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GRADIENT FLOW OF PHASE TRANSITIONS WITH

FIXED CONTACT ANGLE

KOBE MARSHALL-STEVENS, MAYU TAKADA, YOSHIHIRO TONEGAWA, & MYLES WORKMAN

Abstract

We study the gradient flow of the Allen–Cahn equation with fixed boundary contact angle in

Euclidean domains for initial data with bounded energy. Under general assumptions, we estab-

lish both interior and boundary convergence properties for the solutions and associated energy

measures. Under various boundary non-concentration assumptions, we show that, for almost

every time, the associated limiting varifolds satisfy generalised contact angle conditions and have

bounded first variation, as well as deducing that the trace of the limit of the solutions coincides

with the limit of their traces. Moreover, we derive an Ilmanen type monotonicity formula, for

initial data with bounded energy, valid for the associated energy measures up to the boundary.
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1 Introduction

Throughout this paper we consider the following Allen–Cahn equation with non-linear Robin boundary
conditions: 




u : Ω× [0,+∞) → R,

ε∂tu = ε∆u− W ′(u)
ε

in Ω,

ε(∇u · ν) = −σ′(u) on ∂Ω,

(1)

where Ω ⊂ R
n is a bounded domain with smooth boundary, ε ∈ (0, 1), ν is the outward pointing

unit normal to ∂Ω, W is a smooth double-well potential with strict minima at ±1, and σ is smooth.
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Equation (1) arises naturally as the gradient flow of the energy

Eε(u) =

∫

Ω

ε|∇u|2

2
+
W (u)

ε
dx+

∫

∂Ω

σ(u)dHn−1, (2)

where Hn−1 denotes the (n− 1)-dimensional Hausdorff measure on R
n.

The energy (2) was proposed in [Cah77] (and introduced into the mathematical literature in [Gur85,
Section 5]) as a phase transition model for fluid in a container, Ω, with a contact energy between
the fluid and the boundary of the container, ∂Ω. The ε → 0 limiting behaviour was first studied in
[Mod87] in the framework of Γ-convergence (for minimisers of (2)) and more recently in [KT18] in
the framework of varifolds (for general critical points). These works establish that, given a sequence,
εi → 0, and critical points, {uεi} (minimisers in [Mod87] and general critical points in [KT18]), of (2)
with uniform energy bounds along this sequence, one can extract a subsequential limiting function,
u ∈ L1(Ω), taking values in {±1} Ln a.e. in Ω, where Ln denotes the n-dimensional Lebesgue measure
on R

n. Thus, in the ε → 0 limit, the domain, Ω, splits into disjoint regions, given by {u = ±1}.
Moreover, the boundary of these regions, often referred to as the phase interface, makes fixed contact
angle

θ = arccos

(
σ(1)− σ(−1)

c0

)

with the boundary, ∂Ω, in an appropriate weak sense, where

c0 =

∫ 1

−1

√
2W (s)ds.

As noted in [KT17], by a heuristic argument as well as the Γ-convergence result of [Mod87], one
expects that the energy, (2), provides a phase transition approximation of the Gauss free energy; in
the sense that for ε ≈ 0 we have, for some constant C, that

c−1
0 Eε(uε) ≈ Hn(Ω ∩ {uε = +1}) + cos(θ) · Hn−1(∂Ω ∩ {uε = +1}) + C.

Critical points of the Gauss free energy are given by sets whose boundary inside of the domain, Ω,
is a minimal hypersurface (precisely a stationary varifold), meeting the boundary, ∂Ω, with fixed
contact angle in an appropriate weak sense. Weak notions of fixed contact angle at the boundary
arise naturally in several variational problems (e.g. for minimisers of anisotropic capillarity problems
as studied in [DM15]) and were first introduced in the framework of varifolds in [KT17].

In this paper we study the ε → 0 limiting behaviour of the gradient flow of the energy (2) in the
framework of varifolds. One main focus is the analysis of the ε → 0 limiting behaviour of the solutions
to (1) and their associated energy measures under the assumption that that the surface energy (the
interior term in (2)) does not concentrate onto the boundary in the limit. Physically, this corresponds
to precluding the phase interface from accumulating onto the boundary along the flow, a phenomena
often referred to as ‘wetting’ in the literature; for further information on this point we refer to [Cah77]
for a physical motivation as well as the examples and references discussed in [MT15, Section 8].

The interior ε→ 0 convergence of the gradient flow of the Allen–Cahn energy to various weak notions
of the mean curvature flow have been studied extensively; we refer to [Ilm93, Ton03, Tas24] and
the references therein for a more complete background. Closely related to the fixed boundary contact
angle condition considered here is the gradient flow of the Allen–Cahn energy with Neumann boundary
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conditions, arising from (2) when σ = 0, as studied in [MT15] for convex domains and [Kag19] for
general domains. In these works it was shown (under certain technical assumptions in the latter) that
the energy measures associated to the solutions converge, as ε → 0, to a integer rectifiable Brakke
flow with an appropriate weak notion of free boundary (i.e. fixed 90◦ contact angle at the boundary).
Though we do not pursue it here, one could hope to show the corresponding analogue of these results
for (2) when σ 6= 0; namely, showing that the interior energy measures (defined in Subsection 1.2
below) associated to solutions of (1) converge to a integer rectifiable Brakke flow with an appropriate
weak notion of fixed contact angle at the boundary. A fundamental tool in establishing any such
convergence result is a monotonicity formula, which we derive here for the energy measures associated
to solutions of (1) in Appendix B.

The gradient flow of (2) has previously been studied in a variety of contexts. By deriving the first
term in the asymptotic expansion of solutions to (1), aspects of the ε → 0 limiting behaviour of the
flow were first studied in [OS92]. More recently, in [HL21, Theorem 1 (ii)] it is shown that, under the
assumption that no energy is dropped in the limit, the gradient flow of (2) converges, as ε→ 0, to a BV
solution of the mean curvature flow with fixed contact angle (in the sense of [HL21, Definition 1]). In
the opposite direction, in [AM22, HM22], by assuming the existence of a smooth mean curvature flow
with fixed contact angle, the existence of a solution to (1) which approximates this mean curvature
flow is established and the convergence rate of the approximation is analysed.

1.1 Notation

We collect some notations and definitions that will be used throughout the paper:

• We let Ω ⊂ R
n be an open, bounded, connected set with smooth boundary, ∂Ω, and denote by ν

the outward pointing unit normal to ∂Ω. Let κ > 0 denote the reciprocal of the supremum of the
principle curvatures of ∂Ω (which is finite and strictly positive as ∂Ω is smooth and compact)
and for 0 < r ≤ κ we define the interior tubular neighbourhood of ∂Ω of size r to be

Nr = {x− λν(x) | 0 ≤ λ < r}.

• We will denote by∇⊤,∆⊤ and div∂Ω the tangential gradient, Laplacian and divergence operators
on ∂Ω respectively.

• We denote by G(n, n − 1) the space of (n − 1)-dimensional subspaces of Rn, and identify S ∈
G(n, n − 1) with the orthogonal projection of Rn onto S and its matrix representation. For
a ∈ R

n we denote by a ⊗ a ∈ Hom(Rn;Rn) the matrix with entries aiaj (with 1 ≤ i, j ≤ n).
Writing I for the identity matrix we have, for each unit vector a ∈ R

n, I − a⊗ a ∈ G(n, n− 1).
For X ⊂ R

n either open or compact we set Gn−1(X) = X ×G(n, n− 1).

• For a Radon measure µ on a measure space X and ϕ ∈ Cc(X) we write µ(ϕ) =
∫
ϕdµ and

let spt(µ) denote the support of µ. A general (n− 1)-varifold (hereafter simply varifold) on X
is a Radon measure on Gn−1(X), and we denote the set of all such varifolds as Vn−1(X). For
V ∈ Vn−1(X) we will write ||V || for the weight measure of V , i.e. for each φ ∈ Cc(X) we have

||V ||(φ) =

∫

Gn−1(X)

φ(x) dV (x, S),

and δV for the first variation of V , i.e. for each g ∈ C1
c (X ;Rn) we have

δV (g) =

∫

Gn−1(X)

∇g(x) · S dV (x, S).
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1.2 Setting

We first impose the following two assumptions on W and σ, these will be fixed throughout the paper:

(A1) W ∈ C∞(R) is a non-negative double-well potential with non-degenerate minima at ±1, unique
local maximum in (−1, 1), and for some γ ∈ (0, 1) we have W ′′(s) > 0 for each |s| > γ. A typical
example of such a potential is W (s) = 1

4
(1− s2)2.

(A2) σ ∈ C∞(R) and there exists a c1 ∈ [0, 1) such that for each s ∈ R we have

|σ′(s)| ≤ c1
√

2W (s),

As the angle condition is determined by the difference (σ(1) − σ(−1)) and c0, without loss of
generality we set σ(−1) = 0 throughout. One can then prescribe a fixed contact angle, θ ∈ (0, π

2
],

based on the potential, W , by choosing σ(s) = cos(θ)
∫ s

−1

√
2W (r) dr.

Remark 1. The assumptions placed on W and σ above are rather general and allow for a large
amount of flexibility in applying our results. For instance, no specific choices of W and σ are required
in order to approximate, in the ε → 0 limit, hypersurfaces making fixed contact angle θ with ∂Ω.

Remark 2. As remarked in [KT18], assumption (A2) ensures that

|σ(1)| ≤

∫ 1

−1

|σ′(s)| ds ≤ c1

∫ 1

−1

√
2W (s) ds < c0,

which physically corresponds to the contact energy density, |σ(1)|, of the interface, formed by the region
{u ≈ 1}, with ∂Ω being strictly smaller than the interior energy density, c0, of the interface inside of
Ω. As |σ(1)| ր c0 we thus expect the ‘perfect wetting’ phenomena described in [Cah77].

Given ε ∈ (0, 1), u ∈ C∞(Ω × [0,∞)) solving (1), and t ≥ 0 we define, for each ϕ ∈ Cc(R
n), the

associated Radon measures




µε
t,1(ϕ) =

∫
Ω
ϕ
(

ε|∇u( · , t)|2

2
+ W (u( · , t))

ε

)
dx,

µε
t,2(ϕ) =

∫
∂Ω
ϕσ(u( · , t))dHn−1,

µε
t(ϕ) = µε

t,1(ϕ) + µε
t,2(ϕ),

(3)

and, for each φ ∈ Cc(Gn−1(R
n)), we define the associated varifolds





V ε
t,1(φ) =

∫
Ω∩{∇u 6=0}

φ
(
x, I − ∇u

|∇u|
⊗ ∇u

|∇u|

)
dµε

t,1,

V ε
t,2(φ) =

∫
∂Ω
φ(x, Tx∂Ω) dµ

ε
t,2,

V ε
t (φ) = V ε

t,1(φ) + V ε
t,2(φ).

(4)

With the above definitions we have ||V ε
t || = µε

t and ||V ε
t,j|| = µε

t,j for j = 1, 2. Furthermore, we define
the discrepancy measure, ξεt , by setting

dξεt =

(
ε|∇u( · , t)|2

2
−
W (u( · , t))

ε

)
dLn⌊Ω.

As we are concerned with the ε → 0 limiting behaviour of solutions to (1) we will often make two
further assumptions throughout the paper:
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(A3) For a sequence {εi} ⊂ (0, 1), with εi → 0, we have {ui} ⊂ C∞(Ω× [0,∞)) such that





ui : Ω× [0,+∞) → R,

εi∂tui = εi∆ui −
W ′(ui)

εi
in Ω,

εi(∇ui · ν) = −σ′(ui) on ∂Ω,

(5)

where ν is the outward pointing unit normal to ∂Ω.

Remark 3. We will often consider further subsequences, {εij} ⊂ {εi}, and when doing so, for each

t ≥ 0, write uj in place of uij , µ
j
t , µ

j
t,1, µ

j
t,2 in place of µ

εij
t , µ

εij
t,1 , µ

εij
t,2 , and V

j
t , V

j
t,1, V

j
t,2 in place of

V
εij
t , V

εij
t,1 , V

εij
t,2 to denote the solutions of (5), the Radon measures, and the varifolds associated with

such a subsequence of solutions respectively.

(A4) There exists E0 > 0 such that

{
supiEεi(ui( · , 0)) ≤ E0,

supi ||ui( · , 0)||L∞(Ω) ≤ 1.

Under the assumptions (A1)-(A4), each ui is a solution to the gradient flow of (2) with initial data
given by ui( · , 0). To see this, observe that for each ϕ ∈ C∞(Ω) and t ≥ 0 we have

∫

Ω

εi ∂tui ϕdx = −

∫

Ω

(
εi∇ui · ∇ϕ+

W ′(ui)

εi
ϕ

)
dx−

∫

∂Ω

σ′(ui)ϕdH
n−1 = −δEεi(ui( · , t))(ϕ),

and therefore

d

dt
Eεi(ui( · , t)) = δEεi(ui( · , t))(∂tui( · , t)) = −

∫

Ω

εi (∂tui)
2 dx ≤ 0. (6)

Combining this fact with the energy bound in (A4) we have

sup
i

sup
t≥0

Eεi(ui( · , t)) ≤ E0. (7)

The uniform energy bounds imposed by (7) ensure uniform (i.e. independent of ε) mass bounds along
the sequences of Radon measures and varifolds as defined in (3) and (4) respectively. Consequently,
due to the weak compactness of Radon measures, up to a subsequence, one obtains limits for these
sequences of Radon measures and varifolds. We will denote the limiting Radon measures of the
sequences {µεi

t } and {µεi
t,j} for j = 1, 2 by µt and µt,j for j = 1, 2 respectively. Similarly, we will

denote the limiting varifolds of the sequences {V εi
t } and {V εi

t,j} for j = 1, 2 by Vt and Vt,j for j = 1, 2
respectively.

Remark 4. In [Ton03] it was established that for L1 a.e. t ≥ 0 we have, under assumptions (A1)-
(A4), that potentially up to a further subsequence depending on t (not relabelled) ξεit ⇀ ξt for some
Radon measure ξt with spt(ξt) ⊂ ∂Ω and ξt ≪ ||Vt,1||⌊∂Ω (i.e. with V εi

t,1 ⇀ Vt,1).

1.3 Main results

Subject to our general assumptions we obtain:
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Theorem 1. Under assumptions (A1)-(A4), the following holds:

1. There exist Radon measures, {µt}t≥0, and a subsequence, {εi} ⊂ (0, 1) (denoted by the same
index), such that

µεi
t ⇀ µt on Ω.

2. For L1 a.e. t ≥ 0 there exists a function, u( · , t) ∈ BV (Ω), and a subsequence, {εi} ⊂ (0, 1)
(denoted by the same index), such that, for L1 a.e. t ≥ 0, we have

{
ui( · , t)⌊Ω→ u( · , t) in L1(Ω),

u( · , t) = ±1 Ln a.e. on Ω,

where ui( · , t)⌊Ω denotes the restriction of ui( · , t) to Ω.

3. For L1 a.e. t ≥ 0 there exists a subsequence, {εij} ⊂ {εi}, dependent on t ≥ 0, and a function,
ũ( · , t) ∈ BV (∂Ω), such that

{
uj( · , t)⌊∂Ω→ ũ( · , t) in L1(∂Ω),

ũ( · , t) = ±1 Hn−1 a.e. on ∂Ω,

where uj( · , t)⌊∂Ω denotes the restriction of uj( · , t) to ∂Ω.

Theorem 1 tells us that, under assumptions (A1)-(A4), there exists a family of unique limiting mea-
sures, {µt}t≥0, for all t ≥ 0, a unique limiting interior function, u( · , t), for L1 a.e. t ≥ 0, and a limiting
boundary function, ũ( · , t), dependent on the choice of L1 a.e. t ≥ 0.

We will now impose the assumption that the discrepancy vanishes in the limit, or more precisely that
it does not concentrate on the boundary, namely:

(A5) For the sequence {εi} ⊂ (0, 1) and L1 a.e. t ≥ 0 it holds that

dξεit ⇀ 0.

In other words, in addition to Remark 4, we have that ξt⌊∂Ω= 0 for L1 a.e. t ≥ 0.

Subject to the discrepancy non-concentration assumption we obtain:

Theorem 2. Under assumptions (A1)-(A5), the following holds:

1. For L1 a.e. t ≥ 0 there exists a subsequence, {εij} ⊂ {εi}, dependent on t ≥ 0, a limiting varifold,

Vt,1 ∈ Vn−1(Ω) (i.e. with V
j
t,1 ⇀ Vt,1), and a ||Vt,1|| measurable vector field, Ht ∈ L2

||Vt,1||
(Ω;Rn)

(i.e. L2 with respect to ||Vt,1||), such that, for each g ∈ C1
c (R

n;Rn) with (g · ν) = 0 on ∂Ω, we
have

δVt,1(g) + σ(1)

∫

{ũ( · , t)=+1}

div∂Ω(g) dH
n−1 = −

∫

Ω

g ·Ht d||Vt,1||,

where ũ( · , t) is as in Theorem 1 part 3.

2. For L1 a.e. t ≥ 0 there exists a subsequence, {εij} ⊂ {εi}, dependent on t ≥ 0, and a limiting

varifold, Vt ∈ Vn−1(Ω) (i.e. with V
j
t ⇀ Vt), such that

||δVt||(Ω) <∞,

and for each T > 0 we have ∫ T

0

||δVt||(Ω) dt <∞.

6



Theorem 2 tells us that, under assumptions (A1)-(A5), for L1 a.e. t ≥ 0 there is an interior limiting
varifold, Vt,1, which is a varifold of fixed contact angle, given by θ = arccos(σ(1)), with respect to the
set {ũ( · , t) = 1} ⊂ ∂Ω, and that there is a limiting varifold, Vt, with bounded first variation which is
also integrable in time.

Remark 5. We note that our definition of varifold with fixed contact angle slightly differs from that
of [KT17, Definition 3.1] as we allow for our varifold to have measure on the boundary ∂Ω.

Remark 6. One expects that assumption (A5) can be deduced explicitly, as was done for gradient
flow of the Allen–Cahn energy in the Neumann case in [MT15], from which the results of Theorem 2
would hold with assumptions (A1)-(A4) only; we have not yet been able to show this.

Under a further assumption that none of the interior measure, µε
t,1 = ||V ε

t,1||, accumulates on the
boundary in the limit, we are able to deduce stronger conclusions about the behaviour of the limiting
functions and the first variation of the limiting varifolds. Precisely, we assume that:

(A6) For L1 a.e. t ≥ 0 and for each s > 0, there exists a δ > 0, with

lim sup
i→∞

||V εi
t,1||(Nδ) < s,

where Nδ denotes the interior tubular neighbourhood of ∂Ω of size δ.

Remark 7. As ξt ≪ ||Vt,1||⌊∂Ω (see Remark 4), assumption (A6) is stronger than assumption (A5).

∂Ω

Ω

∂Ω

Ω

θ θ

Figure 1: In both graphics the interior solid curves depict a portion of ∂Ω, and the dashed
curves depict smooth boundaries of interface regions in the interior of Ω. The left-hand
graphic depicts a positive time along the flow at which the interface comes into tangential
contact with ∂Ω, i.e. the interface ‘wetting’. The right-hand graphic depicts the interface
at any later positive time after which the ‘popping’ of the interface has occurred, subject
to the assumption that the interior measures do not concentrate on ∂Ω.

Intuitively, this assumption ensures that the interior portions of any limiting varifold, Vt,1, do not
tangentially touch, or lie within, the boundary along the flow. Indeed, since the weight measures of
the varifolds, V ε

t,1, are expected to behave like hypersurface measures of moving phase boundaries, this
ensures that if such a hypersurface were to touch the boundary from the interior at some point in time,
then the hypersurface would split at this point of the boundary into two distinct parts instantaneously.
Physically, this precludes any ‘wetting’ occurring along the flow, as discussed above, and corresponds
to a ‘popping’ of the interface upon tangential contact with the boundary; see Figure 1.
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Remark 8. In view of Theorem 2 part 2, for each interior limiting varifold, Vt,1 ∈ Vn−1(Ω) (i.e. with
V

j
t,1 ⇀ Vt,1), for g ∈ C1

c (R
n;Rn) with (g · ν) = 0 on ∂Ω we let

(δVt,1)⌊A(g) = −σ(1)

∫

{ũ( · , t)=+1}∩A

div∂Ω(g) dH
n−1 −

∫

Ω∩A

g ·Ht d||Vt,1||

denote the restriction of the first variation to a measurable set A ⊂ R
n.

Subject to the measure non-concentration assumption we obtain:

Theorem 3. Under assumptions (A1)-(A6), the following holds:

1. For L1 a.e. t ≥ 0 there exists a subsequence, {εij} ⊂ {εi}, dependent on t ≥ 0, such that
{
uj( · , t)⌊∂Ω→ Tu( · , t) in L1(∂Ω),

Tu( · , t) = ±1 Hn−1 a.e. on ∂Ω,

where Tu( · , t) ∈ L1(∂Ω) arises as the trace of u( · , t) as in Theorem 1 part 2. Moreover, we
have that Tu( · , t) ∈ BV (∂Ω).

2. For L1 a.e. t ≥ 0 there exists a subsequence, {εij} ⊂ {εi}, dependent on t ≥ 0, and a limiting

varifold, Vt,1 ∈ Vn−1(Ω) (i.e. with V
j
t,1 ⇀ Vt,1), such that for each g ∈ C1

c (R
n;Rn) with (g ·ν) = 0

on ∂Ω, we have

(δVt,1)⌊∂Ω(g) = −σ(1)

∫

∂∗{Tu( · ,t)=+1}

g · ~n{Tu( · ,t)=+1} dH
n−2, (8)

where ~n{Tu( · , t)=+1} is the measure theoretic outward pointing normal to ∂∗{Tu( · , t) = +1}.

Theorem 3 tells us that, under assumptions (A1)-(A6), for L1 a.e. t ≥ 0, given the functions u( · , t)
and ũ( · , t) from Theorem 1, we have Tu = ũ on ∂Ω, where Tu is the BV trace of u on ∂Ω (e.g. see
[EG15, Theorem 5.6]), and that there is an interior limiting varifold, Vt,1, which makes contact angle
θ = arccos(σ(1)) (in the sense of [KT17, Definition 3.1], as opposed to in Theorem 2 part 1; see
Remark 5) with respect to the set {Tu( · , t) = +1}; see Figure 2.

Ω

~n{Tu = +1}

{Tu = +1} {u = +1} {u = −1}

θ

ν

~n∂{u=+1}

θ

Figure 2: The thicker dashed line in the graphic depicts a smooth boundary of the region
{u = +1} for the limiting function u (at some fixed time) which makes contact angle θ
with respect to the set {Tu = +1}, depicted with the thin dashed line, in ∂Ω. The angle θ
corresponds to the angle formed between the unit outward pointing co-normal, ~n∂{u=+1},
to the boundary of {u = +1} in ∂Ω, and the outward pointing unit normal, ~n{Tu=+1}, to
{Tu = +1}, which is tangent to ∂Ω.
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Remark 9. Under assumption (A6), for L1 a.e. t ≥ 0 we have ||V εi
t,1|| ⇀ µt⌊Ω, ||V εi

t,2|| ⇀ µt⌊∂Ω,
and, by [Ilm93, Ton03], that the measures µt⌊Ω are rectifiable. For such L1 a.e. t ≥ 0 we have a
unique rectifiable interior limiting varifold, Vt,1 ∈ Vn−1(Ω), with V

εi
t,1 ⇀ Vt,1 and ||Vt,1|| = µt⌊Ω; it also

follows from [Ton03] that for L1 a.e. t ≥ 0 the varifold c−1
0 Vt,1 ∈ Vn−1(Ω) is integer rectifiable. We

also ensure that, for the same L1 a.e. t ≥ 0 as above, we have unique boundary limiting varifolds,
Vt,2 ∈ Vn−1(Ω), by setting Vt,2 = σ(1)Hn−1⌊{Tu=+1}; the dominated convergence theorem shows that

V
εij
t,2 ⇀ Vt,2 for each subsequence, {εij} ⊂ {εi}, such that uj( · , t)⌊∂Ω→ Tu( · , t) in L1(∂Ω). Thus,

for the same L1 a.e. t ≥ 0 as above, we have uniquely defined limiting varifolds, Vt ∈ Vn−1(Ω), with
V εi
t ⇀ Vt by setting Vt = Vt,1 + Vt,2. In general, without the rectifiability of the limit measure, µt, for

L1 a.e. t ≥ 0 (which followed from (A6)) it does not appear to be enough to guarantee the uniqueness
of the limiting varifolds, Vt,1, Vt,2 or Vt; see Appendix A for further discussion on this point. We note
that the uniqueness of the limiting varifolds referred to above is implicitly understood to be with respect
to dependence on the subsequence, {εi} ⊂ (0, 1), and not on a specific choice of t ≥ 0 (for instance,
as opposed to the subsequences chosen for Theorem 1 part 3 and Theorems 2 and 3).

Our results indicate that solutions of (1) should converge, as ε → 0, to an appropriate weak notion
of mean curvature flow with fixed contact angle. Motivated by this, we also derive the appropriate
Ilmanen type monotonicity formula for the energy measures associated to solutions of (1) in Appendix
B, which should be useful in the future study of the limiting behaviour of the gradient flow of (2).
Under appropriate control of the discrepancy term (e.g. under the non-concentration assumptions,
(A5) and (A6)) that appears, one would hope to utilise this monotonicity formula in order to obtain
(in the vein of [MT15]) refined convergence, as ε → 0, of the solutions to the support of the limiting
varifolds.

The rest of the paper is structured as follows. In Section 2 we prove Theorem 1. In Section 3 we
establish, under the assumptions of discrepancy and measure non-concentration, that Theorem 2 and
Theorem 3 hold respectively. In Appendix A we include an approach towards establishing uniqueness
of the limiting Radon measures. We conclude the paper with Appendix B in which we establish
an Ilmanen type monotonicity formula, for initial data with bounded energy, valid for the energy
measures assosciated to solutions of (1) up to the boundary.

2 Boundary behaviour in general

In this section we establish Theorem 1. Unless stated otherwise, we assume that assumptions (A1)-
(A4) hold throughout this section.

We first establish the following semi-decreasing property for the energy measures associated to solu-
tions of (1):

Lemma 1. Suppose for some ε ∈ (0, 1) that u ∈ C∞(Ω×[0,∞)) is a solution to (1) with Eε(u( · , 0)) ≤
E0. Then, for each φ ∈ C2(Ω;R+), the function

t 7→

∫

Ω

φ dµε
t − E0||φ||C2(Ω)t

is a monotone decreasing for t ≥ 0.

Proof. Integrating by parts and using the boundary condition we have

d

dt

∫

Ω

φ dµε
t =

∫

Ω

φ

(
ε(∇u · ∇ut) +

W ′(u)

ε
ut

)
+

∫

∂Ω

φσ′(u)ut dH
n−1

9



= −

∫

Ω

ε(∇φ · ∇u)ut −

∫

Ω

εφ(ut)
2

=

∫

Ω

ε(∇φ · ∇u)2

4φ
−

∫

Ω

εφ

(
ut +

∇φ · ∇u

2φ

)2

≤

∫

Ω

ε(∇φ · ∇u)2

4φ

≤

∫

Ω

|∇φ|2

2φ

(
ε|∇u|2

2
+
W (u)

ε

)
≤ E0||φ||C2(Ω),

where in the final inequality we use the estimate sup{φ>0}
|∇φ|2

φ
≤ 2 sup ||∇2φ|| (which follows from

Cauchy’s mean value theorem). The desired monotonicity follows by integrating in t.

We now establish Theorem 1 part 1:

Proof of Theorem 1 part 1. With Lemma 1 established, this now follows in an identical manner to
[MT15, Proposition 5.2]; we repeat the argument here for completeness.

Let B0 ⊂ [0,∞) be a countable dense subset. By the energy bound in (A4) and the compactness
of Radon measures there exists a subsequence (denoted by the same index) and Radon measures,
{µt}t∈B0 , supported in Ω such that, for t ∈ B0, we have µεi

t ⇀ µt.

Let {φk}k≥1 ⊂ C2(Ω;R+) be a countable dense subset of C(Ω;R+). By Lemma 1, for each k ≥ 1 there
is an at most countable subset, Bk ⊂ [0,∞), such that the function t ∈ B0 7→ µt(φk) can be extended
continuously to [0,∞) \ Bk. Moreover, by setting B = ∪k≥1Bk (which is countable) we ensure that,
for each k ≥ 1, the function t 7→ µt(φk) defined on B0 has the continuous extension to [0,∞)\B given
by

µs(φk) = lim
tրs
t∈B0

µt(φk) = lim
tցs
t∈B0

µt(φk) (9)

for each s ∈ [0,∞) \B. Let s ∈ [0,∞) \B and {εij} ⊂ {εi} be any subsequence such that

µj
s ⇀ µ̃s (10)

for some Radon measure, µ̃s. For each t, t̃ ∈ B0 with t < s < t̃ and k ≥ 1 we have from Lemma 1 that

µ
j

t̃
(φk)−E0||φk||C2(Ω)(t̃− s) ≤ µj

s(φk) ≤ µ
j
t(φk)− E0||φk||C2(Ω)(t− s),

and thus by (9) and (10) we see that

µt̃(φk)−E0||φk||C2(Ω)(t̃− s) ≤ µ̃s(φk) ≤ µt(φk)−E0||φk||C2(Ω)(t− s).

Upon sending tր s and t̃ց s we have µs(φk) = µ̃s(φk) and so µεi
s (φk) → µs(φk) for all s ∈ [0,∞)\B;

since the {φk}k≥1 are dense in C(Ω;R+) we conclude that µs ⇀ µs for all s ∈ [0,∞) \ B. Finally,
as B is countable we use the energy bound in (A4), the compactness of Radon measures, and the
diagonal argument to choose a further subsequence (again denoted by the same index) such that, for
each t ≥ 0, we have µεi

t → µt for some collection of Radon measures, {µt}t≥0, as desired.

We now establish Theorem 1 part 2:

10



Proof of Theorem 1 part 2. We denote

Φ(t) =

∫ t

−1

√
2W (s) ds (11)

so that Φ(1) = c0, and set wi( · , t) = Φ(ui( · , t)) for each t ∈ [0, T ). By (6) and the energy bound in
(A4) we have that

∫ T

0

∫

Ω

|∂twi|+ |∇wi| ≤

∫ T

0

∫

Ω

|
√
2W (ui)||∂tui|+ |

√
2W (ui)||∇ui|

≤
1

2

∫ T

0

∫

Ω

εi(∂tui)
2 +

∫ T

0

∫

Ω

εi|∇ui|
2

2
+
W (ui)

εi

≤
1

2
(E0 − Eεi(ui( · , T ))) +

∫ T

0

Eεi(ui( · , t)) dt−

∫ T

0

∫

∂Ω

σ(ui( · , t)) dH
n−1 dt.

Thus we deduce that
sup
i

||wi||BV (Ω×[0,T )) < +∞,

so that, after taking a subsequence and reindexing, there exists w ∈ BV (Ω × [0, T )) with wi → w in
L1(Ω× [0, T )) and

∫ T

0

∫

Ω

|∂tw|+ |∇w| dx dt ≤ lim inf
i→∞

∫ T

0

∫

Ω

|∂twi|+ |∇wi|.

We further deduce that, after potentially taking a further subsequence and reindexing, for L1 a.e. t ∈
[0, T ) we have wi( · , t) → w( · , t) in L1(Ω). Moreover, for such t ∈ [0, T ), X ∈ C1

c (Ω;R
n), and any

τ > 0, we then choose large enough i, such that

∫

Ω

w( · , t) divX dx ≤

∫

Ω

wi( · , t) divX dx+ τ

≤ ||X||L∞

∫

Ω

εi|∇ui( · , t)|
2

2
+
W (ui( · , t))

εi
dx+ τ.

This implies that for L1 a.e. t ∈ [0, T ) we have w( · , t) ∈ BV (Ω) with

∫

Ω

|Dw( · , t)| ≤ lim inf
i→∞

∫

Ω

εi|∇ui( · , t)|
2

2
+
W (ui( · , t))

εi
dx.

As Φ is increasing and continuous it has a continuous inverse, Φ−1, and thus the functions ui( · , t) =
Φ−1(wi( · , t)) converge, for L

1 a.e. t ≥ 0, pointwise Hn a.e. to u( · , t) = Φ−1(w( · , t)) ∈ BV (Ω). Noting
that

∫
Ω
W (ui) ≤ E0εi and applying Fatou’s lemma we conclude that

0 ≤

∫

Ω

W (u) ≤ lim inf
j→∞

∫

Ω

W (ui) = 0.

Thus, by the assumptions on W , we have u( · , t) = ±1 Ln a.e. on Ω, as desired.

In order to control the energy on the boundary, we first establish the following expression for the first
variation of the diffuse varifolds:

11



Proposition 1. Suppose for some ε ∈ (0, 1) that u ∈ C∞(Ω× [0,∞)) is a solution to (1). Then, for
g ∈ C1

c (R
n;Rn), we have

δV ε
t (g) =

∫

Ω∩{|∇u|6=0}

(
∇g ·

∇u

|∇u|
⊗

∇u

|∇u|

)
dξεt

+

∫

Ω∩{∇u=0}

(∇g · I) dξεt +

∫

Ω

ε∂tu (g · ∇u) dx

+

∫

∂Ω

(
ε|∇u|2

2
+
W (u)

ε
−
σ′(u)2

ε

)
(g · ν) dHn−1.

(12)

Proof. By an identical computation to that of [KT18, Lemma 4.1], for g ∈ C1
c (R

n;Rn) we have

δV ε
t,1(g) =

∫

Ω∩{|∇u|6=0}

∇g ·
∇u

|∇u|
⊗

∇u

|∇u|

(
ε|∇u|2

2
−
W (u)

ε

)
dx

−

∫

Ω∩{∇u=0}

∇g · I
W (u)

ε
dx+

∫

Ω

ε∂tu (g · ∇u) dx

+

∫

∂Ω

(
ε|∇u|2

2
+
W (u)

ε

)
(g · ν) dHn−1 +

∫

∂Ω

σ′(u) (g · ∇u) dHn−1.

For δV ε
t,2(g) we compute that for g ∈ C1

c (R
n;Rn) by the divergence theorem we have

δV ε
t,2(g) =

∫

∂Ω

σ(u) div∂Ω(g) dH
n−1 = −

∫

∂Ω

σ′(u) (g · ∇⊤u) dHn−1.

Summing the above two expressions and using the boundary condition in (5) we see that

δV ε
t (g) =

∫

Ω∩{|∇u|6=0}

∇g ·
∇u

|∇u|
⊗

∇u

|∇u|

(
ε|∇u|2

2
−
W (u)

ε

)
dx

−

∫

Ω∩{∇u=0}

∇g · I
W (u)

ε
dx+

∫

Ω

ε∂tu (g · ∇u) dx

+

∫

∂Ω

(
ε|∇u|2

2
+
W (u)

ε
−
σ′(u)2

ε

)
(g · ν) dHn−1,

which is equivalent to (12), as desired.

We also establish the following boundary energy control:

Proposition 2. Suppose for some ε ∈ (0, 1) that u ∈ C∞(Ω × [0,∞)) is a solution to (1) with
Eε(u( · , 0)) ≤ E0 and ||u( · , 0)||L∞(Ω) ≤ 1. Then, there exists a constant C > 0 depending only on
Ω, E0, σ and c1 such that

∫ T

0

∫

∂Ω

(
ε|∇u( · , t)|2

2
+
W (u( · , t))

ε

)
dHn−1 dt ≤ C(1 + T ).

Proof. By the computation in (6), the assumptions that both Eε(u( · , 0)) ≤ E0 and ||u( · , 0)||L∞(Ω) ≤ 1
we have

∫

Ω

(
ε|∇u( · , t)|2

2
+
W (u( · , t))

ε

)
≤ E0 −

∫

∂Ω

σ(u) dHn−1 ≤ E0 −

(
min

s∈[−1,1]
σ(s)

)
Hn−1(∂Ω),

12



for each t ∈ [0, T ). Using the gradient of the signed distance function to ∂Ω and cutting off in an
appropriately small tubular neighbourhood of ∂Ω, we consider a function, g ∈ C2

c (R
n;Rn), such that






||g||L∞ = 1,

||∇g||L∞ ≤ C(Ω),

g = ν on ∂Ω.

By definition of the first variation we have |δV ε
t (g)| ≤ C, where the constant depends only on Ω, E0

and σ, and thus by (12) we see that

∫

∂Ω

(
ε|∇u( · , t)|2

2
+
W (u( · , t))

ε

)
≤ −

∫

Ω

ε(∂tu) (g · ∇u) dx+

∫

∂Ω

σ′(u)2

ε
dHn−1 + C.

We have
∣∣∣∣
∫

Ω

ε(∂tu) (g · ∇u) dx

∣∣∣∣ ≤
1

2

∫

Ω

ε(∂tu)
2 dx+

∫

Ω

ε|∇u|2

2
dx ≤

1

2

∫

Ω

ε(∂tu)
2 dx+ C,

and by (A2) there is c1 ∈ [0, 1) such that

∫

∂Ω

σ′(u)2

ε
dHn−1 ≤ c21

∫

∂Ω

W (u)

ε
dHn−1 ≤ c1

∫

∂Ω

ε|∇u|2

2
+
W (u)

ε
dHn−1.

Combining the above, we see that by (6) we have

(1− c21)

∫

∂Ω

(
ε|∇u( · , t)|2

2
+
W (u( · , t))

ε

)
≤

1

2

∫

Ω

ε(∂tu)
2 dx+ C = −

1

2

d

dt
Eε(u) + C.

Integrating this expression over [0, T ) we have

∫ T

0

∫

∂Ω

(
ε|∇u( · , t)|2

2
+
W (u( · , t))

ε

)
dHn−1 dt ≤

1

2(1− c21)
(Eε(u( · , 0))− Eε(u( · , T ))) + CT,

where C now depends only on Ω, E0, σ and c1. Noting that

Eε(u( · , T )) ≥

∫

∂Ω

σ(u( · , t)) dHn−1 ≥

(
min

s∈[−1,1]
σ(s)

)
Hn−1(∂Ω),

we have ∫ T

0

∫

∂Ω

(
ε|∇u( · , t)|2

2
+
W (u( · , t))

ε

)
dHn−1 dt ≤ C(1 + T ),

for a new constant, C, also depending only on Ω, E0, σ and c1.

We can now complete the proof of Theorem 1 part 3:

Proof of Theorem 1 part 3. By Fatou’s Lemma and Proposition 2 we have that

∫ T

0

lim inf
i→∞

∫

∂Ω

(
εi|∇ui( · , t)|

2

2
+
W (ui( · , t))

εi

)
dHn−1 dt

≤ lim inf
i→∞

∫ T

0

∫

∂Ω

(
εi|∇ui( · , t)|

2

2
+
W (ui( · , t))

εi

)
dHn−1 dt ≤ C(1 + T ).

13



Thus, for L1 a.e. t ∈ [0, T ) we have a subsequence, {εij} ⊂ {εi}, dependent on t ∈ [0, T ), such that

sup
j

∫

∂Ω

(
εij |∇uj( · , t)|

2

2
+
W (uj( · , t))

εij

)
dHn−1 < +∞.

By standard arguments, there exists a function ũ( · , t) ∈ BV (∂Ω) such that ũ( · , t) = ±1 Hn−1 a.e.,
uj( · , t) → ũ( · , t) in L1(∂Ω), and

∫

∂Ω

|Dũ( · , t)| ≤ lim inf
j→∞

∫

∂Ω

|Duj( · , t)|.

Moreover, we have that {ũ( · , t) = +1} is a Caccioppoli set in ∂Ω.

3 Boundary behaviour with assumptions

In this section, under the boundary non-concentration assumptions on the discrepancy and the interior
measures, we establish Theorems 2 and 3, respectively.

3.1 Limiting behaviour under discrepancy non-concentration

Unless stated otherwise, we assume that assumptions (A1)-(A5) hold throughout this subsection.

Proof of Theorem 2 part 1. The energy bound in (A4) combined with (6) and the proof of Theorem
1 part 3 show that for L1 a.e. t ≥ 0 we have

lim inf
i→∞

{(∫

Ω

εi(∂tu)
2

) 1
2

+

∫

∂Ω

εi|∇u|
2

2
+
W (u)

εi
dHn−1

}
= c(t) <∞. (13)

We now fix one of the L1 a.e. t ≥ 0 such that (13) and (A5) hold, and then choose a subse-
quence, {εij} ⊂ {εi}, so that both V

j
t,1 ⇀ Vt,1 and V

j
t ⇀ Vt; in particular, this ensures that

δVt(g) = limj→∞ δV
j
t (g) for each g ∈ C1(Ω;Rn). By Proposition 2 we have, potentially taking a

further subsequence, that uj( · , t) → ũ( · , t) in L1(∂Ω) as in Theorem 1 part 3.

For a subsequence as above, we define linear functionals, Lj , for g ∈ C1
c (R

n;Rn) by setting

Lj(g) =

∫

Ω

εij ∂tuj (g · ∇uj) dx.

Noting that we then have

|Lj(g)| ≤ c(t)
(
||V j

t,1||(spt(g))
) 1

2 ||g||L∞, (14)

after potentially taking a further subsequence, there exists a bounded linear functional, L, defined on
Cc(R

n;Rn), with Lj ⇀ L; notice that by (12), for each g ∈ C1
c (R

n;Rn) with (g · ν) = 0 we then have
L(g) = δVt(g). By defining

||L||(U) = sup{L(g) : g ∈ Cc(U ;R
n), |g| ≤ 1},

on open sets U ⊂ Ω (||L|| will then be a Radon measure by the Riesz representation theorem, e.g. see
[EG15, Theorem 1.38]), we have by (14) that ||L|| ≪ ||Vt,1||; therefore by the Radon–Nikodym theorem
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there exists a ||Vt,1|| measurable vector field, Ht, such that L(g) = −
∫
Ω
g · Ht d||Vt,1||. Moreover we

note that, for g ∈ C1
c (R

n;Rn), we have

∫

Ω

g ·Ht d||Vt,1|| ≤ c(t)

(∫

Ω

|g|2 d‖Vt,1‖

) 1
2

,

which implies that Ht ∈ L2
‖Vt,1‖

(Ω;Rn) (see [Lah17, Lemma A.3]).

Recalling (12), assumption (A5), and the reasoning above, for each g ∈ C1
c (R

n;Rn) with (g · ν) = 0
we have

δVt,1(g) + σ(1)

∫

{ũ( · ,t)=+1}

div∂Ωg dH
n−1 = −

∫

Ω

g ·Ht d||Vt,1||,

as desired.

Proof of Theorem 2 part 2. Fix one of the L1 a.e. t ≥ 0 such that (13) and (A5) hold, and then choose
a subsequence, {εij} ⊂ {εi}, so that V j

t ⇀ Vt; in particular, this ensures that δVt(g) = limj→∞ δV
j
t (g)

for each g ∈ C1(Ω;Rn). As ||V j
t || = µ

j
t we then deduce, for this t ≥ 0 above, that by Theorem 1 part

1 we have ||Vt|| = µt.

In order to control ||δVt|| we bound each of the terms appearing in (12). Firstly, for each g ∈ C1(Ω;Rn)
we have

∫

Ω∩{|∇uj |6=0}

∇g ·
∇uj
|∇uj|

⊗
∇uj
|∇uj|

dξ
εij
t −

∫

Ω∩{∇uj=0}

(∇g · I) dξ
εij
t ≤ 2 sup |∇g||ξ

εij
t |(Ω),

which converges to zero as j → ∞ by (A5). Next, as in the proof of Proposition 2 we see that for
sufficiently large j and a constant, C, depending only on n, Ω, σ, and the energy bound in (A4) we
have ∫

Ω

εij∂tuj(g · ∇uj) ≤ Cc(t) sup |g|,

and ∫

∂Ω

(
εij |∇uj|

2

2
+
W (uj)

εij
−
σ′(uj)

2

εij

)
(g · ν) dHn−1 ≤ 3c(t) sup |g|.

Combining the above three bounds and comparing with (12), we conclude that there exists some
constant, C(t), such that

|δVt(g)| = lim
j→∞

|δV j
t (g)| ≤ C(t) sup |g|. (15)

This shows that for L1 a.e. t ≥ 0 we have ||δVt||(Ω) ≤ C(t) <∞. We conclude by integrating ||δVt||(Ω)
between 0 and T ; noting that C(t) is locally integrable as a function of t by the choice of subsequence
satisfying (13), the energy bound in (A4), and Proposition 2.

3.2 Limiting behaviour under measure non-concentration

Unless stated otherwise, we assume that assumptions (A1)-(A6) hold throughout this subsection.

Proof of Theorem 3 part 1. Fix one of the L1 a.e. t ∈ [0, T ) such that (A6) holds and a subsequence,
{εij} ⊂ {εi}, dependent on this t, as in Theorem 1 part 3 so that both wij( · , t) = Φ(uj( · , t)) →
w( · , t) = Φ(u( · , t)) in L1(Ω) and wij ( · , t) = Φ(uj( · , t)) → w̃( · , t) = Φ(ũ( · , t)) in L1(∂Ω); where Φ
is defined as in (11).
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As w( · , t) ∈ BV (Ω) we have (e.g. see [EG15, Theorem 5.6]), for X ∈ C1
c (R

n;Rn), that

∫

∂Ω

(X · ν) Tw( · , t) dHn−1 =

∫

Ω

X · d|Dw( · , t)|+

∫

Ω

w( · , t) divX dx, (16)

where T denotes the trace operator defined for functions in BV (Ω). Fixing f ∈ C1(∂Ω) and δ ∈ (0, κ),
by using the gradient of the signed distance function to ∂Ω and an appropriate cutoff function, one
can construct a vector field, X ∈ C1

c (R
n;Rn), such that (X · ν) = f on ∂Ω and spt(X) ∩ Ω ⊂ Nδ.

With this vector field, by adding and subtracting terms involving wij( · , t) and w̃( · , t) into (16) and
applying the divergence theorem we have

∫

∂Ω

(X · ν) Tw( · , t) dHn−1

=

∫

Nδ

X · d|Dw( · , t)|+

∫

Nδ

(w( · , t)− wij( · , t)) divX dx−

∫

Nδ

∇wij( · , t) ·X dx

+

∫

∂Ω

(wij ( · , t)− w̃( · , t)) (X · ν) dHn−1 +

∫

∂Ω

w̃( · , t) (X · ν) dHn−1.

By a similar calculation to the proof of Theorem 1 part 2, we bound

∣∣∣∣
∫

Nδ

X · d|Dw( · , t)|

∣∣∣∣ ≤ ||X||L∞ lim inf
j→∞

|Dwij( · , t)|(Nδ) ≤ ||X||L∞ lim inf
j→∞

||V j
t,1||(Nδ),

and similarly we have the bound

∣∣∣∣
∫

Nδ

∇wij( · , t) ·X dx

∣∣∣∣ ≤ ||X||L∞||V j
t,1||(Nδ).

Thus, upon sending j → ∞ we ensure that, by the two bounds above and the convergence of wij( · , t),
we have ∫

∂Ω

f Tw( · , t) dHn−1 =

∫

∂Ω

f w̃( · , t) dHn−1.

As f ∈ C1(∂Ω) chosen above was arbitrary, we see that Tw( · , t) = w̃( · , t) = Φ(ũ( · , t)) Hn−1 a.e. on
∂Ω by the fundamental lemma of the calculus of variations. Noting that, as u = ±1 Ln a.e. in Ω,
ũ = ±1 Hn−1 a.e. on ∂Ω, and recalling that both Φ(1) = c0 and Φ(−1) = 0, we have

{
u = c−1

0 (2w − c0) Ln a.e. in Ω,

ũ = c−1
0 (2w̃ − c0) Hn−1 a.e. on ∂Ω.

From the above expressions, the linearity of the trace operator, T , and the fact that Tw( · , t) = w̃( · , t)
as deduced above, we conclude that Tu( · , t) = ũ( · , t) Hn−1 a.e. on ∂Ω, as desired.

Proof of Theorem 3 part 2. Fix one of the L1 a.e. t ≥ 0 such that (13) and (A6) hold, and a subse-
quence, {εij} ⊂ {εi}, so that V j

t ⇀ Vt, V
j
t,1 ⇀ Vt,1, and V

j
t,2 ⇀ σ(1)Hn−1⌊{Tu( · , t)=+1}. Note that by

(A6) we have that ‖Vt,1‖(∂Ω) = 0, and so recalling Theorem 2 part 1 and Remark 8, for g ∈ C1
c (R

n;Rn)
with (g · ν) = 0, we have that

(δVt,1)⌊Ω(g) + (δVt,1)⌊∂Ω(g) + σ(1)

∫

{Tu( · , t)=+1}

div∂Ω(g) dH
n−1 = −

∫

Ω

g ·Ht d‖Vt,1‖.
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Thus, taking g ∈ C1
c (Ω;R

n), we have

(δVt,1)⌊Ω(g) = −

∫

Ω

g ·Ht d‖Vt,1‖.

For δ ∈ (0, κ), consider a cutoff function, ηδ ∈ C∞
c (Ω), which satisfies the following,






ηδ = 0 on N δ
2
,

ηδ = 1 on Ω \Nδ,

|ηδ| ≤ 1.

Then, by dominated convergence theorem, for any g ∈ C1
c (R

n;Rn), we have

(δVt,1)⌊Ω(g) = lim
δ→0

(δVt,1)⌊Ω(ηδg) = − lim
δ→0

∫

Ω

(ηδg ·Ht) d‖Vt,1‖ = −

∫

Ω

g ·Ht d‖Vt,1‖.

Thus, for g ∈ C1
c (R

n;Rn) with (g · ν) = 0 we have by the divergence theorem that

(δVt,1)⌊∂Ω(g) = −σ(1)

∫

{Tu( · ,t)=+1}

div∂Ω(g) dH
n−1

= −σ(1)

∫

∂∗{Tu( · , t)=+1}

g · ~n{Tu( · , t)=+1} dH
n−2,

as desired.

A Limiting Radon measures

We deduced the existence of unique (i.e. depending on the initial subsequence, {εi} ⊂ (0, 1), and
not on a choice of t ≥ 0) limiting measures, {µt}t≥0, for the measures {µεi

t }t≥0 in Theorem 1 part
1; which followed from the semi-decreasing property of Lemma 1. One could also hope to deduce
uniqueness of limiting measures for the sequences {µεi

t,1}t≥0 and {µεi
t,2}t≥0. However, due to a lack of

a semi-decreasing property for each of these measures, in general we can only guarantee, from the
energy bound in (A3), that for each t ≥ 0 there exists a subsequence, {εij} ⊂ {εi}, dependent on

this t ≥ 0, and limiting Radon measures, µt,1 and µt,2, such that µj
t,1 ⇀ µt,1 and µj

t,2 ⇀ µt,2. Due to
the dependence on a subsequence, from this we cannot necessarily ensure uniqueness of the limiting
measures obtained.

For each t ≥ 0 we denote by

Ft,j = {µt,j : there exists a subsequence, {εil} ⊂ {εi}, such that µl
t,j ⇀ µt,j}, (17)

the collections of limiting Radon measures, for j = 1, 2.

Remark 10. As noted in Remark 9, under assumption (A6), for L1 a.e. t ≥ 0 we have that µεi
t,1 ⇀ µt⌊Ω

and µεi
t,2 ⇀ µt⌊∂Ω without passing to a further subsequence, giving rise to families of unique limiting

measures. Thus, for such L1 a.e. t ≥ 0 we have Ft,1 = {µt⌊Ω} and Ft,2 = {µt⌊∂Ω}.

In order to define unique limiting measures independent of a specific t ≥ 0 under assumptions (A1)-
(A4) (in particular without assuming (A6) as in Remark 9), we now explore a potential approach by
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‘slicing’ appropriate space-time limiting measures. We first define, for each ϕ ∈ Cc(R
n× [0,+∞)), the

Radon measures

µεi(ϕ) =

∫ +∞

0

µεi
t (ϕ( · , t)) dt.

Then, for each T ∈ (0,+∞) and ϕ ∈ Cc(R
n × [0, T )), as i→ ∞ we have

µi(ϕ) =

∫ T

0

µεi
t (ϕ( · , t)) dt→

∫ T

0

µt(ϕ( · , t)) dt =: µ(ϕ).

We similarly define the measures,

µεi
j (ϕ) =

∫ +∞

0

µεi
t,j(ϕ( · , t)) dt,

for j = 1, 2, so that we have Radon measures, µ1 and µ2 (defined analogously to µ as above), on
R

n × [0,+∞) such that, after potentially taking a subsequence and reindexing, µεi
j ⇀ µj.

Now define, for j = 1, 2, the projection measure of µj onto [0,+∞) by setting λj(I) = µj(R
n × I) for

each I ⊂ [0,+∞). By [EG15, Theorem 1.45], for λj a.e. t ≥ 0 there exists a Radon measure, Λt,j, on
R

n with Λt,j(R
n) = 1 and such that, for each f ∈ Cc(R

n × [0,+∞)), we have

∫

Rn×[0,+∞)

f dµj =

∫ +∞

0

∫

Rn

f dΛt,j dλj.

Furthermore, one can show that λj ≪ L1 and thus dλj = Fj dL
1 for some L1 measurable function

Fj : [0,+∞) → [0,+∞). For λj a.e. t ≥ 0 we then define our ‘slicing’ Radon measures on R
n, for

j = 1, 2, by setting
µ̃t,j = Fj(t) Λt,j,

so that for each f ∈ Cc(R
n × [0,+∞)) we have

∫

Rn×[0,+∞)

f dµj =

∫ +∞

0

∫

Rn

f dµ̃t,j dt.

We relate the Radon measures {µεi
t,1}t≥0 and {µεi

t,2}t≥0 to our families of limiting ‘slicing’ Radon
measures, {µ̃εi

t,1}t≥0 and {µ̃εi
t,2}t≥0, by the following weak convergence. For each ϕ ∈ Cc(R

n) and
ψ ∈ Cc([0,+∞)), we have that

∫ +∞

0

ψ

∫

Rn

ϕdµεi
t,j dt =

∫

Rn×[0,+∞)

ψ ϕ dµεi
j →

∫

Rn×[0,+∞)

ψ ϕ dµj =

∫ +∞

0

ψ

∫

Rn

ϕdµ̃t,j dt,

for j = 1, 2. Thus, by the density of compactly supported continuous functions in L1([0,+∞)), we
deduce that for each ϕ ∈ Cc(R

n), we have

∫

Rn

ϕdµεi
t,j ⇀

∫

Rn

ϕdµ̃t,j,

weakly in L1([0,+∞)) for j = 1, 2. It seems unclear if one can deduce stronger convergence of
the Radon measures, µεi

t,j , without passing to a further subsequence dependent on t ≥ 0, and what
relations, if any, exist between the limiting ‘slicing’ Radon measures, µ̃t,j , and the collection of limiting
Radon measures, Ft,j, as defined in (17).
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B Boundary monotonicity formula

In this appendix we derive an Ilmanen type monotonicity formula (c.f. [Ilm93, MT15]), as speculated
about in [KT18, Section 5] for the time independent case of (1), valid up to the boundary for the
Radon measures, µε

t , associated to solutions of (1); the precise statement of this is given by Proposition
3 below.

Recall that for x, y ∈ R
n and t < s we define the (n− 1)-dimensional backwards heat kernel as

ρ(y,s)(x, t) =
1

(4π(s− t))
n−1
2

e
−

|x−y|2

4(s−t) .

For each x ∈ Nκ there exists a unique point ξ(x) ∈ ∂Ω realising the distance between x and ∂Ω
(i.e. dist(x, ∂Ω) = |x − ξ(x)|); we thus define the reflection, x̃, of a point x ∈ Nκ in ∂Ω by setting
x̃ = 2ξ(x)− x. For points x ∈ Nκ and y ∈ R

n we then define the reflected kernel by setting

ρ̃(y,s)(x, t) = ρ(y,s)(x̃, t).

Fix a radially symmetric cutoff function, η ∈ C∞
c (Rn; [0, 1]), such that





η ≡ 1 on Bκ
4
(0),

∂η

∂r
≤ 0 on R

n,

spt(η) ⊂ Bκ
2
(0),

where r = |x| and then, for x, y ∈ Nκ, define the truncated kernels
{
ρ1 = ρ1(x, t) = η(x− y)ρ(y,s)(x, t),

ρ2 = ρ2(x, t) = η(x̃− y)ρ̃(y,s)(x, t).

Noting that for x ∈ Nκ \ Nκ
2
and y ∈ Nκ

2
we have |x̃ − y| > κ

2
(so that η(x̃ − y) = 0), we smoothly

extend our definition of ρ2 to be identically zero for points x ∈ Ω \Nκ and y ∈ Nκ
2
.

Proposition 3. Suppose for some ε ∈ (0, 1) that u ∈ C∞(Ω × [0,∞)) is a solution to (1) with
Eε(u( · , 0)) ≤ E0. Then, there exist constants C1, C2 > 0 depending only on n, Ω and E0 such that

d

dt
(eC1(s−t)

1
4
µε
t(ρ1 + ρ2)) ≤ eC1(s−t)

1
4

(∫

Ω

ρ1 + ρ2

2(s− t)
dξεt + C2

)
.

for s > t > 0 and y ∈ Nκ
2
. For s > t > 0 and y ∈ Ω \Nκ

2
we have

d

dt
µε
t,1(ρ1) ≤

(∫

Ω

ρ1

2(s− t)
dξεt + C2

)
.

Proof. We first compute, by integration by parts and (5) respectively, if we are given an appropriately
smooth placeholder function, ρ, that (for a function f we write ft for ∂tf throughout this proof for
brevity)

d

dt
µε
t,1(ρ) =

d

dt

∫

Ω

ρ dµε
t,1

=

∫

Ω

ρt dµ
ε
t,1 +

∫

Ω

ρ

[
ε∇u · ∇ut +

W ′(u)

ε
ut

]

=

∫

Ω

ρt dµ
ε
t,1 +

∫

Ω

ρ

[
−εut∆u+

W ′(u)

ε
ut

]
−

∫

Ω

ε(∇ρ · ∇u)ut +

∫

∂Ω

ερ(∇u · ν)ut

=

∫

Ω

ρt dµ
ε
t,1 −

∫

Ω

ερu2t −

∫

Ω

ε(∇ρ · ∇u)ut +

∫

∂Ω

ερ(∇u · ν)ut.
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We now add and subtract the terms ε(∇ρ · ∇u)ut and ε
(∇ρ·∇u)2

ρ
and continue with the above to see

that

d

dt
µε
t,1(ρ) =

∫

Ω

ρtdµ
ε
t,1 +

∫

Ω

ε(∇ρ · ∇u)ut −

∫

Ω

ερ

(
ut +

(∇ρ · ∇u)

ρ

)2

+

∫

Ω

ε
(∇ρ · ∇u)2

ρ
+

∫

∂Ω

ερ(∇u · ν)ut.

As an aside we compute, by (5) and integration by parts respectively, that
∫

Ω

ε(∇ρ · ∇u)ut =

∫

Ω

ε(∇ρ · ∇u)

(
∆u−

W ′(u)

ε2

)

=−

∫

Ω

ερiuijuj + ρijuiuj +

∫

Ω

ε∆ρ
W (u)

ε

+

∫

∂Ω

ε(∇ρ · ∇u)(∇u · ν)−

∫

∂Ω

ε(∇ρ · ν)
W (u)

ε
.

Observing that
∫

Ω

ρiuijuj = −

∫

Ω

∆ρ|∇u|2 −

∫

Ω

ρiuijuj +

∫

∂Ω

(∇ρ · ν)|∇u|2,

we have that
∫

Ω

ε(∇ρ · ∇u)ut =

∫

Ω

∆ρ

(
ε|∇u|2

2
+
W (u)

ε

)
−

∫

Ω

ερijuiuj

+

∫

∂Ω

ε(∇ρ · ∇u)(∇u · ν)−

∫

∂Ω

(∇ρ · ν)

(
ε|∇u|2

2
+
W (u)

ε

)
.

Combining this with our initial calculations above, we have

d

dt
µε
t,1(ρ) =−

∫

Ω

ερ

(
ut +

(∇ρ · ∇u)

ρ

)2

+

∫

Ω

ε
(∇ρ · ∇u)2

ρ
+

∫

Ω

(ρt +∆ρ)dµε
t,1 −

∫

Ω

ερijuiuj

+

∫

∂Ω

ερ(∇u · ν)ut +

∫

∂Ω

ε(∇ρ · ∇u)(∇u · ν)−

∫

∂Ω

(∇ρ · ν)

(
ε|∇u|2

2
+
W (u)

ε

)
.

By setting ρ = ρk for k = 1, 2 in the above, noting that (∇(ρ1 + ρ2) · ν) = 0 on ∂Ω, and dropping the
non-positive first term we obtain

d

dt
µε
t,1(ρ1 + ρ2) ≤

2∑

k=1

∫

Ω

ε
(∇ρk · ∇u)

2

ρk
+ ((ρk)t +∆ρk)µ

ε
t,1 − ε(ρk)ijuiuj

+ 2

∫

∂Ω

ερ1(∇u · ν)ut + ε(∇⊤ρ1 · ∇u)(∇u · ν).

Using the fact that µε
t,1 = ε|∇u|2 − ξεt and setting aε = ∇u

|∇u|
we then see that

d

dt
µε
t,1(ρ1 + ρ2) ≤

2∑

k=1

∫

Ω

ε|∇u|2
(
(∇ρk · a

ε)2

ρk
+ ((ρk)t + (I − aε ⊗ aε)∇2ρk))

)

−

2∑

k=1

∫

Ω

((ρk)t +∆ρk)dξ
ε
t + 2

∫

∂Ω

ερ1(∇u · ν)ut + ε(∇ρ1 · ∇u)(∇u · ν).

(18)

20



Recalling the boundary condition ε(∇u · ν) = −σ′(u) we have

d

dt
µε
t,1(ρ1 + ρ2) ≤

2∑

k=1

∫

Ω

ε|∇u|2
(
(∇ρk · a

ε)2

ρk
+ ((ρk)t + (I − aε ⊗ aε)∇2ρk))

)

−

2∑

k=1

∫

Ω

((ρk)t +∆ρk)dξ
ε
t − 2

∫

∂Ω

σ′(u)(ρ1ut + (∇⊤ρ1 · ∇u)).

We also note that

d

dt

∫

∂Ω

σ(u)(ρ1 + ρ2) = 2
d

dt

∫

∂Ω

σ(u)ρ1 = 2

∫

∂Ω

σ′(u)utρ1 + σ(u)(ρ1)t. (19)

Thus, by summing (18) and (19) and integrating by parts

d

dt

∫

Ω

(ρ1 + ρ2) dµ
ε
t,1 +

d

dt

∫

∂Ω

σ(u)(ρ1 + ρ2)

≤
2∑

k=1

∫

Ω

ε|∇u|2
(
(∇ρk · a

ε)2

ρk
+ ((ρk)t + (I − aε ⊗ aε)∇2ρk))

)

−
2∑

k=1

∫

Ω

((ρk)t +∆ρk)dξ
ε
t + 2

∫

∂Ω

σ(u)(ρ1)t − σ′(u)(∇⊤ρ1 · ∇u)

=
2∑

k=1

∫

Ω

ε|∇u|2
(
(∇ρk · a

ε)2

ρk
+ ((ρk)t + (I − aε ⊗ aε)∇2ρk))

)

−
2∑

k=1

∫

Ω

((ρk)t +∆ρk)dξ
ε
t + 2

∫

∂Ω

σ(u)((ρ1)t +∆⊤ρ1).

Now, we recall the following identity

(a · ∇ρ)2

ρ
+ ((I − a⊗ a) · ∇2ρ) + ρt = 0,

where a is any unit vector, and note that for x ∈ Nκ, and y ∈ Nκ
2
, we have

|x− ζ(x)| = |x̃− ζ(x)| ≤ |x̃− y|.

Then, one follows the computations in [MT15, Lemma 3.2], to deduce

(a · ∇ρ̃)2

ρ̃
+ ((I − a⊗ a) · ∇2ρ̃) + ρ̃t ≤ C

(
|x̃− y|

s− t
+

|x̃− y|3

(s− t)2

)
ρ̃,

for a constant, C, depending only on n and Ω. Continuing from above, and following near identical
computations to the that of [MT15, Proposition 3.1], we have

d

dt

∫

Ω

(ρ1 + ρ2) dµ
ε
t,1 +

d

dt

∫

∂Ω

σ(u)(ρ1 + ρ2)

≤

∫

Ω

ρ1 + ρ2

2(s− t)
dξεt +

C

(s− t)
3
4

∫

Ω

(ρ1 + ρ2) dµ
ε
t,1 + C + 2

∫

∂Ω

σ(u)((ρ1)t +∆⊤ρ1).
(20)
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We now compute the term ρt+∆⊤ρ explicitly. For a point x ∈ ∂Ω and an orthonormal basis, {τi}
n−1
i=1 ,

of Tx∂Ω we have

∇⊤ρ =
n−1∑

i=1

(∇ρ · τi)τi = −
n−1∑

i=1

(
ρ

2(s− t)
(x− y) · τi

)
τi,

and so

∆⊤ρ =

n−1∑

j=1

Dτj (∇
⊤ρ)τj =

n−1∑

j=1

Dτj

(
−

n−1∑

i=1

(
ρ

2(s− t)
(x− y) · τi

)
τi

)
τj .

Letting Dτiτj =
∑n−1

k=1 Γ
k
ijτk + Aijν and noting that both Dτi(x − y) = τi and (τi · ν) = 0 for each

1 ≤ i ≤ n− 1, we rewrite ∆⊤ρ as

∆⊤ρ =−

n−1∑

j=1

Dτj

(
ρ

2(s− t)
(x− y) · τj

)
−

n−1∑

i,j=1

(
ρ

2(s− t)
(x− y) · τi

)
Dτjτi · τj

=
n−1∑

j=1

(
ρ

4(s− t)2
((x− y) · τj)

2

)
−

n−1∑

j=1

ρ

2(s− t)
−

n−1∑

j=1

ρ

2(s− t)
(x− y) ·

(
n−1∑

k=1

Γk
jjτk + Ajjν

)

−

n−1∑

i,j=1

(
ρ

2(s− t)
(x− y) · τi

)
Γj
ji.

Reindexing k as i in the above and noting that Γi
jj + Γj

ji = Dτj (τj · τi) = 0 we see that

∆⊤ρ =

n−1∑

j=1

(
ρ

4(s− t)2
((x− y) · τj)

2

)
−

(n− 1)

2(s− t)
ρ+

n−1∑

j=1

(
ρ

2(s− t)
(x− y) · Ajjν)

)

=
|x− y|2 − ((x− y) · ν)2

4(s− t)2
ρ−

(n− 1)

2(s− t)
ρ−

(x− y) ·H∂Ω

2(s− t)
ρ,

where H∂Ω =
∑n−1

j=1 Ajjν denotes the mean curvature vector of ∂Ω. Noting that

ρt =
(n− 1)

2(s− t)
ρ−

|x− y|2

4(s− t)2
ρ,

we conclude that

ρt +∆⊤ρ = −
((x− y) · ν)2

4(s− t)2
ρ−

(x− y) ·H∂Ω

2(s− t)
ρ. (21)

By dropping the non-positive first term in (21), we get (noting that the kernel is uniformly bounded
on the support of the cutoff function, and now allowing our constant, C, appearing below to depend
on supremum of the mean curvature of ∂Ω) the bound

(ρ1)t +∆⊤ρ1 ≤ C + C
|x− y|

2(s− t)
ρ1.

Using this bound and by splitting the integral in the same manner as in [MT15, (3.15)/(3.16)] we

conclude that for the boundary term appearing in (20) and for some constants, C and C̃, depending
only on n,Ω and E0 we have

2

∫

∂Ω

σ(u)((ρ1)t +∆⊤ρ1) ≤ C +
C̃

(s− t)
3
4

∫

∂Ω

σ(u)(ρ1 + ρ2).
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By considering an integrating factor and incorporating the bounds above into (20) one has

d

dt

(
eC1(s−t)

1
4

(∫

Ω

(ρ1 + ρ2) dµ
ε
t,1 +

∫

∂Ω

σ(u)(ρ1 + ρ2)

))
≤ eC1(s−t)

1
4

(∫

Ω

ρ1 + ρ2

2(s− t)
dξεt + C2

)
,

or more succinctly

d

dt
(eC1(s−t)

1
4
µε
t (ρ1 + ρ2)) ≤ eC(s−t)

1
4

(∫

Ω

ρ1 + ρ2

2(s− t)
dξεt + C2

)
,

where C1 and C2 are constants depending only on n,Ω and E0. Finally, as in [MT15, Proposition 3.1],
for s > t > 0 and points y ∈ Ω \Nκ

2
in the above we ignore both of the boundary terms and set ρ2 to

be identically zero, obtaining the interior monotonicity by the estimates for ρ1.
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