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Abstract

Classical Hamiltonian mechanics, characterized by a single conserved Hamiltonian (energy) and sym-
plectic geometry, ‘hides’ other invariants into symmetries of the Hamiltonian or into the kernel of the
Poisson tensor. Nambu mechanics aims to generalize classical Hamiltonian mechanics to ideal dynamical
systems bearing two Hamiltonians, but its connection to a suitable geometric framework has remained elu-
sive. This work establishes a novel correspondence between generalized Hamiltonian mechanics, defined
for systems with a phase space conservation law (invariance of a closed form) and a matter conservation
law (invariance of multiple Hamiltonians), and multisymplectic geometry. The key lies in the invertibility
of differential forms of degree higher than 2. We demonstrate that the cornerstone theorems of classical
Hamiltonian mechanics (Lie-Darboux and Liouville) require reinterpretation within this new framework,
reflecting the unique properties of invertibility in multisymplectic geometry. Furthermore, we present
two key theorems that solidify the connection: i) any classical Hamiltonian system with two or more
invariants is also a generalized Hamiltonian system and ii) given a generalized Hamiltonian system with
two or more invariants, there exists a corresponding classical Hamiltonian system on the level set of all
but one invariant, with the remaining invariant playing the role of the Hamiltonian function.

1 Introduction

Classical Hamiltonian mechanics represents the mathematical structure underlying the laws of physics. It
describes the dynamics of ideal (not subject to dissipation) systems through conservation of energy (a property
of matter encoded in the Hamiltonian H) and, most importantly, the conservation of the ambient space (the
phase space characterized by the symplectic 2-form w and the associated Liouville measure). In its most
general formulation, classical Hamiltonian mechanics arises as a noncanonical Hamiltonian theory [I, 2]
with a Poisson bracket assigned by a contravariant Poisson 2-tensor J. Remarkably, once the kernel of the
Poisson tensor 7, spanned by the so-called Casimir invariants [3 4], is appropriately factored out, a precise
correspondence can be identified between w and J: essentially, one is the inverse of the other. This property
builds a duality between symplectic geometry and Poisson algebras, which can be understood in terms of the
Lie-Darboux [5], [6] and Liouville theorems. These theorems establish that given an n-dimensional Poisson
tensor J it is possible to identify local coordinates (pl, O LN L LN G LI CS), with n = 2m + s, such
that the Lioville measure dp' A ... Adp™ Adg' A... Adg™ AdC* A ... AdC* is invariant under the Hamiltonian
flow, which in turn satisfies canonical Hamiltonian equations on each level set of the Casimir invariants with
symplectic 2-form w = Y"1 | dp® A dg'.

The aim of generalized Hamiltonian mechanics is to replace the 2-dimensional building block dp® A dg* of
classical phase space with a higher k-dimensional building block with k > 2, starting from the k = 3 case
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dp* Adq* Adr® originally examined by Nambu [7]. It is common to refer to the case k = 3 as Nambu mechanics,
and to the corresponding bracket generating dynamics by contraction with k—1 = 2 Hamiltonians as a Nambu
bracket. It should be emphasized that a higher dimensional building block implies that one Hamiltonian is no
longer sufficient to generate the dynamics, because the contraction of a k-form with a vector field produces a
k—1-form. In particular, a generalized Hamiltonian theory of degree k requires k—1 Hamiltonians. Therefore,
another way of thinking about generalized Hamiltonian mechanics is to understand it as the mathematical
structure associated with the ideal dynamics of systems with more than one matter conservation law. This
interpretation is however somewhat naive because it hides the fact that the key issue is how a higher number
of Hamiltonians affects the phase space conservation law. In particular, we will see that in the type of
generalized Hamiltonian mechanics discussed in the present work the conservation of the symplectic 2-form
w is replaced by the conservation of a closed differential form of degree k.

One may wonder why do we need to study generalized Hamiltonian mechanics in the first place. Indeed,
classical Hamiltonian systems may possess other invariants in addition to the Hamiltonian, such as the
Casimir invariants associated with the Poisson tensor [J, or any conservation law arising from a symmetry
of the system as described by Noether’s theorem. The matter of the fact is that, as it will be shown in the
present study, a generalized Hamiltonian theory of degree k is not a subset of a classical Hamiltonian theory
with 1 Hamiltonian and k—2 additional conservation laws arising from symmetries of the Hamiltonian and/or
from the kernel of the Poisson tensor. In other words, there are generalized Hamiltonian systems that cannot
be described within the framework of classical Hamiltonian mechanics, and yet possess both phase space and
matter conservation laws.

Another more practical reason to investigate generalized Hamiltonian mechanics is that several physical
systems often arise with multiple fundamental invariants. In many cases there are 2 invariants, the first
representing the total energy of the system, while the second is usually associated with rotations (e.g. angular
momentum in a rigid body or enstrophy in an ideal fluid) or exhibits a topological character (for example,
helicity in an ideal fluid). In fact, the identification of Nambu brackets for fluid systems represents an active
area of research [8, @, 10]. In addition, several applications of Nambu mechanics have been proposed. A non-
exhaustive list includes M-theory [I1], bracket quantization [12, [13 [14] [15] [16], extension of Hamilton-Jacobi
theory to Nambu mechanics [17], and formulation of metriplectic ternary brackets to describe dissipation
[18].

Unfortunately, it is well known that the generalization of the notion of Poisson algebra arising in classical
Hamiltonian mechanics to generalized Hamiltonian systems is a non-trivial mathematical problem. The
reason is that the Jacobi identity [19], which is the Poisson bracket axiom guaranteeing the local existence
of the symplectic 2-form w, does not admit a straightforward extension to the cases k > 2. Originally, a
Lie-algebraic formulation of Nambu mechanics was first provided in [20] which relied on an underlying Lie
bracket bearing a noncanonical Hamiltonian structure. Later, the so-called fundamental identity has been
proposed as replacement of the Jacobi identity [21]. The fundamental identity has the merit that the bracket
obtained by contracting the Nambu bracket with one of the two Hamiltonians is a Poisson bracket, i.e. it
satisfies the Jacobi identity. However, the formulation of Nambu mechanics in terms of the fundamental
identity suffers a limited range of applicability: even a fully antisymmetric constant contravariant 3-tensor
does not necessarily satisfy the fundamental identity. This is contrast with the Jacobi identity, which is
always satisfied by any antisymmetric constant contravariant 2-tensor. As a consequence, there are classical
Hamiltonian systems with 2 invariants that cannot be described by a Nambu bracket endowed with the
fundamental identity. The axiomatic formulation of Nambu mechanics is discussed in detail in [22], 23],
where the existence of a closed 3-form w preserved by the dynamics is proposed as an alternative to the
fundamental identity. This formulation has the advantage of being less restrictive than the fundamental
identity (all constant contravariant 3-tensors now qualify as Poisson 3-tensors). However, the theory requires
the subtle notion of invertibility of a differential form of degree k.

To avoid confusion, in the following we will refer to a generalized Hamiltonian theory of degree k in
the sense of Definition 2.J] of Section Such theory is characterized by a phase space conservation law
(the invariance of a closed differential form of degree k) and a matter conservation law (the invariance of
k — 1 Hamiltonian functions). When k = 3, we may sometime talk about Nambu mechanics, and refer to
Nambu(FI) mechanics when dealing with the definition of Nambu mechanics in terms of the fundamental



identity.

Building on the notion of generalized Hamiltonian mechanics formulated in [22] 23], the aim of this paper
is to relate a generalized Hamiltonian theory of degree k > 2 to multisymplectic geometry (the geometry
of closed differential forms) [27], 28] with the aid of the notion of invertibility of a differential form. As a
result, we recover a duality between generalized Hamiltonian mechanics and multisymplectic geometry (note
that here we use the term multisymplectic in a loose sense that does not explicitly include non-degeneracy
conditions, but simply refers to the availability of a closed differential form).

The present paper is organized as follows. In Section Bl we define the notion of generalized Hamiltonian
system. In Section Bl we prove two theorems connecting a generalized Hamiltonian theory of degree k with
classical Hamiltonian mechanics with two or more invariants. In particular, we find that i) any classical
Hamiltonian system with two or more invariants is also a generalized Hamiltonian system and ii) given a
generalized Hamiltonian system with two or more invariants there exists a corresponding classical Hamiltonian
system on the level set of all but one invariant, with the remaining invariant playing the role of the Hamiltonian
function. In Section @l we explain how the cornerstone theorems of classical Hamiltonian mechanics (Lie-
Darboux and Liouville) require reinterpretation within the new framework, reflecting the unique properties
of invertibility in multisymplectic geometry, and prove Lie-Darboux and Liouville type theorems within the
generalized Hamiltonian setting. Section [Hdiscusses the role of the Jacobi identity in generalized Hamiltonian
mechanics, its relationship with the fundamental identity, as well as the availability of invariant measures. In
Section [6l we provide three examples of generalized Hamiltonian systems. In the first example, we show that
quasisymmetric magnetic fields [26] can be described as a generalized Hamiltonian system of degree k = 3
where the Hamiltonians are given by the magnetic flux function and the magnetic field strength. In the
second example, we exhibit the case of a classical Hamiltonian system with two invariants that can be cast as
a generalized Hamiltonian system of degree k = 3, but yet the corresponding Nambu bracket fails to satisfy
the fundamental identity. The third example concerns a 4-dimensional dynamical system governed by an
antisymmetric contravariant 2-tensor failing to satisfy the Jacobi identity, and yet bearing a 4-dimensional
generalized Hamiltonian structure of degree k¥ = 4. We also show how the results of Theorem below
can be applied to recover a classical Hamiltonian system on a 2-dimensional submanifold of the original
4-dimensional domain. Concluding remarks are given in Section [7]

1.1 Conventions on pairing and contraction of forms and multi-vectors

Here we summarize the notation and conventions adopted in this paper. Einstein summation convention on
repeated indices will be used. Moreover, when there is no ambiguity, a lower index will be used to specify
partial derivatives. For example, given a contravariant 2-tensor with components J% we will often write
T4 =0J /0z™, where ™ denotes the m*™ coordinate.

For any vector space V denote by A*(V) the set of k-vectors and by A¥(V*) the set of k-forms over V.
For any smooth manifold M of dimension n, denote by QF(M) the set of smooth differential k-forms on M,
by X*(M) the set of smooth k-vector fields on M, and by C°°(M) the set of smooth functions on M.

For any vector field X € X' (M), denote the interior product by

vt QF (M) = QF1(M), o Lxa.

Further, we extend the interior product for any J € X™ (M) so that, for decomposable elements which have
the form J = Jy A ... A Jp, J; € X (M), the interior product is given by

Ly = Lg,, «--bJy Qk(M)%Qk_m(Q)

The interior product is then defined for all J € X™(M) by linearity. Similarly, for any o € Q'(M) denote
the interior product by i, : X*¥(M) — X*~1(M), and for any w € Q™ (M) define the interior product for
decomposable elements which have the form w = al A ... Aa™ as ty = tam .. .1q1 : XF(M) — X*F~™(M),
and extend to all elements by linearity.

If p € M and U is a local chart of p, we will denote by (z!,...,2") : U — R™ as the coordinates of the
chart and let (81, ...,0,) and (dz’,...,dz") denote a basis of X(U) and dual basis of Q(U), respectively. We



will use the shorthand notation

0; =0i, N...AO;,, dz'vtm = dx AL ATt

1.-lm

With the above notation, the following local constructions of the interior product and natural pairing
between QF(M) and X*(M) can be inferred.

e Pairing: Extend the pairing (0;,dx’) = 6{ at each point p € U to basis elements of /\k T,M and
k s .
A" T;M according to

Oy A oo NOiy da?t A Ada?h) = 1 iy <y <<, j1 < 2 < e < ks (1)

where %% = 5;15;’; Observe that, for a given a € QF (M) and J € X* (M), it holds that

J1---Jk

tya={a,J) = a(J).

e Contraction: As an example of local computation of contraction, take J € X?(U) and dH € Q(U).
The (left) contraction between J and dH can be evaluated as

1<j
where H; = 9H/dx?. Similarly, take J € X3(U) and dC € Q(U).
tagtdcd = tam ZJijkCiajk = —J9kH;C0;. 3)
Jj<k

The contraction between forms and multivectors are (locally) can be locally defined through the pairing ().
For example, for m < n and i < j < k we have

Ldmmnaijk = <d$mn7 Bij>8k + <d£L‘mn, ]k>8l - <dl‘mn, ik>aj = 6;?"(9;@ + 6j,€”61- - 6;2" j - (4)
Similarly
ticndaJ = Z JUR(CpHyy — Oy Hy) tagmn i
m<n,i<j<k
_ Z Jidk (CnH, — CpHp,) (5{?"31@ + 05" 0 — 0" j)
m<n,i<j<k
= Z Jijk (OiHj — OjHi) Oy + Jijk (Cij — CkHj) 0; + Jijk (CkHl — OlHk) 8j (5)
i<j<k
=— > J9*(H;Cy - C;Hy) 0;
k<j
=— JURH;C0;
=tqHtdC .

2 Generalized Hamiltonian Mechanics

The aim of this section is to define the framework of generalized Hamiltonian mechanics. In the following,
we shall assume smoothness of the involved quantities. Given a manifold M, a vector field X € X (M), and
coordinates x = (:Cl, e x") in a neighborhood U of a point p € M, we consider a dynamical system governed
by the equations of motion

da ‘
Y X o i=1....n (6)

dt ’

geeey

where t denotes the time variable.



2.1 Definition of some generalized Hamiltonian systems

The dynamical system (@) qualifies as a generalized Hamiltonian system according to the following definition:

Definition 2.1. Let M be a smooth manifold of dimension n > k > 2. A vector field X € X (M) is called a
generalized Hamiltonian vector field of degree k whenever there exists a closed differential form w € QF(M)
and k — 1 almost everywhere linearly independent exact 1-forms dH*, i = 1,...,k — 1, such that

ixw=—dH" A ... NdH*L. (7)
We call the H? the Hamiltonian functions.

Equation () is referred to as the ‘Hamilton-de Donder-Weyl’ (HDW) equation by some authors [27].
Recalling Cartan’s homotopy formula for the Lie derivative £x and using the closure of w, equation ()
implies

Lxw=dixw+ txdw = 0. (8)
Equation (8] represents a phase space conservation law, indicating that it conserves the geometric structure
of M independently of the specific form of the Hamiltonian functions H?, i = 1,....,k — 1, which in turn
encode the physical properties of matter.

A 2-form is non-degenerate if, when considered as an antisymmetric matrix at any point p € M, it is
invertible. When w is a non-degenerate 2-form , w is a symplectic form and the classical Hamiltonian structure
is recovered. Similar to the classical Hamiltonian structure, in the generalised case, the Hamiltonians H*
usually correspond to the energy of the system and additional conservation laws that originate, for example,
from symmetries. See Section [6] for some examples. The conservation of the Hamiltonians can be deduced
from (7]) and antisymmetry by contracting the k-form w with X twice:

0=Ew=— (xdHY)dH* Ao NdHF™Y — = (1) (exdHF Y)Y dHY Ao A dHF 2, (9)

Since by definition the 1-forms dH?, i = 1,...,k — 1, are linearly independent almost everywhere, then
dH' A ... NdH*~! # 0 almost everywhere. By the assumed smoothness of X and the H?, it follows that
txdH* =0foralli=1,..,k—1.

More generally, if a vector field X a priori only preserves the closed k-form w then

Lxw=0 < dixw=0.

It follows that txw = —o where ¢ € QF"1(M) is closed. In general, there may not exist Hamiltonian
functions H?, i = 1,...,k — 1 such that o = dH' A ... AdH*"1. Hence, although X preserves w, it may not
be a generalised Hamiltonian vector field. This motivates the following definition.

Definition 2.2. Let M be a smooth manifold of dimension n > k > 2 and w a closed k-form on M. A
vector field X € X(M) is called a HDW (Hamilton-de Donder-Weyl) vector field whenever there exist a
closed (k — 1)-form o on M such that
LxWw = —0. (10)
The k — 1 form o is the associated Hamiltonian k — 1-form.
Note that txo = —%w = 0 and do = 0 imply
Lxo=0 (11)

Physically, the conservation of ¢ may be regarded as a matter conservation law, in contrast with the con-
servation of w. Equation () thus relates the properties of space w to the properties of matter o through
the vector field X. These observations suggest that an even more general class of dynamical systems could
be introduced, which does not require the forms w and ¢ to be closed. Such systems are governed by the
equations

EXwZO, ﬁXo'ZO. (12)

In this framework, the phase space k-form w and the Hamiltonian k£ — 1-form o are not necessarily closed
differential forms. In this more general class of dynamical systems, space and matter are not so obviously
related as there is no immediate relation txw = —o. In the following, we shall be concerned only with
generalized Hamiltonian systems as defined in Definition 211



2.2 Invertibility and Poisson tensors

When w is a non-degenerate 2-form, equation ([fl) uniquely determines the vector field X for a given Hamil-
tonian function H'. However, when k > 2, a dimensional obstruction arises to the solvability of equation (7))
for X. The obstruction depends upon the k-form w and the Hamiltonians H!, ..., H*~1. Indeed, consider
the hat-map

WX (M) = QL (M), w(X)=xw,

which sends vector fields into k — 1-forms. The map  is linear and can be surjective at a point p € M only
if dim (X (M)) > dim (QF~* (M)). Explicitly, the dimensions of the spaces give the necessary condition for

surjectivity of w as,
n
> . 13
"= (k - 1) (13)

When (T3) is violated, there exist k — 1 forms o € QF~1 (M) with no generating vector field X such that
txw = —o. For example, for k = 3, eq. ([3)) gives the condition n < 3, while k = 2 returns n > n.
This behavior is the first nontrivial property of equation (7)) that separates classical Hamiltonian mechanics
(k = 2) from generalized Hamiltonian systems (k > 2).

If ker (w) := {Y € X (M) : tyw =0} # 0 then equation (7)) does not determine X uniquely. Indeed,
X 4Y also satisfies eq. ([@) for any Y € ker (w). Thus, the phase space conservation law and the conservation
of the k — 1 Hamiltonians do not provide enough information to determine the equations of motion X. It is
here that the notions of invertibility of differential forms and Poisson k-tensor come into play. In this study
we will be concerned with the following notions of invertibility for k-forms and k-vectors:

Definition 2.3. Let w € QF (M) and J € X* (M). We say that J is a (strong) inverse of w (and vice versa)
if

bxwl =X, VX eX(M). (14)

Definition 2.4. Let w € QF (M) and J € X* (M). Consider a smooth m-dimensional distribution A on M.
We say that J is a A-inverse of w (and vice versa) if

hyw) =X VX € Xa(M), (15)

where XA (M) is the space of all smooth sections of A.

When k = 2, in local coordinates, the (strong) invertibility (I4) of the symplectic 2-formw =3, _ j Wij dxt
corresponds to the invertibility of the covariant 2-tensor w;;. The inverse J = Zi<j J"0;; € X* (M) such
that w;; J7* = 6;? is the Poisson 2-tensor. Furthermore, the closure of w translates into the Jacobi identity
satisfied by J. The relationship between the properties of w and those of J are discussed in detail in [22].
When w is invertible, X = —1qgJ = JinjBi uniquely, with H = H'.

More generally, the condition for invertibility (I4]) for a k-form w is stated in a given chart as

Z wail...ik,ljilmikilb _ 527 (16)

1< . <bp—1

where J € X* (M) is a k-vector with components J*-** of the corresponding k-times contravariant antisym-
metric tensor. A necessary condition for the inverse (I4]) to exist is that the tensor wj;, _;, has maximum rank
n. This necessary condition is equivalent to the hat-map @ being injective. An alternative computation of
the rank is given in [23]. There, the rank of w;, . ;, is locally computed as the number of linearly independent
columns in the n x n¥~1 matrix Wi, (iy...ip)» Where i1 and (ig...7x) identify rows and columns respectively.
Indeed, when w has rank n, the matrix wy, (;,...;;,) admits a right-inverse JU-ik-1)it of dimension n*~! x n,
although this tensor is not necessarily antisymmetric.



If an inverse J of w exists, then it can be used to compute the solution to txw = —o. Using local
coordinates and setting

o=dH' A ANIH" = " oy, datte
11 <. <bp—1
the equation txw = —o becomes
X]’wjilmik71 = —04y..dk_19 il,-'-aik—l = 1,...,n. (17)

Suppose that, given w and H', ..., H*~1, a solution X of equation (I7) exists. If such J exists, and for a
given o, w there is a solution X to eq. (IT7), then X is given locally as

X=— N Jvide o, j=1..m (18)

1< . <lp—1

As it will be clear from Section [B] the notion of invertibility (I4) is strong. I will be seen that there are
cases of k-forms w which do not admit an inverse, yet, a k-vector J and (k — 1)-form o = dH' A ... AdH*1
exist on M such that there is a solution X of txw = —o and the solution can be written as X = —i,J. In
particular, since the vector field X solving txw = —o preserves all Hamiltonian functions H', ..., H*=1 it is
sufficient to consider the weaker notion of A-invertibility of the k-form w with the distribution A defined at
a point p € M by

Ap={Y €T,M : 1y(dH'[,) =0,i=2,...,k—1}.

That is, any smooth section of A, say Y € Xa, is a vector field tangent to the n — k + 2 dimensional
submanifolds
Sh={peM: H*(p)=h*€eR,....H" ' (p)=h"" eR}.

In this study, we adopt the following definition of Poisson k-tensor J, leaving the discussion of its rela-
tionship with the inverse of the symplectic form w to Sections 3 and 5.

Definition 2.5. A multivector field J € X* (M) is called a Poisson tensor of degree k (or simply Poisson
k-tensor) whenever there exist k& — 2 linearly independent exact 1-forms dC?, ..., dC*~2 such that the bivector
J € X? (M) defined by

._7 = del....dek—zj, (19)

is a Poisson 2-tensor in the standard sense.

For any Poisson k-tensor, the functions C*, ..., C¥~2 are Casimir invariants of corresponding Poisson 2-
tensor J. Let dH = dH' and dH? = dC*~', i = 2,...,k — 1. Then, the equations of motion associated with
a Poisson k-tensor J take the form

X = —Lde = —LdHl...Lde—IJ. (20)

When k = 2, equation (20) locally gives X = J¥ H;0;. When k = 3, equation @20) gives X = JY*H,;C}0;
with H! = H and H? = C. Due to antisymmetry of J% % equation (20) preserves the Hamiltonians
HY, .. HFL.

3 Correspondence between classical Hamiltonian mechanics and
generalized Hamiltonian mechanics of degree £

In this section, we establish several results connecting classical Hamiltonian mechanics to generalized Hamilto-
nian mechanics of degree k for a special class of closed k-forms w. We begin with the following statement that
demonstrates a large class of generalized Hamiltonian systems that are derived from classical Hamiltonian
systems endowed with multiple invariants.



Theorem 3.1. Let w € Q*(M), consider the functions H,C',...,C*¥=2 € C>®(M), and define dC :=
dC* A ... NdC*=2 € QF=2(M). If there exists a vector field X on M such that

dwoNdC =0, (xw+dH)ANdIC =0, 1xdC =0, (21)
then, the k-form
w=wAdC, (22)
satisfies
ixw=—dH ANdC, dw=0. (23)
That is, X is a generalised Hamiltonian vector field of w with Hamiltonians H,C', ..., C*~2.

Proof. Observe that
txw = (txw) NdC' + w A txdC = —dH A dC,

and
dw = dw N\ dC =0,
as desired. O
Theorem B.Ilimplies that given a classical Hamiltonian system txw = —dH, dw = 0, and k — 2 invariants

C',...,C*2 there always exists a corresponding generalized Hamiltonian system of degree k. An analogous
result can be obtained in terms of k-vector fields.

Proposition 3.2. Let J € X? (M) denote a Poisson 2-tensor with k — 2 Casimir invariants C*,...,C*=2 ¢
C> (M), dC* € ker (J), i = 1,...,k—2, such that the 1-forms dC*, ...,dC*=2 are linearly independent. Then,

J=NAMAJ, (24)
is a Poisson k-tensor with N = nj_o A ... Any € X*"2 (M), n; € X (M), 1,,dC7 = 55, h,j=1,...,k—2.

Proof. Choose vector fields ny, ...,ni_o € X (M) such that t,,,dC7 = 14c5n; = 6, i,j=1,...k—2. We have

del...dek—2J = j, (25)

where we used the fact that the C?, i = 1, ...,k — 2, are Casimir invariants of the Poisson 2-tensor . Hence,
from Definition we see that J is a Poisson k-tensor. O

Proposition implies that given a classical Hamiltonian system with Poisson 2-tensor J, Hamiltonian
H, and Casimir invariants C?, ..., C*~2, there always exist a corresponding generalized Hamiltonian system
of degree k with Poisson k-tensor J = N A J and k — 1 Hamiltonian functions H, C*, ...,C*~2 such that the
equations of motion take the form X = —iqgJ = —tagtgcr---tgcr—2J.

Remarkably, the results above admit converse statements; given a generalized Hamiltonian system of
degree k it is possible to recover a classical Hamiltonian system under suitable assumptions on w or J. To
see this, we introduce the following notation. Let C1,...,C™ € C°°(M) and define dC := dC* A ... A dC™.
Moreover, let

Reg(C) :={pe€ M : dC|, := (dC* A ... AdC™)|, # 0}

be the set of regular points of dC. Finally, denote the regular level sets by
Y. :={p € Reg(C) : C(p) = c € RF 2}

and set i, : X, < M as the inclusion operator.



Theorem 3.3. Let w € QF (M) be a closed k-form and consider C*,...,C*=2 € C°(M). Suppose that for
every smooth function H € C*°(M) there exists a vector field Xg € X (M) such that

ixgw=—dH ANdC. (26)
Then, there exists a 2-form w € Q% (Reg(C)) such that
w=wAdC, dwNdC =0 in Reg(C). (27)
In particular, any regular level set ¥ of C' is a symplectic manifold with symplectic form & := 1w and
Lz, @ =—dH, (28)
where XH is the restriction of Xy to ¥, and H:= irH.
Proof. Let ny,...,ng_2 be a set of vector fields on Reg(C) such that ¢, dC7 = 5f Define
W=ty el W= INW (29)
where N =nj A ... Ang_s. Then, for any Xy satistying tx, w = —dH N dC we have
txpw = txyinw = (=) Zyix,w = (=1)* Yy (dH A dC) = —dH + (1n,dH)dC". (30)

Applying i* to both sides of Equation ([B0]) yields the desired Equation (2])), namely, LW = —dH. The
restriction of Xy to X, is well-defined as tx,dC; =0fori=1,...,k —2.

We now show that w = w A dC' and dw A dC = 0 on Reg(C). Fix p € Reg(C) and let H', ..., H" *+2 be
functions on M such that (dH' A ... AdH" k2 AdC* A ... AdC*72)|, # 0. Such functions can always be
found in a local chart about p and extended smoothly to the entirety of M. In particular, we may take local
coordinates (wl, - :C") = (Hl, LG HRR2 o Ck_Q). Recalling (B0), we see that

txg WAAC —w) =0 <= wAdC —w=¢, (31)

where & € Q% (Reg(C)) is a k-form such that tx,, & = 0. Due to the arbitrariness of H, equation (28) implies
that @ is non-degenerate and thus invertible on ¥, with inverse J € X2 (X.) (this also implies that n — k
must be even). Hence, the equation tx, & = 0 can be written in components as

'X,,IL;‘Igij1~~~jk—1 = —Hmjmifijlmjk71 = 0, jl, ...,jk_l = 1, ceey N (32)

However, the invertibility of & on . implies that J has full rank on ¥,. Combined with the arbitrariness
of H, it follows that &;;,,.. ., =0foralli=1,..,n—k+2and ji,...,jk—1 = 1,...,n. Now suppose that
&ijrroiny 7 0 for some ¢ between n — k 4+ 3 and n. Since £ is a k-form, at least 1 of the indexes, say ji,
belongs to 1,...,n — k + 2. On the other hand, antisymmetry implies that &, j,_, = —&j1ijo....ju_q = 0.

We have thus shown that

w=wAdC in Reg(C). (33)

This also implies that dw A dC' = dw = 0 as desired. We now show that the non-degenerate 2-form w = ifw
is a symplectic form on each X.. First, from the fact that dw A dC' = 0 we have that

0=ty (dw A dC) = (—1)F2dw + Z oy A dC*
k

where oy, are 2-forms. Then dw = difw = i%dw = 0 so that & is closed. This concludes the proof. O

The following is a corollary of Theorem 3.3



Corollary 3.4. Consider the hypothesis of Theorem [3.3. Then, there exists a k-vector J € X* (Reg(C))
such that

X = —tainicd = —tanJ, (34)

where J € X2 (Reg(C)). Furthermore, the restriction J € X2 (3.) of J to X% (X.) is a Poisson 2-tensor,
and, up to sign, J is a A-inverse of w with A, = {Y € T, (Reg(C)) : 1ty (dC|p) = 0}.

Proof. By Theorem B3] the 2-forms &, := 5w are closed and have full rank on the corresponding regular
level set ¥.. Consequently, each @, admits an inverse on the corresponding Y., that is, a Poisson 2-tensor
Je € X% (%.) such that ¢,,5,.J. = Y for any Y € X(2,).

Due to the smoothness of w in Reg(C), the Poisson 2-tensors 7. are smooth in ¢ and so there exists a
2-tensor J € X2 (Reg(C)) such that, for any ¥., we have (i.).J|, = J|, for all p € ¥.. In particular, there
are local coordinates (:Cl, - :C") = (:Cl, B UL G LI C’“_Q) so that J = Zf;nj JH98; A 0;. It follows that,
for any Y € X(Reg(C)) everywhere tangent to ., we have

bywd = Yw; M, = Yo '™ =Y, (35)
Hence, J is a A-inverse of w.
Now consider J € X* (Reg(C)) with
J=(DF2NAT, N=niA..Ango. (36)

Note that tgcJ = (—=1)*"27. Now, for any Y € Xa(Reg(C)) it holds from Theorem that (yw =
ty (wAdC) = (tyw) AdC. Then, using (33,

LLwa = L(Lyw)/\dCJ = L(Lyw)l’ch = L(Lyw)j =Y. (37)

That is, J is a A-inverse of w.
Finally, if Xp solves tx,w = —dH A dC, then Xy € Xa(Reg(C)), thus,

Xi =ty wl = —tanric = —tanJ- (38)

4 Form flatness, Lie-Darboux theorems, and Liouville measures

In this section we explore how the cornerstone theorems of classical Hamiltonian mechanics are modified in
a generalized Hamiltonian theory of degree k. First, we show the following Lie-Darboux type theorem for
closed 3-forms associated to Hamiltonian systems with two independent conserved quantities.

Definition 4.1. Let w € Q? (M) denote a (not necessarily closed) 2-form and dC' € Q (M) an exact 1-form
on M. Then w is said to be of constant rank with respect to dC' in a set U if the 2-form

we(a)le = g (z) (Wla)
has the same rank for all x € U.

Theorem 4.2. Let w be a closed 3-form on M that decomposes as w = w A dC with w € Q> (M) and
dC € Q(M). Then, for every point x € M such that w is of constant rank with respect to dC' in a neighborhood
of x, there exist a neighborhood U of © and a coordinate system (pl, b gt gt G GT) withn = 20+7

such that ,

w=wyAdC, wo=Y» dp'Adg’ in U, (39)
i=1
where 20 is the rank of Wo () = ig(m)w at x.
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Proof. Let U be the neighborhood on which w is constant rank 2¢ with respect to dC. Choosing local
coordinates (wl, ,:v") = (:Cl, L C) in U of x, we have

n—1 n—1
w = Zwijdxij = Z windxi AN dC + Z wideij. (40)
i<j i=1 i<j

Define w’ = E?gjl wijdz' and observe that the rank of w’ is constant in U if and only if w is of constant
rank with respect to dC in U. By assumption, it follows that w’ is of constant rank 2/ in U.

Evidently w = w' AdC in U and, if @, := iw and @, := i%w’, then &, = @. Since dw = dw’ A dC' = 0,
it follows that d@!, = i*dw’ = 0 in any local level set 3. NU. Then, by the generalised Lie-Darboux theorem
[6], there exists a neighborhood U C U of @ and n — 1 local coordinates (p*,...,p% ¢*,...,¢", G, ...,G™1),
T = n — 2¢ such that

4
Ge=@, =Y dp' Adg' in T.NU. (41)
=1

Moreover, these coordinates depend smoothly on ¢. The smooth dependence on ¢ allows the coordinates
pi,qt : O (X.NU) — R to also define smooth functions p?,¢* : C* (U) — R. Indeed, they have the form
P (wl, ...,x"‘l,C) and ¢ (wl, ...,x"‘l,C), i=1,...,£. Finally, observe that

4
(o./ =Y dp' A dqi> AdC =0 in U. (42)

=1

Then,
¢

w=>dp' Ndg' ANdC = wy A dC. (43)
=1
O

Corollary 4.3. Let w be a closed 3-form on M that decomposes as w = w A dC with w € Q% (M) and
dC € Q(M). Assume that € € M is such that w is of constant rank with respect to dC' in a neighborhood
of x, and let (p*,...,p',q",...,¢",G"...,G™) be the Darboux coordinates guaranteed from Theorem 3
Then, gien a 1-form dH € Q (M), linearly independent from dC in U, the local phase space measure
dil = dp' A ... Adp® Adg* A ... Adgt A dGY A ... AdAGT is an invariant measure in U for the generalized
Hamiltonian system X € X (U) such that

txw = —dH N dC, (44)
provided that such X exists. In addition,
1300 =—dH in %, (45)
where Qo = i*wo, H = i*H, and X denotes the restriction of X to ¥..

Proof. Let X € X (U) solve system ([@4]). Recalling that, by hypothesis, dH and dC are linearly independent
in U and noting that 0 = txtxw = — (txdH) dC + (1xdC) dH, it follows that txdH = 1xdC = 0. On the
other hand, t.xw = txwg A dC = —dH A dC, which implies

1500 =—dH in $.NU. (46)

Since dwg = 0, equation (@) defines a Hamiltonian system with invariant measure ( /\f:1 dp® A dql) AdGT A
W ANdGTTH 1 =n—20in . NU. Set (Gl, ...,GT) = (Gl, e GTfl,C). It follows that

4
dIl = </\ dpi/\dqi> ANAGY A ... NG, (47)

=1

defines an invariant measure for X in U. O

11



Theorem [4.2] shows that, under appropriate hypothesis, the 3-form w = w A dC can be flattened near any
point & with a neighbourhood that w is of constant rank with respect to dC' in. This is the essence of the
usual Lie-Darboux theorem for symplectic forms. More generally, we have the following definition of a locally
flat point x € M.

Definition 4.4. A k-form w on a manifold M is said to be locally flat near x € M if there exists coordinates
(z!,...,2™) on a neighbourhood U of & such that

w = E Ailmikdl'“'“lk

1<i1 < <ipg<n
with A;, .., € R constant for all 1 <143 < --- < <n.

In contrast with symplectic geometry, the invertibility of a k-form w is not sufficient to guarantee the
existence of a local flattening diffeomorphism [27] 22] 23]. The following proposition provides flatness condi-
tions for a class of closed k-forms w by application of Moser’s method. This result is then used to construct
examples of 3-form flattening.

Proposition 4.5. Let w be a closed k-form on M and let (y*, ...,
U of a given point € € M. Define wy € Q*(U) and Zy € X(U) by

y™) be local coordinates in a neighborhood

L 1 .
wo= Y Anady" " Zo=1y'0: (48)

1< <...<ig<n

where all A;, . i, € R. Further, suppose that there exists vector fields Xy, Z € X (M) so that, with appropriate
restriction,

Lzwo =w, (49a)
(Lix, Lz — Lzy—z-(1-1)x,) wo =0,. (49b)

If the flow ®; of Xy is well-defined for all (xo,t) € U x [0,1] then there exists coordinates (x*,...,z") in U
such that o
w= Z Ajy g dat in UL (50)

1<ir <...<ip<n

Proof. We apply Moser’s argument to the family of closed k-forms w; = tw 4+ (1 —t)wg. We want to
construct a family of diffeomorphisms ®; so that ®jw; = wp. If such a family exists, then in particular,
diwr = ®jw = wop, and P, is hence the desired coordinate transformation. To achieve this, we show the
desired transformations ®; is given by the flow of the non-autonomous vector field X;.

Observe that

d "
E@th = @} (Qywy + Lx,wi) = P (w — wo + Lx,wr)

Using the fact that wy = Lz, wo and that by assumption £zwe = w, it follows that

d o .
Eq)twt =@ ((Lex, Lz — Lzy—z-(1-1)x,) wo) =0,

with the last equality holding by assumption. It follows that ®;w; = ®{wy = wp whenever @, is well-defined.
By assumption ®; is well defined for ¢ € [0,1] and all &y € U and the result follows. O

Remark 4.6. If a coordinate change mapping a k-form w into the flat form wy has to be found by Moser’s
method, it is necessary that w = Lzwq for some Z € X (M). Indeed, evaluating dyw; + Lx,wy at t = 0, and
recalling that wg = Lz, wp, one obtains Z = Zy — Xj.

12



Remark 4.7. Consider the setting of Proposition Denote with Y € X (M) any Lie symmetry of wg so
that Lywy = 0, and suppose that dX;/dt = 0. Then, equation (49h]) leads to the system of equations
ACXtACZ—ZowO ZO, ACZ_ZO_Xt’wO =0. (51)
Setting Xy = X and Z = Zy — X + Y, one arrives at the equation
L3 wy = 0. (52)
Hence, a flattening coordinate change for the form w = Lzwy = (1 — Lx ) wp can be constructed by looking
at solutions X of equation (B2) and the flow ®;.
Example 4.8. Consider the 3-form wy = dz'?3 + dx'?* in R%. We look for a solution of equation (52) in the
form X = X305 + X*9,. We have
o (X3 +x* , o (X3 + x4 o (X3 +Xx*
( )dx12z —d X3 ( ) +X4 ( ) dI12

2
=d _
Lxwo X ozt ox3 oz?

d 9 (X3 4+ X*) d(X3+X%) 9 9 (X3 4+ X*) d(X3+X*)
- X3 X4 d 123 - X3 X4 d 124.
ox3 ox3 + ozt Tt ozt ox3 + ozt *
(53)
This quantity vanishes provided that
0(X3+ x4 o(X3+ x4

ox3 ozt
An explicit solution can be obtained, for example, by setting X3 = X4 = /(a3 + 2%) f/2 for (w3 + x4) f=0.

In this case,
w:EZO,XwO:wo—da:u/\d\/2(:1:3+:1:4)f. (55)

Let us determine Moser’s coordinate change. For simplicity, we assume f > 0. Since X! = X? = 0, we have

o' = xf as well as 22 = z3. We must further solve

da’ (2% +at) f i i :

e 0)==z5, =34 (56)
We find

2

(57)

2
x—ad 1 f rg—axd 1 f
o= o Wbl ey fgt) . et =t (el el 5t

Using these expressions, it follows that

2
dz'® 4+ do'?** = dz'? N d (V:v% + x5+ \/§t> = dap® + dad* + tda® Ndyf2 (23 +ad) f. (B8)
Noting that \/xg +a5 = Va3 + zt — \/gt, we obtain the desired result

dzd® 4 dop?t = de'?® + da'® — tdx'? A dy/2 (23 + ) f. (59)

Example 4.9. Consider the 4-form wy = dz?3* 4 d2'2% in RS. Let’s consider a region 23 +2* > 0, 2°+2% > 0.
Then, the vector field

X = f(a',2% 2% — 2*) Vad + 24 (05 + 0u) + g (21,22, 2° — 25) V/a® + 26 (05 + 05) (60)

where f (wl, 2, 2% — x4) and g (wl, 2, 2 — xG) are arbitrary functions of their arguments, satisfies £3wy =
0. The correponding 4-form w = (1 — Lx) wy is

w=wy — #da@l%‘l S —) (61)

4/:1734_:174 ‘/$5—|—$6
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5 Remarks on the Jacobi identity and invariant measures in gen-
eralized Hamiltonian mechanics

In this section we explore some of the consequences of the generalization of Hamiltonian mechanics introduced
in the previous sections. In particular, we discuss the formulation of the Jacobi identity and the availability
of invariant measures in generalized Hamiltonian theories of degree k.

Proposition 5.1. Let J € X* (M) denote a Poisson k-tensor. Then, J satisfies the Jacobi indentity in
terms of the Poisson bracket

{f,9} = tartagtacs---tacr-2J, (62)

where dC?, ...,dC*=2 are those exact 1-forms such that vgcn...tyce—2J = J is a Poisson 2-tensor, and f, g €
C> (M).

Proof. This follows from the definition of Poisson k-tensor: the 2-tensor J = tgot...tqck-2J is a Poisson
2-tensor, and thus satisfies the Jacobi identity. O

It is possible to express the Jacobi identity in terms of the components of J in a local coordinate system:

Proposition 5.2. Let (:vl,...,x") = (:Cl,...,x"‘k+2,01,...,0k_2) denote a local coordinate system in a
neighborhood U C M and consider a Poisson k-tensor J € X* (M) such that 1gcn...tqcx—2J = J is a Poisson
2-tensor. Then, in U, the Jacobi identity reads as

JURT IO g I JOT Ty O e = 0 Vi =1, .0, r=n—k+3.  (63)

Proof. Note that

Lgot--Lgok—2J = O'Z Jijr“'"&j, r=n—k+3, (64)

i<j
where o is a sign factor. It is now clear that (G3]) is the Jacobi identity for the Poisson 2-tensor ZKJ- JUr-ng, .
where r =n — k + 3. (|

Remark 5.3. Any locally flat k-tensor J € X* (M) is a Poisson k-tensor in any sufficiently small neighborhood
U C M. Indeed, denoting with (:1:1, e a:") the local flattening coordinates such that J%-% ¢ R, the 2-tensor
Lggn—k+3...LdznJ has constant components, and thus locally defines a Poisson 2-tensor.

Poisson k-tensors also has a relation to the fundamental identity encountered in the axiomatic formulation
of Nambu(FI) mechanics. The fundamental identity for the triple bracket {-,,-} : C°° (M) x C* (M) x
C* (M) — C* (M) describes distribution of time derivatives [21],

Gtrom ={Tanb+ {20+ {105} (65)

where time evolution is assigned according to df /dt = {f, H,C} = J¥* f,H,;C}, with f,g,h,C, H € C> (M).

Proposition 5.4. Let (161,162,963) = (wl, 22, C) denote a local coordinate system in a neighborhood U C M.
If J € X3 (M) satisfies the fundamental identity, then J satisfies the Jacobi identity,

Jimn gikn o gimn ki pkmn giin — o Vg Gk =1,..,n. (66)

The converse is not true: a 3-tensor J satisfying the Jacobi identity is not guaranteed to satisfy the funda-
mental identity.
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Proof. Explicitly, equation (63]) gives the conditions for all 4, j, k,u,v = 1,...,n,

JULJIE = JUR TG R I g Je g, (67a)
0= Jiijuvq +qukJui’U +J’U.ijZ(]’U (67b)

In equation (G7al), set ¢ = k = n to obtain,
Ju'unJijn _ JujnJ;'un 4 Jiunji'un7 (68)
which is equivalent to equation (68]). It is however clear that (68]) is not sufficient to fulfill (67a) and (G70). O

Section 6.2 below gives an explicit example in which a Poisson 3-tensor fails to satisfy the fundamental
identity.

Proposition 5.5. Let J € X* (M) denote a Poisson k-tensor. Assume that the associated Poisson 2-tensor
Lact--Lack—2J has constant rank 2m =mn — s in M. Then, J admits a local A-inverse w € Q3 (U): for any
p € M there exists a neighborhood U of p and a local coordinate system (wl, - x") = (:Cl, B UL GL I Cs),
s >k — 2, such that the local A-inverse w has expression

w=w.ANdC* N ... ANdC* 2, w. :Zd:bi/\d:th in U, (69)
i=1

with A = {X € X (U) : 1xdC = 0,dC = dC* A ... AdC*}.

Proof. Since J is a Poisson k-tensor, we may choose coordinates (z!,...,2") = (z!,...,2°™,C?,...,C%) in
a sufficiently small neighborhood U of any p € M. Here, C',...,C*"2 are those functions such that
Lgct - -Lgck—2J is a Poisson 2-tensor, while dC*~1,...,dC?® are those additional exact 1-forms belonging to
the kernel of tyo1...tqon-2J. Since tyotr...t.qor-2J is a Poisson 2-tensor, the local coordinates can be cho-
sen so that tgcr...igon—2J = (=1) 7S 9 A Opnyi [B]. Tt follows that w = w, A dCT A ... A dC*2 with
we = yir, dz® Adx™*" is the local A-inverse of J. Indeed, taking X € A,

boxwd =T (Z (Xda™t — X™Hida') AdCY A . A ch)
i=1

=D R X da™ TN ACT A AACETR 0y, )0, F

=1 j1<...<Jk

- (70)
=D ST X da™ T AdCT AN ACET2, 05, 5005, +
i=1 j1<...<jk
_ (_1)1671 Jim-l-in—s+l...n—s+l+k—2Xial_ 4= Z (Xzal + Xm-i-iaeri) )
=1 =1
O

We conclude this section with some remarks on the availability of invariant measures in a generalized
Hamiltonian theory of degree k.

Definition 5.6. Let du be a smooth volume form on M. Consider the vector field X = —igpg1...tgpgr—1J,
with J € X% (M) and HY,..., H*=1 € C°° (M). We say that J is measure preserving whenever there exists a
non-vanishing function g € C* (M) such that

Lx (gdp) =0, YH', . ,H"'eC™(M). (71)
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Remark 5.7. In coordinates (z',...,2") and with du = da' A ... A da™, Definition corresponds to the
condition

o (gJ351) =0, Vi1, i1 =1,.m, (72)
xZ

which ensures gdz! A ... A dz™ is an invariant measure for all choices of the Hamiltonians H*, ..., H*~1.
Even if ([72)) is not satisfied, an invariant measure may be recovered by adding a new dimension with
coordinate "1, The following proposition verifies this for k = 3 and M ~ R"™.

Proposition 5.8. Take J € X3 (M). Let (:Cl, ceny :C") denote local coordinates in some neighborhood U C M.
Then, the n + 1-dimensional antisymmetric contravariant 3-tensor J € X3 (U x R) given by

aJmij aijk ) aJmki .
J=J- > ! ( S+ Lt 5fl+1) di N ;A O, (73)

R ox™ ox™ ox™
1<j<k

is measure preserving in U. Furthermore, the equations of motion dx’/dt = JiijjCk, i =1,...,n, with the

Hamiltonians H and C independent of 2™, remain unchanged in U, that is
dz* . .
— = 3FH;C = TP H G, =1, (74a)
dxnt1! ) n )
xdt = 3TVE O = —a" Y 9,X (74b)
i=1

where, as usual, X = dx/dt.

n

Proof. The proof of this statement can be obtained by noting that Ziill 0;39% = 0 and by evaluating
dz'/dt = JUkH;C), for i = 1,...,n + 1. O

6 Examples

In this section, three examples are provided of generalized Hamiltonian systems of degree £ = 3. In the first
example, it is shown that quasisymmetric magnetic fields can be written as a Nambu system. Quasisymmetric
magnetic fields play a pivotal role in the design of next-generation fusion reactors known as stellarators
[26, [3T], [32]. This novel Nambu system provides a novel pathway to study quasisymmetric magnetic fields.
Furthermore, this formulation highlights previously unnoticed properties of quasisymmetric magnetic fields,
such as the existence of an invariant measure for the quasisymmetry. The aim of the second example is to
demonstrate the existence of a classical Hamiltonian system with two invariants whose 3-tensor J fails to
satisfy the fundamental identity of Nambu(FI) mechanics. However, the system still admits a description as
a generalized Hamiltonian sytem of degree k = 3 in accordance with Theorem [3.1} Finally, the third example
concerns a 4-dimensional dynamical system endowed with an antisymmetric contravariant 2-tensor J failing
to satisfy the Jacobi identity, and yet possessing a generalized Hamiltonian structure. It is shown that the
hypothesis of Theorem 3.3 are verified by this system. Consequently, classical Hamiltonian systems can be
recovered on some 2-dimensional submanifolds of the original 4-dimensional domain.

6.1 Quasisymmetry as a generalized Hamiltonian system

Given a magnetic field B € X (M) in some region M C R? and a function ¥ € C* (M), a quasisymmetry
u € X (M) of B is any solution to

V-B=0, V:-u=0, Bxu=VV, u-VB=0, (75)

where B = |B|. Consider a magnetic field B such that, on a region U C M, it holds that V¥ x VB # 0 as
well as B - VB # 0. Then, in U, it can be computed that

_ VU XVB

55 B VB=f(V.B), B-VI=0 (76)
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for some f (¥, B) # 0. The quasisymmetry u can be regarded as a generalized Hamiltonian system on U.
Indeed, consider the 3-form w given by the closed form

w=—(B-VB)dyu, (77)
where dyu is the standard Euclidean volume form on U. Then
lyW = —tvuxvpdy = —d¥ A dB. (78)

Hence u is a Hamiltonian vector field for the closed 3-form w with Hamiltonians ¥, B. Note that, as w is a
top form on U and L,w = 0, that w is an invariant measure for u.

In any local chart on U with standard Euclidean coordinates, we have the associated differential equation
for w given by

dx €9k 90 9B
—=u=—————0;, 79
dt "7 B-VBow oz (79)
with Hamiltonians ¥ and B and a Poisson 3-tensor
ijk
gk — ¢ 80
B-VB (80)

6.2 Semiclassical quantum oscillators

Consider the following dynamical system on RS from [33, [34] that models a 1-dimensional system of two
quantum oscillators. The dynamical variables are p;, ¢;, &, ¢ = 1,2, and physically correspond to the
expectation values of momentum, position, and squared momentum of the i*? oscillator, respectively. The
equations of motion are given by

P1=—q — A2, (81a)
q1 = p1, (81b)
& =2qp1, (81c)
P2 = —q2 — 2Aq1 g2, (81d)
42 = p2, (81e)
&2 = 2¢ap>. (81f)

One can verify that the quantities

Gi=&—q, Ga=&—q¢, H==pi+p3+&a+&)+ ke (82)

N =

are independent constants of motion, with the third quantity H corresponding to the energy of the system.
The dynamical system (BI]) can be expressed as a generalized Hamiltonian system. Indeed, defining

J = 8,,1 N (9q1 AN (951 + (9;02 A 8,12 A (952, {f, g, h} = —tgrtagtahJ (83)

for any f,g,h € C°(RY), and taking G = G + G2, we have

d
oI ={FG H) (84)

for any observable F' € C*°(R%). In particular, for i = 1,2,

Di = {pivaH}a gi = {inGvH}5 gl = {glvaH} (85)
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As shown in [22], the k-vector J does not satisfy the fundamental identity. On the other hand, performing
the change of variables (p1, q1, &1, p2, ¢2,&2) — (p1, 1, G1, D2, ¢2, G2), the Hamiltonian function becomes,

~ 1
H=5(pi+ps+al+6)+Aar (G2 +a3), (86)

while system (BI]) takes the form

. 0H . 0H
pl_ aql7 ql_ apz7

for i = 1,2. Equation (87) shows that system (8I)) is a noncanonical Hamiltonian system with Casimir
invariants G'; and Gs. By application of Theorem B.I] the system is endowed with a generalized Hamiltonian
structure with symplectic 3-form

w=wAdGy = (dpl Adqi + dpa N\ dql) A dGa. (88)
In addition, the system also admits the invariant measure dp; A dgi1 A dpa A dgo A dG1 A dGs, in ageement
with Corollary

6.3 An example of application of Theorem [3.3]

Let (xl, ey a:4) denote standard Euclidean coordinates on R* and consider the domain M = {z* > 0}. In
M, we define the 2-vector field J as

1
jz;(@g/\81+84/\83) (89)
The Jacobi identity is not satisfied by this tensor, as one can verify by computing the term
1
T I+ TITR + T T = —( 4)3 # 0. (90)
x

Let H € C*°(M) be any function satisfying % = 0. Then define

X = L (0, 0y o
Next, observe that the 2-form
w =z (dz' Ada® + da® A dzt), (92)
satisfies
ixw=—dH, dw=dz*N\dz' Ndz* #0. (93)
On the other hand, the 3-form w = w A dz* satisfies
ixw = —dH ANdz*,  dw = dw Adx* = 0. (94)

Hence, this 4-dimensional dynamical system does not possess a classical Hamiltonian structure, and yet it
can be cast as a generalized Hamiltonian system.
Next, let us further assume that % = 0. Under this assumption, the vector field

X_i<aHa aHal), (95)

el Wil
x4 \ Ozt 0z?
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satisfies the relation:
txw = —dH. (96)
On the other hand, the 4-form w = w A d2® A dz* satisfies:
ixw = —dH Ada® Ada?,  dw = dw Ada® Adat = 0. (97)

Furthermore, the hypotheses of Theorem are now verified for w, where

Xpg = 1 <8H3 on 31) ; (98)

T, - =
x4 \ 92! 0x2

for any H € C*°(M). This implies that we expect to find a classical Hamiltonian system on the submanifolds
defined by:

Ye={zeM: 2= cR, 2" =c" €eRy}. (99)
One can verify that the pullbacks w = ¢jw and H= t; H, along with the restriction Xy of Xp to g, satisfy:

150 =—dH, do=0, &=c'de' Ada? (100)

7 Concluding remarks

In this work, we explored the connection between generalized Hamiltonian mechanics (intended as the ideal
dynamics of systems endowed with a phase space conservation law embodied by a closed differential form
and a matter conservation law encoded in multiple Hamiltonians) and multisyplectic geometry (the geometry
of closed differential forms). The key of the construction is the notion of invertibility of differential forms,
which can be conjugated into (strong) invertibility (I4) and weak invertibility (I5]). When k > 2, (strong)
invertibility of a differential form of degree k is no longer sufficient to ensure the existence of a solution
X to the equation txw = —o, where X is a vector field and o a given differential form of degree k — 1.
Indeed, the space of differential k£ — 1-forms has dimension (kfl), which is greater than the dimension of
the tangent space whenever (kfl) > n (when k& = 2, this gives n > 3). This subtlety is the reason why a
straightforward connection between the closed k-form w and its inverse antisymmetric k-tensor J cannot be
established, and Moser’s method cannot be generally applied to find a local coordinate change mapping w to
a flat (constant) k-form. The correspondence between generalized Hamiltonian mechanics and multisyplectic
geometry can however be recovered by properly taking into account the multiple invariants that characterize
generalized dynamics. In addition, a precise correspondence between generalized Hamiltonian mechanics
and classical Hamiltonian mechanics can be obtained, as described in section 3. In particular, we find that
classical Hamiltonian mechanics represents a subset of generalized Hamiltonian mechanics, in contrast with
the formulation of Nambu(FI) mechanics based on the fundamental identity.
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