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Abstract

Classical Hamiltonian mechanics, characterized by a single conserved Hamiltonian (energy) and sym-
plectic geometry, ‘hides’ other invariants into symmetries of the Hamiltonian or into the kernel of the
Poisson tensor. Nambu mechanics aims to generalize classical Hamiltonian mechanics to ideal dynamical
systems bearing two Hamiltonians, but its connection to a suitable geometric framework has remained elu-
sive. This work establishes a novel correspondence between generalized Hamiltonian mechanics, defined
for systems with a phase space conservation law (invariance of a closed form) and a matter conservation
law (invariance of multiple Hamiltonians), and multisymplectic geometry. The key lies in the invertibility
of differential forms of degree higher than 2. We demonstrate that the cornerstone theorems of classical
Hamiltonian mechanics (Lie-Darboux and Liouville) require reinterpretation within this new framework,
reflecting the unique properties of invertibility in multisymplectic geometry. Furthermore, we present
two key theorems that solidify the connection: i) any classical Hamiltonian system with two or more
invariants is also a generalized Hamiltonian system and ii) given a generalized Hamiltonian system with
two or more invariants, there exists a corresponding classical Hamiltonian system on the level set of all
but one invariant, with the remaining invariant playing the role of the Hamiltonian function.

1 Introduction

Classical Hamiltonian mechanics represents the mathematical structure underlying the laws of physics. It
describes the dynamics of ideal (not subject to dissipation) systems through conservation of energy (a property
of matter encoded in the Hamiltonian H) and, most importantly, the conservation of the ambient space (the
phase space characterized by the symplectic 2-form ω and the associated Liouville measure). In its most
general formulation, classical Hamiltonian mechanics arises as a noncanonical Hamiltonian theory [1, 2]
with a Poisson bracket assigned by a contravariant Poisson 2-tensor J . Remarkably, once the kernel of the
Poisson tensor J , spanned by the so-called Casimir invariants [3, 4], is appropriately factored out, a precise
correspondence can be identified between ω and J : essentially, one is the inverse of the other. This property
builds a duality between symplectic geometry and Poisson algebras, which can be understood in terms of the
Lie-Darboux [5, 6] and Liouville theorems. These theorems establish that given an n-dimensional Poisson
tensor J it is possible to identify local coordinates

(

p1, ..., pm, q1, ..., qm, C1, ..., Cs
)

, with n = 2m+ s, such
that the Lioville measure dp1 ∧ ...∧ dpm ∧ dq1 ∧ ...∧ dqm ∧ dC1 ∧ ...∧ dCs is invariant under the Hamiltonian
flow, which in turn satisfies canonical Hamiltonian equations on each level set of the Casimir invariants with
symplectic 2-form ω =

∑m
i=1 dp

i ∧ dqi.
The aim of generalized Hamiltonian mechanics is to replace the 2-dimensional building block dpi ∧ dqi of

classical phase space with a higher k-dimensional building block with k > 2, starting from the k = 3 case
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dpi∧dqi∧dri originally examined by Nambu [7]. It is common to refer to the case k = 3 as Nambu mechanics,
and to the corresponding bracket generating dynamics by contraction with k−1 = 2 Hamiltonians as a Nambu
bracket. It should be emphasized that a higher dimensional building block implies that one Hamiltonian is no
longer sufficient to generate the dynamics, because the contraction of a k-form with a vector field produces a
k−1-form. In particular, a generalized Hamiltonian theory of degree k requires k−1 Hamiltonians. Therefore,
another way of thinking about generalized Hamiltonian mechanics is to understand it as the mathematical
structure associated with the ideal dynamics of systems with more than one matter conservation law. This
interpretation is however somewhat naive because it hides the fact that the key issue is how a higher number
of Hamiltonians affects the phase space conservation law. In particular, we will see that in the type of
generalized Hamiltonian mechanics discussed in the present work the conservation of the symplectic 2-form
ω is replaced by the conservation of a closed differential form of degree k.

One may wonder why do we need to study generalized Hamiltonian mechanics in the first place. Indeed,
classical Hamiltonian systems may possess other invariants in addition to the Hamiltonian, such as the
Casimir invariants associated with the Poisson tensor J , or any conservation law arising from a symmetry
of the system as described by Noether’s theorem. The matter of the fact is that, as it will be shown in the
present study, a generalized Hamiltonian theory of degree k is not a subset of a classical Hamiltonian theory
with 1 Hamiltonian and k−2 additional conservation laws arising from symmetries of the Hamiltonian and/or
from the kernel of the Poisson tensor. In other words, there are generalized Hamiltonian systems that cannot
be described within the framework of classical Hamiltonian mechanics, and yet possess both phase space and
matter conservation laws.

Another more practical reason to investigate generalized Hamiltonian mechanics is that several physical
systems often arise with multiple fundamental invariants. In many cases there are 2 invariants, the first
representing the total energy of the system, while the second is usually associated with rotations (e.g. angular
momentum in a rigid body or enstrophy in an ideal fluid) or exhibits a topological character (for example,
helicity in an ideal fluid). In fact, the identification of Nambu brackets for fluid systems represents an active
area of research [8, 9, 10]. In addition, several applications of Nambu mechanics have been proposed. A non-
exhaustive list includes M-theory [11], bracket quantization [12, 13, 14, 15, 16], extension of Hamilton-Jacobi
theory to Nambu mechanics [17], and formulation of metriplectic ternary brackets to describe dissipation
[18].

Unfortunately, it is well known that the generalization of the notion of Poisson algebra arising in classical
Hamiltonian mechanics to generalized Hamiltonian systems is a non-trivial mathematical problem. The
reason is that the Jacobi identity [19], which is the Poisson bracket axiom guaranteeing the local existence
of the symplectic 2-form ω, does not admit a straightforward extension to the cases k > 2. Originally, a
Lie-algebraic formulation of Nambu mechanics was first provided in [20] which relied on an underlying Lie
bracket bearing a noncanonical Hamiltonian structure. Later, the so-called fundamental identity has been
proposed as replacement of the Jacobi identity [21]. The fundamental identity has the merit that the bracket
obtained by contracting the Nambu bracket with one of the two Hamiltonians is a Poisson bracket, i.e. it
satisfies the Jacobi identity. However, the formulation of Nambu mechanics in terms of the fundamental
identity suffers a limited range of applicability: even a fully antisymmetric constant contravariant 3-tensor
does not necessarily satisfy the fundamental identity. This is contrast with the Jacobi identity, which is
always satisfied by any antisymmetric constant contravariant 2-tensor. As a consequence, there are classical
Hamiltonian systems with 2 invariants that cannot be described by a Nambu bracket endowed with the
fundamental identity. The axiomatic formulation of Nambu mechanics is discussed in detail in [22, 23],
where the existence of a closed 3-form w preserved by the dynamics is proposed as an alternative to the
fundamental identity. This formulation has the advantage of being less restrictive than the fundamental
identity (all constant contravariant 3-tensors now qualify as Poisson 3-tensors). However, the theory requires
the subtle notion of invertibility of a differential form of degree k.

To avoid confusion, in the following we will refer to a generalized Hamiltonian theory of degree k in
the sense of Definition 2.1 of Section 2. Such theory is characterized by a phase space conservation law
(the invariance of a closed differential form of degree k) and a matter conservation law (the invariance of
k − 1 Hamiltonian functions). When k = 3, we may sometime talk about Nambu mechanics, and refer to
Nambu(FI) mechanics when dealing with the definition of Nambu mechanics in terms of the fundamental
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identity.
Building on the notion of generalized Hamiltonian mechanics formulated in [22, 23], the aim of this paper

is to relate a generalized Hamiltonian theory of degree k > 2 to multisymplectic geometry (the geometry
of closed differential forms) [27, 28] with the aid of the notion of invertibility of a differential form. As a
result, we recover a duality between generalized Hamiltonian mechanics and multisymplectic geometry (note
that here we use the term multisymplectic in a loose sense that does not explicitly include non-degeneracy
conditions, but simply refers to the availability of a closed differential form).

The present paper is organized as follows. In Section 2, we define the notion of generalized Hamiltonian
system. In Section 3, we prove two theorems connecting a generalized Hamiltonian theory of degree k with
classical Hamiltonian mechanics with two or more invariants. In particular, we find that i) any classical
Hamiltonian system with two or more invariants is also a generalized Hamiltonian system and ii) given a
generalized Hamiltonian system with two or more invariants there exists a corresponding classical Hamiltonian
system on the level set of all but one invariant, with the remaining invariant playing the role of the Hamiltonian
function. In Section 4, we explain how the cornerstone theorems of classical Hamiltonian mechanics (Lie-
Darboux and Liouville) require reinterpretation within the new framework, reflecting the unique properties
of invertibility in multisymplectic geometry, and prove Lie-Darboux and Liouville type theorems within the
generalized Hamiltonian setting. Section 5 discusses the role of the Jacobi identity in generalized Hamiltonian
mechanics, its relationship with the fundamental identity, as well as the availability of invariant measures. In
Section 6, we provide three examples of generalized Hamiltonian systems. In the first example, we show that
quasisymmetric magnetic fields [26] can be described as a generalized Hamiltonian system of degree k = 3
where the Hamiltonians are given by the magnetic flux function and the magnetic field strength. In the
second example, we exhibit the case of a classical Hamiltonian system with two invariants that can be cast as
a generalized Hamiltonian system of degree k = 3, but yet the corresponding Nambu bracket fails to satisfy
the fundamental identity. The third example concerns a 4-dimensional dynamical system governed by an
antisymmetric contravariant 2-tensor failing to satisfy the Jacobi identity, and yet bearing a 4-dimensional
generalized Hamiltonian structure of degree k = 4. We also show how the results of Theorem 3.3 below
can be applied to recover a classical Hamiltonian system on a 2-dimensional submanifold of the original
4-dimensional domain. Concluding remarks are given in Section 7.

1.1 Conventions on pairing and contraction of forms and multi-vectors

Here we summarize the notation and conventions adopted in this paper. Einstein summation convention on
repeated indices will be used. Moreover, when there is no ambiguity, a lower index will be used to specify
partial derivatives. For example, given a contravariant 2-tensor with components J ij we will often write
J ij
m = ∂J ij/∂xm, where xm denotes the mth coordinate.
For any vector space V denote by Λk(V ) the set of k-vectors and by Λk(V ∗) the set of k-forms over V .

For any smooth manifold M of dimension n, denote by Ωk(M) the set of smooth differential k-forms on M ,
by X k(M) the set of smooth k-vector fields on M , and by C∞(M) the set of smooth functions on M .

For any vector field X ∈ X (M), denote the interior product by

ιX : Ωk(M) → Ωk−1(M), α 7→ ιXα.

Further, we extend the interior product for any J ∈ Xm(M) so that, for decomposable elements which have
the form J = J1 ∧ . . . ∧ Jm, Ji ∈ X (M), the interior product is given by

ιJ = ιJm
. . . ιJ1

: Ωk(M) → Ωk−m(Ω).

The interior product is then defined for all J ∈ Xm(M) by linearity. Similarly, for any α ∈ Ω1(M) denote
the interior product by ια : X k(M) → X k−1(M), and for any w ∈ Ωm(M) define the interior product for
decomposable elements which have the form w = α1 ∧ . . . ∧ αm as ιw = ιαm . . . ια1 : X k(M) → X k−m(M),
and extend to all elements by linearity.

If p ∈ M and U is a local chart of p, we will denote by (x1, . . . , xn) : U → R
n as the coordinates of the

chart and let (∂1, ..., ∂n) and
(

dx1, ..., dxn
)

denote a basis of X (U) and dual basis of Ω(U), respectively. We
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will use the shorthand notation

∂i1...im = ∂i1 ∧ ...∧∂im dxi1...im = dxi1 ∧ . . .∧dxim .

With the above notation, the following local constructions of the interior product and natural pairing
between Ωk(M) and X k(M) can be inferred.

• Pairing: Extend the pairing 〈∂i, dxj〉 = δji at each point p ∈ U to basis elements of
∧k

TpM and
∧k

T ∗
pM according to

〈∂i1 ∧ ... ∧ ∂ik , dx
j1 ∧ ... ∧ dxjk〉 = δi1...ikj1...jk

, i1 < i2 < ... < ik, j1 < j2 < ... < jk, (1)

where δi1...ikj1...jk
= δi1j1 ...δ

ik
jk
. Observe that, for a given α ∈ Ωk (M) and J ∈ X k (M), it holds that

ιJα = 〈α, J〉 =: α (J).

• Contraction: As an example of local computation of contraction, take J ∈ X 2(U) and dH ∈ Ω(U).
The (left) contraction between J and dH can be evaluated as

ιdHJ = ιdH
∑

i<j

J ij∂ij = −J ijHj∂j , (2)

where Hj = ∂H/∂xj. Similarly, take J ∈ X 3(U) and dC ∈ Ω(U).

ιdHιdCJ = ιdH
∑

j<k

J ijkCi∂jk = −J ijkHjCk∂i. (3)

The contraction between forms and multivectors are (locally) can be locally defined through the pairing (1).
For example, for m < n and i < j < k we have

ιdxmn∂ijk = 〈dxmn, ∂ij〉∂k + 〈dxmn, ∂jk〉∂i − 〈dxmn, ∂ik〉∂j = δmn
ij ∂k + δmn

jk ∂i − δmn
ik ∂j . (4)

Similarly

ιdC∧dHJ =
∑

m<n,i<j<k

J ijk (CmHn − CnHm) ιdxmn∂ijk

=
∑

m<n,i<j<k

J ijk (CmHn − CnHm)
(

δmn
ij ∂k + δmn

jk ∂i − δmn
ik ∂j

)

=
∑

i<j<k

J ijk (CiHj − CjHi) ∂k + J ijk (CjHk − CkHj) ∂i + J ijk (CkHi − CiHk) ∂j

=−
∑

k<j

J ijk (HjCk − CjHk) ∂i

=− J ijkHjCk∂i

=ιdHιdCJ.

(5)

2 Generalized Hamiltonian Mechanics

The aim of this section is to define the framework of generalized Hamiltonian mechanics. In the following,
we shall assume smoothness of the involved quantities. Given a manifold M , a vector field X ∈ X (M), and
coordinates x =

(

x1, ..., xn
)

in a neighborhood U of a point p ∈ M , we consider a dynamical system governed
by the equations of motion

dxi

dt
= X i, i = 1, . . . , n (6)

where t denotes the time variable.
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2.1 Definition of some generalized Hamiltonian systems

The dynamical system (6) qualifies as a generalized Hamiltonian system according to the following definition:

Definition 2.1. Let M be a smooth manifold of dimension n ≥ k ≥ 2. A vector field X ∈ X (M) is called a
generalized Hamiltonian vector field of degree k whenever there exists a closed differential form w ∈ Ωk(M)
and k − 1 almost everywhere linearly independent exact 1-forms dHi, i = 1, ..., k − 1, such that

ιXw = −dH1 ∧ ... ∧ dHk−1. (7)

We call the Hi the Hamiltonian functions.

Equation (7) is referred to as the ‘Hamilton-de Donder-Weyl’ (HDW) equation by some authors [27].
Recalling Cartan’s homotopy formula for the Lie derivative LX and using the closure of w, equation (7)
implies

LXw = dιXw + ιXdw = 0. (8)

Equation (8) represents a phase space conservation law, indicating that it conserves the geometric structure
of M independently of the specific form of the Hamiltonian functions Hi, i = 1, ..., k − 1, which in turn
encode the physical properties of matter.

A 2-form is non-degenerate if, when considered as an antisymmetric matrix at any point p ∈ M , it is
invertible. When w is a non-degenerate 2-form , w is a symplectic form and the classical Hamiltonian structure
is recovered. Similar to the classical Hamiltonian structure, in the generalised case, the Hamiltonians Hi

usually correspond to the energy of the system and additional conservation laws that originate, for example,
from symmetries. See Section 6 for some examples. The conservation of the Hamiltonians can be deduced
from (7) and antisymmetry by contracting the k-form w with X twice:

0 = ι2Xw = −
(

ιXdH1
)

dH2 ∧ ... ∧ dHk−1 − ...− (−1)
k−2 (

ιXdHk−1
)

dH1 ∧ ... ∧ dHk−2. (9)

Since by definition the 1-forms dHi, i = 1, ..., k − 1, are linearly independent almost everywhere, then
dH1 ∧ ... ∧ dHk−1 6= 0 almost everywhere. By the assumed smoothness of X and the Hi, it follows that
ιXdHi = 0 for all i = 1, ..., k − 1.

More generally, if a vector field X a priori only preserves the closed k-form w then

LXw = 0 ⇐⇒ dιXw = 0.

It follows that ιXw = −σ where σ ∈ Ωk−1(M) is closed. In general, there may not exist Hamiltonian
functions Hi, i = 1, . . . , k − 1 such that σ = dH1 ∧ . . . ∧ dHk−1. Hence, although X preserves w, it may not
be a generalised Hamiltonian vector field. This motivates the following definition.

Definition 2.2. Let M be a smooth manifold of dimension n ≥ k ≥ 2 and w a closed k-form on M . A
vector field X ∈ X (M) is called a HDW (Hamilton-de Donder-Weyl) vector field whenever there exist a
closed (k − 1)-form σ on M such that

ιXw = −σ. (10)

The k − 1 form σ is the associated Hamiltonian k − 1-form.

Note that ιXσ = −ι2Xw = 0 and dσ = 0 imply

LXσ = 0 (11)

Physically, the conservation of σ may be regarded as a matter conservation law, in contrast with the con-
servation of w. Equation (10) thus relates the properties of space w to the properties of matter σ through
the vector field X . These observations suggest that an even more general class of dynamical systems could
be introduced, which does not require the forms w and σ to be closed. Such systems are governed by the
equations

LXw = 0, LXσ = 0. (12)

In this framework, the phase space k-form w and the Hamiltonian k − 1-form σ are not necessarily closed
differential forms. In this more general class of dynamical systems, space and matter are not so obviously
related as there is no immediate relation ιXw = −σ. In the following, we shall be concerned only with
generalized Hamiltonian systems as defined in Definition 2.1.

5



2.2 Invertibility and Poisson tensors

When w is a non-degenerate 2-form, equation (7) uniquely determines the vector field X for a given Hamil-
tonian function H1. However, when k > 2, a dimensional obstruction arises to the solvability of equation (7)
for X . The obstruction depends upon the k-form w and the Hamiltonians H1, ..., Hk−1. Indeed, consider
the hat-map

ŵ : X (M) → Ωk−1 (M) , ŵ(X) = ιXw,

which sends vector fields into k − 1-forms. The map ŵ is linear and can be surjective at a point p ∈ M only
if dim (X (M)) ≥ dim

(

Ωk−1 (M)
)

. Explicitly, the dimensions of the spaces give the necessary condition for
surjectivity of ŵ as,

n ≥
(

n

k − 1

)

. (13)

When (13) is violated, there exist k − 1 forms σ ∈ Ωk−1 (M) with no generating vector field X such that
ιXw = −σ. For example, for k = 3, eq. (13) gives the condition n ≤ 3, while k = 2 returns n ≥ n.
This behavior is the first nontrivial property of equation (7) that separates classical Hamiltonian mechanics
(k = 2) from generalized Hamiltonian systems (k > 2).

If ker (ŵ) := {Y ∈ X (M) : ιY w = 0} 6= ∅ then equation (7) does not determine X uniquely. Indeed,
X+Y also satisfies eq. (7) for any Y ∈ ker (ŵ). Thus, the phase space conservation law and the conservation
of the k − 1 Hamiltonians do not provide enough information to determine the equations of motion X . It is
here that the notions of invertibility of differential forms and Poisson k-tensor come into play. In this study
we will be concerned with the following notions of invertibility for k-forms and k-vectors:

Definition 2.3. Let w ∈ Ωk (M) and J ∈ X k (M). We say that J is a (strong) inverse of w (and vice versa)
if

ιιXwJ = X, ∀X ∈ X (M) . (14)

Definition 2.4. Let w ∈ Ωk (M) and J ∈ X k (M). Consider a smooth m-dimensional distribution ∆ on M .
We say that J is a ∆-inverse of w (and vice versa) if

ιιXwJ = X ∀X ∈ X∆(M), (15)

where X∆(M) is the space of all smooth sections of ∆.

When k = 2, in local coordinates, the (strong) invertibility (14) of the symplectic 2-form ω =
∑

i<j ωijdx
ij

corresponds to the invertibility of the covariant 2-tensor ωij . The inverse J =
∑

i<j J ij∂ij ∈ X 2 (M) such

that ωijJ jk = δkj is the Poisson 2-tensor. Furthermore, the closure of ω translates into the Jacobi identity
satisfied by J . The relationship between the properties of ω and those of J are discussed in detail in [22].
When ω is invertible, X = −ιdHJ = J ijHj∂i uniquely, with H = H1.

More generally, the condition for invertibility (14) for a k-form w is stated in a given chart as

∑

i1<...<ik−1

wai1...ik−1
J i1...ik−1b = δba, (16)

where J ∈ X k (M) is a k-vector with components J i1...ik of the corresponding k-times contravariant antisym-
metric tensor. A necessary condition for the inverse (14) to exist is that the tensor wi1...ik has maximum rank
n. This necessary condition is equivalent to the hat-map ŵ being injective. An alternative computation of
the rank is given in [23]. There, the rank of wi1...ik is locally computed as the number of linearly independent
columns in the n × nk−1 matrix wi1(i2...ik), where i1 and (i2...ik) identify rows and columns respectively.

Indeed, when w has rank n, the matrix wi1(i2...ik) admits a right-inverse J (i1...ik−1)ik of dimension nk−1 × n,
although this tensor is not necessarily antisymmetric.
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If an inverse J of w exists, then it can be used to compute the solution to ιXw = −σ. Using local
coordinates and setting

σ = dH1 ∧ ... ∧ dHk−1 =
∑

i1<...<ik−1

σi1...ik−1
dxi1...ik−1 ,

the equation ιXw = −σ becomes

Xjwji1...ik−1
= −σi1...ik−1

, i1, ..., ik−1 = 1, ..., n. (17)

Suppose that, given w and H1, ..., Hk−1, a solution X of equation (17) exists. If such J exists, and for a
given σ,w there is a solution X to eq. (17), then X is given locally as

Xj = −
∑

i1<...<ik−1

J i1...ik−1jσi1...ik−1
, j = 1, ..., n. (18)

As it will be clear from Section 3, the notion of invertibility (14) is strong. I will be seen that there are
cases of k-forms w which do not admit an inverse, yet, a k-vector J and (k− 1)-form σ = dH1 ∧ . . .∧ dHk−1

exist on M such that there is a solution X of ιXw = −σ and the solution can be written as X = −ισJ . In
particular, since the vector field X solving ιXw = −σ preserves all Hamiltonian functions H1, ..., Hk−1, it is
sufficient to consider the weaker notion of ∆-invertibility of the k-form w with the distribution ∆ defined at
a point p ∈ M by

∆p =
{

Y ∈ TpM : ιY (dH
i|p) = 0, i = 2, ..., k − 1

}

.

That is, any smooth section of ∆, say Y ∈ X∆, is a vector field tangent to the n − k + 2 dimensional
submanifolds

Σh =
{

p ∈ M : H2 (p) = h2 ∈ R, . . . , Hk−1 (p) = hk−1 ∈ R
}

.

In this study, we adopt the following definition of Poisson k-tensor J , leaving the discussion of its rela-
tionship with the inverse of the symplectic form w to Sections 3 and 5.

Definition 2.5. A multivector field J ∈ X k (M) is called a Poisson tensor of degree k (or simply Poisson
k-tensor) whenever there exist k−2 linearly independent exact 1-forms dC1, ..., dCk−2 such that the bivector
J ∈ X 2 (M) defined by

J = ιdC1 ....ιdCk−2J, (19)

is a Poisson 2-tensor in the standard sense.

For any Poisson k-tensor, the functions C1, ..., Ck−2 are Casimir invariants of corresponding Poisson 2-
tensor J . Let dH = dH1 and dHi = dCi−1, i = 2, ..., k − 1. Then, the equations of motion associated with
a Poisson k-tensor J take the form

X = −ιdHJ = −ιdH1 ...ιdHk−1J. (20)

When k = 2, equation (20) locally gives X = J ijHj∂i. When k = 3, equation (20) gives X = J ijkHjCk∂i
with H1 = H and H2 = C. Due to antisymmetry of J i1...ik , equation (20) preserves the Hamiltonians
H1, ..., Hk−1.

3 Correspondence between classical Hamiltonian mechanics and

generalized Hamiltonian mechanics of degree k

In this section, we establish several results connecting classical Hamiltonian mechanics to generalized Hamilto-
nian mechanics of degree k for a special class of closed k-forms w. We begin with the following statement that
demonstrates a large class of generalized Hamiltonian systems that are derived from classical Hamiltonian
systems endowed with multiple invariants.
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Theorem 3.1. Let ω ∈ Ω2(M), consider the functions H,C1, . . . , Ck−2 ∈ C∞(M), and define dC :=
dC1 ∧ . . . ∧ dCk−2 ∈ Ωk−2(M). If there exists a vector field X on M such that

dω ∧ dC = 0, (ιXω + dH) ∧ dC = 0, ιXdC = 0, (21)

then, the k-form
w = ω ∧ dC, (22)

satisfies
ιXw = −dH ∧ dC, dw = 0. (23)

That is, X is a generalised Hamiltonian vector field of w with Hamiltonians H,C1, . . . , Ck−2.

Proof. Observe that
ιXw = (ιXω) ∧ dC + ω ∧ ιXdC = −dH ∧ dC,

and
dw = dω ∧ dC = 0,

as desired.

Theorem 3.1 implies that given a classical Hamiltonian system ιXω = −dH , dω = 0, and k− 2 invariants
C1, ..., Ck−2, there always exists a corresponding generalized Hamiltonian system of degree k. An analogous
result can be obtained in terms of k-vector fields.

Proposition 3.2. Let J ∈ X 2 (M) denote a Poisson 2-tensor with k − 2 Casimir invariants C1, ..., Ck−2 ∈
C∞ (M), dCi ∈ ker (J ), i = 1, ..., k−2, such that the 1-forms dC1, ..., dCk−2 are linearly independent. Then,

J = N ∧ J , (24)

is a Poisson k-tensor with N = nk−2 ∧ ... ∧ n1 ∈ X k−2 (M), ni ∈ X (M), ιni
dCj = δji , i, j = 1, ..., k − 2.

Proof. Choose vector fields n1, ..., nk−2 ∈ X (M) such that ιni
dCj = ιdCjni = δji , i, j = 1, ..., k− 2. We have

ιdC1 ...ιdCk−2J = J , (25)

where we used the fact that the Ci, i = 1, ..., k− 2, are Casimir invariants of the Poisson 2-tensor J . Hence,
from Definition 2.5 we see that J is a Poisson k-tensor.

Proposition 3.2 implies that given a classical Hamiltonian system with Poisson 2-tensor J , Hamiltonian
H , and Casimir invariants C1, ..., Ck−2, there always exist a corresponding generalized Hamiltonian system
of degree k with Poisson k-tensor J = N ∧J and k− 1 Hamiltonian functions H,C1, ..., Ck−2 such that the
equations of motion take the form X = −ιdHJ = −ιdHιdC1 ...ιdCk−2J .

Remarkably, the results above admit converse statements; given a generalized Hamiltonian system of
degree k it is possible to recover a classical Hamiltonian system under suitable assumptions on w or J . To
see this, we introduce the following notation. Let C1, . . . , Cm ∈ C∞(M) and define dC := dC1 ∧ . . . ∧ dCm.
Moreover, let

Reg(C) := {p ∈ M : dC|p := (dC1 ∧ . . . ∧ dCm)|p 6= 0}
be the set of regular points of dC. Finally, denote the regular level sets by

Σc := {p ∈ Reg(C) : C(p) = c ∈ R
k−2}

and set ic : Σc →֒ M as the inclusion operator.
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Theorem 3.3. Let w ∈ Ωk (M) be a closed k-form and consider C1, . . . , Ck−2 ∈ C∞(M). Suppose that for
every smooth function H ∈ C∞(M) there exists a vector field XH ∈ X (M) such that

ιXH
w = −dH ∧ dC. (26)

Then, there exists a 2-form ω ∈ Ω2 (Reg(C)) such that

w = ω ∧ dC, dω ∧ dC = 0 in Reg (C). (27)

In particular, any regular level set Σc of C is a symplectic manifold with symplectic form ω̃ := i∗cω and

ιX̃H
ω̃ = −dH̃, (28)

where X̃H is the restriction of XH to Σc and H̃ := i∗cH.

Proof. Let n1, . . . , nk−2 be a set of vector fields on Reg(C) such that ιni
dCj = δji . Define

ω = ιnk−2
. . . ιn1

w = ιNw (29)

where N = n1 ∧ . . . ∧ nk−2. Then, for any XH satisfying ιXH
w = −dH ∧ dC we have

ιXH
ω = ιXH

ιNw = (−1)k−2ιN ιXH
w = (−1)k−1ιN (dH ∧ dC) = −dH + (ιni

dH)dCi. (30)

Applying i∗c to both sides of Equation (30) yields the desired Equation (28), namely, ιX̃H
ω̃ = −dH̃. The

restriction of XH to Σc is well-defined as ιXH
dCi = 0 for i = 1, . . . , k − 2.

We now show that w = ω ∧ dC and dω ∧ dC = 0 on Reg(C). Fix p ∈ Reg(C) and let H1, . . . , Hn−k+2 be
functions on M such that (dH1 ∧ . . . ∧ dHn−k+2 ∧ dC1 ∧ . . . ∧ dCk−2)|p 6= 0. Such functions can always be
found in a local chart about p and extended smoothly to the entirety of M . In particular, we may take local
coordinates

(

x1, ..., xn
)

=
(

H1, ..., Hn−k+2, C1, ..., Ck−2
)

. Recalling (30), we see that

ιXH
(ω ∧ dC − w) = 0 ⇐⇒ ω ∧ dC − w = ξ, (31)

where ξ ∈ Ωk (Reg(C)) is a k-form such that ιXH
ξ = 0. Due to the arbitrariness of H , equation (28) implies

that ω̃ is non-degenerate and thus invertible on Σc with inverse J̃ ∈ X 2 (Σc) (this also implies that n − k
must be even). Hence, the equation ιXH

ξ = 0 can be written in components as

X i
Hξij1...jk−1

= −H̃mJ̃miξij1...jk−1
= 0, j1, ..., jk−1 = 1, ..., n. (32)

However, the invertibility of ω̃ on Σc implies that J̃ has full rank on Σc. Combined with the arbitrariness
of H , it follows that ξij1,...,jk−1

= 0 for all i = 1, ..., n − k + 2 and j1, ..., jk−1 = 1, ..., n. Now suppose that
ξij1,...,jk−1

6= 0 for some i between n − k + 3 and n. Since ξ is a k-form, at least 1 of the indexes, say j1,
belongs to 1, ..., n− k + 2. On the other hand, antisymmetry implies that ξij1...jk−1

= −ξj1ij2....jk−1
= 0.

We have thus shown that

w = ω ∧ dC in Reg(C). (33)

This also implies that dω ∧ dC = dw = 0 as desired. We now show that the non-degenerate 2-form ω̃ = i∗cω
is a symplectic form on each Σc. First, from the fact that dω ∧ dC = 0 we have that

0 = ιN (dω ∧ dC) = (−1)k−2dω +
∑

k

αk ∧ dCk

where αk are 2-forms. Then dω̃ = di∗cω = i∗cdω = 0 so that ω̃ is closed. This concludes the proof.

The following is a corollary of Theorem 3.3.
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Corollary 3.4. Consider the hypothesis of Theorem 3.3. Then, there exists a k-vector J ∈ X k (Reg(C))
such that

XH = −ιdH∧dCJ = −ιdHJ , (34)

where J ∈ X 2 (Reg(C)). Furthermore, the restriction J̃ ∈ X 2 (Σc) of J to X 2 (Σc) is a Poisson 2-tensor,
and, up to sign, J is a ∆-inverse of w with ∆p = {Y ∈ Tp (Reg(C)) : ιY (dC|p) = 0}.
Proof. By Theorem 3.3, the 2-forms ω̃c := i∗cω are closed and have full rank on the corresponding regular
level set Σc. Consequently, each ω̃c admits an inverse on the corresponding Σc, that is, a Poisson 2-tensor
J̃c ∈ X 2 (Σc) such that ιιY ω̃c

J̃c = Y for any Y ∈ X (Σc).
Due to the smoothness of ω in Reg(C), the Poisson 2-tensors J̃c are smooth in c and so there exists a

2-tensor J ∈ X 2 (Reg(C)) such that, for any Σc, we have (ic)∗J̃ |p = J |p for all p ∈ Σc. In particular, there

are local coordinates
(

x1, ..., xn
)

=
(

x1, ..., x2m, C1, ..., Ck−2
)

so that J =
∑2m

i<j J̃ ij∂i ∧ ∂j . It follows that,
for any Y ∈ X (Reg(C)) everywhere tangent to Σc, we have

ιιY ωJ = Y iωijJ jm∂m = Y iω̃ij J̃ jm = Y i∂i. (35)

Hence, J is a ∆-inverse of ω.
Now consider J ∈ X k (Reg(C)) with

J = (−1)k−2N ∧ J , N = n1 ∧ ... ∧ nk−2. (36)

Note that ιdCJ = (−1)k−2J . Now, for any Y ∈ X∆(Reg(C)) it holds from Theorem 3.3 that ιY w =
ιY (ω ∧ dC) = (ιY ω) ∧ dC. Then, using (35),

ιιY wJ = ι(ιY ω)∧dCJ = ι(ιY ω)ιdCJ = ι(ιY ω)J = Y. (37)

That is, J is a ∆-inverse of w.
Finally, if XH solves ιXH

w = −dH ∧ dC, then XH ∈ X∆(Reg(C)), thus,

XH = ιιXH
wJ = −ιdH∧dCJ = −ιdHJ . (38)

4 Form flatness, Lie-Darboux theorems, and Liouville measures

In this section we explore how the cornerstone theorems of classical Hamiltonian mechanics are modified in
a generalized Hamiltonian theory of degree k. First, we show the following Lie-Darboux type theorem for
closed 3-forms associated to Hamiltonian systems with two independent conserved quantities.

Definition 4.1. Let ω ∈ Ω2 (M) denote a (not necessarily closed) 2-form and dC ∈ Ω (M) an exact 1-form
on M . Then ω is said to be of constant rank with respect to dC in a set U if the 2-form

ωC(x)|x := i∗C(x)(ω|x)

has the same rank for all x ∈ U .

Theorem 4.2. Let w be a closed 3-form on M that decomposes as w = ω ∧ dC with ω ∈ Ω2 (M) and
dC ∈ Ω (M). Then, for every point x ∈ M such that ω is of constant rank with respect to dC in a neighborhood
of x, there exist a neighborhood U of x and a coordinate system

(

p1, ..., pℓ, q1, ..., qℓ, G1, ..., Gτ
)

with n = 2ℓ+τ
such that

w = ω0 ∧ dC, ω0 =

ℓ
∑

i=1

dpi ∧ dqi in U, (39)

where 2ℓ is the rank of ω̃C(x) := i∗
C(x)ω at x.
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Proof. Let Ũ be the neighborhood on which ω is constant rank 2ℓ with respect to dC. Choosing local
coordinates

(

x1, ..., xn
)

=
(

x1, ..., xn−1, C
)

in Ũ of x, we have

ω =
∑

i<j

ωijdx
ij =

n−1
∑

i=1

ωindx
i ∧ dC +

n−1
∑

i<j

ωijdx
ij . (40)

Define ω′ =
∑n−1

i<j ωijdx
ij and observe that the rank of ω′ is constant in Ũ if and only if ω is of constant

rank with respect to dC in Ũ . By assumption, it follows that ω′ is of constant rank 2ℓ in Ũ .
Evidently w = ω′ ∧ dC in Ũ and, if ω̃c := i∗cω and ω̃′

c := i∗cω
′, then ω̃c = ω̃′

c. Since dw = dω′ ∧ dC = 0,
it follows that dω̃′

c = i∗cdω
′ = 0 in any local level set Σc ∩ Ũ . Then, by the generalised Lie-Darboux theorem

[6], there exists a neighborhood U ⊆ Ũ of x and n − 1 local coordinates
(

p1, ..., pℓ, q1, ..., qℓ, G1, ..., Gτ−1
)

,
τ = n− 2ℓ such that

ω̃c = ω̃′
c =

ℓ
∑

i=1

dpi ∧ dqi in Σc ∩ U. (41)

Moreover, these coordinates depend smoothly on c. The smooth dependence on c allows the coordinates
pi, qi : C∞ (Σc ∩ U) → R to also define smooth functions pi, qi : C∞ (U) → R. Indeed, they have the form
pi
(

x1, ..., xn−1, C
)

and qi
(

x1, ..., xn−1, C
)

, i = 1, ..., ℓ. Finally, observe that
(

ω′ −
ℓ
∑

i=1

dpi ∧ dqi

)

∧ dC = 0 in U. (42)

Then,

w =
ℓ
∑

i=1

dpi ∧ dqi ∧ dC = ω0 ∧ dC. (43)

Corollary 4.3. Let w be a closed 3-form on M that decomposes as w = ω ∧ dC with ω ∈ Ω2 (M) and
dC ∈ Ω (M). Assume that x ∈ M is such that ω is of constant rank with respect to dC in a neighborhood
of x, and let (p1, . . . , pl, q1, . . . , ql, G1 . . . , Gτ ) be the Darboux coordinates guaranteed from Theorem 4.2.
Then, given a 1-form dH ∈ Ω (M), linearly independent from dC in U , the local phase space measure
dΠ = dp1 ∧ ... ∧ dpℓ ∧ dq1 ∧ ... ∧ dqℓ ∧ dG1 ∧ ... ∧ dGτ is an invariant measure in U for the generalized
Hamiltonian system X ∈ X (U) such that

ιXw = −dH ∧ dC, (44)

provided that such X exists. In addition,

ιX̃ ω̃0 = −dH̃ in Σc, (45)

where ω̃0 = i∗cω0, H̃ = i∗cH, and X̃ denotes the restriction of X to Σc.

Proof. Let X ∈ X (U) solve system (44). Recalling that, by hypothesis, dH and dC are linearly independent
in U and noting that 0 = ιXιXw = − (ιXdH) dC + (ιXdC) dH , it follows that ιXdH = ιXdC = 0. On the
other hand, ιXw = ιXω0 ∧ dC = −dH ∧ dC, which implies

ιX̃ ω̃0 = −dH̃ in Σc ∩ U. (46)

Since dω̃0 = 0, equation (46) defines a Hamiltonian system with invariant measure
(

∧ℓ
i=1 dp

i ∧ dqi
)

∧ dG1 ∧
... ∧ dGτ−1, τ = n− 2ℓ in Σc ∩ U . Set

(

G1, ..., Gτ
)

=
(

G1, ..., Gτ−1, C
)

. It follows that

dΠ =

(

ℓ
∧

i=1

dpi ∧ dqi

)

∧ dG1 ∧ ... ∧ dGτ , (47)

defines an invariant measure for X in U .
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Theorem 4.2 shows that, under appropriate hypothesis, the 3-form w = ω ∧ dC can be flattened near any
point x with a neighbourhood that ω is of constant rank with respect to dC in. This is the essence of the
usual Lie-Darboux theorem for symplectic forms. More generally, we have the following definition of a locally
flat point x ∈ M .

Definition 4.4. A k-form w on a manifold M is said to be locally flat near x ∈ M if there exists coordinates
(x1, . . . , xn) on a neighbourhood U of x such that

w =
∑

1≤i1<···<ik≤n

Ai1...ikdx
i1...ik

with Ai1...ik ∈ R constant for all 1 ≤ i1 < · · · < ik ≤ n.

In contrast with symplectic geometry, the invertibility of a k-form w is not sufficient to guarantee the
existence of a local flattening diffeomorphism [27, 22, 23]. The following proposition provides flatness condi-
tions for a class of closed k-forms w by application of Moser’s method. This result is then used to construct
examples of 3-form flattening.

Proposition 4.5. Let w be a closed k-form on M and let (y1, . . . , yn) be local coordinates in a neighborhood
U of a given point x ∈ M . Define w0 ∈ Ωk(U) and Z0 ∈ X (U) by

w0 =
∑

1≤i1<...<ik≤n

Ai1...ikdy
i1...ik , Z0 =

1

k
yi∂i, (48)

where all Ai1...ik ∈ R. Further, suppose that there exists vector fields Xt, Z ∈ X (M) so that, with appropriate
restriction,

LZw0 = w, (49a)
(

LtXt
LZ − LZ0−Z−(1−t)Xt

)

w0 = 0, . (49b)

If the flow Φt of Xt is well-defined for all (x0, t) ∈ U × [0, 1] then there exists coordinates
(

x1, ..., xn
)

in U
such that

w =
∑

1≤i1<...<ik≤n

Ai1...ikdx
i1...ik in U. (50)

Proof. We apply Moser’s argument to the family of closed k-forms wt = tw + (1− t)w0. We want to
construct a family of diffeomorphisms Φt so that Φ∗

twt = w0. If such a family exists, then in particular,
Φ∗

1w1 = Φ∗
1w = w0, and Φ1 is hence the desired coordinate transformation. To achieve this, we show the

desired transformations Φt is given by the flow of the non-autonomous vector field Xt.
Observe that

d

dt
Φ∗

twt = Φ∗
t (∂twt + LXt

wt) = Φ∗
t (w − w0 + LXt

wt)

Using the fact that w0 = LZ0
w0 and that by assumption LZw0 = w, it follows that

d

dt
Φ∗

twt = Φ∗
t

((

LtXt
LZ − LZ0−Z−(1−t)Xt

)

w0

)

= 0,

with the last equality holding by assumption. It follows that Φ∗
twt = Φ∗

0w0 = w0 whenever Φt is well-defined.
By assumption Φt is well defined for t ∈ [0, 1] and all x0 ∈ U and the result follows.

Remark 4.6. If a coordinate change mapping a k-form w into the flat form w0 has to be found by Moser’s
method, it is necessary that w = LZw0 for some Z ∈ X (M). Indeed, evaluating ∂twt + LXt

wt at t = 0, and
recalling that w0 = LZ0

w0, one obtains Z = Z0 −X0.
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Remark 4.7. Consider the setting of Proposition 4.5. Denote with Y ∈ X (M) any Lie symmetry of w0 so
that LY w0 = 0, and suppose that ∂Xt/∂t = 0. Then, equation (49b) leads to the system of equations

LXt
LZ−Z0

w0 = 0, LZ−Z0−Xt
w0 = 0. (51)

Setting Xt = X and Z = Z0 −X + Y , one arrives at the equation

L2
Xw0 = 0. (52)

Hence, a flattening coordinate change for the form w = LZw0 = (1− LX)w0 can be constructed by looking
at solutions X of equation (52) and the flow Φt.

Example 4.8. Consider the 3-form w0 = dx123 + dx124 in R
4. We look for a solution of equation (52) in the

form X = X3∂3 +X4∂4. We have

L2
Xw0 = dιX

∂
(

X3 +X4
)

∂xi
dx12i = d

{[

X3∂
(

X3 +X4
)

∂x3
+X4∂

(

X3 +X4
)

∂x4

]

dx12

}

=
∂

∂x3

[

X3∂
(

X3 +X4
)

∂x3
+X4 ∂

(

X3 +X4
)

∂x4

]

dx123 +
∂

∂x4

[

X3 ∂
(

X3 +X4
)

∂x3
+X4 ∂

(

X3 +X4
)

∂x4

]

dx124.

(53)

This quantity vanishes provided that

X3∂
(

X3 +X4
)

∂x3
+X4 ∂

(

X3 +X4
)

∂x4
= f

(

x1, x2
)

. (54)

An explicit solution can be obtained, for example, by setting X3 = X4 =
√

(x3 + x4) f/2 for
(

x3 + x4
)

f ≥ 0.
In this case,

w = LZ0−Xw0 = w0 − dx12 ∧ d
√

2 (x3 + x4) f. (55)

Let us determine Moser’s coordinate change. For simplicity, we assume f ≥ 0. Since X1 = X2 = 0, we have
x1 = x1

0 as well as x2 = x2
0. We must further solve

dxi

dt
=

√

(x3 + x4) f

2
, xi (0) = xi

0, i = 3, 4. (56)

We find

x3 =
x3
0 − x4

0

2
+

1

2

(

√

x3
0 + x4

0 +

√

f

2
t

)2

, x4 =
x4
0 − x3

0

2
+

1

2

(

√

x3
0 + x4

0 +

√

f

2
t

)2

. (57)

Using these expressions, it follows that

dx123 + dx124 = dx12 ∧ d

(

√

x3
0 + x4

0 +

√

f

2
t

)2

= dx123
0 + dx124

0 + tdx12
0 ∧ d

√

2 (x3
0 + x4

0) f. (58)

Noting that
√

x3
0 + x4

0 =
√
x3 + x4 −

√

f
2 t, we obtain the desired result

dx123
0 + dx124

0 = dx123 + dx124 − tdx12 ∧ d
√

2 (x3 + x4) f. (59)

Example 4.9. Consider the 4-form w0 = dx1234+dx1256 in R
6. Let’s consider a region x3+x4 ≥ 0, x5+x6 ≥ 0.

Then, the vector field

X = f
(

x1, x2, x3 − x4
)

√

x3 + x4 (∂3 + ∂4) + g
(

x1, x2, x5 − x6
)

√

x5 + x6 (∂5 + ∂6) , (60)

where f
(

x1, x2, x3 − x4
)

and g
(

x1, x2, x5 − x6
)

are arbitrary functions of their arguments, satisfies L2
Xw0 =

0. The correponding 4-form w = (1− LX)w0 is

w = w0 −
f√

x3 + x4
dx1234 − g√

x5 + x6
dx1256. (61)
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5 Remarks on the Jacobi identity and invariant measures in gen-

eralized Hamiltonian mechanics

In this section we explore some of the consequences of the generalization of Hamiltonian mechanics introduced
in the previous sections. In particular, we discuss the formulation of the Jacobi identity and the availability
of invariant measures in generalized Hamiltonian theories of degree k.

Proposition 5.1. Let J ∈ X k (M) denote a Poisson k-tensor. Then, J satisfies the Jacobi indentity in
terms of the Poisson bracket

{f, g} = ιdf ιdgιdC1 ...ιdCk−2J, (62)

where dC1, ..., dCk−2 are those exact 1-forms such that ιdC1 ...ιdCk−2J = J is a Poisson 2-tensor, and f, g ∈
C∞ (M).

Proof. This follows from the definition of Poisson k-tensor: the 2-tensor J = ιdC1 ...ιdCk−2J is a Poisson
2-tensor, and thus satisfies the Jacobi identity.

It is possible to express the Jacobi identity in terms of the components of J in a local coordinate system:

Proposition 5.2. Let
(

x1, ..., xn
)

=
(

x1, ..., xn−k+2, C1, ..., Ck−2
)

denote a local coordinate system in a
neighborhood U ⊂ M and consider a Poisson k-tensor J ∈ X k (M) such that ιdC1 ...ιdCk−2J = J is a Poisson
2-tensor. Then, in U , the Jacobi identity reads as

J imr...nJjℓr...n
m + Jjmr...nJℓir...n

m + Jℓmr...nJ ijr...n
m = 0 ∀i, j, ℓ = 1, ..., n, r = n− k + 3. (63)

Proof. Note that

ιdC1 ...ιdCk−2J = σ
∑

i<j

J ijr...n∂ij , r = n− k + 3, (64)

where σ is a sign factor. It is now clear that (63) is the Jacobi identity for the Poisson 2-tensor
∑

i<j J
ijr...n∂ij ,

where r = n− k + 3.

Remark 5.3. Any locally flat k-tensor J ∈ X k (M) is a Poisson k-tensor in any sufficiently small neighborhood
U ⊂ M . Indeed, denoting with

(

x1, ..., xn
)

the local flattening coordinates such that J i1...ik ∈ R, the 2-tensor
ιdxn−k+3...ιdxnJ has constant components, and thus locally defines a Poisson 2-tensor.

Poisson k-tensors also has a relation to the fundamental identity encountered in the axiomatic formulation
of Nambu(FI) mechanics. The fundamental identity for the triple bracket {·, ·, ·} : C∞ (M) × C∞ (M) ×
C∞ (M) → C∞ (M) describes distribution of time derivatives [21],

d

dt
{f, g, h} =

{

df

dt
, g, h

}

+

{

f,
dg

dt
, h

}

+

{

f, g,
dh

dt

}

, (65)

where time evolution is assigned according to df/dt = {f,H,C} = J ijkfiHjCk with f, g, h, C,H ∈ C∞ (M).

Proposition 5.4. Let
(

x1, x2, x3
)

=
(

x1, x2, C
)

denote a local coordinate system in a neighborhood U ⊂ M .
If J ∈ X 3 (M) satisfies the fundamental identity, then J satisfies the Jacobi identity,

J imnJjkn
m + JjmnJkin

m + JkmnJ ijn
m = 0 ∀i, j, k = 1, ..., n. (66)

The converse is not true: a 3-tensor J satisfying the Jacobi identity is not guaranteed to satisfy the funda-
mental identity.
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Proof. Explicitly, equation (65) gives the conditions for all i, j, k, u, v = 1, ..., n,

JuvqJ ijk
u = JujkJ ivq

u + JukiJjvq
u + JuijJkvq

u , (67a)

0 = J ijkJuvq + JqjkJuiv + JujkJ iqv. (67b)

In equation (67a), set q = k = n to obtain,

JuvnJ ijn
u = JujnJ ivn

u + J iunJjvn
u , (68)

which is equivalent to equation (66). It is however clear that (66) is not sufficient to fulfill (67a) and (67b).

Section 6.2 below gives an explicit example in which a Poisson 3-tensor fails to satisfy the fundamental
identity.

Proposition 5.5. Let J ∈ X k (M) denote a Poisson k-tensor. Assume that the associated Poisson 2-tensor
ιdC1 ...ιdCk−2J has constant rank 2m = n − s in M . Then, J admits a local ∆-inverse w ∈ Ω3 (U): for any
p ∈ M there exists a neighborhood U of p and a local coordinate system

(

x1, ..., xn
)

=
(

x1, ..., x2m, C1, ..., Cs
)

,
s ≥ k − 2, such that the local ∆-inverse w has expression

w = ωc ∧ dC1 ∧ ... ∧ dCk−2, ωc =

m
∑

i=1

dxi ∧ dxm+i in U, (69)

with ∆ =
{

X ∈ X (U) : ιXdC = 0, dC = dC1 ∧ ... ∧ dCs
}

.

Proof. Since J is a Poisson k-tensor, we may choose coordinates
(

x1, ..., xn
)

=
(

x1, ..., x2m, C1, ..., Cs
)

in
a sufficiently small neighborhood U of any p ∈ M . Here, C1, ..., Ck−2 are those functions such that
ιdC1 ...ιdCk−2J is a Poisson 2-tensor, while dCk−1, ..., dCs are those additional exact 1-forms belonging to
the kernel of ιdC1 ...ιdCk−2J . Since ιdC1 ...ιdCk−2J is a Poisson 2-tensor, the local coordinates can be cho-
sen so that ιdC1 ...ιdCk−2J = (−1)

k−1∑m

i=1 ∂i ∧ ∂m+i [3]. It follows that w = ωc ∧ dC1 ∧ ... ∧ dCk−2 with
ωc =

∑m

i=1 dx
i ∧ dxm+i is the local ∆-inverse of J . Indeed, taking X ∈ ∆,

ιιXwJ =J

(

m
∑

i=1

(

X idxm+i −Xm+idxi
)

∧ dC1 ∧ ... ∧ dCk−2

)

=

m
∑

i=1

∑

j1<...<jk

Jj1...jkX i〈dxm+i ∧ dC1 ∧ ... ∧ dCk−2, ∂j1...jk−1
〉∂jk + ...

=(−1)
k−1

m
∑

i=1

∑

j1<...<jk

Jj1...jkX i〈dxm+i ∧ dC1 ∧ ... ∧ dCk−2, ∂j2...jk〉∂j1 + ...

=

m
∑

i=1

(−1)
k−1

J im+i n−s+1...n−s+1+k−2X i∂i + ... =

m
∑

i=1

(

X i∂i +Xm+i∂m+i

)

.

(70)

We conclude this section with some remarks on the availability of invariant measures in a generalized
Hamiltonian theory of degree k.

Definition 5.6. Let dµ be a smooth volume form on M . Consider the vector field X = −ιdH1 ...ιdHk−1J ,
with J ∈ X k (M) and H1, ..., Hk−1 ∈ C∞ (M). We say that J is measure preserving whenever there exists a
non-vanishing function g ∈ C∞ (M) such that

LX (gdµ) = 0, ∀H1, ..., Hk−1 ∈ C∞ (M) . (71)
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Remark 5.7. In coordinates
(

x1, ..., xn
)

and with dµ = dx1 ∧ ... ∧ dxn, Definition 5.6 corresponds to the
condition

∂

∂xi

(

gJ ij1...jk−1
)

= 0, ∀j1, ..., jk−1 = 1, ..., n, (72)

which ensures gdx1 ∧ ... ∧ dxn is an invariant measure for all choices of the Hamiltonians H1, ..., Hk−1.

Even if (72) is not satisfied, an invariant measure may be recovered by adding a new dimension with
coordinate xn+1. The following proposition verifies this for k = 3 and M ≃ R

n.

Proposition 5.8. Take J ∈ X 3 (M). Let
(

x1, ..., xn
)

denote local coordinates in some neighborhood U ⊂ M .
Then, the n+ 1-dimensional antisymmetric contravariant 3-tensor J ∈ X 3 (U × R) given by

J = J −
∑

i<j<k

xn+1

(

∂Jmij

∂xm
δkn+1 +

∂Jmjk

∂xm
δin+1 +

∂Jmki

∂xm
δjn+1

)

∂i ∧ ∂j ∧ ∂k, (73)

is measure preserving in U . Furthermore, the equations of motion dxi/dt = J ijkHjCk, i = 1, ..., n, with the
Hamiltonians H and C independent of xn+1, remain unchanged in U , that is

dxi

dt
= JijkHjCk = J ijkHjCk, i = 1, ..., n, (74a)

dxn+1

dt
= Jn+1jkHjCk = −xn+1

n
∑

i=1

∂iX
i, (74b)

where, as usual, X = dx/dt.

Proof. The proof of this statement can be obtained by noting that
∑n+1

i=1 ∂iJ
ijk = 0 and by evaluating

dxi/dt = JijkHjCk for i = 1, ..., n+ 1.

6 Examples

In this section, three examples are provided of generalized Hamiltonian systems of degree k = 3. In the first
example, it is shown that quasisymmetric magnetic fields can be written as a Nambu system. Quasisymmetric
magnetic fields play a pivotal role in the design of next-generation fusion reactors known as stellarators
[26, 31, 32]. This novel Nambu system provides a novel pathway to study quasisymmetric magnetic fields.
Furthermore, this formulation highlights previously unnoticed properties of quasisymmetric magnetic fields,
such as the existence of an invariant measure for the quasisymmetry. The aim of the second example is to
demonstrate the existence of a classical Hamiltonian system with two invariants whose 3-tensor J fails to
satisfy the fundamental identity of Nambu(FI) mechanics. However, the system still admits a description as
a generalized Hamiltonian sytem of degree k = 3 in accordance with Theorem 3.1. Finally, the third example
concerns a 4-dimensional dynamical system endowed with an antisymmetric contravariant 2-tensor J failing
to satisfy the Jacobi identity, and yet possessing a generalized Hamiltonian structure. It is shown that the
hypothesis of Theorem 3.3 are verified by this system. Consequently, classical Hamiltonian systems can be
recovered on some 2-dimensional submanifolds of the original 4-dimensional domain.

6.1 Quasisymmetry as a generalized Hamiltonian system

Given a magnetic field B ∈ X (M) in some region M ⊂ R
3 and a function Ψ ∈ C∞ (M), a quasisymmetry

u ∈ X (M) of B is any solution to

∇ ·B = 0, ∇ · u = 0, B × u = ∇Ψ, u · ∇B = 0, (75)

where B = |B|. Consider a magnetic field B such that, on a region U ⊂ M , it holds that ∇Ψ ×∇B 6= 0 as
well as B · ∇B 6= 0. Then, in U , it can be computed that

u =
∇Ψ×∇B

B · ∇B
, B · ∇B = f (Ψ, B) , B · ∇Ψ = 0, (76)
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for some f (Ψ, B) 6= 0. The quasisymmetry u can be regarded as a generalized Hamiltonian system on U .
Indeed, consider the 3-form w given by the closed form

w = − (B · ∇B) dµ, (77)

where dµ is the standard Euclidean volume form on U . Then

ιuw = −ι∇Ψ×∇Bdµ = −dΨ ∧ dB. (78)

Hence u is a Hamiltonian vector field for the closed 3-form w with Hamiltonians Ψ, B. Note that, as w is a
top form on U and Luw = 0, that w is an invariant measure for u.

In any local chart on U with standard Euclidean coordinates, we have the associated differential equation
for u given by

dx

dt
= u =

ǫijk

B · ∇B

∂Ψ

∂xj

∂B

∂xk
∂i, (79)

with Hamiltonians Ψ and B and a Poisson 3-tensor

J ijk =
ǫijk

B · ∇B
. (80)

6.2 Semiclassical quantum oscillators

Consider the following dynamical system on R
6 from [33, 34] that models a 1-dimensional system of two

quantum oscillators. The dynamical variables are pi, qi, ξi, i = 1, 2, and physically correspond to the
expectation values of momentum, position, and squared momentum of the ith oscillator, respectively. The
equations of motion are given by

ṗ1 = −q1 − λξ2, (81a)

q̇1 = p1, (81b)

ξ̇1 = 2q1p1, (81c)

ṗ2 = −q2 − 2λq1q2, (81d)

q̇2 = p2, (81e)

ξ̇2 = 2q2p2. (81f)

One can verify that the quantities

G1 = ξ1 − q21 , G2 = ξ2 − q22 , H =
1

2

(

p21 + p22 + ξ1 + ξ2
)

+ λq1ξ2 (82)

are independent constants of motion, with the third quantity H corresponding to the energy of the system.
The dynamical system (81) can be expressed as a generalized Hamiltonian system. Indeed, defining

J = ∂p1
∧ ∂q1 ∧ ∂ξ1 + ∂p2

∧ ∂q2 ∧ ∂ξ2 , {f, g, h} := −ιdf ιdgιdhJ (83)

for any f, g, h ∈ C∞(R6), and taking G = G1 +G2, we have

d

dt
F = {F,G,H} (84)

for any observable F ∈ C∞(R6). In particular, for i = 1, 2,

ṗi = {pi, G,H}, q̇i = {qi, G,H}, ξ̇i = {ξi, G,H}. (85)
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As shown in [22], the k-vector J does not satisfy the fundamental identity. On the other hand, performing
the change of variables (p1, q1, ξ1, p2, q2, ξ2) → (p1, q1, G1, p2, q2, G2), the Hamiltonian function becomes,

H̃ =
1

2

(

p21 + p22 + q21 + q22
)

+ λq1
(

G2 + q22
)

, (86)

while system (81) takes the form

ṗi = −∂H̃

∂qi
, q̇i =

∂H̃

∂pi
, Ġi = 0, (87)

for i = 1, 2. Equation (87) shows that system (81) is a noncanonical Hamiltonian system with Casimir
invariants G1 and G2. By application of Theorem 3.1, the system is endowed with a generalized Hamiltonian
structure with symplectic 3-form

w = ω ∧ dG2 = (dp1 ∧ dq1 + dp2 ∧ dq1) ∧ dG2. (88)

In addition, the system also admits the invariant measure dp1 ∧ dq1 ∧ dp2 ∧ dq2 ∧ dG1 ∧ dG2, in ageement
with Corollary 4.3.

6.3 An example of application of Theorem 3.3

Let
(

x1, ..., x4
)

denote standard Euclidean coordinates on R
4 and consider the domain M = {x4 > 0}. In

M , we define the 2-vector field J as

J =
1

x4
(∂2 ∧ ∂1 + ∂4 ∧ ∂3) (89)

The Jacobi identity is not satisfied by this tensor, as one can verify by computing the term

J 3mJ 12
m + J 1mJ 23

m + J 2mJ 31
m = − 1

(x4)
3 6= 0. (90)

Let H ∈ C∞(M) be any function satisfying ∂H
∂x3 = 0. Then define

X = −ιdHJ =
1

x4

(

∂H

∂x1
∂2 −

∂H

∂x2
∂1 −

∂H

∂x4
∂3

)

. (91)

Next, observe that the 2-form

ω = x4
(

dx1 ∧ dx2 + dx3 ∧ dx4
)

, (92)

satisfies

ιXω = −dH, dω = dx4 ∧ dx1 ∧ dx2 6= 0. (93)

On the other hand, the 3-form w = ω ∧ dx4 satisfies

ιXw = −dH ∧ dx4, dw = dω ∧ dx4 = 0. (94)

Hence, this 4-dimensional dynamical system does not possess a classical Hamiltonian structure, and yet it
can be cast as a generalized Hamiltonian system.

Next, let us further assume that ∂H
∂x4 = 0. Under this assumption, the vector field

X =
1

x4

(

∂H

∂x1
∂2 −

∂H

∂x2
∂1

)

, (95)
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satisfies the relation:

ιXω = −dH. (96)

On the other hand, the 4-form w = ω ∧ dx3 ∧ dx4 satisfies:

ιXw = −dH ∧ dx3 ∧ dx4, dw = dω ∧ dx3 ∧ dx4 = 0. (97)

Furthermore, the hypotheses of Theorem 3.3 are now verified for w, where

XH =
1

x4

(

∂H

∂x1
∂2 −

∂H

∂x2
∂1

)

, (98)

for any H ∈ C∞(M). This implies that we expect to find a classical Hamiltonian system on the submanifolds
defined by:

Σc =
{

x ∈ M : x3 = c3 ∈ R, x4 = c4 ∈ R 6=0

}

. (99)

One can verify that the pullbacks ω̃ = ι∗cω and H̃ = ι∗cH , along with the restriction X̃H of XH to Σc, satisfy:

ιX̃ ω̃ = −dH̃, dω̃ = 0, ω̃ = c4dx1 ∧ dx2. (100)

7 Concluding remarks

In this work, we explored the connection between generalized Hamiltonian mechanics (intended as the ideal
dynamics of systems endowed with a phase space conservation law embodied by a closed differential form
and a matter conservation law encoded in multiple Hamiltonians) and multisyplectic geometry (the geometry
of closed differential forms). The key of the construction is the notion of invertibility of differential forms,
which can be conjugated into (strong) invertibility (14) and weak invertibility (15). When k > 2, (strong)
invertibility of a differential form of degree k is no longer sufficient to ensure the existence of a solution
X to the equation ιXw = −σ, where X is a vector field and σ a given differential form of degree k − 1.
Indeed, the space of differential k − 1-forms has dimension

(

n
k−1

)

, which is greater than the dimension of

the tangent space whenever
(

n
k−1

)

> n (when k = 2, this gives n > 3). This subtlety is the reason why a
straightforward connection between the closed k-form w and its inverse antisymmetric k-tensor J cannot be
established, and Moser’s method cannot be generally applied to find a local coordinate change mapping w to
a flat (constant) k-form. The correspondence between generalized Hamiltonian mechanics and multisyplectic
geometry can however be recovered by properly taking into account the multiple invariants that characterize
generalized dynamics. In addition, a precise correspondence between generalized Hamiltonian mechanics
and classical Hamiltonian mechanics can be obtained, as described in section 3. In particular, we find that
classical Hamiltonian mechanics represents a subset of generalized Hamiltonian mechanics, in contrast with
the formulation of Nambu(FI) mechanics based on the fundamental identity.
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