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THE GEOMETRY OF SEDENION ZERO DIVISORS

SILVIO REGGIANI

Abstract. The sedenion algebra S is a non-commutative, non-associative, 16-dimen-
sional real algebra with zero divisors. It is obtained from the octonions through the
Cayley-Dickson construction. The zero divisors of S can be viewed as the submanifold
Z(S) ⊂ S × S of normalized pairs whose product equals zero, or as the submanifold
ZD(S) ⊂ S of normalized elements with non-trivial annihilators. We prove that Z(S)
is isometric to the excepcional Lie group G2, equipped with a naturally reductive left-
invariant metric. Moreover, Z(S) is the total space of a Riemannian submersion over
the excepcional symmetric space of quaternion subalgebras of the octonion algebra, with
fibers that are locally isometric to a product of two round 3-spheres with different radii.
Additionally, we prove that ZD(S) is isometric to the Stiefel manifold V2(R

7), the space
of orthonormal 2-frames in R7, endowed with a specific G2-invariant metric. By shrink-
ing this metric along a circle fibration, we construct new examples of an Einstein metric
and a family of homogenous metrics on V2(R

7) with non-negative sectional curvature.

1. Introduction

The Cayley-Dickson algebras form a sequence of real algebras An, defined recursively
beginning with R and doubling in dimension with each iteration. The first members
of this family are the familiar real division algebras: R = A0, C = A1, H = A2 and
O = A3. The next algebra in this sequence is the so-called sedenion algebra S = A4,
which is often overlooked in comparison to its lower-dimensional relatives due to its lack
of certain desirable algebraic properties. Nonetheless, this somewhat enigmatic algebra
has long intrigued mathematicians and has recently found applications in fields such as
theoretical physics [GG19] and machine learning [SA20].

Since S is not a division algebra, it is interesting to understand the structure of its zero
divisors. The topology of the sedenion zero divisors is described by the principal bundle

SU(2) → G2 → V2(R
7),

where G2 is the excepcional compact Lie group of rank 2 and V2(R
7) is the Stiefel mani-

fold of orthonormal 2-frames in R7. Specifically, G2 is homeomorphic to the submanifold
Z(S) ⊂ S × S of normalized sedenion pairs that multiply to zero; V2(R

7) is homeomor-
phic to the submanifold ZD(S) ⊂ S of sedenions with norm

√
2 that have non-trivial

annihilators; and, for each u ∈ ZD(S), the fiber SU(2) corresponds to the sphere of the
annihilator subspace of u (see [Mor98, BDI08]). However, little is known regarding the
geometry of the sedenion zero divisors.

Both Z(S) and ZD(S) carry a natural geometry as submanifolds of R32 and R16, re-
spectively. Furthermore, since the zero divisors of S are invariant under Aut(S), whose
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connected component is isomorphic to G2, it follows that Z(S) and ZD(S) are homoge-
neous submanifolds. In this article, we study the intrinsic geometry of the zero divisors
of S. First, we prove that Z(S) is isometric to G2 with a naturally reductive left-invariant
metric, forming the total space of a Riemannian submersion over the exceptional sym-
metric space G2/SO(4), with fibers locally isometric to a product of two round 3-spheres
with different radii.

Next, we analyze the geometry of ZD(S), which is isometric to V2(R
7) = G2/SU(2)

with a particular G2-invariant metric. At first glance, the geometry of ZD(S) does not
seem very interesting; however, by shrinking the metric along a certain circle fibration,
we obtain a family gr (r > 0) of G2-invariant metrics on V2(R

7), where g 2

3

represents

the original metric. This process reveals several distinguished examples. Specifically, we
prove, among other things, that (V2(R

7), gr):

• has positive scalar curvature if and only of r < 20
3
;

• is an Einstein manifold if and only if r = 5
9
;

• has non-negative sectional curvature if and only if 0 < r ≤ 4
9
.

These results are quite remarkable, as Einstein metrics and metrics with non-negative
curvature are very rare. To the best of our knowledge, the examples presented in this
article are new. The known homogeneous Einstein metrics on V2(R

7) = G2/SU(2) =
SO(7)/SO(5) are limited to the unique SO(7)-invariant Einstein metric discovered by
Sagle and the so-called Jensen metrics (see [Sag70, Jen73, BH87, Ker98]). It is worth
noticing that the metric g 5

9

is neither SO(7)-invariant nor a Jensen metric. Regarding

metrics with non-negative sectional curvature, we refer to the survey [Zil07]. Typically,
examples of homogeneous metrics with non-negative curvature appear as normal homo-
geneous metrics or are constructed through a Cheeger deformation of a metric already
known to have non-negative curvature. Recall that none of the metrics gr is normal ho-
mogeneous (nor even naturally reductive) and that the initial metric g 2

3

does not possess

non-negative sectional curvature.
Let us comment briefly on the proof our main results. In order to study the geometry

of Z(S), it is necessary to “fix an origin” so that the metric can be identified with a
left-invariant metric on G2. Any choice of such an origin for Z(S) leads to isometric
metrics on G2, but a well-chosen origin can greatly simplify computations. We select the
origin from among the so-called 84 standard zero divisors of S. Then, using the results
in [DZ79], we show that Z(S) is a naturally reductive space. A similar approach applies
to the study of ZD(S) with the metric gr. Here, we select another standard zero divisor
(different from the previous one) so that the isotropy subgroup of G2 acts trivially on
the usual subalgebra H ⊂ S. This choice allows the metric gr to be expressed in diagonal
form with respect to the normal homogeneous metric, making it possible to derive a nice
expression for the Ricci tensor of gr.

The most challenging part is to determine the sign of the sectional curvatures of gr.
Since there is no manageable expression for the curvature (as there is for naturally re-
ductive spaces), using algebraic manipulation proves to be nearly impossible. Indeed, the
sectional curvature function Fr of gr can be interpreted as a homogeneous polynomial
of degree 4 in 22 real variables, which, for a generic r, has 285 non-trivial coefficients.
To show that Fr is non-negative for 0 < r ≤ 4

9
, we reduce the problem to proving that

both F0 (the formal extension of Fr at r = 0) and F 4

9

are non-negative. By using convex
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optimization techniques, we are able to prove the stronger result that F0 and F 4

9

are

polynomial sums of squares.
Finally we want to mention that the computations required in the proof of some of our

results are often cumbersome and were computer checked using the software SageMath.
The code used to verify our results is available at [Reg24].

We believe this work shows that the study of the geometry of Cayley-Dickson alge-
bras, particularly regarding their zero divisors, deserves further attention, as it may have
interesting implications in differential geometry of compact homogeneous spaces.

Acknowledgements. This work is supported by CONICET and partially supported by
SeCyT-UNR and ANPCyT. The author would like to thank Andreas Arvanitoyeorgos for
helpful discussions on homogeneous Einstein metrics on Stiefel manifolds.

2. Preliminaries and notation

The main references for this section are [Mor98, BDI08] on Cayley-Dickson algebras
and their zero divisors, [Arv03] on the geometry of homogeneous spaces and [DZ79] on
naturally reductive left-invariant metrics on compact Lie groups. Observe that in this
section, as well as throughout the rest of the article, we start counting indices from 0.

2.1. Cayley-Dickson algebras. The Cayley-Dickson algebras An are a family of real
algebras, equipped with an involution a 7→ a∗ (also called conjugation), which are recur-
sively defined starting from A0 = R, where a∗ = a. Each subsequent algebra is defined
by setting An = An−1 × An−1 as a vector space, with multiplication given by

(a, b)(c, d) = (ac− d∗b, da+ bc∗)

and involution defined by

(a, b)∗ = (a∗,−b).

Notice that the inclusion a 7→ (a, 0) is a monomorphism of algebras from An−1 into
An for all n ≥ 0. It is well known that the first four algebras in the Cayley-Dickson
construction are the real division algebras R, C, H and O, respectively. It is also known
that the Cayley-Dickson algebras lose some important properties with each iteration.
For example, An is commutative if and only if n ≤ 1, associative if and only if n ≤ 2;
alterative (i.e., x(xy) = (xx)y and (xy)y = x(yy) for all x, y ∈ An) if and only of n ≤ 3.
On the other hand, every Cayley-Dickson algebra is flexible (i.e., x(yx) = (xy)x for all
x, y ∈ An) and power associative (i.e., xk is well defined for all x ∈ An and k ∈ N).

For x ∈ An we define its real and imaginary parts as Re x = 1
2
(x + x∗) and Im x =

1
2
(x−x∗), respectively. We say that x is real (resp. imaginary) if Im x = 0 (resp. Re x = 0).

Thus, one can recover the usual inner product on An ≃ R2n by

〈x, y〉 = Re(xy∗).

In An, one has that ‖x‖2 = xx∗ for all x. However, the identity ‖xy‖ = ‖x‖‖y‖ does not
hold in general if n ≥ 4. Recall that An is a division algebra if and only n ≤ 3. If n ≥ 4,
then An has zero divisors. Since, xy = 0 implies yx = 0, the left and right zero divisors
of An coincide. Thus, an element 0 6= u ∈ An is a zero divisor if and only if ann u 6= 0,
where ann u is the kernel of the R-linear map Lu : An → An given by Lu(x) = ux. In
[Mor98], it is proven that a zero divisor u must be imaginary and dim(ann u) ≡ 0 mod 4.
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Furthermore, in [BDI08] it is proven that dim annu ≤ 2n − 4n + 4. One can study the
zero divisors globally by defining the sets

Z(An) = {(u, v) ∈ An × An : ‖u‖ = ‖v‖ =
√
2 and uv = 0},

ZD(An) = {u ∈ An : (u, v) ∈ Z(An) for some v ∈ An}.

Normalizing the zero divisors to
√
2 is not particularly important, but it will be convenient

later. When n ≥ 5, the sets ZDk(An) = {u ∈ ZD(An) : dim(ann u) = k} are also of
interest.

For n ≥ 4, one has that the automorphism group of An is given by

Aut(An) ≃ Aut(An−1)× S3 ≃ G2 × (S3)
n−3,

where S3 is the symmetric group in three elements, and G2 = Aut(O) is the 14-dimen-
sional compact simple Lie group of rank 2. Recall that G2 acts diagonally on An. It
follows that Der(An) = g2 for all n ≥ 4, where g2 is the Lie algebra of G2.

2.2. Sedenion zero divisors. From now on we denote the sedenion algebra A4 by S.
Let us denote by e0, . . . , e15 the canonical basis of S. By making an abuse of notation, we
also denote by e0, . . . , e3 and e0, . . . , e7 the canonical basis of H and O respectively. The
zero divisors of S have the following form.

Proposition 2.1 (See [BDI08]). An element (a, b) ∈ S is a zero divisor if and only if
a, b are imaginary elements of O such that ‖a‖ = ‖b‖ 6= 0 and a ⊥ b.

From this result, one can construct the 84 standard zero divisors of S. Namely, the
elements of the form (ei + ej, ek ± el) ∈ Z(S) such that 1 ≤ i ≤ 6, 9 ≤ j ≤ 15, i < k ≤ 7
and 9 ≤ l ≤ 15 (see Table 1). Clearly, every automorphism of S maps Z(S) into itself.
Moreover, we have that the connected component of Aut(S) acts simply and transitively
on Z(S):

Theorem 2.2 ([Mor98]). Z(S) is homeomorphic (and moreover, diffeomorphic) to G2.

Given (u0, v0) ∈ Z(S), we have that G2 · u0 = ZD(S). It is not difficult to see that the
isotropy subgroup at u0 is isomorphic to SU(2). Note that G2/SU(2) is diffeomorphic to
the Stiefel manifold V2(R

7). In fact, every automorphism of O is completely determined
by its values a, b, c at e1, e2, e4 respectively. Here (a, b, c) can be any triple of pairwise
orthonormal imaginary octonions of norm 1 such that ab ⊥ c. Hence the map (a, b, c) 7→
(a, b) identifies with a transitive action ofG2 in V2(R

7), whose isotropy subgroup at (e1, e2)
are the octonion automorphism that act trivially on H, and therefore are isomorphic to
SU(2). Thus, the topology of the sedenion zero divisors is encoded by the principal bundle

SU(2) → G2 → V2(R
7).

2.3. The Lie algebra of G2. We think of the Lie group G2 = Aut(O) as a subgroup of
SO(8) in the natural way (since every automorphism of O fixes e0, we have that G2 is
actually a subgroup of SO(7), but we do not use this identification here). So, we have g2
as a subalgebra of so(8). Let us consider the bi-invariant metric gbi induced by the inner
product on g2, which we denote with the same symbol, given by

gbi(X, Y ) = − tr(XY ).
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Let us denote by Eij ∈ so(8), where 0 ≤ i < j ≤ 7, the matrix such that (Eij)ij =
−(Eij)ji = −1 and (Eij)kl = 0 in any other case. We define

X0 =
1
2
(E45 + E67), X7 =

1
2
(E16 + E25),

X1 =
1
2
(E46 − E57), X8 = −1

2
(E15 − E26),

X2 =
1
2
(E47 + E56), X9 =

1
2
(E14 + E27),

X3 = −
√
3
6
(2E23 − E45 + E67), X10 =

√
3
6
(E16 −E25 + 2E34),

X4 =
√
3
6
(2E13 + E46 + E57), X11 =

√
3
6
(E17 + E24 + 2E35),

X5 = −
√
3
6
(2E12 − E47 + E56), X12 = −

√
3
6
(E14 − E27 − 2E36),

X6 = −1
2
(E17 −E24), X13 = −

√
3
6
(E15 + E26 − 2E37).

One can see that X0, . . . , X13 is an orthonormal basis of g2 with respect to the bi-
invariant metric. We will denote by X0, . . . , X13 its dual basis. Define

k0 =
2

⊕

i=0

RXi, m0 =
5

⊕

i=3

RXi, m1 =
9

⊕

i=6

RXi, m2 =
13
⊕

i=10

RXi.

We have that k0 and m0 are two subalgebras of g2 isomorphic to so(3) such that
[k0,m0] = 0. Moreover, k0 ⊕ m0 ≃ so(4) is the subalgebra of a maximal subgroup of G2

isomorphic to SO(4) (cfr. [BLS20]). Such subgroup preserves the orthogonal decomposi-
tion O = H ⊕ H⊥. Furthermore, the subgroup of G2 with Lie algebra k0 is isomorphic
to SU(2) and acts trivially on H. Recall that G2/SO(4), with the normal homogeneous
metric, is the symmetric space of quaternion subalgebras of O.

2.4. Homogeneous and naturally reductive spaces. Let G be a Lie group and H
be a compact subgroup of G. Let us denote by g and h the Lie algebras of G and H ,
respectively. Assume that G acts almost effectively on M = G/H and that M is endowed
with a G-invariant metric g. Recall that every X ∈ g induces a Killing vector field X∗

on M defined as X∗
q = d

dt

∣

∣

0
Exp(tX) · q. The map X 7→ X∗ from g into X(M) satisfies

[X, Y ]∗ = −[X∗, Y ∗].

Let us fix a reductive decomposition g = h⊕m (i.e., m is an Ad(H)-invariant subspace
of g complementary to h), which always exists since H is compact. Assume that H is
the isotropy subgroup of p ∈ M . Then we can identify m ≃ TpM . The geometry of M
is determined by an Ad(H)-invariant inner product on m, which we also denote by g,
defined such that the map X ∈ m 7→ X∗

p ∈ TpM is a linear isometry. With this setting,
we can compute the Levi-Civita connection of M as

(∇X∗Y ∗)p = −1

2
[X, Y ]m + U(X, Y ), X, Y ∈ m, (2.1)

where U is the algebraic tensor on m given by

2g(U(X, Y ), Z) = g([Z,X ]m, Y ) + g(X, [Z, Y ]m), X, Y, Z ∈ m.
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Let RX,Y = ∇[X,Y ] − [∇X ,∇Y ] be the curvature tensor of M . The sectional curvature
of M is determined by

g(RX,YX, Y ) =− 3

4
‖[X, Y ]m‖2 −

1

2
g([X, [X, Y ]m]m, Y )− 1

2
g([Y, [Y,X ]m]m, X)

+ ‖U(X, Y )‖2 − g(U(X,X), U(Y, Y )) + g(Y, [[X, Y ]h, X ]m)

for X, Y ∈ m. Also, the Ricci tensor of M is determined by

Ric(X,X) =− 1

2

∑

i

{‖[X,Xi]m‖2 + g([X, [X,Xi]m]m, Xi) + 2g([X, [X,Xi]h]m, Xi)}

+
1

4

∑

i,j

g([Xi, Xj]m, X)2 − g([Z,X ]m, X), (2.2)

for X ∈ m, where {Xi} is an orthonormal basis of m and Z =
∑

i U(Xi, Xi).
Recall that the metric g on M = G/H is naturally reductive if and only if U ≡ 0.

An interesting particular case is when a left-invariant metric on a Lie group is naturally
reductive (with respect to a certain transitive Lie group of isometries).

Theorem 2.3 ([DZ79]). Let G be a compact, simple Lie group group endowed with a
left-invariant metric g. Let g denote the Lie algebra of G and let gbi be a bi-invariant
metric on G (which is a negative multiple of the Killing form of g). The metric g is
naturally reductive if and only if there exists a subalgebra k of g such that

g = gk0 ⊕ α1 gbi|k1 ⊕ · · · ⊕ αr gbi|kr ⊕ α gbi|k⊥
where k = k0 ⊕ k1 ⊕ · · · ⊕ kr, with k0 the center of k and k1, . . . , kr are simple ideals. Here,
k⊥ is the orthogonal complement of k with respect to the bi-invariant metric, gk0 is an
arbitrary inner product on k0, and α1, . . . , αr, α are positive real numbers.

3. The G2-invariant metrics on Z(S) and ZD(S)

Consider Z(S) as a submanifold of S × S ≃ R32 with the induced metric. Although
this reduction is not necessary here, one could lower the codimension of Z(S). In fact,
by Proposition 2.1, Z(S) is a submanifold of S6 × S6 × S6 × S6. Since G2 = Aut(O) ⊂
Aut(S) acts isometrically on S × S, we have that Z(S) is a homogeneous submanifold.
Furthermore, by Theorem 2.2, the diffeomorphism Z(S) ≃ G2 induces a left-invariant
metric g on G2.

Theorem 3.1. The metric on Z(S) is naturally reductive. Furthermore, Z(S) is the
total space of a Riemannian submersion over the excepcional symmetric space G2/SO(4)
with totally geodesic fibers, which are locally isometric to a product of two round 3-spheres
with different radii.

Proof. It is sufficient to prove the theorem for the left-invariant metric on G2 defined in
the paragraph preceding the statement. To determine such a metric, one fixes an element
(u0, v0) ∈ Z(S) and computes

g(Xi, Xj) = (Xi · (u0, v0))
T (Xj · (u0, v0)). (3.1)

Note that not every zero divisor pair behaves nicely with respect to the decomposition
g2 = k0 ⊕m0 ⊕m1 ⊕m2 given in Subsection 2.3. By running (3.1) over the standard zero
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divisors from Table 1, we observe that if (u0, v0) = (e4 + e13, e6 + e15) the metric can be
expressed as

g =

2
∑

i=0

X i ⊗X i +
1

3

5
∑

i=3

X i ⊗X i +
1

2

13
∑

i=6

X i ⊗X i = gbi|k0 ⊕
1

3
gbi|m0

⊕ 1

2
gbi|m1⊕m2

.

From Theorem 2.3, it follows that this metric is naturally reductive. More precisely, this
metric is naturally reductive with respect to G2×SO(4), where the second factor acts on
the right and the isotropy subgroup is given by diag(SO(4)× SO(4)). Thus, from [DZ79,
Theorem 8], the subgroup SO(4) ⊂ G2, whose Lie algebra is given by k0 ⊕m0, is totally
geodesic.

Since g|m1⊕m2
is a multiple of the bi-invariant metric, when restricted to m1 ⊕m2, and

k0 ⊕ m0 ≃ so(4) is orthogonal to m1 ⊕ m2 with respect to both metrics, we conclude
that (G2, g) → G2/SO(4) is a Riemannian submersion. The fiber of this submersion is
isometric to the Lie group SO(4) endowed with the bi-invariant metric g|k0⊕m0

, which is
obtained by taking two different scalings of the bi-invariant metric on the simple ideals
so(3) ≃ k0 ≃ m0 of so(4). Hence, the universal cover of SO(4) splits into a product of
two round spheres with different radii. �

Remark 3.2. Since the metric in Z(S) is naturally reductive, many geometric properties
follow from existing results. For example, the (connected component of the) full isometry
group is computed in [DZ79] (see also [OR13]). The so-called index of symmetry of Z(S),
which in this case is trivial, can be computed from the results in [ORT14]. It can also
be seen from [DZ79] that the metric on Z(S) is not Einstein. We verify this fact again
in the next proposition by explicitly computing the Ricci tensor, which also allows us to
show that the Ricci curvature is positive.

Proposition 3.3. Z(S) has positive Ricci curvature. Moreover,

Ric =
5

2

2
∑

i=0

X i ⊗X i +
29

54

5
∑

i=3

X i ⊗X i +
5

6

13
∑

i=6

X i ⊗X i. (3.2)

Proof. It follows from a straightforward computation using the following well-known for-
mula. Let Y0, . . . , Y13 be an g-orthonormal basis of g2. Then

Ric(Yj, Yh) =
1

2

∑

i,k

{

ciki(ckjh + ckhj) +
1

2
cikhcikj − cijkckhi + cikicjhk − cijkcihk

}

where cijk = g([Yi, Yj], Yk). Since g has diagonal form in the basis X0, . . . , X13, we can

choose Yi = g(Xi, Xi)
− 1

2Xi. From this, we can show that

Ric =
5

2

2
∑

i=0

Y i ⊗ Y i +
29

18

5
∑

i=3

Y i ⊗ Y i +
5

3

13
∑

i=6

Y i ⊗ Y i,

which is equivalent to (3.2). �

Now we direct our attention to the geometry of ZD(S) with the metric induced from the
ambient space S ≃ R

16. Since G2 acts isometrically and transitively on ZD(S), we have
that ZD(S) is isometric to the Stiefel manifold G2 · u0 = G2/SU(2) = V2(R

7), equipped
with a certain G2-invariant metric, where SU(2) is the isotropy subgroup of u0 ∈ ZD(S).
We again denote by g such a metric, which is defined by

g(Xi, Xj) = (Xi · u0)
T (Xj · u0).
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Similarly to the case of Z(S), we can choose u0 appropriately so that the Lie algebra
of SU(2) is k0. Taking u0 = e1 + e10, we obtain that

g2 = k0 ⊕m, where m = m0 ⊕m1 ⊕m2,

is a reductive decomposition for G2/SU(2). The corresponding Ad(SU(2))-invariant inner
product on m is given by

g =
1

3
(X3 ⊗X3 +X4 ⊗X4) +

2

3
X5 ⊗X5 +

1

2

9
∑

i=6

X i ⊗X i +
1

6

13
∑

i=10

X i ⊗X i.

A detailed study of the isometry group and the curvature of g is given in the next
section. Before proceeding, we note a simple fact about the sectional curvatures of g.

Remark 3.4. Let us denote by πij the 2-dimensional subspace of m generated by Xi and
Xj, where 3 ≤ i < j ≤ 13. Then the sectional curvature of πij is non-negative if and
only if πij 6= π34. This suggests that one could attempt to modify the metric g along
the direction normal to π34 inside m1 in order to get some examples of metrics with
non-negative sectional curvature. We explore this approach in the next section.

4. A family of G2-invariant metrics on V2(R
7)

For each r > 0, we consider on V2(R
7) the family of G2-invariant metrics given by

gr =
1

3
(X3 ⊗X3 +X4 ⊗X4) + r X5 ⊗X5 +

1

2

9
∑

i=6

X i ⊗X i +
1

6

13
∑

i=10

X i ⊗X i. (4.1)

Indeed, gr gives an Ad(SU(2))-invariant inner product on m since m0 is the subspace
of fixed points of the isotropy representation of G2/SU(2) and

gr|m1
=

1

2
gbi|m1

, gr|m2
=

1

6
gbi|m2

.

Next, we compute the connected component of the full isometry group of gr.

Theorem 4.1. I0(V2(R
7), gr) ≃ G2 × S1.

Proof. Since G2 is a compact simple Lie group, it follows from the results in [Oni92] that
I0(V2(R

7), gr) ⊂ I0(V2(R
7), gnh), where gnh = gbi|m is the normal homogeneous metric

associated with the homogeneous presentation V2(R
7) = G2/SU(2). From [Reg10], we

have that I0(V2(R
7), gnh) ≃ G2 × K (almost direct product) where the Lie algebra of

K is given by the G2-invariant vector fields, which are identified with the fixed vectors
of the isotropy representation. That is, the Lie algebra of K is identified with m0, but
the elements of K ≃ SU(2) act “on the right”. Then, it is not difficult to see that
I0(V2(R

7)) ≃ G2×K ′ (almost direct product) for a compact and connected subgroup K ′

of K, which in principle depends on r. Since dimK = 3, it is enough to see that K ′ 6= K
and dimK ′ ≥ 1.

Now, for Y ∈ m0, let Ŷ be the G2-invariant vector field induced by Y . Using (2.1)

and the fact that ∇X∗Ŷ = ∇ŶX
∗ for all X ∈ m, one can see that Ŷ is a Killing field

for gr if and only if [Y,−]m : m → m is skew-symmetric with respect to gr. The 1
2
- and

1
6
-scalings of the metric on the irreducible subspaces m1 and m2 prevent X̂3 and X̂4 from

being Killing fields for gr. However, one can check that X̂5 is a Killing field for gr for any
r > 0. Thus K ′ = S1, which implies I0(V2(R

7)) = G2 × S1 is actually a direct product.
Observe that we have proved that the S1 factor is independent of r. �
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Now, we compute the Ricci and scalar curvature of gr. In particular, we obtain the
following result.

Theorem 4.2. (1) The metric gr is Einstein if and only if r = 5
9
.

(2) The metric gr has positive scalar curvature if and only if r < 20
3
.

Proof. Let Y3, . . . , Y13 be the gr-orthonormal basis of m obtained from normalizing the
basis X3, . . . , X13. We can use formula (2.2) to explicitly compute the Ricci tensor Ricgr
of gr. After lengthy computations, carefully verified using a computer (see [Reg24]), we
obtain

Ricgr =
15r

2
Y 5 ⊗ Y 5 +

(

−3r

2
+ 5

)

∑

i 6=5

Y i ⊗ Y i. (4.2)

Hence, gr is Einstein if and only if r = 5
9
. Also, from (4.2) we get that the scalar

curvature scalgr = 50− 15
2
r is positive if and only if r < 20

3
. �

Remark 4.3. In [Jen73], the construction of remarkable examples of Einstein metrics on
the base space of certain principal bundles can be found. Such metrics are now known
as Jensen metrics. In particular, there exist G2-invariant Einstein metrics on V2(R

7),
arising from the principal bundle SU(2) → G2 → G2/SU(2), which in our notation takes
the form t2 gbi|m0

⊕ gbi|m1⊕m2
for certain values of t > 0. Notice that the metric g 5

9

from

Theorem 4.2 is not a Jensen metric. Moreover, it is not even bi-invariant when restricted
to m0.

Theorem 4.4. The metric gr has non-negative sectional curvature if and only if r ≤ 4
9
.

In order to prove our theorem, we will need the following result, which is a particular
case of Theorem 1 in [PW98] (see also [CLR95]).

Lemma 4.5. Let F ∈ R[x0, . . . , xn] be a homogeneous polynomial of degree 4. Then F is
a (polynomial) sum of squares if and only if there exists a symmetric positive semi-definite
matrix H such that

F = x
THx (4.3)

where x = (x2
0, x0x1, . . . , xn−1xn, x

2
n)

T is the vector of monomials of degree 2.

Let us mention that the vector x has (n+2)(n+1)
2

coordinates and the subspace of, not

necessarily positive semi-definite, matrices H satisfying (4.3) has dimension (n+2)(n+1)2n
12

.
Thus, finding an exact (positive semi-definite) solution H for equation (4.3) can be quite
difficult, even for relatively small values of n.

Proof of Theorem 4.4. It is not hard to see that if π34 = RX3 ⊕ RX4, then the sectional
curvature of the plane π34 is

κgr(π34) = −9

4
r + 1.

Thus, gr does not have non-negative sectional curvature for r > 4
9
. Let Y3, . . . , Y13 be

the orthonormal basis of m defined in the proof of Theorem 4.2 and write

X =

13
∑

i=3

xi−3Yi, Y =

13
∑

i=3

xi+8Yi.

For each r, consider the polynomial

Fr = gr(R
gr
X,YX, Y ) ∈ R[x0, . . . , x21],
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where Rgr denotes the curvature tensor of gr. Observe that we can formally extend the
polynomial Fr to every r ∈ R (even when gr does not make sense for r ≤ 0). Moreover,
from the explicit formula for Fr, which can be found in the Appendix A.2, we see that
fixing x0, . . . , x21, the map r 7→ Fr(x0, . . . , x21) defines a linear function on r. Thus, it is
enough to prove that the polynomials F0 and F 4

9

are non-negative. We will use Lemma 4.5

to prove the stronger statement that F0 and F 4

9

are polynomial sums of squares. Since

Fr is obtained from computing sectional curvatures, every monomial xixjxkxl with non-
trivial coefficient in Fr satisfies 0 ≤ i ≤ j ≤ 10 < k ≤ l ≤ 21. Hence, we do not lose
generality replacing x

T in Lemma 4.5 with

x
T = (x0x11, . . . , x0x21, . . . , x10x11, . . . , x10x21, x

2
0, . . . , x

2
21).

This change substantially reduces the size of the system (4.3) from 253×253 to 143×143.
Now we are looking for symmetric positive semi-definite matrices Hα such that

Fα = x
THαx, α ∈ {0, 4

9
}.

This is a convex optimization problem, which, thanks to the reduction of the dimen-
sion mentioned above, can be successfully solved by the Python solver CVXOPT. We
implemented the computer code in SageMath through two instances of SemidefinitePro-
gram(). However, this only yields numerical solutions, and since the condition of being
positive semi-definite is a closed one, an exact solution is not guaranteed. Nonetheless,
since the polynomial sums of squares are dense in the set of non-negative polynomials,
exact solutions are expected to exist. Moreover, since Fr has relatively few non-trivial
coefficients, one can expect to find sparse solutions H0 and H 4

9

. This is indeed the case,

since rounding the numerical solutions lead us to the exact solution described as follows.
Define the index subsets

I0,−2 = {(39, 69), (49, 59), (87, 117), (97, 107)},
I0,−1 = {(1, 11), (1, 39), (1, 59), (1, 87), (1, 107), (11, 49), (11, 69), (11, 97), (11, 117),

(39, 49), (39, 117), (49, 107), (59, 69), (59, 97), (69, 87), (87, 97), (107, 117)},
I0,− 1

2

= {(3, 17), (3, 33), (3, 88), (3, 100), (4, 7), (4, 44), (4, 56), (4, 111), (5, 10), (5, 15),
(5, 18), (5, 55), (6, 19), (6, 34), (6, 66), (6, 99), (7, 16), (7, 21), (7, 77), (8, 17),

(8, 33), (8, 88), (8, 100), (9, 19), (9, 34), (9, 66), (9, 99), (10, 45), (10, 78), (10, 110),

(14, 19), (14, 34), (14, 66), (14, 99), (15, 45), (15, 78), (15, 110), (16, 44), (16, 56),

(16, 111), (17, 20), (17, 67), (18, 45), (18, 78), (18, 110), (19, 89), (20, 33), (20, 88),

(20, 100), (21, 44), (21, 56), (21, 111), (33, 67), (34, 89), (37, 47), (37, 71), (37, 95),

(37, 119), (38, 50), (38, 58), (38, 98), (38, 106), (40, 80), (40, 92), (40, 104),

(40, 116), (43, 53), (43, 73), (43, 93), (43, 113), (44, 77), (45, 55), (47, 61), (47, 85),

(47, 109), (50, 70), (50, 86), (50, 118), (52, 80), (52, 92), (52, 104), (52, 116),

(53, 63), (53, 83), (53, 103), (55, 78), (55, 110), (56, 77), (58, 70), (58, 86), (58, 118),

(61, 71), (61, 95), (61, 119), (63, 73), (63, 93), (63, 113), (64, 80), (64, 92), (64, 104),

(64, 116), (66, 89), (67, 88), (67, 100), (70, 98), (70, 106), (71, 85), (71, 109),

(73, 83), (73, 103), (76, 80), (76, 92), (76, 104), (76, 116), (77, 111), (83, 93),

(83, 113), (85, 95), (85, 119), (86, 98), (86, 106), (89, 99), (93, 103), (95, 109),



THE GEOMETRY OF SEDENION ZERO DIVISORS 11

(98, 118), (103, 113), (106, 118), (109, 119)},
I0, 1

2

= {(3, 3), (3, 8), (3, 20), (3, 67), (4, 4), (4, 16), (4, 21), (4, 77), (5, 5), (5, 45), (5, 78),
(5, 110), (6, 6), (6, 9), (6, 14), (6, 89), (7, 7), (7, 44), (7, 56), (7, 111), (8, 8), (8, 20),

(8, 67), (9, 9), (9, 14), (9, 89), (10, 10), (10, 15), (10, 18), (10, 55), (14, 14), (14, 89),

(15, 15), (15, 18), (15, 55), (16, 16), (16, 21), (16, 77), (17, 17), (17, 33), (17, 88),

(17, 100), (18, 18), (18, 55), (19, 19), (19, 34), (19, 66), (19, 99), (20, 20), (20, 67),

(21, 21), (21, 77), (33, 33), (33, 88), (33, 100), (34, 34), (34, 66), (34, 99), (37, 37),

(37, 61), (37, 85), (37, 109), (38, 38), (38, 70), (38, 86), (38, 118), (40, 40), (40, 52),

(40, 64), (40, 76), (43, 43), (43, 63), (43, 83), (43, 103), (44, 44), (44, 56), (44, 111),

(45, 45), (45, 78), (45, 110), (47, 47), (47, 71), (47, 95), (47, 119), (50, 50), (50, 58),

(50, 98), (50, 106), (52, 52), (52, 64), (52, 76), (53, 53), (53, 73), (53, 93), (53, 113),

(55, 55), (56, 56), (56, 111), (58, 58), (58, 98), (58, 106), (61, 61), (61, 85), (61, 109),

(63, 63), (63, 83), (63, 103), (64, 64), (64, 76), (66, 66), (66, 99), (67, 67), (70, 70),

(70, 86), (70, 118), (71, 71), (71, 95), (71, 119), (73, 73), (73, 93), (73, 113), (76, 76),

(77, 77), (78, 78), (78, 110), (80, 80), (80, 92), (80, 104), (80, 116), (83, 83),

(83, 103), (85, 85), (85, 109), (86, 86), (86, 118), (88, 88), (88, 100), (89, 89),

(92, 92), (92, 104), (92, 116), (93, 93), (93, 113), (95, 95), (95, 119), (98, 98),

(98, 106), (99, 99), (100, 100), (103, 103), (104, 104), (104, 116), (106, 106),

(109, 109), (110, 110), (111, 111), (113, 113), (116, 116), (118, 118), (119, 119)},
I0,1 = {(1, 1), (1, 49), (1, 69), (1, 97), (1, 117), (11, 11), (11, 39), (11, 59), (11, 87), (11, 107),

(39, 59), (39, 87), (49, 69), (49, 97), (59, 107), (69, 117), (87, 107), (97, 117)},
I0,2 = {(39, 39), (49, 49), (59, 59), (69, 69), (87, 87), (97, 97), (107, 107), (117, 117)},
and let H0 be the symmetric matrix defined as

(H0)ij =

{

a, (i, j) ∈ I0,a,

0, (i, j) /∈ I0,± 1

2

∪ I0,±1 ∪ I0,±2.

Now it is routine to verify that H0 is positive semi-definite and satisfies F0 = x
TH0x.

Similarly, if

I 4

9
,−1 = {(39, 69), (39, 107), (49, 59), (49, 117), (59, 87), (69, 97), (87, 117), (97, 107)},

I 4

9
,− 1

2

= {(3, 17), (3, 33), (3, 88), (3, 100), (4, 7), (4, 44), (4, 56), (4, 111), (5, 10), (5, 15),
(5, 18), (5, 55), (6, 19), (6, 34), (6, 66), (6, 99), (7, 16), (7, 21), (7, 77), (8, 17),

(8, 33), (8, 88), (8, 100), (9, 19), (9, 34), (9, 66), (9, 99), (10, 45), (10, 78), (10, 110),

(14, 19), (14, 34), (14, 66), (14, 99), (15, 45), (15, 78), (15, 110), (16, 44), (16, 56),

(16, 111), (17, 20), (17, 67), (18, 45), (18, 78), (18, 110), (19, 89), (20, 33), (20, 88),

(20, 100), (21, 44), (21, 56), (21, 111), (33, 67), (34, 89), (37, 47), (37, 71), (37, 95),

(37, 119), (38, 50), (38, 58), (38, 98), (38, 106), (40, 80), (40, 92), (40, 104),

(40, 116), (43, 53), (43, 73), (43, 93), (43, 113), (44, 77), (45, 55), (47, 61), (47, 85),
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(47, 109), (50, 70), (50, 86), (50, 118), (52, 80), (52, 92), (52, 104), (52, 116),

(53, 63), (53, 83), (53, 103), (55, 78), (55, 110), (56, 77), (58, 70), (58, 86), (58, 118),

(61, 71), (61, 95), (61, 119), (63, 73), (63, 93), (63, 113), (64, 80), (64, 92), (64, 104),

(64, 116), (66, 89), (67, 88), (67, 100), (70, 98), (70, 106), (71, 85), (71, 109),

(73, 83), (73, 103), (76, 80), (76, 92), (76, 104), (76, 116), (77, 111), (83, 93),

(83, 113), (85, 95), (85, 119), (86, 98), (86, 106), (89, 99), (93, 103), (95, 109),

(98, 118), (103, 113), (106, 118), (109, 119)},
I 4

9
,− 1

3

= {(2, 22), (13, 23), (25, 35), (26, 46), (27, 57), (28, 68), (29, 79), (30, 90), (31, 101),
(32, 112)},

I 4

9
, 1
3

= {(2, 2), (13, 13), (22, 22), (23, 23), (25, 25), (26, 26), (27, 27), (28, 28), (29, 29),
(30, 30), (31, 31), (32, 32), (35, 35), (46, 46), (57, 57), (68, 68), (79, 79), (90, 90),

(101, 101), (112, 112)},
I 4

9
, 1
2

= {(3, 3), (3, 8), (3, 20), (3, 67), (4, 4), (4, 16), (4, 21), (4, 77), (5, 5), (5, 45), (5, 78),
(5, 110), (6, 6), (6, 9), (6, 14), (6, 89), (7, 7), (7, 44), (7, 56), (7, 111), (8, 8), (8, 20),

(8, 67), (9, 9), (9, 14), (9, 89), (10, 10), (10, 15), (10, 18), (10, 55), (14, 14), (14, 89),

(15, 15), (15, 18), (15, 55), (16, 16), (16, 21), (16, 77), (17, 17), (17, 33), (17, 88),

(17, 100), (18, 18), (18, 55), (19, 19), (19, 34), (19, 66), (19, 99), (20, 20), (20, 67),

(21, 21), (21, 77), (33, 33), (33, 88), (33, 100), (34, 34), (34, 66), (34, 99), (37, 37),

(37, 61), (37, 85), (37, 109), (38, 38), (38, 70), (38, 86), (38, 118), (40, 40), (40, 52),

(40, 64), (40, 76), (43, 43), (43, 63), (43, 83), (43, 103), (44, 44), (44, 56), (44, 111),

(45, 45), (45, 78), (45, 110), (47, 47), (47, 71), (47, 95), (47, 119), (50, 50), (50, 58),

(50, 98), (50, 106), (52, 52), (52, 64), (52, 76), (53, 53), (53, 73), (53, 93), (53, 113),

(55, 55), (56, 56), (56, 111), (58, 58), (58, 98), (58, 106), (61, 61), (61, 85), (61, 109),

(63, 63), (63, 83), (63, 103), (64, 64), (64, 76), (66, 66), (66, 99), (67, 67), (70, 70),

(70, 86), (70, 118), (71, 71), (71, 95), (71, 119), (73, 73), (73, 93), (73, 113), (76, 76),

(77, 77), (78, 78), (78, 110), (80, 80), (80, 92), (80, 104), (80, 116), (83, 83),

(83, 103), (85, 85), (85, 109), (86, 86), (86, 118), (88, 88), (88, 100), (89, 89),

(92, 92), (92, 104), (92, 116), (93, 93), (93, 113), (95, 95), (95, 119), (98, 98),

(98, 106), (99, 99), (100, 100), (103, 103), (104, 104), (104, 116), (106, 106),

(109, 109), (110, 110), (111, 111), (113, 113), (116, 116), (118, 118), (119, 119)},
I 4

9
,1 = {(39, 39), (39, 97), (49, 49), (49, 87), (59, 59), (59, 117), (69, 69), (69, 107), (87, 87),

(97, 97), (107, 107), (117, 117)},

then

(H 4

9

)ij =

{

a, (i, j) ∈ I 4

9
,a,

0, (i, j) /∈ I 4

9
,± 1

3

∪ I 4

9
,± 1

2

∪ I 4

9
,±1,
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defines a symmetric positive semi-definite matrix satisfying F 4

9

= x
TH 4

9

x. This concludes

the proof of the theorem. �

Remark 4.6. We are not certain if Fr is a polynomial sum of squares for 0 < r < 4
9
.

Although it is not needed in the proof of Theorem 4.4, it would be interesting to know if
this is indeed the case.

Remark 4.7. The definition (4.1) of the metric gr resembles the construction of Berger
spheres from the Hopf fibration by shrinking the metrics along the fibers. Moreover, if
we restrict gr to m0 ≃ su(2), then S3

r = (SU(2), gr|m0
) is a Berger sphere. Recall that S3

r

has (strictly) positive sectional curvature if and only if 0 < r < 4
9
.

Appendix A.

A.1. Standard zero divisors. In this appendix, we include Table 1 with the standard
zero divisors of the sedenion algebra.

Table 1. The 84 standard zero divisors of S

(e1 + e10, e4 − e15) (e1 + e10, e5 + e14) (e1 + e10, e6 − e13) (e1 + e10, e7 + e12)
(e1 + e11, e4 + e14) (e1 + e11, e5 + e15) (e1 + e11, e6 − e12) (e1 + e11, e7 − e13)
(e1 + e12, e2 + e15) (e1 + e12, e3 − e14) (e1 + e12, e6 + e11) (e1 + e12, e7 − e10)
(e1 + e13, e2 − e14) (e1 + e13, e3 − e15) (e1 + e13, e6 + e10) (e1 + e13, e7 + e11)
(e1 + e14, e2 + e13) (e1 + e14, e3 + e12) (e1 + e14, e4 − e11) (e1 + e14, e5 − e10)
(e1 + e15, e2 − e12) (e1 + e15, e3 + e13) (e1 + e15, e4 + e10) (e1 + e15, e5 − e11)
(e2 + e9, e4 + e15) (e2 + e9, e5 − e14) (e2 + e9, e6 + e13) (e2 + e9, e7 − e12)
(e2 + e11, e4 − e13) (e2 + e11, e5 + e12) (e2 + e11, e6 + e15) (e2 + e11, e7 − e14)
(e2 + e12, e3 + e13) (e2 + e12, e5 − e11) (e2 + e12, e7 + e9) (e2 + e13, e3 − e12)
(e2 + e13, e4 + e11) (e2 + e13, e6 − e9) (e2 + e14, e3 − e15) (e2 + e14, e5 + e9)
(e2 + e14, e7 + e11) (e2 + e15, e3 + e14) (e2 + e15, e4 − e9) (e2 + e15, e6 − e11)
(e3 + e9, e4 − e14) (e3 + e9, e5 − e15) (e3 + e9, e6 + e12) (e3 + e9, e7 + e13)
(e3 + e10, e4 + e13) (e3 + e10, e5 − e12) (e3 + e10, e6 − e15) (e3 + e10, e7 + e14)
(e3 + e12, e5 + e10) (e3 + e12, e6 − e9) (e3 + e13, e4 − e10) (e3 + e13, e7 − e9)
(e3 + e14, e4 + e9) (e3 + e14, e7 − e10) (e3 + e15, e5 + e9) (e3 + e15, e6 + e10)
(e4 + e9, e6 − e11) (e4 + e9, e7 + e10) (e4 + e10, e5 + e11) (e4 + e10, e7 − e9)
(e4 + e11, e5 − e10) (e4 + e11, e6 + e9) (e4 + e13, e6 + e15) (e4 + e13, e7 − e14)
(e4 + e14, e5 − e15) (e4 + e14, e7 + e13) (e4 + e15, e5 + e14) (e4 + e15, e6 − e13)
(e5 + e9, e6 − e10) (e5 + e9, e7 − e11) (e5 + e10, e6 + e9) (e5 + e11, e7 + e9)
(e5 + e12, e6 − e15) (e5 + e12, e7 + e14) (e5 + e14, e7 − e12) (e5 + e15, e6 + e12)
(e6 + e10, e7 − e11) (e6 + e11, e7 + e10) (e6 + e12, e7 − e13) (e6 + e13, e7 + e12)

A.2. Expression for the sectional curvature. We write down the polynomial Fr used
in the proof of Theorem 4.4.

Fr = (−9
4
r + 1)x2

0x
2
12 +

3
4
rx2

0x
2
13 +

1
2
x2
0x

2
14 + x2

0x14x19 +
1
2
x2
0x

2
15 − x2

0x15x18 +
1
2
x2
0x

2
16

− x2
0x16x21 +

1
2
x2
0x

2
17 + x2

0x17x20 +
1
2
x2
0x

2
18 +

1
2
x2
0x

2
19 +

1
2
x2
0x

2
20 +

1
2
x2
0x

2
21

+ (9
2
r − 2)x0x1x11x12 + 2x0x1x14x20 + 2x0x1x15x21 − 2x0x1x16x18

− 2x0x1x17x19 − 3
2
rx0x2x11x13 − x0x3x11x14 − x0x3x11x19
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+ (9
2
r − 3)x0x3x12x17 − x0x3x12x20 − x0x4x11x15 + x0x4x11x18

+ (−9
2
r + 3)x0x4x12x16 − x0x4x12x21 − x0x5x11x16 + x0x5x11x21

+ (9
2
r − 3)x0x5x12x15 + x0x5x12x18 − x0x6x11x17 − x0x6x11x20

+ (−9
2
r + 3)x0x6x12x14 + x0x6x12x19 + x0x7x11x15 − x0x7x11x18 + x0x7x12x16

+ (9
2
r − 3)x0x7x12x21 − x0x8x11x14 − x0x8x11x19 + x0x8x12x17

+ (−9
2
r + 3)x0x8x12x20 − x0x9x11x17 − x0x9x11x20 − x0x9x12x14

+ (9
2
r − 3)x0x9x12x19 + x0x10x11x16 − x0x10x11x21 − x0x10x12x15

+ (−9
2
r + 3)x0x10x12x18 + (−9

4
r + 1)x2

1x
2
11 +

3
4
rx2

1x
2
13 +

1
2
x2
1x

2
14 − x2

1x14x19

+ 1
2
x2
1x

2
15 + x2

1x15x18 +
1
2
x2
1x

2
16 + x2

1x16x21 +
1
2
x2
1x

2
17 − x2

1x17x20 +
1
2
x2
1x

2
18

+ 1
2
x2
1x

2
19 +

1
2
x2
1x

2
20 +

1
2
x2
1x

2
21 − 3

2
rx1x2x12x13 + (−9

2
r + 3)x1x3x11x17

− x1x3x11x20 − x1x3x12x14 + x1x3x12x19 + (9
2
r − 3)x1x4x11x16 − x1x4x11x21

− x1x4x12x15 − x1x4x12x18 + (−9
2
r + 3)x1x5x11x15 + x1x5x11x18

− x1x5x12x16 − x1x5x12x21 + (9
2
r − 3)x1x6x11x14 + x1x6x11x19

− x1x6x12x17 + x1x6x12x20 + x1x7x11x16 + (−9
2
r + 3)x1x7x11x21

− x1x7x12x15 − x1x7x12x18 + x1x8x11x17 + (9
2
r − 3)x1x8x11x20

+ x1x8x12x14 − x1x8x12x19 − x1x9x11x14 + (−9
2
r + 3)x1x9x11x19 + x1x9x12x17

− x1x9x12x20 − x1x10x11x15 + (9
2
r − 3)x1x10x11x18 − x1x10x12x16 − x1x10x12x21

+ 3
4
rx2

2x
2
11 +

3
4
rx2

2x
2
12 +

3
4
rx2

2x
2
14 +

3
4
rx2

2x
2
15 +

3
4
rx2

2x
2
16 +

3
4
rx2

2x
2
17 +

3
4
rx2

2x
2
18

+ 3
4
rx2

2x
2
19 +

3
4
rx2

2x
2
20 +

3
4
rx2

2x
2
21 − 3

2
rx2x3x13x14 − 3

2
rx2x4x13x15 − 3

2
rx2x5x13x16

− 3
2
rx2x6x13x17 − 3

2
rx2x7x13x18 − 3

2
rx2x8x13x19 − 3

2
rx2x9x13x20 − 3

2
rx2x10x13x21

+ 1
2
x2
3x

2
11 +

1
2
x2
3x

2
12 +

3
4
rx2

3x
2
13 +

1
2
x2
3x

2
15 +

1
2
x2
3x

2
16 + (−9

4
r + 2)x2

3x
2
17 +

1
2
x2
3x

2
18

+ 1
2
x2
3x

2
21 − x3x4x14x15 + (9

2
r − 3)x3x4x16x17 + x3x4x18x19 − x3x4x20x21

− x3x5x14x16 + (−9
2
r + 3)x3x5x15x17 + x3x5x18x20 + x3x5x19x21

+ (9
2
r − 4)x3x6x14x17 − x3x7x14x18 + x3x7x15x19 + x3x7x16x20

+ (−9
2
r + 3)x3x7x17x21 + x3x8x

2
11 − x3x8x

2
12 − 2x3x8x15x18 − 2x3x8x16x21

+ 9
2
rx3x8x17x20 + 2x3x9x11x12 + 2x3x9x15x21 − 2x3x9x16x18 − 9

2
rx3x9x17x19

− x3x10x14x21 − x3x10x15x20 + x3x10x16x19 + (9
2
r − 3)x3x10x17x18 +

1
2
x2
4x

2
11

+ 1
2
x2
4x

2
12 +

3
4
rx2

4x
2
13 +

1
2
x2
4x

2
14 + (−9

4
r + 2)x2

4x
2
16 +

1
2
x2
4x

2
17 +

1
2
x2
4x

2
19 +

1
2
x2
4x

2
20

+ (9
2
r − 4)x4x5x15x16 + (−9

2
r + 3)x4x6x14x16 − x4x6x15x17 + x4x6x18x20

+ x4x6x19x21 − x4x7x
2
11 + x4x7x

2
12 − 2x4x7x14x19 +

9
2
rx4x7x16x21

− 2x4x7x17x20 + x4x8x14x18 − x4x8x15x19 + (−9
2
r + 3)x4x8x16x20 + x4x8x17x21

− x4x9x14x21 − x4x9x15x20 + (9
2
r − 3)x4x9x16x19 + x4x9x17x18 + 2x4x10x11x12

+ 2x4x10x14x20 − 9
2
rx4x10x16x18 − 2x4x10x17x19 +

1
2
x2
5x

2
11 +

1
2
x2
5x

2
12 +

3
4
rx2

5x
2
13

+ 1
2
x2
5x

2
14 + (−9

4
r + 2)x2

5x
2
15 +

1
2
x2
5x

2
17 +

1
2
x2
5x

2
19 +

1
2
x2
5x

2
20 + (9

2
r − 3)x5x6x14x15

− x5x6x16x17 − x5x6x18x19 + x5x6x20x21 − 2x5x7x11x12 − 2x5x7x14x20
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− 9
2
rx5x7x15x21 + 2x5x7x17x19 + x5x8x14x21 + (9

2
r − 3)x5x8x15x20

− x5x8x16x19 − x5x8x17x18 + x5x9x14x18 + (−9
2
r + 3)x5x9x15x19 − x5x9x16x20

+ x5x9x17x21 − x5x10x
2
11 + x5x10x

2
12 − 2x5x10x14x19 +

9
2
rx5x10x15x18

− 2x5x10x17x20 +
1
2
x2
6x

2
11 +

1
2
x2
6x

2
12 +

3
4
rx2

6x
2
13 + (−9

4
r + 2)x2

6x
2
14 +

1
2
x2
6x

2
15

+ 1
2
x2
6x

2
16 +

1
2
x2
6x

2
18 +

1
2
x2
6x

2
21 + (9

2
r − 3)x6x7x14x21 + x6x7x15x20 − x6x7x16x19

− x6x7x17x18 − 2x6x8x11x12 − 9
2
rx6x8x14x20 − 2x6x8x15x21 + 2x6x8x16x18

+ x6x9x
2
11 − x6x9x

2
12 +

9
2
rx6x9x14x19 − 2x6x9x15x18 − 2x6x9x16x21

+ (−9
2
r + 3)x6x10x14x18 + x6x10x15x19 + x6x10x16x20 − x6x10x17x21 +

1
2
x2
7x

2
11

+ 1
2
x2
7x

2
12 +

3
4
rx2

7x
2
13 +

1
2
x2
7x

2
14 +

1
2
x2
7x

2
17 +

1
2
x2
7x

2
19 +

1
2
x2
7x

2
20 + (−9

4
r + 2)x2

7x
2
21

+ x7x8x14x15 − x7x8x16x17 − x7x8x18x19 + (9
2
r − 3)x7x8x20x21 + x7x9x14x16

+ x7x9x15x17 − x7x9x18x20 + (−9
2
r + 3)x7x9x19x21 + (9

2
r − 4)x7x10x18x21

+ 1
2
x2
8x

2
11 +

1
2
x2
8x

2
12 +

3
4
rx2

8x
2
13 +

1
2
x2
8x

2
15 +

1
2
x2
8x

2
16 +

1
2
x2
8x

2
18 + (−9

4
r + 2)x2

8x
2
20

+ 1
2
x2
8x

2
21 + (9

2
r − 4)x8x9x19x20 + x8x10x14x16 + x8x10x15x17

+ (−9
2
r + 3)x8x10x18x20 − x8x10x19x21 +

1
2
x2
9x

2
11 +

1
2
x2
9x

2
12 +

3
4
rx2

9x
2
13 +

1
2
x2
9x

2
15

+ 1
2
x2
9x

2
16 +

1
2
x2
9x

2
18 + (−9

4
r + 2)x2

9x
2
19 +

1
2
x2
9x

2
21 − x9x10x14x15 + x9x10x16x17

+ (9
2
r − 3)x9x10x18x19 − x9x10x20x21 +

1
2
x2
10x

2
11 +

1
2
x2
10x

2
12 +

3
4
rx2

10x
2
13 +

1
2
x2
10x

2
14

+ 1
2
x2
10x

2
17 + (−9

4
r + 2)x2

10x
2
18 +

1
2
x2
10x

2
19 +

1
2
x2
10x

2
20.
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