(U 2 2 2
+_Aii_Aaa __Aiii_Aaa ol
(p( ) (p2( @ ©a)

Proof. Using the definition of ¢ in (2.4), we have

o 1| Dol 1 1
¢z’:(‘0(pl—_’ f’ cpi+§<cpi—?cpi
1
*3

© 2 0
_ @ ( 1Dl o
PLli —
© 2
)\. .
(’DlAlz— SDZA _ NiYs

i1

i i o
Thus we obtain (2.6). Then formula (2.7) follows from (2.6) and the well-known fact that
D(D?p + ¢o) is a Codazzi tensor on S",
Aiji — Auj = Dilgij + 06i5) — hidi; — Dj(pa + i) + ¥;0u
= —idij + ¢;0u
%! ]
” T
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Using (2.6), for fixed index ¢ we have,
; A
Yii = D; <ﬂAli> = g — ('Dl% iy 2 — A
¥ ¥ @ ¥

2
ji ¥i ©i
= %Aii - (’D—EAM + Zl: ZAli,i-

(2.10)

By (2.5), we have

2
P Azz - ﬁ + (1/} 1) Au
¥ ¥ ¥
On the other hand, it follows from (2.7) that

Z A => (’;l (Aii,l - ﬁAn’(Su + ﬂAll)

l
_ Z (plAul Au + Z (:0[ All

Inserting the above two formulas into (2.10), we obtain (2.8). Note that
Aii oo = Piiaa T Paa — Yaa,
Acayii = Paayi T Pi — Vi
Using the Ricci identity for tensors on S™, we have
Pii,aa — Paayii = 2Pii — 2Paa;
and thus
Aii.aa — Aaayii = (Piiea — Paoyii) T (Paa — i) + Vi — Yaa
= Yii = Paa + Yii — Yaa
= Aii — Aaa + Vi — Yaa-

The formula (2.9) follows by inserting (2.8) into the above formula. This completes the proof
of Lemma 2.1. O

2.2. Elementary symmetric polynomials. The kth elementary symmetric polynomial
S; : R™ — R is defined by

Sk = D> Ay, k=120
1<igi<<ig<n

We also set Sy = 1 and S = 0 if either £ < 0 or £ > n by convention. This definition of Sy
can be extended to symmetric matrices A as follows (see [GMO03, Prop. 2.2]): Let A = (A;;)
be an (n X n) symmetric matrix, S can be defined as

J1--Jk R L.
Sk( E 521 A Aiji o A
! i1,.0t=1
.717 7.]k 1

where §7 for the indices I = (i1,..., i) and J = (j1,...,jm) is defined as

1, if I is an even permutation of J;
5 ={¢ —1, if I is an odd permutation of .J;

0, otherwise.
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When A is diagonal, then Si(A) = Sk(A(A)), where \(A) = (A1,...,\,) are the eigenvalues
of the matrix A. Sometimes it is useful to express the derivatives of Sy explicitly (see [GMO3,
Prop. 2.2]):

ij 9Sk(A) 1 - 1. ke
SkJ(A) = OA. = (k‘ — 1)! Z 5zqij11...iii11Ai1j1 s Aikﬂjkﬂv
g4 i1yeenyipp_1=1
Jiyende—1=1
ijors 8>Sy, (A) 1 S st
A = e, T T 2 B A i
i15enyif— =1
Jrrdi_a=1
When A is diagonal, Slij (A) is diagonal with
” Sk—1(Al4), if i = j,
1] A —
Sk (4) {0, otherwise,
and
Sk—o(Alir), if i =j,r=s,1#m,
SPTHA) = ¢ — Sp—a(Alig), ifi=s,j=ri#] (2.11)
0, otherwise.

Here Si_1(Al7) is the symmetric function with A; = 0, and Sk_2(A[ij) is the symmetric
function with A\; = A\; = 0.

Let F denote a symmetric, smooth functions of the eigenvalues of (A7) = (a7¥A;;) or as
depending on A = (A4;;) and the spherical metric o = (0y;),
F =F(\) = F(A7) = F(o, 4)
Denote by

F/ = P .=

¢ 8Aji ’ Z?Aij ’ o aAijE?Akl '

We collect some basic formulas for the elementary symmetric polynomial Si (1 < k < n).

OF g OF i _ O*F

Lemma 2.2. [Gual3] For any integer 1 < k < n, we have

D (S (A)05" = (n =k + 1) Sk (4), (2.12)
D (SKI(A)A; = kSk(A), (2.13)
D (SIA)AF AT = 81(A)Sk(A) = (k + 1)Skr1(A). (2.14)

i7j
Define the Garding cone by
Ip={xeR": Si(z)>0,1<i<m}, m=1,...,n.
Equivalently, I'), is the connected component of {z : S,,(x) > 0} C R™ which contains the
positive cone I';, = {x € R": x; > 0, 1 <i < n}. The normalized k-th elementary symmetric

polynomial py is defined by pg(\) = (Z)_lSk()\) forall 1 <k <n,and pp =1 and py = 0 if
either + < 0 or ¢ > n by convention.

We assume that F' is a strictly increasing, homogeneous of degree one, and concave function
of A(A4) in some open cone I' C R™ containing the positive cone I';,, and it is normalized that
F(1,...,1) = 1. Then we have

F9 >0, FiA;=F F* <o
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and

ZF“E 1.

It is well known that if the above F' is chosen as pi/_(z_k) and (p,/pr)"/ "), then the corre-

sponding open cones I' C R™ are I'),_j and I',,, respectively. We refer to [GerO6b, Chap. 2]
for a detailed account and common properties of F.

3. A PRIORI ESTIMATES

Throughout this section, we consider the positive, even solution ¢ € C2(S") to the following
equation:
n+p

F(A) = "7, q:= =2 —1, (3.)

where F' = pi/_(z_k) or F = (pp/pe)/™ ), and f is a smooth positive function on S” that

satisfies Assumption 1.2 when ¢ > 1 (i.e. p > n — 2k). Moreover, if F = pyll/_(z_k), we

assume that Afp] € T, N T,; With the help of the full rank theorem (Theorem 5.1), this
equation (3.1) corresponds to the horospherical p-Christoffel-Minkowski problem (1.2). If
F = (pn/pp)Y %), we assume that A[p] € T,; This equation (3.1) corresponds to the
prescribed p-shifted Weingarten curvature problem (1.5).

The horospherical support function u(z) of an h-convex domain (2 is defined by
u(z) =inf{s € R: QC B.(s)}, z¢€8",

which is exactly (2.1) when 09 is smooth and strictly h-convex. It was proved in [LX22,
Prop. 2.1] that log ¢ is the horospherical support function of a non-empty, h-convex domain
Q) = N.esn B, (logp(z)) when Ayp] is positive semi-definite on S”. And it was proved in
[LX22, Cor. 2.3] that the map X : S” — 0L given by (2.3) is surjective. If ¢ is in addition
even on S”, i.e., p(z) = ¢(—z) for all z € S™, then we have that ¢ > 1on S" as N = (0,1) € Q.
Moreover, if ¢(zg) = 1 for some 29 € S™ then p(2) = 1, A[p(2)] =0, and N,esn B (log (z)) is
exactly the point (0,1) € H"!. Hence we can assume that ¢(z) > 1 in the a priori estimate.
By using X (21) € B, (log ¢(2)), Vz € S", where z; is a maximum point of ¢ on S", and the
origin-symmetry of €2, it was proved in [LX22, Lem. 7.2] that

cosh (log Ymax) < ©min, (3.2)
where

Pmax = Izlé%::f ()0(2)7 ®Pmin = ?EHSI}L ()0(2)

Then, as an application of the above (3.2), it was proved in [LX22, Lem. 7.3] that
|Dlogp(2)] <1, VzeS" (3.3)

Note that the Assumption 1.2 on f can be reformulated as follows: assume 0 < f < 2677

+1
(@+1)"2

when ¢ = 1, and assume 0 < f < ( —1 )" when ¢ > 1.
(1)

q—1
Lemma 3.1 (C%-estimate). We have
1

where C' > 0 is a constant depending only on n, k, p, fmin and ||f|lco.
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Proof. For simplicity, we define the function &, : (1,4+00) — Ry by
g (t) =2t9(t — ¢t~ (3.5)

Assume that ¢ attains its maximum at z; € S™. Then at z1, we have ¢ = Y.y, Do = 0 and
D?p < 0. Thus, at the point 21,

__1 _ 1 -1
(fmin) n—k 2 (p?naxF ! 2 290?nax ((-Pmax - ('pmzlax) = gq(@max)'
Similarly, at a minimum point zo € S™ of ¢, we have
1 _ _14-1
(fmax) ™ F < L P71 <2000 (Omin — @) = Eo(@min)-

(1) If g < 1, then & (t) is strictly decreasing with £,(17) = 400 and &;(+00) = 0. Thus, we
have

Pmax = gq_l((fmin)_ﬁ), Pmin < 61;1((fmax)_ﬁ).

(2) If ¢ = 1, then & (t) is strictly decreasing with &,(17) = +oo and §,(4+00) = 2. Since we
assume 0 < f < 27" in this case, it holds that

Pmax = gq_l((fmin)_ﬁ), Pmin < 61;1((fmax)_ﬁ).

(3) If ¢ > 1, then &,(t) is strictly decreasing on (1, /%], and it is strictly increasing on

q—1
g+1

[/ &1, 00). Moreover, &(17) = oo, &(/H5) = % and £,(+00) = oo. Denote
q—1) 2

by 5;3 and f;i the inverse function of &, on the interval (1, %] and [1/%,00)

. . ((+1) 3 o .
respectively. Since we assume that 0 < f < | *—7— in this case, it holds that
(¢-1)"2"
o If prax < ZJ_F—;, then

Pmax > &;i((fmin)_ﬁ% ¥min < f;i((fmax)_ﬁ);

o If prin > %, then
lq+1 _ 1
q——l < Pmin < Pmax < gq,-lk((fmin) 7“’6);
o If prin < Z% < Pmax, then

oin < &1 (o) ™), 1/ T < e < €A (i) )
Then by (3.2), there exists a constant C' > 0 such that
1+ % <p<C.
We complete the proof of Lemma 3.1. O
Combining Lemma 3.1 with the estimate (3.3), we obtain the following a priori C'!-estimates.
Lemma 3.2 (Cl-estimate). We have

|Dy| < C, (3.6)

where C' > 0 is a constant depending only on n, k, p, fmin and ||f|lco.
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Lemma 3.3 (C2-estimate). We have

lelle2 < C, (3.7)

where C' > 0 is a constant depending only on n, k, p, fmin and ||f|lcz2.

Proof. Tt follows from A[p] > 0, the C° and C! estimates of ¢ in (3.4) and (3.6) that D?p >
—C. Note again that A[p] is positive semi-definite. Then

D?%p < Alp] 4+ C < trA[p] + C < Ap + C.
Consequently, we have
—C<D*<Ap+C. (3.8)

Hence, in order to prove [|¢|c2 < C, it suffices to show that Ap < C.

Assume that Ay attains its maximum at zp € S™. Without loss of generality, we assume
that Ag(z9) > 1. Take a normal coordinate system on S"™ around zg such that o;; = J;; and
that D?¢p is diagonal at zy. Consequently, F%/ and A;jlp] are both diagonal at zp. Then, at
2o we have

(Ap)i =0, (Ap);; <0

Since F' is increasing and homogeneous of degree one, using the Ricci identity, at zy we have

0> F"(Ap)y
= F" (A(pi) + 2Ap — 2np;;)

= FUA(Aale]) + Y FA (%% - <9" - é))

+2 Z FiAp — 2nFp;;
1|Do? 1 1 ’
FZZA +ZFZZA< ‘ (10‘ —§<(P—;>>+2ZF”A(,O
1[Dypl? 1 1
_2’[’LFMA” —2n ZFM< | (’D| —§<(p—;>>

> FUA(Aylp Z FipIZel ’D“” — gl fE =N P (CAp +C)

where C is a constant depending only on n, k, ¢, || f||co and fiin-
For the first term on the RHS of (3.9), the concavity of F' implies

AF = F9AA; o] + FP*(DAy;l0), DAule]) < FUAA;g).
On the other hand, equation (3.1) yields
AF = A(QIfiF) > ~CAyp — C,
where C' is a positive constant depending only on n, k, q, || f||c2. Thus, we obtain

FUA(Aglp]) > —CAp —C. (3.10)
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Now we estimate %A%. A direct calculation at zy yields
1 . |Dyp|? D?p|? i(Ap); Do|?
1, [Del” _ D] +w(¢)+m_n\¢\
2y ¢ P
Ry 2 4
_ﬁ%%%_lu%|A-HDM (3.11)
P 2 v
1
—(Ap)* —CAp—C
> 5(A¢)” p—C,
where we used |D?p|? > (Ap)?/n, (Ap)i(2) = 0 and (3.8). Substituting (3.10) and (3.11)
into (3.9), and noting that >_ F'% > 1, we have
0> E(Ago) —CAp—C.
Thus we have Ap < C and then ||¢|c2z < C. We complete the proof of Lemma 3.3. O

Lemma 3.4. Let F = (p,/pp)Y %) . Then
Alp] > C,

where C' > 0 is a constant depending only onn, k, q, fmin and ||f||c2. Therefore, the associated
operator F¥ Dy, Dy is uniformly elliptic at ¢.

Proof. Tt follows from the Newton-MacLaurin inequality and equation (3.1) that

Pl > (BE) ™ —prpmr > 4

Pr(Alg]) e
On the other hand, the uniform upper bound of Afy] follows from (3.7). So we have Afp] > C.
Thus, the operator F*¥' Dy D; is uniformly elliptic at . O

Lemma 3.5. Let F = pl/(n ). Then the associated operator F*¥ Dy Dy is uniformly elliptic
at .

Proof. Note that F(A[y]) = pi/ (Z ®) (Alp]) = p1f A > C > 0 follows from the C°-estimate
(3.4) of p and fiin. This together with the upper bound of A[y], implies that the eigenvalues
of Alg] lie in a compact subset of the cone I'y. Thus, the operator F¥ D;.D; is uniformly
elliptic at . ([l

By Lemma 3.4 and Lemma 3.5 and the a priori C? estimates in (3.7), the higher order
derivative estimates of ¢ follows from the Holder estimate of Krylov-Evans [Kry82] and the
Schauder theory [GTO01].

Theorem 3.1. Let F' = (pn/pk)l/(”_k) or F = pl/(" %) For any integer | > 2, there exists
a constant C' > 0 depending only on n, k, p, fmin and ||f||cl,a such that

[ellcrtz.a < C. (3.12)

4. A DEFORMATION LEMMA

In this section, we establish the key deformation lemma (Lemma 4.1), which will be used to
prove the full rank theorem (Theorem 5.1) to ensure that the strict h-convexity is preserved
along a homotopic path when we prove the mains theorems using the degree method.
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Lemma 4.1 (Deformation lemma). Let O C S™ be an open subset. Suppose p € C*(O) is a
solution of

Sk(Alp(2)]) = " P7Ff(2) (4.1)
in O, and that the matriz Alp] is positive semi-definite. Suppose there is a positive constant
Co > 0 such that for a fized integer k < £ < n —1, Si(A[p(z)]) > Coy for all z € O. Let
d(z) = Se+1(Alp(2)]) and let T(z) be the largest eigenvalue of the matrix

- 2P g aiog o

— D% f %
() - 2
kE—p—
L (DfF Dlogpyo + F =P /;)(n +p)f—%(dlog )2
n+p|lDel> n+p 2k—p—-n 1 1
<2k: 2 T T 2) e
Then there are constants C1, Cy depending only on ||¢||cs, || fllcz, n, k, p and Cy, such that
the differential inequality

S S has(z) < k(n — )@ P Sy (Al])7(2) + C1D(=)| + Cog(2)
a,B=1

holds in O.

Following the notations of [CF85] and [GMO03], for two functions A(z), B(z) defined in an
open set O C S", z € O, we say that A(z) < B(z) if there exist positive constants ¢; and co
depending only on [|¢||cs, || f[|c2, n, k, p and Co such that

(A= B)(2) < (c1|Dg| + c20)(2),
where ¢(2) = Sp11(A[p(2)]). We also write A(z) ~ B(z) if A(z) < B(z) and B(z) < A(z). For

any z € O fixed, we choose a local orthonormal frame {ej,...,e,} so that the matrix Afp] is
diagonal at z, and let A\ > --- > X, be its eigenvalues. Since Sy(A[p]) > Cp and Alp] > 0,
there exists a positive constant C' depending on ||¢||cs, ||f|lc2, n and Cj such that

AM>>>C> Mg > > M, >0, (4.2)

Let G ={1,2,...,¢} and B={¢+1,...,n} be the “good” and “bad” sets of indices respec-
tively. It follows from (4.2) that

00 =Sa = 5 h e ~S@O( DN) ~ (X ).

1<ip <-<igy1<n i€B i€B

So we have
Ai~0, VieB. (4.3)
This yields that
e For any m > £+ 1, we have
Sm(A) ~ 0. (4.4)

e For any 1 < m < /¢, we have

Sl A) ~ Sn(G), S(Alf) ~ |G TEC (4.5)
and
Sm(Alij) ~ { Sm(Glj), i€B,jeG; (4.6)

Sw(G),  ijEBi#].



16 Y. HU, H. LI, B. XU

We also set S_1 =0 and Sy = 1 by convention.
e For all i, 5 € G with ¢ # j,

Se(Ali) ~0, Sp_1(Alij) ~ 0. (4.7)
Then by (4.5) and (4.7), we have
0~ ¢a = Séi—l i, Z SE A| i, SZ(G) Z Aii,a-
1€B

In view of C' > Sy(A) > Cy and Sy(A) ~ S¢(G), we get

D Ajia~0, Va, (4.8)

1€B
and thus,

Z Aii,aAjj,a = <Z Aii,a) Z Au a Z AZZ a (49)

i,jeB i€B i€B i€B
i#]

For convenience, we denote F' = Si(A) in this section.

Lemma 4.2. It holds that

N OG0 ~ S FOSy(Ali) Aiiaa

_Sél <Zsk IG‘O‘ zja—’_ Z Skl zya)

aeG a,i,jE€EB
i,jEB
_2< > S (Gl S1(Gle) AT o+ Y Se1(Gli)Se— 1(G)A?j,a>-

a,ieG ieG
jEB a,jEB

(4.10)

Proof. Differentiating ¢(z) = Sy+1(Afg]) twice gives
¢aa = Séi_lAij,aa + S;iqSAm aArs No"
= Z SZ(A‘i)Aii,aa + SﬁlgsAij,aArs,a-

Using (2.11), we have

SZ_QSAU aArs a = Z SE—l(AHT)Aii,aATT,a - Z Sé—l(Auj)Asz,a
i#r i%j

< 2"1' Z Z >S€ 1A|Z] i, J]a A?JQ)'

i€B  ijeB  i,jeG
JEG i i#j

It follows from (4.6), (4.7), (4.8) and (4.9) that

ZSZ 1 A’Z]) it,00 ]]aN (Z SE 1 G‘] ]]oe) ZAii,oeNoy (4.12)

(4.11)

JjeG
NS (Alif) A2 ~ =Y S (Gl AR,

i€B 1€B
JjeG JjeG

(4.13)
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> Sec1(Alig)(AiiaAjja — A ) ~ 0,

e (4.14)
i#]
> Seci(Alig)(AiiaAjja — A o) ~ Se-1(G) D (AsiaAjja — AT o)
i,jEB i,jEB
7] i)
~ _SZ 1 <ZA’MOL + Z AZ] a> (415)
1€B i,jEB
i#]
~ _SZ 1 Z Az]a
i,je€B

Substituting (4.12), (4.13), (4.14) and (4.15) into (4. 11) we obtain
Szi_qul_] CVA’I‘S Ne3 ~ _2 Z SZ 1 G|] z] o Z Sé 1 z] o

2
Since F' = Si(A), it follows from (4.5) that
oo Sk—1(Gla), a € G,
e {Sk_l(G), a € B.

Contracting ¢, with F**, we then have
j{jzvaa¢aa

Z Faa £+1Aii,aa + SZ_QSAU aArs a)

~ Z FOSy(AlD) Ajina — Se—1(G) D Y FOAZ , —2) > 8, 1(Gli)F** A, ,

a,i a §,j€B a eG
JjEB
~ Y FSy(Ali)Ajiaa — Se- < > Sea(Gle) AL, + Y Skoi(G)AZ a)
ol aclG a,i,jEB
1,jEB

2 X SalGSaGla)that Y SIS 6) 4 )

a,ieG 1€G

j€B a,jeB

This completes the proof of Lemma 4.2. d

By commuting the covariant derivatives and using some basic properties of the elementary
symmetric polynomials, we convert (4.10) into the following useful form.

Lemma 4.3. Denote F(A) = Si(Alg]) = h(z). Then
ZFaa¢aa ~ I+ I+ I3+ Iy + I,

«

where
Dy P 1
I := S¢(G) hii — (—=, Dh) — =kh — —(S1(G)h — (k + 1)Sk+1(Q))
1 ¢ ZEEB < o - - 1 k+1 )

+—Z& )Sk—1(Glear) Ana P2, (4.16)

aeG
i€EB
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I = — Z SZ Sk 2 G|Oéﬁ AaazABBz Z SE 1 Sk 1 G|a)AzBa
a,BeG i,/eB
a#p
- Z SE 1 G‘B)Sk 1(G‘a)AzBa7 (417)
766G
1€EB
I3 = Z Si(G)Sk—2(G)AZs,; — Z Si-1(G)Sk-1(G) Al (4.18)
i,o,B€B a,i,BEB
Iy = Z Se(G)Sk—2(GlaB)AZs ; — Z Se-1(GIB)Sk-1(Gla) Al a (4.19)
i€EB a,BeG
a,BeG i€B
a#p
Is =2 Z SE Sk 2 G|a) afBi 2 Z Se-1 G|a)5k 1(G)A?O"B' (4‘20)
aclG acG
i,8€B i,0eB

Proof. Differentiating both sides of the equation F' = Si(A[p(z)]) = h(z) and using (4.8), we

have
h —ZFaaAaaz— Zsk 1G|OZ) aaz“‘sk 1 )ZAaa,i
aeG a€B
~ Y Sp-1(Gle) Angi-
acG

Using (2.11), we get
hii = FQBAOCB ii T+ FOCB’M'YAQB iA,u'*/,'
ZFaaAaa i+ > Skoa(AlaB) Aaaidpsi — Y Sk-a(AlaB) Al ;.
a#p aFp
Then by (4.6), (4.8) and (4.9) we have

Z FaaAaoc,ii

= hii — Y Sk-a(AlaB)AnaiAgpi + Y Sk2(AlaB)ALs,
a#B af
~ hi; — Z Sk—2(GlaB)AaaiApp,i — Z Sk—2(G)Aaa,iApp,i

OC,BEG a7BEB
ot B ot B

+ Z Sk—2 G|a5)‘4a62
a#f
~hii— Y Si—a(GloB) AaaiAssi + Sk—a(G) Y A%,

B

+ ) Sk—2(Glap)AZg,.
a#p

Now we begin to convert (4.10). For the first term on the RHS of (4.10), we use the commu-
tative formula (2.9) to derive

ZFQ&SZ(AH i,oow — ZFQ&SZ A| < aq,it + Z SDl ul oea,l) +Tia>y
2,00

(4.21)

’lOé
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where

1
Tio == _(Azzz - Aia) +
‘2

RS RS

(Azz - Aaa) - %(Au%z - Aaa(p?x)’ (422)

To proceed further, it follows from (2.12), (4.7) and (4.8) that

Z FaaS (A| ) ( El: %(Aii,l - Aaa,l))

ZF‘XQZ(‘DISZ A‘ “l—ZSg A‘ nglFaaAaal
~ ZFQO{Z%SZ <ZAZZ1> )Sg(G)<%,Dh>
e} l

i€EB

D
~ — (n—0)S(G) (==, Dh).
'
Then we get

Z FaaSZ(A|i)Aii,aa ~ Z FaaSZ(AH) (Aaa,ii + Tia) - (’I’L - E)SZ(GN%v Dh> (4.23)

2,00 7,0

Plugging (4.21) into the above formula (4.23) and using (4.7), we obtain

ZFOCQSZ A| i, ™ ZSE A| - Z Z SZ(A|i)Sk—2(G|aﬁ)Aaa,iA567i

1, i a,feEG
B
+ZFOCQS€ A|) 20!+Sk 2 ZZSf A| aaz
[NeY i a€B
D
+ 3 Su(Ali)Si—2(GlaB) A2, — (n — £)S(G)(—, Dh)
i a#EL ®
~ SUG)Y hii— Y Si(G)Sk-2(GlaB) AnaiAgs,i
i€EB 1€EB (424)
a,BeEG
B
+ ) FOSy(Ali)Tia + Se(G)Sk—2(G) Y Al
Q0 i,a€EB

+ X (X 25+ ¥ )SuOIsalclan s,
i€B Ma,BeG aeG  o,B€EB
a#B peB a#p

—(n- e>sz<G><%,Dh>.
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Inserting (4.24) into (4.10), we get

D
ZFaa¢aa ~ SE th + ZFO{QSZ A| _( )SZ(G)<7()07D]I>
« 1€EB
+SZ Sk 2 Z Aaa2+ Z SE Sk 2 G|Oéﬁ) af,i
i,a€EB i€B
a,BeG
pon
+2 Z Se(G)Sk—2(Gla) AZg ; + Z Si(G)Sk—2(G)AZs,
aclG i,a,f€EB
,,0€B a#p
— Z Si(G)Sk—2(Glaf)Ana,iAgs,i — Z S1-1(G)Sp-1(Gla) A,
1€EB aceG
a,BeG 1,jEB
a#p
Z Sg—l(G)Sk—l(G)A?ja 2 Z Se—1 G‘ )Sk 1(G’O¢) ij,o
a,i,jEB aieG
jEB

—2 ) S 1(Gli)Sk—1(G) A .

i€G
a,jeEB
By changing the indices and rearranging the terms properly, we finally obtain
D
ST Faq ~ Se(G) Y hii + Z FoSy(Ali)Tia — (n — 0)S(G)/{=2, Dh)
«a 1€B 14
— 850G > Sk_z (GlaB)AaaiApsi — Se—1(G) Y Se—1(Gla)AZ,
i€B acG
a,feqd i,0€eB
B

1P

— 3 S1(@1B)Si-1(Gla) A%,

a,BeEG
i€EB

+ 54(G) Sy (G Z AZg i — Si-1(G)Sk-1(G Z Az,

za,BEB OM,BEB
I3
+50G) > Sea(Glap)AZg — > Si-1(GIB)Sk—1(Glo) A3,
1€EB a,BeG
a,peG 1€B
a#fB
Iy
+250(G) Y Se—a(Gla)A2s,; — 25k1(G) > Se—1(Gla)AL, 5.
aceG oaeG
i,feB B,4i€B
I5

To complete the proof, it remains to show that

D
B~ $AQ) 3 bt 3PS A i — (0~ OSUG)=_ D).
1€B
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Using (4.22), (2.12), (2.13) and (2.14), we have
S P AN T = £ 3 F Y AL — £ 5 sl 3 P Al
w o . /l/} . (6707
T D PN " Sp(Ali) Ay — " > S(Ali)> T F*Aga
2 . 2 . o
- ?ZFO@ZSZ(AWAMD? + ?ZSZ(AMZF Aaa@?x
1
= (0= k4 DSica(4) (S5 (DS (4) = (€ Do)

+

SRS

(€ +1)Se1(A) - % Z SE(A|i)Aii9012>

~ (n— 0)Sy(A) <$<51<A>SR<A> (k4 1S (A))
+%ksk(A) - % %: FWAM@g) .

It follows from (4.3), (4.4) and (4.7) that
Se1(A) ~ Seq2(A) ~ 0,
Se(Ali)Asy ~ 0, Vi
Hence, we get
) 1
S P S AT ~ = (1= 05C) ( LSHGISK(E) — (K + DS (G)
2
—I—gk‘Sk(G) - — FaaAaagoi> .
@ p? &

Recall that F** ~ S;_1(G|a) for any a € G, and Ay ~ 0 for any o € B. Also note that
(n =€) =>,cpl. Then we have

SHG) Y his + 3 FSuAl0)Tia — (0~ 0S4(G) (2, D)

1€B Qa0

D 1
~ UG S (s = (22 D) = Sk = Z(S1(G)h — (k+ D811 (G)))
i€B ¥ ¥ ¥
2
— 8@ <— = Sk—l(G|04)Aaa<Pi> =1I.
i€EB ¥ aeG
This completes the proof of Lemma 4.3. O

In the next step, we estimate »_  F*¥¢q, from above. In the following, we will commute
the indices in the 3-tensor DA several times, which should be handled carefully as A[y] is
not a Codazzi tensor by (2.7). Fortunately, we will show that tensor DA is very close to a
Codazzi tensor under the equivalence ‘~’ in many cases.

By the symmetry of A[p] and (2.7), we have
Aiga — Aapi = Apia — Apa,i = _%Aaaéiﬁ + %Aii5aﬁ-
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Then by (4.3), for i,a € B we have

Alpi— Al = (Aga,i + Apia) < - %Au’%a + %Aaaéﬁi> ~ 0. (4.25)
Similarly, for ¢, 3 € B, we have
Al — Al g =Als, — A2 5 ~0. (4.26)
For i € B, o, 8 € G with o # 3, we have .3 = 0, d;3 = 0 and then
Aiﬁ,i - A?B,a =0. (4.27)

For i € B and « € G, using d,; = 0 and A; ~ 0, we have

Aai,a - Aaa,i = _%Aaaéai + %Aiiéaa ~ 0. (428)

Lemma 4.4.

> F*¢aq

< 56 S (s = (22, D) = i~ 251G — (k4 D51 (6)))

i€B
— ) Su@)Sk—2(GlaB)AaniApsi — Y Se-1(G)Sk-1(Gla) Al , (4.29)
i€B aclG
a,BeCG i,8€B
a#B
— Y Sec1(GIB)Sk-1(Gla)AZs , — 2> Se—1(Gla) Sp—1 (Gla) A2, ;.
i€B i€B
a,BeEG aclG
a#B

Proof. By Lemma 4.3, it suffices to estimate the terms I;(: = 1,2,...,5) from above. First,
we estimate Iy given by (4.17). Using (4.28) we get

Ih ~— Z Sé Sk 2 G|Oé5 AaazABBz Z S 1 Sk 1G|Oé) i,

i€B aceG

a,BeG i,€B

oFp ; (4.30)
— ) Se-1(GIB)Sk-1(Gla)Afs , — D Se-1(Gle) Sk-1(Gla) A2, ;.

i€EB 1€B

a,BeG aelG

B

Now, we estimate I3 given by (4.18). Since k£ < ¢, using the (non-sharp) Newton-MacLaurin
inequality

Se(G)Sk—2(G) < Sr-1(G)Sh—1(G)
and (4.25), we have
I < S 1(G)Sk1(G) D (Adg; — Alsa) ~ 0. (4.31)
i,a,EB
Next, we estimate I given by (4.19). For any «, 8 € G with « # 3, we have
Se-1(G[B)Sk-1(Gla) = Se—1(G|B)(Sk-1(GlaB) + AppSk—2(Glap))
> S0-1(G|B)App Sk—2(Glap)
= S(G)Sk—2(GlaB).
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Using (4.27) and (4.28), we get

Iy = Z Si(G)Sk—2(Glap)AZs,; — Z Se-1(G18)Sk-1(Gla) Al ,
aZ,EEBG CZEEBG
a#B

< Z Se-1( G’/B)Sk 1(G’a)(Aaﬁz Azﬁa ZSE 1 G‘Q)Sk 1(G’a) i,

i€B i€EB
B a€G

a#f

~ =Y Se1(Gla) Sy (Gla) Adg i
icB
acG

(4.32)

Then, we estimate I5 given by (4.20). For any o € G, we have

Si(G)Si_2(Gla) = Sp_1(Gla) Ana S—2(Gla)
< Sr-1(Gla) (Sk—1(Gla) + AaaSk—2(Gla))
= Sg_l(G’a)Sk_l(G).

This together with (4.26), (2.7) and (4.3) gives

Iy~ =2 > (Si-1(Gle)Sk-1(G) — Se(G)Sk—2(Gla)) A7, 5

aceG
1,BEB

S=2)  (S-1(Gla)Si-1(G) — Su(G) Sp-a(Gla) A, ;
acG
B

~ =23 (Se-1 (Gl S (G) —sg(c)sk_z(g,a))< 2 2% Ao+ 5 2 42 )

acG
1€B
o2
S =2 8iG) (Sk-1(G) = Sp-2(Gla) Aaa) T5 Ana
aclG L
1€B
02
=—2) " Si(G)Sk-1( G!a) Avar,
aclG
1€B
(4.33)
where in the second inequality we used (4.8) and
(Se-1(Gla)Sk—1(G) = Se(G)Sk-2(Gla)) Ana = Se(G)(Sk-1(G) = AaaSk—2(Gla)).
By (4.16) and (4.33), we get
D 1
4I5S S0 (i (22,0 - Lkt = L(S1Gh = (b4 1)Seal6)) - (43
1€B ¥ ¥ ¥
Finally, the desired estimate (4.29) follows from (4.30), (4.31), (4.32) and (4.34). O

The following estimates were proved in [GMO3].
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Lemma 4.5.
- Z SZ Sk 2 G|aﬁ)Aaa ZABBZ S _SZ(G)Z_ + Z SZ 1 G|a)5k 1(G|Oé) aa,is

i€B i€B 1€EB
a,BeG aelG
s
h2
i€ 1€EB
aeG
(4.35)

Proof. The estimates (4.35) are exactly the claims Io <0 and I3 < 0 in [GMO03, p. 571]. O
Inserting the estimates (4.35) into (4.29), using the Newton-MacLaurin inequality

S1G)h = (k + 1Sk 1(G) ~ S1(G)Sk(G) = (k + 1)Sk41(G) = 0,

and
- Z Sg—l(G)Sk—l(G’a) if,0 = 0

aceG
i,/€B

— > Se-1(GIB)Sk-1(Gle) A2y, < 0,
i€B
Q7B€G
a#fB

we obtain the following useful estimate.

Lemma 4.6.

Dy k+1h2 o

F*¢oa S i — (—,Dh) — —————kh|.

5 7000 S SC) S (i~ (22 D) - LA - L)
o 1€B

Lemma 4.7. Fizi € B. Then
Dy k+1h2
hij — (=2, Dh) — ~——="1 _ Zkp

(gp ) »

S {(f—m+72<k‘p‘")<f—%>iﬁ—<Df—%,@>

k @ @

B (k—p—n)(n+p)<,0_,2_n—|—p|D<p|2_n+p_2k‘—p—ni f_%
k2 02 2k 2 2k 2k 2 )

Proof. Recall equation (4.1),
F=Sy(A)=h=¢'f t=k—p—n.
Fix i € B. Taking the covariant derivatives of h = o' f, we get
hi= —to " roif + o7 fi,
his = t(t+ 1) 207 f = 2007 i fi — b0 foi 4+ 07 fua,

h2 2 t—2 2 tf2 t—1
e sozf+90‘7l—2tso"fm.

Since A\; ~ 0 for i € B by (4.3), we have
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Then we get
1h? (Dh,D
h”_k‘L_z_M_hh
k h © ©
=tt+ 1) "2l f =2t i fi — toT T foii+ 0 fii
k+12—t22 k+1 L ff  Jk+1 ot
% Pj —t—1 —t 1|D‘:0|2 1 —t
=) =t i f e f; —< 1+ —) | ko™ f
jZ:; © ( J .7) 9 (’02 ( C,D )
_ k+1 _, f? L L L
= ¢~ fii — tf - kso loifi — T HDF, D) — toT ! foy
tk—1t) 4 9 9 k. _i o k —t
2 t— D — —(1
tey pif+ (=) o> f (+(’D) f
—t LfE 2t fipi Dy
zz_—_+_ - D T
{f k- f k¢ < cp>
N t(k — )ﬁ_k‘—ﬂDgﬁP_kz—t_k‘—l—ti s
ko p? 2 p? 2 2 2 ’
Using the relation
k+1 1
fi= kD e S b

we rewrite the estimate (4.36) as

k+1hi (Dh,Dy) ¢

hii —
k h % gokh
_1
kP (b U o) Doy
ko @
(tk=t) ¢} k—t|Dp* k-t k+t1 =
k2 2 2k 2 2k 2k 2
2(k —p— i _1
= b (s L o By, D
@

B (k—p—n)(n—kp)cpi_n—kp]DcpP ~n+p 2k—-p-n1l
k2 02 2k ? 2k 2k 02

where we used t = kK — p — n in the last equality. We complete the proof of Lemma 4.6.

Proof of Lemma 4.1 (Deformation lemma). It follows from Lemma 4.6 and Lemma 4.7.

5. FULL RANK THEOREM

25

(4.36)

We have proved an upper bound of the matrix A[p] of solutions to the horospherical p-
Christoffel-Minkowski problem (1.2) in Lemma 3.3. Different from the prescribed p-shifted
Weingarten curvature problem, there is no such lower bound of the matrix A[p] for the
horospherical p-Christoffel-Minkowski problem in general. The main purpose of this section
is to impose suitable structural assumptions on the prescribed function f such that any
(weakly) h-convex, even solution ¢ to the horospherical p-Christoffel-Minkowski problem (1.2)

is actually strictly h-convex, in another word, A[p] is of full rank.
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Theorem 5.1 (Full rank theorem). Let f be a smooth, positive, even function on S™ satisfying
Assumption 1.1. Let ¢ be a C* smooth, even solution to equation (1.2) with positive semi-
definite Alp] on S™. Then Alp] > 0 on S™.

To prove Theorem 5.1, we first use the deformation lemma 4.1 to show a differential in-
equality for solutions to (1.2) on S when f satisfies Assumption 1.1.

Lemma 5.1. Suppose that ¢ € C*(S") is an even solution of the horospherical p-Christoffel-
Minkowski problem (1.2) with Alg] positive semi-definite, and py(A[p]) > Cy for some integer
n—k <fl<n-—1. Assume that [ is even on S™ and satisfies Assumption 1.1. Then there are
constants C1, Cy depending only on ||¢||cs, ||f||lc2, n, k, p and Cy such that the differential
inequality

S 0% 6ap(2) < C11DG(2)] + Cag(2)
a,f=1
holds on S™, where ¢(z) = pe1(Alp]).

Proof. Comparing (1.2) with equation (4.1) in the deformation lemma 4.1, it suffices to prove
that

2wy - 2P ey dtog o) — (D7, Diog pho
(k+p)(n+p)

_l’_

__1 9 n+p |Dyl? n+p n—2k—p1 1
e (g A e ) e
(5.1)
is positive semi-definite on S™.

When p > —n, the matrix (5.1) is exactly [LX22, Eq. (7.39)] (up to ¢? > 0), and we can
use [LX22, Lem. 7.6 & Assump. 7.1] to find a sufficient condition on f so that (5.1) is positive
semi-definite for even solution ¢, which are (2), (3), (4) and (5) of Assumption 1.1. When
p = —n and k = n — 1, such condition of f was provided in [Che24, Lem. 4.3], and it is the
case k =n — 1 of (1) in Assumption 1.1.

Here, we only need to deal with the case p = —n and 1 < k < n — 2 in Assumption 1.1. In

this case, ¢ = "—J_FI‘Z — 1= —1. By the C%estimate of equation (1.2) in Lemma 3.1, we have

€1 (Gmin) > (fuax) 7 F -

Since £_q(t) = 2t71 (t — %)_1, we have

=

fmin < (142 (fma) 77 )

Then we can apply (3.2) to get

1 19
1\ 2 _1 o\ 2 1
(‘prznax < <<1 + 2(fmax) "k> + <2(fmax)"k> > <2+ 8(fmax) n—k,
This together with p = —n, (3.3) and (1) in Assumption 1.1 gives

1
D2(f~7F) + 2d(f 7 )dlog ¢ — (Df7F, Dlog p)o + ?f_ﬁa
1
9, oo 1 _1 fnFk
> D*(f 7 k) —3|Df nklo+ —t 6 >0.
2+ 8(fmax) " *

Consequently, (5.1) is positive semi-definite if p = —n and f satisfies (1) in Assumption
1.1. This completes the proof of Lemma 5.1. O



HOROSPHERICAL p-C-M AND PRESCRIBED P-SHIFTED WEINGARTEN CURVATURE PROBLEMS 27

Using the shifted Minkowski formula for closed hypersurfaces in H"*! (see [HLW22]), Chen
[Che24] proved the following formula for smooth positive function ¢ on S™ with Afp] > 0,
which can be easily extended to the case A[p] > 0.

Lemma 5.2. Let ¢ be a smooth, positive function on S™ with Alp] > 0. For{ =0,1,...,n—1,
there holds

2
[ mtatahao = [ (B4 L oo} maihan, 62

where do is the area element of S™.

Proof. For convenience of the reader, we give the proof here. We first consider the case
for smooth positive function ¢ on S™ with A[p] > 0. In this case, the strictly h-convex
hypersurface M in H"*! can be recovered from ¢ via the embedding (2.3), which is the
inverse of the horospherical Gauss map G : S — M. Recall that the shifted Minkowski
formula ([HLW22, Lem. 2.6]) for closed hypersurfaces in hyperbolic space H"*1:

/ (coshr — @)py,(R)dp = / Upm+1(R)dp, m=0,1,...,n—1, (5.3)
M M

where & = (k1 — 1,...,k, — 1) are the shifted principal curvatures, and @ = g(sinhr0,,v)
is the support function of M. To transform the shifted Minkowski formula (5.3) into the
formula (5.2), we have ([LX22, Lem. 3.9])

_ Dy|? 1 N
hrogt =290 1 !
coshro 2% +2(<,0+<,0 ),
o Dy|? 1 N
G 1:'— —(p— ).
ao 2o T2 ¥)

Then we get

(coshr — @) o G~ =L,
By [LX22, Cor. 2.1], we have

duo G™! = p,(Alp])do.

Note that the matrix (h;/(G~1(2)) — ;%) is the inverse matrix of (¢(2)o7! A;;[p(2)]), then the
eigenvalues K of (hij (G71(2)) — 6 ) are the reciprocal of the corresponding eigenvalues of
(p(2)a7t Ayi[p(2)]). So we obtain
(pn(R)dp) 0 G~ = p™"do,
and thus
¢ "pesi (Alpl)do = ((coshr — @)pp——1(R)du) o G,
Dy 2 1 _ n ~ ~ B
(525 +5 (o)) & ma (Al do = (sl o G
Combining these with the shifted Minkowski formula (5.3), we obtain the formula (5.2).

For the case for smooth positive function ¢ on S™ with A[p] > 0, we approximate ¢ by
¢ + ¢ with € > 0. Note that A[p] > 0 implies that A[g + ¢] > 0 for any ¢ > 0, since

1|D(p + ¢)|? 1 _
Aij[90+€] = (90+€)ij - §W0ij + 5 (90-1—6 — (90"1‘6) 1) 034
1|Dyl? 1 _ €
> @ij_g—’ | Uij+§(90_90 1)0ij+§0'ij
9
= AU[(’D] + 5045

2
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Hence, one can prove (5.2) for ¢ + ¢ first and then let ¢ — 07 to obtain (5.2) for ¢ with
Alp] > 0. O

Now, we prove Theorem 5.1.

Proof of Theorem 5.1 (Full rank theorem). If A[p(z)] is not of full rank at some zy € S™, then
there is n — k < £ < n — 1 such that py(Afg]) > 0 on S", and ¢(z0) = Se+1(A[p(20)]) = 0.
Then by Lemma 4.1, we have

Z P2 1 (2)bap(2) < CLID@(2)| + Cag(2).
a,f=1

The strong minimum principle implies ¢ = pyy1(A[p]) = 0. Then by formula (5.2), we have
¢ = 1. Hence Afyp| = 0, which is a contradiction to equation (1.2). O

6. PROOFS OF THEOREMS 1.1, 1.2 AND 1.3

We first recall the following uniqueness result.

Lemma 6.1.

(1) ([LX22, Prop. 8.1 & Thm. 8.1]) Let n > 1. For any p > —n, the even, h-convex

solutions to equation
n+p 1

F(Afg]) = ot~y (6.1)

are constant, where v > 0 is a constant, and F = pl/(" M oor F = (pn /i) ).
(2) ([LW24, Thm. 1.2]) Let n = 1. For any —7 < p < —1, the even, h-convex solutions
to equation

12 -t
@90—§—€+L=@p7
Y

are constant, where v > 0.

Recall that the function &, : (1,00) — (0, 00) defined by (3.5),

e +p
=29t —t 1L, g="TP
) =2t — 1), g = T

Assume that ¢ = ¢ is a constant solution to (6.1). Then Afcg] = (o — ¢ ') and

6lco) = 7. (62)
By the calculation in Lemma 3.1 and Lemma 6.1, we have
e Either —1 < ¢ < 1 (thatis, —n <p<n—2k, whenn >2and 0 < k <n-—1), or
—7 < g <1 (that is, =7 < p < 1, when n = 1 and k = 0): There exists a unique
solution to (6.2) for any v > 0;
e g =1 (that is, p =n — 2k, when n > 1 and 0 < k < n — 1): There exists a unique
1
solution to (6.2) for any v~ »-% > 2;
e g>1 (thatis,p>n—2k, whenn>1and 0 <k <n-—1): Ify_ﬁ =) 2
(1) 2"

+1
1
there exists a unique solution to (6.2); If v~ »—F > %, then there exist exactly
(-1
two distinct solutions to (6.2).
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1 —k . _ntp 1 .
Remark 6.1. When F = pn/_(z ), equation @'~k F(A[p]) = vo—F is equivalent to

" Pk (Alp]) = 7,
and when F = (py /pi)"/ ") it is equivalent to
Yo" Pp (k= 1) = 1.

Proof of Theorem 1.1. To establish the existence of the solution, we use the degree theory for
second order fully nonlinear elliptic operators developed by Li [Li89]. If —1 < ¢ < 0 (that is,
—n <p < —k), we take

1 1\ —(n—k)
fe= <(1 — ) (fmax)” " F +tf_ﬂ> ' . telo,1];

If ¢ > 0 (that is, p > —k), we take

—(n+p)
1) p, t € [0,1].

fo= (1= 1) (o) 77 + 17757
Consider the Banach space
B>*(S") := {w € C?**(S") | w is even}
and
Bgﬂ(sn) = {w e CH(S") | w is even}.
Define L; : Bg’o‘(S”) — B%(S™) by

1 1

Li(o) =pr 1 (Ale]) — @1 f7F.

Let R > 0 be a constant. For —1 < ¢ <1, let
1 1
On = {uw € B | wllowe < By w> 1+ 1 Afu] > 0. posldful) > 7}

and for ¢ > 1, let

1 1
Ogr = {w € Bgva(sn) | |lwllgae < R, w > %, Alw] > 0, pp_r(Afw]) > E}'

Then Op is an open bounded subset of Bg"a(S") for all ¢ > —1. Moreover, L; is uniformly
elliptic in Og for any t € [0,1].

Claim: For each t € [0, 1], equation L£(¢) = 0 admits no solution on dOg if R > 0 is
sufficiently large.

First of all, we show that if f satisfies Assumption 1.1 and Assumption 1.2, then f; satisfies
these assumptions for all ¢t € [0,1]. For the former case —1 < ¢ < 0 (i.e. —n <p < —k), it
follows from f < fax that

(ft)_ﬁ =(1- t)(fmaux)_ﬁ —|-7ff_ﬁ > (fmax)_ﬁ-

So we have f; < (ft)max < fmax and hence f; satisfies Assumption 1.2. To show that f;
satisfies Assumption 1.1, we have

()77 = (L= ) (fama) 7% +£f 70k > 4700,

1

1 P
Df, T =tD*f Tk, Df, T =tDf R,
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and
_1
’th 7L7k?’2 t2‘Df__nik’2 ’Df_nik’2
—_1i 1 o St——a—
ft n—k (1 — t)(fmax) n—=k + tf n—k f n—k

Since (ft)max < fmax, we also have

_% 1
ft n- f n—k

— >t —.
2+8((ft)max)m 2"|_8(fmax)ﬂ

Thus, it is clear that f; satisfies (1)—(3) in Assumption 1.1 for —1 < ¢ < 0. The latter case
q > 0 (i.e. p > —k) can be proved similarly. By using the full rank theorem (Theorem 5.1),
we know that the solution ¢ = ¢; to equation Li(p) = 0 satisfies A[p] > 0. It is easy to
verify that f; > fuin for all ¢ € [0,1]. By the a priori estimates (3.4) and (3.12), Li(¢) =0
admits no solution on 0Og if R is sufficiently large for the case —1 < ¢ < 1.

Next, we consider the remaining case ¢ > 1. As fuin < ft < fmax, by a priori estimate
(3.12) and equation L;(p) = 0, there exists a constant Ry > 0 such that

- 1

Ry
Suppose the claim is false. Then there always exists a sufficiently large constant R > Ry and
a solution to equation L£:(¢) = 0 such that ¢ € 0Ogk. Then we have

llolloae < Ro,  pn—i(Alp])

1
lellcr < B, pui(Ale]) > £
So p € d0g implies that ¢ > Zir—i and @(z9) = g% is attained at some point zg € S”.

At this point zg, we have

A 2 3 (1 - /1)

and by Assumption 1.2, we deduce that

g+1\ —1
(%) > (fmaux)ﬁ > ((ft)max)ﬁ

1

> fi(20)7F = (20) " Tpk (Alp(20)])

(@-1)%

This is a contradiction, and the claim follows.

Recall that £; is uniformly elliptic in Og, and hence the degree of £; on Or at 0 is well-
defined for all t € [0,1]. By [Li89, Prop. 2.2], the degree deg(L:, Or,0) is a homotopic
invariant and thus

deg(ﬁl,OR,O) = deg(ﬁo,(’)R,O). (6.3)

Hence, it suffices to compute the degree at t = 0. By Lemma 6.1, the even, h-convex solutions
to equation (6.1) are constant for any ¢ > —1. Let ¢ = ¢y be a constant solution to equation
£0 (C(]) = 0, i.e.,

1 1
(co—co') =cife ™ = cG(fmax) " *.

N =
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Note that Assumption 1.2 on fnax guarantees the existence and uniqueness of the constant
solution ¢ = ¢g in Og. The linearized operator of Ly at ¢ = ¢q is

1 1 1 1 41
Leyn = EASnT] + <§ + 2_c(2) — q(fmax) ™ F ) n
1 1—q 1+4¢q
= —Acn - =
n Sn+< 2 * 2c2 >77
Note that for each ¢ > —1, we have
1—-q 1+4¢q
— <1.
> 2¢¢ ~

Since the eigenvalues of the Beltrami-Laplace operator Agn on S C R™! are strictly less
than —n except for the first two eigenvalues 0 and —n, and the coordinate functions of R"+1
span the eigenspace of eigenvalue —n are odd, equation L.,n7 = 0 only admits the unique even
solution 17 = 0. Thus the operator L, is invertible at ¢ = ¢y. By [Li89, Prop. 2.3], we have

deg(ﬁo,OR,O) = deg(LcO,(’)R,O). (6.4)

Moreover, there is only one positive eigenvalue % + 12—22;1 of L., with multiplicity 1. By [Li89,
Prop. 2.4], we know that

deg(Lc,, Or,0) = —1. (6.5)
Finally, it follows from (6.3), (6.4) and (6.5) that

deg(Ly1,0Rr,0) = —1,

which implies that there exists a C*“-smooth, strictly h-convex, even solution ¢ € Og to

equation
1

= 1
Pk (Alg]) = ¢ f7F.
The regularity of ¢ follows from Theorem 3.1. This completes the proof of Theorem 1.1. [J

Remark 6.2. Note that the first eigenvalue of Agn for even functions are —2(n + 1), so for
any —4n —3 < g < —1, by cg > 1 we have
1—-q 1+¢q

2 +2cg

Therefore, the operator L., is invertible at ¢ = co for all ¢ > —4n — 3. In particular, for
n =1, L., is invertible at ¢ = cy for all ¢ > —T7.

1< <2(n+1).

Proof of Theorems 1.2, 1.3 and 1.4. Let n>1and 0 < k <n —1. We take
1
(A % =
Li(p) = (7( [(’D])> — @l fr.

pr(A[p])
If either —1 < g¢g<1forn>2or =7<¢q<1forn=1 (in this case, k = 0), we define
1 pu(Afw]) 1
Og = w € B (s" w<R w>1+—, /s L.

If ¢ > 1 for n > 1, we define

o0 {0 s <. [T, 21 1

Then we have £, L(0)NdOk = 0 if R > 0 is sufficiently large. Here, in order to show that the
solution to equation L;(p) = 0 satisfies A[p] > 0, we use Lemma 3.4 instead of the full rank
theorem (Theorem 5.1). For the case n = 1 and —7 < ¢ < 1, the uniqueness of the constant
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solution ¢ = ¢y follows from Lemma 6.1, and the operator L., is invertible at ¢ = ¢y when
q > —7 by Remark 6.2. The remaining proof of Theorems 1.2, 1.3 and 1.4 follows from the
similar argument as that of Theorem 1.1. O

REFERENCES

[ACW21] B. Andrews, X. Chen, and Y. Wei, Volume preserving flow and Alexandrov-Fenchel type inequalities
in hyperbolic space, J. Eur. Math. Soc. (JEMS) 23(2021): 2467-2509. 2, 7

[Ber69] C. Berg, Corps convezes et potentiels sphériques (in French), Danske Vid Selsk Mat-Fys Medd,
37(1969): 1-64. 1

[BG09] B. Bian, P. Guan, A microscopic convezity principle for nonlinear partial differential equations, Invent.
Math. 177(2009): 307-335. 2

[BCPR23] C. Bianchini, A. Colesanti, D. Pagnini, A. Roncoroni, On p-Brunn-Minkowski inequalities for in-
trinsic volumes, with 0 < p < 1, Math. Ann. 387 (2023): 321-352. 2

[BM99] A. A. Borisenko, V. Miquel, Total curvatures of convex hypersurfaces in hyperbolic space, Illinois J.
Math. 43 (1999): 61-78. 2

[Bor23] K. Boroczky, The logarithmic Minkowski conjecture and the Ly,-Minkowski problem, Adv. Anal. Geom.
9 (2023): 83-118. 4

[BIS21] P. Bryan, M. N. Ivaki, J. Scheuer, Parabolic approaches to curvature equations, Nonlinear. Anal.
203(2021): 112174. 4

[BIS23] P. Bryan, M. N. Ivaki, J. Scheuer, Constant rank theorems for curvature problems via a viscosity
approach, Calc. Var. (2023) 62:98. 2

[Caf90] L. Caffarelli, A localization property of wviscosity solutions to the Monge-Ampére equation and their
strict convezity, Ann. Math. 131(1990): 129-134. 1

[CF85] L. Caffarelli, A. Friedman, Convezity of solutions of semilinear elliptic equations, Duke Math. J.
52(1985): 431-456. 2, 15

[CGMOT7] L. Caffarelli, P. Guan, X.-N. Ma, A constant rank theorem for solutions of fully nonlinear elliptic
equations, Comm. Pure Appl. Math., 60(2007): 1769-1791. 2

[Che23a] L. Chen, Non-normalized solutions to the horospherical Minkowski problem, Preprint at
https://arxiv.org/abs/2301.01128v2 (2023) 5, 6

[Che23b] L. Chen, Convex hypersurfaces of prescribed curvatures in hyperbolic space, Preprint at
https://arxiv.org/abs/2302.01604 (2023) 5

[Che24] L.  Chen, Smooth  solutions to the Christoffel  problem in H"F! Preprint  at
https://arxiv.org/abs/2406.09449 (2024) 3, 4, 26, 27

[CYT6] S.-Y. Cheng, S. T. Yau, On the regularity of the solution of the n-dimensional Minkowski problem,
Comm. Pure Appl. Math. 29(1976): 495-516. 1

[CWO06] K.-S. Chou and X.-J. Wang, The L,-Minkowski problem and the Minkowski problem in centroaffine
geometry, Adv. Math. 205, no.1 (2006): 33-83. 4

[Cur89] R. J. Currier, On hypersurfaces of Hyperbolic space infinitesimally supported by horospheres, Trans.
Amer. Math. Soc. 313(1989): 419-431. 7

[EGMO09] J. M. Espinar, J. A. Gélvez, P. Mira, Hypersurfaces in H"' and conformally invariant equations:
the generalized Christoffel and Nirenberg problems, J. Eur. Math. Soc. (JEMS) 11, no. 4 (2009): 903-939
2,4, 7

[Fir62] W. Firey, p-means of convex bodies, Math. Scand. 10(1962): 17-24. 1

[Fir67] W. Firey, The determination of convex bodies from their mean radius of curvature functions, Mathe-
matika, 14(1967): 1-13. 1

[GRSTO08] E. Gallego, A. Reventds, G. Solanes, E. Teufel, Width of convez bodies in spaces of constant curva-
ture, Manuscripta Math. 126 (2008): 115-134.2

[Ger06a] C. Gerhardt, Minkowski type problems for convex hypersurfaces in hyperbolic space, Preprint at
https://arxiv.org/abs/math/0602597 (2006)

[Ger06b] C. Gerhardt, Curvature Problems, Series in Geometry and Topology, International Press, Somerville
39(2006). 11

[GT01] D. Gilbarg, N.S. Trudinger, Elliptic partial differential equations of second order, Classics in Mathe-
matics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. 14

[GGO02] B. Guan, P. Guan, Convex hypersurfaces of prescribed curvatures, Ann. Math., 156(2002): 655-673. 4

[Gual3] P. Guan, Curvature measures, isoperimetric type inequalities and fully nonlinear PDEs, Fully Nonlin-
ear PDEs in Real and Complex Geometry and Optics. Lecture Notes in Mathematics, vol. 2087, pp. 47-94.
Springer (2013) 10


https://arxiv.org/abs/2301.01128v2
https://arxiv.org/abs/2302.01604
https://arxiv.org/abs/2406.09449
https://arxiv.org/abs/math/0602597

HOROSPHERICAL p-C-M AND PRESCRIBED P-SHIFTED WEINGARTEN CURVATURE PROBLEMS 33

[GLL12] P. Guan, J. Li, Y. Li, Hypersurfaces of prescribed curvature measure, Duke Math. J. 161(2012):
1927-1942. 2

[GLMO06] P. Guan, C.-S. Lin, X.-N. Ma, The Christoffel-Minkowski problem. II. Weingarten curvature equa-
tions, Chinese Ann. Math. Ser. B, 27(2006), no. 6: 595-614. 2

[GLMO09] P. Guan, C.-S. Lin, X.-N. Ma, The existence of convex body with prescribed curvature measures, Int.
Math. Res. Not. 2009(2009), no. 11: 1947-1975. 2

[GMO03] P. Guan, X.-N. Ma, The Christoffel-Minkowski problem. I. Convexity of solutions of a Hessian equa-
tion, Invent. Math., 151(2003): 553-577. 1, 2, 9, 10, 15, 23, 24

[GMZ06] P. Guan, X.-N. Ma, F. Zhou, The Christoffel-Minkowski problem. III. Ezistence and convexity of
admissible solutions, Comm. Pure Appl. Math., 59(2006), no. 9: 1352-1376. 2

[GRW15] P. Guan, C. Ren, Z. Wang, Global C*-estimates for convex solutions of curvature equations, Commun.
Pure Appl. Math.8(2015): 1287-1325. 4

[GX18] P. Guan, C. Xia, L? Christoffel-Minkowski problem: the case 1 < p < k + 1, Calc. Var. (2018): 57:69.
2

[GLW22] Q. Guang, Q.-R. Li, and X.-J. Wang. The Lp-Minkowski problem with super-critical exponents,
Preprint arXiv:2203.05099. 4

[HMS04] C. Hu, X.-N. Ma, C. Shen, On the Christoffel-Minkowski problem, Calc. Var. 21(2004): 137-155. 1

[HI24] Y. Hu, M. N. Ivaki, Prescribed L, curvature problem, Adv. Math. 442(2024), 109566. 5

[HLW22] Y. Hu, H. Li, Y. Wei, Locally constrained curvature flow and geometric inequalities in hyperbolic
space, Math. Ann. 382(2022): 1425-1474. 2, 27

[HWZ23] Y. Hu, Y. Wei, and T. Zhou: A Heintze-Karcher type inequality in hyperbolic space, J. Geom. Anal.
34(2024), Paper No. 113, 17 pp. 4

[HLYZ05] D. Hug, E. Lutwak, D. Yang, G. Zhang, On the L, Minkowski problem for polytopes, Discrete
Comput. Geom. 33 (2005): 699-715. 4

[JLZ16] H. Jian, J. Lu, G. Zhu, Mirror symmetric solutions to the centro-affine Minkowski problem, Calc. Var.
Partial Differential Equations 55 (2016): Art. 41, 22. 4

[Kry82] N. V. Krylov, Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser.
Mat. (3) 46(1982), 487-523. (Russian) 14

[Lee24] T. Lee, An eigenvalue problem for prescribed curvature equations, Int. Math. Res. Not. 2024(2024):
8296-8312. 5

[Lew83] H. Levy, On differential geometry in the large. I. Minkowski’s problem, Trans. Am. Math. Soc.
43(1983): 258-270. 1

[LW23] H. Li, Y. Wan, The Christoffel problem in the hyperbolic plane, Adv. in Appl. Math. 150(2023), Paper
No. 102557, 17 pp. 5

[LW24] H. Li, Y.Wan, Classification of solutions to the isotropic horospherical p-Minkowski problem in hyper-
bolic plane, Preprint at https://arxiv.org/abs/2405.04301 (2024) 6, 28

[LWX23] H. Li, Y. Wan, B. Xu, The discrete horospherical p-Minkowski problem in hyperbolic space, Adv.
Math. 453(2024): 109851. 5

[LX22] H. Li, B. Xu, Horospherical p-Brunn-Minkowski theory: hyperbolic p-sum and prescribed measure prob-
lems, Preprint at https://arxiv.org/abs/2211.06875 (2022) 2, 4, 5, 6, 7, 11, 26, 27, 28

[LWW21] Q.-R. Li, D. Wan, X.-J. Wang, The Christoffel problem by the fundamental solution of the Laplace
equation, Sci. China Math. 64(2021): 1599-1612. 1

[Li89] Y. Li, Degree theory for second order nonlinear elliptic operators and its applications, Commun. Pure
Differential Equations, 14(1989): 1541-1578. 29, 30, 31

[Lut93] E. Lutwak, The Brunn-Minkowski-Firey theory. I. Mized volumes and the Minkowski problem, J. Dif-
ferential Geom. 38, no.1 (1993): 131-150. 1, 4

[LYZ04] E. Lutwak, D. Yang, G. Zhang, On the L,-Minkowski problem, Trans. Am. Math. Soc. 356(2004):
4359-4370. 4

[NT97] A. M. Naveira, A. Tarrfo, Two problems on h-convez sets in the hyperbolic space, Arch. Math. (Basel)
68 (1997): 514-519. 2

[NSW22] X. H. Nguyen, A. Stancu, G. Wei, The fundamental gap of horoconvex domains in H", Int. Math.
Res. Not. IMRN (2022): 16035-16045. 2

[Nir53] L. Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Commun. Pure
Appl. Math. 6(1953): 337-394. 1

[Pogh3] A. V. Pogorelov, On the question of the ezistence of a convex surface with a given sum of the principal
radii of curvature(in Russian), Uspekhi Mat Nauk, 8(1953): 127-130.

[Pog78] A. V. Pogorelov, The Minkowski multidimensional problem, V.H. Winston, distributed solely by Hal-
sted Press, Translated from the Russian by Vladimir Oliker, Introduction by Louis Nirenberg, Scr. Math.
(1978). 1


https://arxiv.org/abs/2405.04301
https://arxiv.org/abs/2211.06875

34 Y. HU, H. LI, B. XU

[Sch14] R. Schneider, Convez bodies: the Brunn-Minkowski Theory, second expanded edition, Encyclopedia of
Mathematics and Its Applications., vol 151, Cambridge University Press, Cambridge, 2014.

[SWYY85] I. M. Singer, B. Wong, S.-T. Yau, S. S.-T. Yau, An estimate of the gap of the first two eigenvalues
in the Schrédinger operator, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12(1985): 319-333. 2

[WX14] G. Wang, C. Xia, Isoperimetric type problems and Alexandrov-Fenchel type inequalities in the hyper-
bolic space, Adv. Math. 259 (2014): 532-556. 2

SCHOOL OF MATHEMATICAL SCIENCES, BEIHANG UNIVERSITY, BEIJING 100191, P.R. CHINA

Email address: huyingxiang@buaa.edu.cn

DEPARTMENT OF MATHEMATICAL SCIENCES, T'SINGHUA UNIVERSITY, BEIJING 100084, P.R. CHINA

Email address: 1ihz@tsinghua.edu.cn

DEPARTMENT OF MATHEMATICS, TECHNION-ISRAEL INSTITUTE OF TECHNOLOGY, HAIFA 32000, ISRAEL

Email address: botongxu@campus.technion.ac.il


mailto:huyingxiang@buaa.edu.cn
mailto:lihz@tsinghua.edu.cn
mailto:botongxu@campus.technion.ac.il

	1. Introduction
	2. Preliminaries
	2.1. Horospherically convex hypersurfaces
	2.2. Elementary symmetric polynomials

	3. A priori estimates
	4. A deformation lemma
	5. Full rank theorem
	6. Proofs of Theorems 1.1, 1.2 and 1.3
	References

