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Abstract

Let (Ωn+1, g) be an (n + 1)-dimensional smooth compact connected
Riemannian manifold with smooth boundary ∂Ω = Σ and f a smooth
function on Ω which satisfies the Obata type equation ∇2f − fg = 0
with Robin boundary condition fν = cf , where c = coth θ > 1. In this
paper, we consider the rigidity of Ω. First, we derive the warped product
structure of Ω by the properties of the Obata type equation and the set
Ω0 = {x ∈ Ω | f(x) = 0}. Second, we determine the specific structure of
Ω0 under appropriate curvature assumptions and provide the structure of
Ω accordingly.

1 Introduction

Let (Ωn+1, g) be an (n + 1)-dimensional (n ≥ 2) smooth compact connected
Riemannian manifold with smooth boundary ∂Ω = Σ. In this paper, we concern
the Obata type equation ∇2f − fg = 0 with Robin boundary condition fν = cf

and related rigidity of Ω.
For a compact Riemannian manifold (M, g) with boundary or without bound-

ary, one can consider the following Obata type equation

∇2f + kfg = 0,

where k ∈ {1, 0,−1}.
For the case k = 1 and manifolds without boundary, the above equation

is related to many rigidity results. In [11], Lichnerowicz proved that the first
eigenvalue λ1 of a closed manifold of dimension n whose Ricci curvature has
lower bound n− 1 is at least n, that is, λ1 ≥ n. Accordingly, Obata [13] proved
that if the equality holds, then the manifold must be isometric to a standard
sphere by using the following equation

∇2f + fg = 0.

∗Partially supported by NSF of China (No. 12071283)
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For a compact manifold (Ωn+1, g) with boundary ∂Ω = Σ, one also can con-
sider the Obata type equation with various boundary conditions. In [16], Reilly
obtained the Lichnerowicz-type lower bound for the first Dirichlet eigenvalue µ1

on Ω with RicΩ ≥ n and the boundary Σ being of non-negative mean curvature,
that is, µ1 ≥ n+ 1. In particular, he also proved that µ1 = n+ 1 if and only if
Ω is isometric to the standard hemisphere. Here, the proof of the rigidity result
depends again on the following Obata type equation with Dirichlet boundary
condition {

∇2f + fg = 0, in Ω,

f = 0, on Σ.

Later, Escobar [4] and Xia [20] independently proved that the first Neumann
eigenvalue η1 on Ω satisfies η1 ≥ n+1 if RicΩ ≥ n and the boundary is convex.
Moreover, η1 = n + 1 if and only if Ω is isometric to the standard hemisphere
and the proof of this rigidity result also depends on the Obata type equation
with Neumann boundary condition

{
∇2f + fg = 0, in Ω,

fν = 0, on Σ,

where ν is the outward unit normal. Recently, Chen, Lai and Wang [2] studied
the Obata type equation with Robin boundary condition

{
∇2f + fg = 0, in Ω,

fν − cf = 0, on Σ,

and also obtained many rigidity results.
For the case k = 0, the following boundary value problem

{
∇2f = 0, in Ω,

fν − cf = 0, on Σ

has been further studied, where c is a positive constant. In [15], Raulot and
Savo proved that Ω is isometric to a Euclidean ball with radius 1

c
if Ω has non-

negative sectional curvature, the principal curvatures of the boundary Σ are
bounded from below by c, and there exists a non-constant smooth function f

satisfying the above boundary value problem. Later, Xia and Xiong [19] extend
this result to a compact manifold Ω whose Ricci curvature satisfies RicΩ ≥ 0 and
the mean curvature H of Σ ≥ c. It is worth noting that their result is used to
prove the rigidity part in Escobar’s conjecture for manifolds with non-negative
sectional curvature.

As for the case k = −1, Kanai [8] proved that a complete manifold (Mn, g)
is isometric to the standard hyperbolic space H

n if and only if there exists a
non-constant function f onM with a critical point and satisfying ∇2f−fg = 0.
At the same time, he also discussed the case that f does not have critical points.
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In [5], Galloway and Jang focused on the following Dirichlet boundary problem

{
∇2f − fg = 0, in Ω,

f = a, on Σ,

and proved some rigidity results. Very recently, Lai and Zhou [9] studied the
obata type equation∇2f−fg = 0 with various boundary conditions and f being
of interior critical points, and gave a series of rigidity results in the standard
hyperbolic space Hn+1. For more information about the Obata type equations,
interested readers also can refer to [1] and [18] .

The aim of the present paper is to concentrate on the equation ∇2f−fg = 0
with Robin boundary condition fν = cf , where c = cosh θ > 1 and θ > 0 (so
that f has no critical points, cf. Proposition 2.1), and prove some rigidity
results. Our first result is the following

Theorem 1.1. Let (Ωn+1, g) be an (n+1)-dimensional (n ≥ 2) smooth compact
connected Riemannian manifold with smooth boundary Σ. Assume that there
exists a non-constant function f ∈ C∞(Ω) and a constant c > 1 such that

{
∇2f − fg = 0, inΩ,

fν − cf = 0, onΣ;
(1)

and set Ω0 = {p ∈ Ω | f(p) = 0} and c = coth θ (θ > 0). Then, we have

(1) If f is constant on some boundary component, then Ω is isometirc to the
warped product space

Ω0 × [−θ, θ]t, g = dt2 + (cosh t)2g|Ω0
.

(2) If f is non-constant on any boundary component, then Σ is connected and
Ω is isometirc to a Z2-symmetric domain in the warped product space

Ω̂ = Ω0 × (−∞,∞)t, g = dt2 + (cosh t)2g|Ω0
,

which is bounded by the graph functions ±φ, where φ ∈ C∞(Ω◦
0) ∩ C(Ω0)

satisfies
coshφ√

1 + (coshφ)−2|∇Ω0φ|2g|Ω0

= c sinhφ, in Ω◦
0,

φ > 0, in Ω◦
0,

and
φ = 0, on ∂Ω0.

Remark. (1) Theorem 1.1 is similar to Theorem 1.3 in [2]. We will use a
similar method to prove this theorem.
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(2) The two cases in Theorem 1.1 are completely discrete. In other words,
if f is non-constant on any boundary component, it won’t be a disturbance of
a certain constant.

(3) The structure of Ω0 is unknown. We need additional conditions to de-
termine Ω0.

In the second part of the paper, we discuss the structure of Ω0 (and then the
structure of Ω) under some appropriate curvature assumptions. For the first
case in Theorem 1.1, we know that Ω0 is a closed manifold which is confor-
mal to the boundary component(s) and the second fundamental form h on Σ
satisfies h = 1

c
g|Σ. To this end, we first make the following curvature assumption

(K) Let S be some boundary component and k ∈ {2, · · · , n}. For any or-
thonormal vectors {e1, e2, · · · , ek} in TS, we assume that

−
k∑

j=2

RΩ(e1, ej, e1, ej) ≥ (k − 1)(1− 2

c2
),

where the RΩ is the curvature tensor of Ω.

Under the above assumption and a lower bound condition for the diameter
of boundary components, we then have the following

Theorem 1.2. Let (Ωn+1, g) and f be as in Theorem 1.1, where f is constant
on some boundary component. Assume that there exists a boundary component
which satisfies the assumption (K) and the diameter d of this component satisfies
d ≥ c√

c2−1
π. Then Ω0 is isometric to the standard sphere S

n and Ω is isometirc

to the warped product space

S
n × [−θ, θ]t, g = dt2 + (cosh t)2gSn .

For the second case, we know that Ω0 is a compact manifold with boundary.
By the idea in Proposition 4.3 in [19], we can prove the following theorem which
can be seen as an extension of Corollary 4.5 in [12].

Theorem 1.3. Let (Ωn+1, g) and f be as in Theorem 1.1. If the Ricci curvature
of Ω satisfies RicΩ ≥ −n and the mean curvature of Σ is bounded from below by
c, then Ω is isometric to a geodesic ball of radius tanh−1 (1

c
) in the hyperbolic

space H
n+1.

It is worth noting that the curvature assumptions in Theorem 1.3 implies
that the boundary Σ is connected (see Lemma 2.1 in [10]). Therefore, Theorem
1.3 corresponds to the second case in Theorem 1.1 and f is non-constant on
boundary Σ.

Similarly, we can also extend the above result to standard sphere S
n+1;

accordingly, we need to use the Obata type equation ∇2f + fg = 0.
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Theorem 1.4. Let (Ωn+1, g) be an (n+1)-dimensional (n ≥ 2) smooth compact
connected Riemannian manifold with smooth boundary Σ. Assume that there
exist a non-constant function f ∈ C∞(Ω) and a constant c > 0 such that

{
∇2f + fg = 0, inΩ,

fν − cf = 0, onΣ.
(2)

If the Ricci curvature of Ω satisfies RicΩ ≥ n and the mean curvature of Σ
is bounded from below by c, then Ω is isometric to a geodesic ball of radius
tan−1 (1

c
) in the standard sphere S

n+1.

We also point out that Theorem 1.4 is an extension of Corollary 4.4 in [12].
The paper is organized as follows. Section 2 gives some necessary preliminar-

ies, including some basic definitions and some known results which are needed
later. Section 3 concentrates on the Obata type equation (1) and the proof of
Theorem 1.1. In Section 4, we consider the structure of Ω0 and prove Theorems
1.2, 1.3 and 1.4.

2 Preliminaries

This section mainly introduces some basic definitions and some known results
which are needed in the later proofs.

Let (Ωn+1, g) be an (n+1)-dimensional smooth compact connected Rieman-
nian manifold with boundary ∂Ω = Σ and g|Σ the restricted metric on Σ; denote
by 〈·, ·〉 the inner product on Ω as well as Σ. Denote by ∇Ω, ∇, ∆, and ∇2

the connection, the gradient, the Laplacian, and the Hessian on Ω respectively,
while by ∇Σ and ∆Σ the gradient and the Laplacian on Σ respectively. Let ν be
the unit outward normal of Σ; denote by h, Aν , and H the second fundamental
form, the Weingarten transformation, and the mean curvature of Σ with respect
to ν respectively, here

h(X,Y ) = −〈∇Ω
XY, ν〉, 〈Aν(X), Y 〉 = h(X,Y ),

and

H =
trgh

n
.

The principal curvatures of Σ are defined to be the eigenvalues of h and Aν .
Let RΩ be the curvature tensor of Ω, i.e., for tangent vectors X,Y, Z,W ,

RΩ(X,Y, Z,W ) = 〈∇Ω
X∇Ω

Y Z −∇Ω
Y ∇Ω

XZ −∇Ω
[X,Y ]Z,W 〉;

RicΩ be the Ricci curvature tensor of Ω. Let dV and dv be the canonical volume
element of Ω and Σ respectively.

Let f ∈ C∞(Ω) satisfy the equation (1), which is non-constant and

Ωa = {x ∈ Ω | f(x) = a}.

Now, we give some basic facts related to the Obata type equations.
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Proposition 2.1. Let f ∈ C∞(Ω) satisfy the equation (1) which is non-constant,
then there exists a constant A > 0 such that

|∇f |2 − f2 = A.

Proof. A direct calculation shows that, for any tangent vector (field) X ,

X(|∇f |2 − f2) = 2∇2f(X,∇f)− 2f〈X,∇f〉 = 0.

Therefore, |∇f |2 − f2 is constant. Since f is non-constant, fν = cf , and c > 1,
we have |∇f |2 − f2 > 0. Then the conclusion follows.

Proposition 2.1 clearly implies that f has no critical points in Ω. Without
lose of generality, we always assume that A = 1 in the following. Here, we also
record the following fact, for its proof one can refer to [2].

Proposition 2.2. Let f ∈ C∞(Ω) be a non-constant function which satisfies
equation (1), then the integral curves of ∇f

|∇f | are geodesics.

For later convenience, we here introduce the warped product structure of the
space forms and the corresponding equations of geodesic spheres. These facts
will be used in the proofs of Theorems 1.3 and 1.4. For sake of clarity, we first
see the Euclidean case.

Let R
n+1 = {(x1, x2, · · · , xn+1) | xi ∈ R} and gRn+1 = (dx1)2 + (dx2)2 +

· · · + (dxn+1)2, and identify R
n with {(x1, x2, · · · , xn+1) ∈ R

n+1 | x1 = 0}.
Obviously, the Euclidean space R

n+1 is isometric to the warped product space

R
n × (−∞,∞)t, g = dt2 + gRn .

Let p ∈ R
n ⊂ R

n+1 and Bn+1
p (r) be the (closed) ball of radius r centered at p in

R
n+1. Then, Bn

p (r) = Bn+1
p (r) ∩ R

n is the (closed) ball of radius r centered at
p in R

n. Now, we consider Bn+1
p (r) as a bounded domain in the above warped

product space R
n × (−∞,∞)t. A direct calculation shows that there exists a

unique non-negative function φ ∈ C∞((Bn
p (r))

◦) ∩C(Bn
p (r)) such that

∂Bn+1
p (r) = {(x,±φ(x)) | x ∈ Bn

p (r)}.

In particular, φ satisfies the following equation

φ2(x) + d2(x, p) = r2,

where d is the distance function in R
n.

Now, we consider the hyperbolic space Hn+1. We use the model of the upper
half-space, i.e.

H
n+1 = {(x1, x2, · · · , xn+1) | xn+1 > 0}

and

gHn+1 =
(dx1)2 + (dx2)2 + · · ·+ (dxn+1)2

(xn+1)2
;
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identify H
n with {(x1, x2, · · · , xn+1) ∈ H

n+1 | x1 = 0}. For any point p =
(0, x2, · · · , xn+1) ∈ H

n, a direct calculation shows that

γp(t) = (
sinh t

cosh t
xn+1, x2, · · · , xn, x

n+1

cosh t
)

is the (arc length parameter) minimizing geodesic satisfying γp(0) = p and
γ′p(0) ⊥ TpH

n. Then, one has the following smooth map

Ψ : Hn × (−∞,∞)t → H
n+1

by setting Ψ(p, t) = γp(t). It is easy to see that Ψ is a diffeomorphism and the
pull-back metric Ψ∗gHn+1 on H

n × (−∞,∞) can be written as

g = dt2 + (cosh t)2gHn .

Thus, the hyperbolic space H
n+1 is actually isometric to the following warped

product space
H

n × (−∞,∞)t, g = dt2 + (cosh t)2gHn ;

this is the warped product structure of Hn+1.
Let p ∈ H

n ⊂ H
n+1 and Bn+1

p (r) be the closed geodesic ball of radius r
centered at p in H

n+1. Let Bn
p (r) = Bn+1

p (r)∩H
n; obviously Bn

p (r) is the closed
geodesic ball of radius r centered at p in H

n. By the above discussion, we can
also consider Bn+1

p (r) as a bound domain in the product space Hn× (−∞,∞)t.
Set

∂Bn+1
p+ (r) = ∂Bn+1

p (r) ∩ (Hn × [0,∞)t).

Then, it is easy to see that there exists a non-negative function φ ∈ C∞((Bn
p (r))

◦)∩
C(Bn

p (r)) so that ∂Bn+1
p+ (r) can be written as

{(x, φ(x)) ∈ H
n × [0,∞)t | x ∈ Bn

p (r)}.

For a point x ∈ Bn
p (r) together with the points p and (x, φ(x)), one has the

corresponding geodesic triangle in H
n+1; by the law of cosine in H

n+1, we have

cosh r = coshφ(x) coshd(x, p),

that is,
tanh2 d(x, p)

tanh2 r
+

sinh2 φ(x)

sinh2 r
= 1,

where d is the distance function in H
n. Similarly, one can consider the lower

half part
∂Bn+1

p− (r) = ∂Bn+1
p (r) ∩ (Hn × (−∞, 0]t).

Thus, we have the following
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Proposition 2.3. There exists some φ ∈ C∞((Bn
p (r))

◦) ∩ C(Bn
p (r)) which is

non-negative and satisfies

tanh2 d(x, p)

tanh2 r
+

sinh2 φ(x)

sinh2 r
= 1

(where d is the distance function in H
n), so that the geodesic sphere ∂Bn+1

p (r)
can be written as

{(x,±φ(x)) | x ∈ Bn
p (r)}

in the product space H
n × (−∞,∞)t.

By a similar argument, the standard sphere Sn+1 can be isometrically written
as the warped product space

S
n × (−π

2
,
π

2
)t, g = dt2 + (cos t)2gSn .

Let p ∈ S
n ⊂ S

n+1 and Bn+1
p (r) be the closed geodesic ball of radius r < π

2
centered at p in S

n+1. Let Bn
p (r) = Bn+1

p (r) ∩ S
n. We then have the following

Proposition 2.4. For r < π
2 , there exist some φ ∈ C∞((Bn

p (r))
◦) ∩ C(Bn

p (r))
which is non-negative and satisfies

tan2 d(x, p)

tan2 r
+

sin2 φ(x)

sin2 r
= 1

(where d is the distance function in S
n), so that the geodesic sphere ∂Bn+1

p (r)
can be written as

{(x,±φ(x)) | x ∈ Bn
p (r)}

in the product space S
n × (−π

2 ,
π
2 )t.

3 The warped product structure of Ω and proof

of Theorem 1.1

Now let us concentrate on Theorem 1.1. We first consider the case that f is
constant on some boundary component.

Proposition 3.1. Let (Ωn+1, g) and f be as in Theorem 1.1. If f is constant
on some boundary component, then Σ is not connected. Moreover, we also have

max
Ω

f = max
Σ

f =
1√
c2 − 1

= sinh θ

and

min
Ω
f = min

Σ
f =

−1√
c2 − 1

= − sinh θ.
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Proof. Since |∇f |2 − f2 = 1 and fν = cf , we have

|∇Σf |2 + (c2 − 1)f2 = 1, on Σ.

Let S ⊂ Σ be the boundary component such that f |S is constant. Without loss
of generality, we assume that

f |S =
−1√
c2 − 1

= − sinh θ.

If Σ is connected, we then know that there exists a point q ∈ Ω◦ such that

f(q) = max
Ω

f

and
∇f(q) = 0,

which is a contradiction, i.e. Σ is not connected. In addition, we also conclude
that

max
Ω

f = max
Σ

f

and
min
Ω
f = min

Σ
f.

Since f is non-constant on Ω and |∇Σf |2 + (c2 − 1)f2 = 1, we then have

max
Ω

f =
1√
c2 − 1

= sinh θ

and

min
Ω
f =

−1√
c2 − 1

= − sinh θ.

This finishes the proof.

Proposition 3.2. Let S ⊂ Σ be the boundary component such that f |S =
− sinh θ as in Proposition 3.1. Then Ω is isometirc to the warped product space

S × [0, 2θ]t, g = dt2 +
(cosh (t− θ))2

(cosh θ)2
g|S .

Proof. Since f |S = − sinh θ and fν = cf , we have

fν |S = − cosh θ.

∀ p ∈ S, we consider the integral curve γp(t) of
∇f
|∇f | starting from p. By Propo-

sition 2.2, we know that γp is a geodesic. Then a direct calculation shows

f(γp(t)) = sinh (t− θ).



10

Since Ω is compact and ∇f 6= 0, we know that γp(t) will meet Σ \ S at a time
tp. Let tp0 = minp∈S tp and γp0 be the corresponding geodesic starting from p0
such that γp0(tp0) ∈ Σ\S. We then know that γ′p0

(tp0) ⊥ Tγp0(tp0 )
Σ. Therefore,

we have
d

dt
f(γp0(t))|t=tp0

= cf(γp0(tp0)),

that is,
cosh (tp0 − θ) = c sinh (tp0 − θ),

which shows
tp0 = 2θ

and
f(γp0(tp0)) = sinh θ = max

Ω
f.

Then for any p ∈ S, we have
tp = 2θ.

Let γp0(2θ) belongs to some boundary component S′ 6= S. For any p ∈
S, there exists a smooth curve φ(s) in S from p0 to p. Then γφ(s)(2θ) =

expφ(s)(2θ
∇f
|∇f | (φ(s))) is a smooth curve in Σ from γp0(2θ) to γp(2θ), which

shows that γp(2θ) ∈ S′, ∀ p ∈ S.
Now, by Morse theory, we know that Ω is isometric to the warped product

space S × [0, 2θ]t with mertic

g = dt2 + g(t),

where g(t) is a family of metrics on S and g(0) = g|S . Moreover,

f = sinh (t− θ).

Since ∇2f − fg = 0, a direct calculation shows that

1

2
f ′(t)g′(t)− f(t)g(t) = 0,

that is,
1

2
cosh (t− θ)g′(t) = sinh (t− θ)g(t),

which shows that

g(t) =
(cosh (t− θ))2

(cosh θ)2
g|S .

We then finish the proof.

Proof of Theorem 1.1 (1): The first case in Theorem 1.1 follows from Proposi-
tions 3.1 and 3.2. �

Next, we concentrate on the second case in Theorem 1.1. Since f is non-
constant on any boundary component and |∇f | 6= 0, we conclude that Ω0 is a
compact manifold of dimension n with boundary ∂Ω0. Moreover, we also have
Ω◦

0 = Ω◦ ∩ Ω0 and ∂Ω0 = Σ ∩ Ω0.
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Proposition 3.3. (1) For any p ∈ Ω with f(p) > 0, the integral curve of − ∇f
|∇f |

starting at p will meet Ω◦
0 before it reaches Σ. For any p ∈ Ω with f(p) < 0, the

integral curve of ∇f
|∇f | starting at p will meet Ω◦

0 before it reaches Σ.

(2) For 0 < a1 < a2, the integral curve of − ∇f
|∇f | defines an injective map

from Ωa2 to Ωa1 .For 0 > a1 > a2, the integral curve of ∇f
|∇f | defines an injective

map from Ωa2 to Ωa1 .

Proof. Take a point p with f(p) 6= 0. By a similar proof of Lemma 4.3 in [2], we
know that the corresponding integral curve (geodesic) starting at p will meet
Ω0 before it reaches Σ.

Now, we prove that the integral curve meets Ω◦
0 before it reaches Σ. In fact,

we only need to prove that for any point q ∈ ∂Ω0, the geodesic γq(t) which

satisfies γq(0) = q and γ′q(0) =
∇f
|∇f | (q) or −

∇f
|∇f | (q) is not contained in Ω◦ when

t is close to 0. Since f(q) = 0 and fν = cf , we know that ∇f
|∇f | (q) is tangent

to TqΣ. Let {e1, e2, · · · , en} be an orthonormal frame near q in TΣ such that

e1(q) =
∇f
|∇f | (q), then at the point q, we have

c(e1f) = e1(νf) = ∇2f(e1, ν) +∇Ω
e1
νf = ∇Ω

e1
νf,

which shows
h(e1, e1) = c > 0.

We then know that the geodesic γq(t) discuessed above is not contained in Ω◦

when t is close to 0.
Obviously, (2) follows from (1).

For any a ∈ (− sinh θ, sinh θ), by Proposition 3.3, we know that the integral
curve discussed above defines an injective map

Ψa : Ωa → Ω0.

Therefore, Ω can be considered as a bounded domain of the warped product
space (Ω̂, g), where

Ω̂ = Ω0 × (−∞,∞)t, g = dt2 + (cosh t)2g|Ω0

and
f = sinh t.

Since Ω is connetced and Ω0 ⊂ Ω, we also know that Ω0 is connected.
As for the boundary Σ, we have the following

Proposition 3.4. Let Σ+ = {p ∈ Σ | f(p) ≥ 0}. Then

Σ+ = {(x, φ(x)) ∈ Ω̂ | x ∈ Ω0},

where φ ∈ C∞(Ω◦
0) ∩ C(Ω0) is non-negative and satisfies

coshφ√
1 + (coshφ)−2|∇Ω0φ|2g|Ω0

= c sinhφ, in Ω◦
0,
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φ > 0, in Ω◦
0,

and
φ = 0, on ∂Ω0.

Proof. Let S = {p ∈ Σ|f(p) > 0}. Obviously, Σ+ = S ∪ ∂Ω0. For any p ∈ S, by
Proposition 3.3, the integral curve of − ∇f

|∇f | starting at p will meet Ω◦
0 before it

reaches Σ. In addition, for any x ∈ Ω◦
0, the integral curve of ∇f

|∇f | starting at x

will meet S at some point p. Let γ : [0, tx] → Ω be the integral curve (geodesic),
where γ(0) = x, γ(tx) = p and γ′ = ∇f

|∇f | . Obviously, γ([0, tx)) ⊂ Ω◦ and γ will

stop at the point p. Thus we can define a positive function

φ : Ω◦
0 → R,

where φ(x) = tx. By the above discussion, we also conclude

S = {(x, φ(x)) ∈ Ω̂ | x ∈ Ω◦
0}.

Since the boundary Σ is a smooth manifold, the function φ is smooth in Ω◦
0.

For any point p = (x, φ(x)) ∈ S, the outward unit normal of Ω is

ν =
(−∇Ω̂φ(x)

φ, 1)
√
1 + (coshφ)−2|∇Ω0φ|2gΩ0

,

where Ω̂φ(x) = Ω0 × {φ(x)} (consider φ as a function on Ω̂φ(x)), g|Ω̂φ(x)
=

(coshφ(x))2g|Ω0 . Since f = sinh t and ∂f
∂ν

= cf , we then have

c sinhφ =
∂f

∂ν
= ∇f · ν =(0, coshφ) · ν

=
coshφ√

1 + (coshφ)−2|∇Ω0φ|2gΩ0

.

Now, we prove φ(x) → 0 if and only if x → ∂Ω0. If there exists a sequence
{xm} ⊂ Ω◦

0 such that d(xm, ∂Ω0) → 0 but φ(xm) does not converge to 0, then
we can find a subsequence (denote also by {xm}) such that xm → x ∈ ∂Ω0

and φ(xm) → a > 0. In other words, the sequence {(xm, φ(xm))} converges
to the point (x, a). Since Σ is compact, we know (x, a) ∈ Σ. In particular,
(x, a) ∈ S ⊂ Σ+. However, by Proposition 3.3, we conclude x ∈ Ω◦

0, which is a
contradiction. Therefore, φ(x) → 0 when x→ ∂Ω0.

Similarly, if there exists a sequence {xm} ⊂ Ω◦
0 such that φ(xm) → 0 but

d(xm, ∂Ω0) does not converge to 0, then we can find a subsequence (denote also
by {xm}), where xm → p ∈ Ω◦

0 and φ(xm) → 0. We then know that φ(p) = 0,
which is a contradiction.
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Thus, we can extend φ to ∂Ω0 and define the continuous function as following

φ(x) =

{
tx, x ∈ Ω◦

0,

0, x ∈ ∂Ω0.

Since Σ+ = S ∪ ∂Ω0, we then know that

Σ+ = {(x, φ(x)) ∈ Ω̂ | x ∈ Ω0}.

This finishes the proof.

Since
coshφ√

1 + (coshφ)−2|∇Ω0φ|2g|Ω0

= c sinhφ,

we know that 0 ≤ φ ≤ coth−1(c) = θ. Proposition 3.4 also implies the following

Proposition 3.5. Σ+ is homeomorphic to Ω0 and thus Σ+ is connected.

Proof. We define a continuous map

Ψ : Σ+ → Ω0,

where Ψ((x, φ(x)) = x. By Proposition 3.4, we know that Ψ is bijective and Ψ−1

is continuous. Therefore, Σ+ is homeomorphic to Ω0. Since Ω0 is connected,
we also know that Σ+ is connected.

Let Σ− = {p ∈ Σ|f(p) ≤ 0}. Similarly, we also have

Proposition 3.6. (1) Σ− = {(x,−ψ(x)) ∈ Ω̂|x ∈ Ω0}, where ψ ∈ C∞(Ω◦
0) ∩

C(Ω0) is non-negative and satisfies

coshψ√
1 + (coshψ)−2|∇Ω0ψ|2g|Ω0

= c sinhψ, in Ω◦
0,

ψ > 0, in Ω◦
0,

and
ψ = 0, on ∂Ω0.

(2) Σ− is homeomorphic to Ω0 and thus Σ− is connected.

By Propositions 3.5 and 3.6, we conclude that Σ is connected and 0 ≤ ψ ≤ θ.
Now, we only need to prove φ = ψ.

Proposition 3.7. There exists a unique solution to the following equation

coshφ√
1 + (coshφ)−2|∇Ω0φ|2g|Ω0

= c sinhφ, in Ω◦
0,
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such that
0 < φ ≤ θ, in Ω◦

0,

and
φ = 0, on ∂Ω0.

Proof. Assume that φ and ψ are the solutions and φ 6≡ ψ. Without loss of
generality, we assume

max
Ω0

|φ− ψ| = φ(p) − ψ(p) > 0,

where p ∈ Ω◦
0. Thus

0 < ψ(p) < φ(p) ≤ θ.

A direct calculation shows

∇Ω0(φ− ψ) · ∇Ω0(φ+ ψ) =
cosh4 φ

c2 sinh2 φ
− cosh2 φ− cosh4 ψ

c2 sinh2 ψ
+ cosh2 ψ.

It is elementary to show that the function

h(t) =
cosh4 t

c2 sinh2 t
− cosh2 t

is monotonically decreasing when t ∈ (0, θ). Therefore, at the point p, we have

∇Ω0(φ− ψ) · ∇Ω0(φ+ ψ) = 0

and
cosh4 φ

c2 sinh2 φ
− cosh2 φ− cosh4 ψ

c2 sinh2 ψ
+ cosh2 ψ < 0,

which is a contradiction.

Proof of Theorem 1.1 (2): The second case in Theorem 1.1 follows dirctly from
Propositions 3.3–3.7. �

4 The structures of Ω0 and proofs of Theorems

1.2, 1.3 and 1.4

In this section, we concentrate on the structure of Ω0. We first determine the
structure of Ω0 in Theorem 1.1 (1) by assumption (K) and the lower bound
condition for the diameter of boundary component in Theorem 1.2.

Proposition 4.1. Let (Ωn+1, g) and f be as in Theorem 1.2. Let S be the
boundary component which satisfies the assumption (K). Then we have

RicS ≥ (n− 1)(1− 1

c2
) > 0.
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Proof. Take an orthonormal frame {e1, e2, · · · , en} in TS. By Gauss equation,
for i = 2, · · · , n, we have

RS(e1, ei, e1, ei) = RΩ(e1, ei, e1, ei)− h(e1, e1)h(ei, ei) + h(e1, ei)h(e1, ei).

A direct caculation shows that h = 1
c
g|S, we then know

RS(e1, ei, e1, ei) = RΩ(e1, ei, e1, ei)−
1

c2
.

Since S satisfies the assumption (K), for any subset {i1, i2, · · · , ik−1} ⊂ {2, · · · , n},
we have

k−1∑

j=1

−RS(e1, eij , e1, eij ) ≥ (k − 1)(1− 2

c2
) + (k − 1)

1

c2

= (k − 1)(1− 1

c2
).

Obviously, the number of the inequalities discussed above is Ck−1
n−1. By summing

up all these inequalities, we have

n∑

j=2

−Ck−2
n−2R

S(e1, ej, e1, ej) ≥ Ck−1
n−1(k − 1)(1− 1

c2
),

that is,

RicS(e1, e1) ≥ (n− 1)(1− 1

c2
) > 0.

Proposition 4.2. Let S be the boundary component discussed above. If we
further assume that the diameter d of S satisfies

d ≥ c√
c2 − 1

π,

then Ω0 is isometric to the standard sphere S
n.

Proof. By Bonnet-Myers theorem and Cheng’s theorem, we conclude that S is
isometric to a sphere of radius cosh θ (c = coth θ). Since Ω0 is conformal to
S, then a direct calculation shows that Ω0 is isometric to the standard sphere
S
n.

Proof of Theorem 1.2: Theorem 1.2 follows from Propositions 4.1 and 4.2. �

We now concentrate on the second case in Theorem 1.1. In this case, Ω0 is
a compact manifold with boundary ∂Ω0 = Ω0 ∩ Σ.

Proof of Theorem 1.3: By the curvature assumptions in Theorem 1.3 and Lemma
2.1 in [10], we know that Σ is connected. Then by Theorem 1.1 (2), we conclude
that Ω is a Z2-symmetric domain in the warped product space

Ω̂ = Ω0 × (−∞,∞)t, g = dt2 + (cosh t)2g|Ω0 ,
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which is bounded by the graph functions ±φ, where φ ∈ C∞(Ω◦
0) ∩ C(Ω0)

satisfies
coshφ√

1 + (coshφ)−2|∇Ω0φ|2g|Ω0

= c sinhφ, in Ω◦
0,

φ > 0, in Ω◦
0

and
φ = 0, on ∂Ω0.

In particular, in the coordinate of Ω0 × (−∞,∞)t, we have f = sinh t and
∇f = (cosh t) ∂

∂t
.

Let Ω̂t = Ω0 × {t}, where t ∈ (−∞,∞) (obviously, Ω̂0 = Ω0). We first
consider the second fundamental form with respect to ∂

∂t
, denoted by hΩ̂t

. Let
(x1, x2, · · · , xn) be a coordinate in Ω0, then the metric has the form

g = dt2 + (cosh t)2gijdx
idxj ,

where g|Ω0 = gijdx
idxj . A direct calculation shows that

hΩ̂t
(
∂

∂xi
,
∂

∂xj
) = −〈∇Ω̂

∂
∂xi

∂

∂xj
,
∂

∂t
〉

= −Γt
ij

=
sinh t

cosh t
〈 ∂

∂xi
,
∂

∂xj
〉,

which implies that

hΩ̂t
=

sinh t

cosh t
g|Ω̂t

.

Therefore, Ω0 is a totally geodesic hypersurface in Ω̂ with unit normal ∂
∂t
.

Clearly, the graph function φ has the following properties. First, φ ∈
[0, tanh−1 (1

c
)] and φ|∂Ω0 = 0. Second, the set {x ∈ Ω0 | φ(x) = tanh−1 (1

c
)}

(denoted by A) is a compact subset in Ω0.
Define

v = tanh−1(
1

c

√
1− (c2 − 1) sinh2 φ).

Then v also has the following properties. First, v ∈ [0, tanh−1 (1
c
)] and v|∂Ω0 =

tanh−1(1
c
). Second, v is smooth at any x with v(x) ∈ (0, tanh−1 (1

c
)). Third,

{x ∈ Ω0 | v(x) = 0} = A. In addition, a direct calculation shows that |∇Ω0v| ≡ 1
on Ω0 − (∂Ω0 ∪ A).

We now consider the level set of v. Set

Tt = {x ∈ Ω0 | v(x) = t},

where t ∈ [0, tanh−1(1
c
)]. Obviously, T0 = A and Ttanh−1( 1

c
) = ∂Ω0. We now

prove
t ≤ d(A, Tt),
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where d is the distance function in Ω0. Fix t ∈ (0, tanh−1(1
c
)]. Let γ̂ : [0, l] →

Ω0 be a minimizing geodesic realizing the distance d(A, Tt) with arc length
parameter such that γ̂(0) ∈ A, γ̂(l) ∈ Tt, and l = d(A, Tt). We then have

t = lim
ǫ→0+

v(γ̂(s))|l−ǫ
ǫ

= lim
ǫ→0+

∫ l−ǫ

ǫ

d

ds
(v(γ̂(s)))ds

= lim
ǫ→0+

∫ l−ǫ

ǫ

〈∇Ω0v, γ
′〉ds

≤ l

= d(A, Tt),

where 〈∇Ω0v, γ
′〉 ≤ |∇Ω0v| = 1. Therefore, we conclude that t ≤ d(A, Tt). In

particular, tanh−1(1
c
) ≤ d(A, Ttanh−1( 1

c
)) = d(A, ∂Ω0).

Now, we prove that Ω0 is a geodesic ball of radius tanh−1 (1
c
) in the hyper-

bolic space H
n by the curvature assumptions.

First, let e1 = ∂
∂t

and {e2, e3, · · · , en+1} be an orthonormal frame in TΩ0,

then we know that {e1, e2, · · · , en+1} is an orthonormal frame in T Ω̂. Since Ω0

is totally geodesic, by the Gauss equation, we have

RΩ0(ei, ej, ek, el) = RΩ̂(ei, ej, ek, el),

where i, j, k, l ∈ {2, 3, · · · , n+ 1}. In addition, by the Ricci identity, we obtain

fkδij − fjδik = fijk − fikj

= −
n+1∑

p=1

RΩ̂(ep, ei, ej , ek)fp

= −RΩ̂(e1, ei, ej , ek)f1,

which implies

RΩ̂(e1, ej, e1, ej) = 1,

where j ∈ {2, 3, · · · , n+ 1}. Therefore, we can deduce

RicΩ0(ei, ei) = −
n+1∑

j=2,j 6=i

RΩ0(ei, ej , ei, ej)

= −
n+1∑

j=2,j 6=i

RΩ̂(ei, ej, ei, ej)

= −
n+1∑

j=1,j 6=i

RΩ̂(ei, ej, ei, ej) + 1

≥ −(n− 1).
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Next, we prove that the second fundamental form h∂Ω0 of ∂Ω0 in Ω0 satisfies
h∂Ω0 = h|∂Ω0 , where h is the the second fundamental form of Σ in Ω. In fact,
∀P ∈ ∂Ω0, we have fν(P ) = cf(P ) = 0, that is, 〈∇f, ν〉(P ) = 0, and we
know that ∇f(P ) ∈ TPΣ. Let {e1, e2, · · · , en} be an orthonormal frame in TΣ
near the point P such that e1(P ) = ∇f(P ). Since Ω0 is totally geodesic with
constant unit normal ∂

∂t
and ∇f(P ) = ∂

∂t
(P ), we know that {e2, e3, · · · , en} is

an orthonormal frame for ∂Ω0 at the point P and ν is the unit outward normal
of ∂Ω0 in Ω0. In addition, for i ∈ {2, 3, · · · , n} we have

0 = ∇2f(ei, ν) = ei(νf)−∇Ω̂
ei
νf = cfi −

n∑

j=1

hijfj,

which implies that h11 = c and h1i = 0 for i ∈ {2, 3, · · · , n}. So e1 is a
principal direction of Σ at P corresponding to the principal curvature c. Now,
let {e2, e3, · · · , en} be an orthonormal frame in T∂Ω0, since Ω0 is totally geodesic
with constant unit normal ∇f , we then have

h∂Ω0(ei, ej) = −〈∇Ω0
ei
ej , ν〉 = −〈∇Ω̂

ei
ej , ν〉 = h(ei, ej),

where i, j ∈ {2, 3, · · · , n}. Therefore, we conclude that h∂Ω0 = h|∂Ω0 and we
know that the mean curvature of ∂Ω0 in Ω0, denoted by H∂Ω0 , satisfies

H∂Ω0 =
1

n− 1
trg∂Ω0

h∂Ω0 =
1

n− 1
trg∂Ω0

h|∂Ω0

≥ 1

n− 1
(nc− c)

=c.

Thus, by the fact that tanh−1(1
c
) ≤ d(A, ∂Ω0) and Theorem 0.3 in [6], we

conclude that Ω0 is isometric to a geodesic ball of radius tanh−1 (1
c
) in the

hyperbolic space H
n and A consists of a single point x0, which is the center of

Ω0. For convenience, we just assume that Ω0 is the geodesic ball in H
n. Then

we know that Ω̂ is a domain in the hyperbolic space H
n+1, and so do Ω.

Now, let t ∈ (0, tanh−1 (1
c
)), we prove that Tt = St, where St is the geodesic

sphere in Ω0 of radius t centered at x0. On the one hand, we have known that
t ≤ d(x0, Tt). On the other hand, we can use the similar method discussed
above to prove that tanh−1 (1

c
)− t ≤ d(Tt, ∂Ω0), and we then have Tt = St, that

is,
v(x) = d(x, x0).

Since

v = tanh−1(
1

c

√
1− (c2 − 1) sinh2 φ),

we have
tanh2 d(x, x0)

tanh2 θ
+

sinh2 φ(x)

sinh2 θ
= 1,
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where θ = tanh−1(1
c
). By Proposition 2.3, we know that Σ is a geodesic sphere

in the hyperbolic space H
n+1 of radius tanh−1(1

c
) centered at x0 and thus Ω is

a geodesic ball of radius tanh−1 (1
c
) in the hyperbolic space H

n+1. �

By a similar argument, we can prove Theorem 1.4. In this case, we consider
the following Obata type equation

{
∇2f + fg = 0, inΩ,

fν − cf = 0, onΣ,

where c is a positive constant. For convenience, we still assume that

|∇f |2 + f2 = 1.

Set Ω0 = {p ∈ Ω | f(p) = 0}, by Theorem 1.3 in [2] and the curvature assump-
tions in Theorem 1.4, we conclude that Σ is connected (see also [7]) and Ω is a
Z2-symmetric domain in the warped product space

Ω̂ = Ω0 × (−π
2
,
π

2
)t, g = dt2 + (cos t)2g|Ω0 ,

which is bounded by the graph functions ±φ, where φ ∈ C∞(Ω◦
0) ∩ C(Ω0)

satisfies
cosφ√

1 + (cosφ)−2|∇Ω0φ|2g|Ω0

= c sinφ, in Ω◦
0,

φ > 0, in Ω◦
0,

and
φ = 0, on ∂Ω0.

In particular, f = sin t.
Let Ω̂t = Ω0 × {t}, where t ∈ (−π

2 ,
π
2 ). We first consider the second funda-

mental form with respect to ∂
∂t
, denoted by hΩ̂t

. By a similar method in the
proof of Theorem 1.3, we have

hΩ̂t
= − sin t

cos t
g|Ω̂t

.

Therefore, hΩ̂t
is negative definite when t > 0 and Ω0 is a totally geodesic

hypersurface in Ω̂ with unit normal ∂
∂t
.

As for the graph function φ. Obviously, φ ∈ [0, tan−1 (1
c
)] and φ|∂Ω0 = 0.

Here we can provide another way to prove that the set {x ∈ Ω0 | φ(x) =
tan−1 (1

c
)} consists of a single point, denoted by x0, which is different from the

method in Theorem 1.3. To see this, we first prove Lemma 4.3. The idea of this
lemma comes from Lemma 2.1 in [3].

Lemma 4.3. Let Ω and f be as in Theorem 1.4. Assume that p ∈ Σ is a critical
point of f |Σ, then at the point p, the second fundamental form h satisfies

h = cg|Σ.
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Proof. For convenience, let z = f |Σ. Since |∇f |2 + f2 = 1 and fν = cf , on Σ,
we have

1 = |∇f |2 + f2 = |∇Σz|2 + (fν)
2 + z2 = |∇Σz|2 + (c2 + 1)z2

and we know that z(p) 6= 0.
Let {e1, e2, · · · , en+1} be an orthonormal frame near the boundary satisfying

en+1|Σ = ν. ∀ i, j ∈ {1, 2, · · · , n}, we have

zij = ei(ejz)−∇Σ
ei
ejz

= ei(ejz)−∇eiejz − hijfν

= ∇2f(ei, ej)− hijfν

= −zδij − chijz

= −(chij + δij)z

and
czi = ei(en+1z)−∇eien+1f +∇eien+1f

= ∇2f(ei, en+1) +

n∑

j=1

hijzj

=

n∑

j=1

hijzj.

By taking covariant differentiation with respect to ek (k ∈ {1, 2, · · · , n}) at p,
we have

−c(chik + δik)z = czik

=
n∑

j=1

ekhijzj +
n∑

j=1

hijzjk

=
n∑

j=1

−hij(chjk + δjk)z,

which implies
c2h(p) + cI = ch2(p) + h(p),

where h(p) is the n×n matrix (hij) and I is the identity matrix. We then have

(ch(p) + I)(h(p)− cI) = 0.

Since the mean curvature H ≥ c, we obtain that

h(p) = cI.

This finishes the proof of the lemma.

Now, we can prove that {x ∈ Ω0 | φ(x) = tan−1 (1
c
)} = {x0}.
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Proposition 4.4. The set {x ∈ Ω0 | φ(x) = tan−1 (1
c
)} consists of a single

point, denoted by x0.

Proof. Since f = sin t, we only need to prove that {x ∈ Σ | f(x) = 1√
c2+1

}
consists of a single point. Since |∇Σf |2 + (c2 + 1)f2 = 1, we know that f |Σ
is a transnormal function on Σ. Then by Theorem A in [17], we know that
{x ∈ Σ|f(x) = 1√

c2+1
} is a submanifold of Σ, denoted by M . In particular,

we know that any points in M are critical points of f |Σ and the outward unit
normal ν satisfies ν = ∂

∂t
on M . Assume that dimM ≥ 1, then we can consider

a smooth curve γ : [0, l] → M with arc length parameter. Obviously, γ is a

smooth curve in Σ and we also know that γ([0, l]) ⊂ Ω̂tan−1 ( 1
c
). We then have

h(γ′, γ′) = −〈∇Ω̂
γ′γ

′, ν〉

= −〈∇Ω̂
γ′γ

′,
∂

∂t
〉

= hΩ̂
tan−1 ( 1

c
)
(γ′, γ′)

= −1

c

< 0.

However, by Lemma 4.3, we have

h(γ′, γ′) = c > 0,

which is a contradiction. Therefore, dimM = 0. Then by Lemma 2.6 in [2],
we know that M is connected and consists of a single point. Hence, {x ∈
M0 | φ(x) = tan−1 (1

c
)} = {x0}.

The remaining part of the proof of Theorem 1.4 is similar to that of Theorem
1.3.
Proof of Theorem 1.4: Set

v = tan−1(
1

c

√
1− (c2 + 1) sin2 φ),

v then has the following properties
(1) v ∈ [0, tan−1 (1

c
)] and v|∂Ω0 = tan−1(1

c
).

(2) v is smooth at any x with v(x) ∈ (0, tan−1 (1
c
)).

(3) {x ∈ Ω0|v(x) = 0} = {x0}.
(4) On Ω0 − (∂Ω0 ∪ {x0}), |∇Ω0v| ≡ 1.

By a similar argument in the proof of Theorem 1.3, we conclude that Ω0 is
a geodesic ball of radius tan−1 (1

c
) in the standard sphere Sn centered at x0 and

the graph function φ satisfies

tan2 d(x, x0)

tan2 r
+

sin2 φ(x)

sin2 r
= 1,
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where r = tan−1(1
c
). By Proposition 2.4, we know that Σ is a geodesic sphere

in the standard sphere S
n+1 of radius tan−1(1

c
) centered at x0 and thus Ω is a

geodesic ball of radius tan−1 (1
c
) in the standard sphere S

n+1. �

As the end of this section, we give some applications of the Theorems 1.3
and 1.4 as follows.

Let (Ωn+1, g) be an (n+1)-dimensional smooth compact connected Rieman-
nian manifold with smooth boundary Σ. Assume that the Ricci curvature of Ω
satisfies RicΩ ≥ −n and the principal curvatures of Σ are bounded from below
by a positive constant c > 1. Then we know that Σ is connected. Let u be an
eigenfunction corresponding to the first nonzero eigenvalue λ1 of the Laplacian
on Σ.

Then we know that the Dirichlet problem

{
∆f = (n+ 1)f, inΩ,

f = u, onΣ

has a unique solution f ∈ C∞(Ω). We then have the following inequality and
rigidity result.

Corollary 4.5. Let Ω and f be the manifold and smooth function discussed
above. If we further assume that the mean curvature of Σ is bounded from below
by λ1+n

nc
. Then we have

c||u||2L2(Σ) ≥ (u, fν)L2(Σ).

Moreover, equality holds if and only if Ω is isometric to a geodesic ball of radius
tanh−1 (1

c
) in the hyperbolic space H

n+1.

Proof. Since u is a non-constant eigenfunction, we have

∫

Σ

|∇Σu|2dv = −
∫

Σ

(∆Σu)udv = λ1

∫

Σ

u2dv.

By the Reilly-type formula in [14], we have

∫

Ω

(
[∆f − (n+ 1)f ]2 − |∇2f − fg|2

)
dV

=

∫

Σ

[2(∆Σu)fν + nH(fν)
2 + h(∇Σu,∇Σu)− 2nufν]dv

+

∫

Ω

[RicΩ(∇f,∇f) + 2n|∇f |2 + n(n+ 1)f2]dV
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Since h ≥ cI and H ≥ λ1+n
nc

> 0, we conclude that

0 ≥
∫

Ω

(
[∆f − (n+ 1)f ]2 − |∇2f − fg|2

)
dV

≥
∫

Σ

[−2λ1ufν +
λ1 + n

c
(fν)

2 + cλ1u
2 − 2nufν]dv

+

∫

Ω

[n|∇f |2 + n(n+ 1)f2]dV

=

∫

Σ

[
λ1 + n

c
(fν)

2 − (n+ 2λ1)ufν + cλ1u
2]dv,

where the last equality is the divergence theorem. Therefore, we have

0 ≥
∫

Σ

[(λ1 + n)(
fν√
c
−
√
cu)2 − ncu2 + nufν ]dv.

Then we conclude that

c||u||2L2(Σ) ≥ (u, fν)L2(Σ).

If Ω is isometric to a geodesic ball of radius tanh−1 (1
c
) in the hyperbolic

space H
n+1, it is easy for us to check that c||u||2

L2(Σ) = (u, fν)L2(Σ). Now we

assume that c||u||2
L2(Σ) = (u, fν)L2(Σ). Obviously, the above inequalities must

take equality sign, we then have

{
∇2f − fg = 0, inΩ,

fν − cf = 0, onΣ.

By Theorem 1.3, we know that Ω is isometric to a geodesic ball of radius
tanh−1 (1

c
) in the hyperbolic space H

n+1.

Similarly, we also have the following
Let (Ωn+1, g) be an (n+1)-dimensional smooth compact connected Rieman-

nian manifold with smooth boundary Σ. Assume that the Ricci curvature of
Ω satisfies RicΩ ≥ n and the principal curvatures of Σ are bounded from be-
low by a positive constant c. Then Σ is connected. Let u be an eigenfunction
corresponding to the first nonzero eigenvalue λ1 of the Laplacian on Σ.

By Theorem 4 in [16], we know that the Dirichlet problem

{
∆f + (n+ 1)f = 0, inΩ,

f = u, onΣ

has a unique solution f ∈ C∞(Ω). We then have the following inequality and
rigidity result.
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Corollary 4.6. Let Ω and f be the manifold and smooth function discussed
above. If we further assume that the mean curvature of Σ is bounded from below
by λ1−n

nc
> 0, we then have

(u, fν)L2(Σ) ≥ c||u||2L2(Σ).

Moreover, equality holds if and only if Ω is isometric to a geodesic ball of radius
tan−1 (1

c
) in the standard sphere S

n+1.

The proof of Corollary 4.6 is similar to that of Corollary 4.5, so we omit it.
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