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Local high-degree polynomial integrals of geodesic flows
and the generalized hodograph method1

Sergei Agapov

Abstract.We study Riemannian metrics on 2-surfaces with integrable geodesic flows

such that an additional first integral is high-degree polynomial in momenta. This

problem reduces to searching for solutions to certain quasi-linear systems of PDEs

which turn out to be semi-Hamiltonian. We construct plenty of local explicit and

implicit integrable examples with polynomial first integrals of degrees 3, 4, 5. Our

construction is essentially based on applying the generalized hodograph method.

Key words: integrable geodesic flow, polynomial first integral, semigeodesic
coordinates, semi-Hamiltonian system, commuting flow, conservation law, gen-
eralized hodograph method, canonical transformation

1. Introduction and the main results

Consider a 2-dimensional surface M with local coordinates x = (x1, x2) and a Riemannian
metric ds2 = gij(x)dx

idxj . The Hamiltonian system

ẋj = {xj , H}, ṗj = {pj, H}, H =
1

2
gijpipj , i, j = 1, 2, (1.1)

with the standard Poisson bracket

{f,H} =

2∑

i=1

(
∂f

∂xi

∂H

∂pi
− ∂f

∂pi

∂H

∂xi

)

defines the geodesic flow of the given metric. Namely, projections of trajectories of system (1.1)
from the cotangent bundle T ∗M to the configurational space M coincide with geodesic curves.

A function F (x, p) is called the first integral of the geodesic flow (1.1) if it is preserved along
its trajectories, i.e. if dF

dt
= {F,H} ≡ 0. The geodesic flow (1.1) is called completely integrable

if in addition to H there exists one more first integral F such that F, H are functionally
independent almost everywhere. In this case equations (1.1) can be integrated in quadratures
([1]).

The problem of searching for Riemannian metrics on 2-surfaces with an integrable geodesic
flow is classical: it has been studied intensively during long period of time. Let us mention
a famous result of Jacobi who integrated the geodesic equations on the three-axis ellipsoid in
terms of elliptic functions ([2]). Another classical integrable example is the geodesic flow on
surfaces of revolution, an additional first integral (Clairaut’s integral) is linear in momenta. We
briefly expose other known results.

1This work is supported by the grant of the Russian Science Foundation No. 24-11-00281,
https://rscf.ru/project/24-11-00281/
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We start from the local aspect of this problem. Introduce locally the conformal coordinates

ds2 = Λ(x, y)(dx2 + dy2) (1.2)

on M. As known, it is always possible to do this in a small neighborhood of a generic point.
In general, in most known integrable cases, the first integrals have the form of polynomials

in momenta. Polynomial integrals of low degrees are well-studied at large. In local conformal
coordinates (1.2) integrable examples with an additional linear or quadratic integral are known
to be of the following form ([3]—[5], see also [6]):

ds2 = f(x)(dx2 + dy2), F1 = p2, (1.3)

ds2 = (f(x) + g(y))(dx2 + dy2), F2 =
gp21 − fp22
f + g

, (1.4)

here f(x), g(y) are arbitrary functions. In the first case (1.3) the metric does not depend on
y (such coordinate is called cyclic) and, consequently, the conjugate momenta p2 is preserved.
In the second case (1.4) we have the Liouville metric and the quadratic first integral.

It is known that in a typical situation the geodesic flow of a generic Riemannian metric is
not polynomially integrable ([7]). However, the following theorem holds true.

Theorem 1. ([8],[9]) For any n ≥ 1, n ∈ N there exists an analytic function Λ(x, y) such that
the geodesic flow of the metric (1.2) admits an irreducible polynomial integral of the given degree
n with analytic (in a small neighborhood of a point x = y = 0) coefficients.

We recall that a polynomial first integral F of degree n functionally independent on the
Hamiltonian is called irreducible if there are no polynomial first integrals of degrees m < n.

Theorem 1 states that there exist plenty of local integrable examples of geodesic flows with
additional non-trivial polynomial first integrals of high degrees. However, the problem of con-
structing such metrics and first integrals turned out to be very complicated. In general case
this problem reduces to complicated quasi-linear systems of PDEs. As proved in [10]—[12]
(see also [13]) these systems typically belong to the class of diagonalizable hydrodynamic type
systems ([14], [15]) and have many beautiful properties, for instance, they turned out to be
semi-Hamiltonian ([16]). This fact is crucial since it allows one to apply the generalized hodo-
graph method ([16]) to these systems to construct its solutions. Various attempts to do this
have been made in [17] (see also [18]) where an explicit algorithm was proposed for solving
this problem. Unfortunately, this algorithm turned out to be very non-trivial and produced
no new integrable examples. As far as we know the first example of the polynomially inte-
grable geodesic flow obtained via the generalized hodograph method was constructed in [19],
the additional polynomial first integral in this example is of the fourth degree.

In this paper we apply the generalized hodograph method combined with some other ideas.
This allows us to overcome the main difficulties which appeared in [17]—[19] and to construct
plenty of explicit and implicit examples of 2-dimensional Riemannian metrics with integrable
geodesic flows; additional first integrals are polynomials in momenta of degrees 3, 4, 5 (see
Theorems 8— 10 and Examples 2 — 10 below). It is important to notice that typically examples
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obtained via the generalized hodograph method turn out to be implicit. However, sometimes
it is possible to give them an explicit form via an appropriate canonical change of coordinates.

Another interesting problem is to investigate the so-called superintegrable geodesic flows
([20], [21]). Recall that the geodesic flow (1.1) is called superintegrable if in addition to the
Hamiltonian H it admits two more first integrals F1, F2 (i.e. {F1, H} = {F2, H} = 0) such
that all of them are functionally independent almost everywhere. In most known examples
of 2-dimensional superintegrable geodesic flows one of the first integrals is linear or quadratic
in momenta and another one is polynomial of a higher degree ([22]—[24]) or non-polynomial
([25], [26]). We note that an existence of a linear or a quadratic first integral is crucial for
results obtained in [22]—[24] . In contrast with all these results, our main aim is to construct
irreducible high-degree polynomial integrals.

The global aspect of this problem is also of an undoubted interest. A special attention is
usually paid to the case of compact configurational spaces. In this case certain topological
obstacles to global integrability are known to exist. Namely, if the genus of a surface is larger
than 1, then there exist no analytical Riemannian metrics with an additional analytical first
integral independent on the Hamiltonian ([27]).

Integrable geodesic flows on the 2-sphere with linear and quadratic integrals were described
in [28], they have rather complicated form. Integrable examples with polynomial integrals of
degree 3 and 4 are also known to exist on the 2-sphere: they can be obtained from famous
integrable cases (Euler, Lagrange, Kovalevskaya cases etc.) in the dynamics of a rigid body by
applying the Maupertuis principle ([29]).

As also shown in [28], Riemannian metrics on the 2-torus with linear and quadratic integrals
have exactly the form (1.3), (1.4). The following conjecture is known about polynomial integrals
of higher degrees.

Conjecture 1. ([29]) The largest possible degree of any irreducible polynomial first integral of
the geodesic flow on the 2-torus seems to be not larger than 2.

Although this conjecture has been proven in many special cases via various methods and
approaches ([30], [31], [11]—[12], [32], [33]), in general case it still remains an open problem.

Given a high-degree polynomial integral of the geodesic flow, it is an important and usually
very non-trivial problem to verify the absence of polynomial integrals of lesser degrees. One of
possible approaches to this problem based on the theory of differential invariants was developed
in [34]. An explicit criteria for existence of linear integrals described in [35] (see also [36], [37])
in coordinates is the following.

Theorem 2. ([35]) Given a 2-dimensional metric ds2 = gijdu
iduj, consider the following

functions:
- R = Ri

ijkg
jk (scalar curvature), where Ri

ljk is the curvature tensor of the given metric;

- L = gij ∂R
∂ui

∂R
∂uj ;

- ∆ = 1√
det g

∂
∂ui

(
gij

√
det g ∂R

∂uj

)
.
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If the geodesic flow of the given metric admits a linear in momenta first integral, then R and
L as well as R and ∆ are functionally dependent, i.e.

det

(
∂R
∂u1

∂R
∂u2

∂L
∂u1

∂L
∂u2

)
= det

(
∂R
∂u1

∂R
∂u2

∂∆
∂u1

∂∆
∂u2

)
= 0. (1.5)

We shall use this criteria to verify the absence of linear integrals in all of our constructed
examples below.

A natural generalization of polynomial integrals are the ones of the form

F =

N∏

j=1

(aj(x, y)p1 + bj(x, y)p2)
nj , nj ∈ R. (1.6)

Such integrals were firstly studied by Darboux in [36] and later in many papers (e.g.,
see [18], [38]). Depending on nj , these integrals may be polynomial, rational, algebraic or
even transcendental functions. In the case N = 2, n1 = 1 explicit examples of such integrals
(with arbitrary n2 = n ∈ R) were constructed in [38]. We provide here one of these examples
which is expressed in terms of elementary functions. We note that there are some misprints
in [38] and the correct example is the following.

Example 1. ([38]) Suppose that n(n + 1)(n+ 2) 6= 0. Then the geodesic flow of the metric

ds2 = e
4(n+1)

n
x{2n2 sin2((n+ 1)y) + 4 cos2((n+ 1)y)dx2

+2n(n+ 1)(n− 2) sin(2(n+ 1)y)dxdy + n2(n2 − 2n+ 2 + n(n− 2) cos(2(n+ 1)y))dy2}
admits an additional first integral of the form

F = e−
n2+3n+2

n
x (3n− 2 + (n− 2) cos(2(n+ 1)y))−1−n (np1 sin((n+ 1)y) + 2p2 cos((n + 1)y))n ×

× ((n− 2)(np1 sin(2(n+ 1)y) + p2 cos((n+ 1)y))− (n+ 2)p2) .

If in addition n 6= 2, then this metric is not flat.

We note that for any natural n ∈ N, n > 2 the additional integral in Example 1 is polynomial
in momenta of degree n+1 and there are no linear integrals (it can be verified via Theorem 2).

The simplest non-polynomial integrals (1.6) are the ones having a rational form. We refer
the reader to ([39], [25], [38], [40]) where many examples of rational integrals were constructed.

This paper is organized as follows. In section 2 we give the definitions of semi-Hamiltonian
systems, its commuting flows (symmetries) and briefly describe the generalized hodograph
method ([16]). In section 3 we recall the results obtained in [10] about semi-Hamiltonicity of
quasi-linear systems of PDEs arising in the problem of polynomially integrable geodesic flows
on the 2-torus. In section 4 we describe well-known cases of integrals of small degrees n = 1, 2.
In section 5 we explain how to search for commuting flows of non-diagonal semi-Hamiltonian
systems. Following this approach, in sections 6 — 8 we construct plenty of implicit and explicit
integrable examples of metrics with polynomial integrals of degrees 3, 4 and 5.
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2. Semi-Hamiltonian systems and the generalized hodograph method

In this section we briefly describe some fundamental properties of semi-Hamiltonian systems
and recall the notions of the classical and the generalized hodograph methods.

First consider a homogeneous quasi-linear system of two differential equations on two un-
known functions u(t, x), v(t, x) :

ut + a11ux + a12vx = 0, vt + a21ux + a22vx = 0, (2.1)

where aij = aij(u, v) for any i, j = 1, 2. Let us swap independent and dependent variables,
i.e. we assume that x = x(u, v), t = t(u, v). It is easy to verify that if uxvt − utvx 6= 0, then
quasi-linear system (2.1) is equivalent to the linear one:

−xv = a11tv − a12tu, xu = a21tv − a22tu. (2.2)

This is how the classical hodograph method works (e.g., see [41]).

The generalized hodograph method ([16]) is a natural generalization of the classical one.
A diagonal quasi-linear system of equations (no summation over i)

rit = vi(r)r
i
x, i = 1, ..., n, vi 6= vj (2.3)

is called semi-Hamiltonian if its coefficients vi(r) are distinct in a domain and for n > 2 satisfy

∂i

(
∂jvk

vj − vk

)
= ∂j

(
∂ivk

vi − vk

)
, i 6= j 6= k 6= i. (2.4)

In the case n ≤ 2 any hyperbolic system is assumed to be semi-Hamiltonian.
The evolutionary system

riτ = wi(r)r
i
x, i = 1, ..., n (2.5)

is called the symmetry (or, equivalently, the commuting flow) of (2.3) if and only if ∂τ (r
i
t) =

∂t(r
i
τ ) for any i = 1, ..., n. Components wi(r) of the symmetries satisfy the following relations:

∂kvi
vk − vi

=
∂kwi

wk − wi

, i 6= k. (2.6)

Theorem 3. ([16]) A semi-Hamiltonian diagonal system (2.3) has infinitely many symme-
tries of hydrodynamic type: the flows (2.5) commuting with it, that can be parameterized by
n functions of one variable. All these flows commute with each other and their matrices are
diagonal.

Consider the following system of n equations on n unknown functions ri :

wi(r) = vi(r)t+ x, i = 1, ..., n. (2.7)

Theorem 4. ([16]) A smooth solution ri(t, x) of system (2.7) is a solution of the diagonal semi-
Hamiltonian system (2.3). Conversely, any solution ri(t, x) of (2.3) can be locally represented
as a solution of (2.7) in a neighborhood of a point (x0, t0) such that rix(x0, t0) 6= 0 for every i,
where wi(u) are coefficients of a hydrodynamic flow (2.5) commuting with (2.3).
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In the case n = 2 the generalized hodograph method is equivalent to the classical one.

We note that typically semi-Hamiltonian systems arising in applications are written in a
non-diagonal form:

ui
t =

n∑

j=1

vij(u)u
j
x, i = 1, ..., n. (2.8)

In this case the generalized hodograph method can be applied in the following way. Let us
search for commuting flows in the form

ui
τ =

n∑

j=1

wi
j(u)u

j
x, i = 1, ..., n (2.9)

such that the following conditions hold true:

∂τ (u
i
t) = ∂τ

(
n∑

j=1

vij(u)u
j
x

)
= ∂t

(
n∑

j=1

wi
j(u)u

j
x

)
= ∂t(u

i
τ ). (2.10)

Consider then the following system

xδik + tvik = wi
k. (2.11)

This system contains n2 equations on n unknown functions ui. However, as proved in [16], if
system (2.8) is semi-Hamiltonian and wi

k define its symmetry (i.e. if relations (2.10) hold true),
then system (2.11) must be compatible. Having solved (2.11) w.r.t. ui(t, x), we automatically
obtain solutions to system (2.8).

3. Polynomial integrals of geodesic flows on the 2-torus and

semi-Hamiltonian systems

In this section we describe the connection between polynomial integrals of geodesic flows and
semi-Hamiltonian systems which was discovered in [10].

Theorem 5. ([10]) Suppose that Hamiltonian system (1.1) on the two-torus admits an addi-
tional integral F which is a homogeneous polynomial of degree n. Then on the covering plane
R

2 there exist the global coordinates (t, x) such that the metric has the following form:

ds2 = g2(t, x)dt2 + dx2,

and the integral F can be written in the form

F =
n∑

k=0

ak(t, x)

gn−k
pn−k
1

pk
2
,

where the last two coefficients can be normalized in the following way: an−1 ≡ g, an ≡ 1. Then
the commutation relation {F,H} = 0 is equivalent to the system of n quasi-linear equations on
the unknown functions a0, ..., an−1 of the form

ui
t + vij(u)u

j
x = 0, (3.1)
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where ui = (a0, ..., an−1)
T and the matrix vij has the form:

vij =




0 0 · · · 0 0 a1
an−1 0 · · · 0 0 2a2 − na0
· · · · · · · · · · · · · · · · · ·
0 0 · · · an−1 0

(
n− 1

)
an−1 − 3an−3

0 0 · · · 0 an−1 nan − 2an−2




. (3.2)

Functions ai, g are periodic w.r.t. x and quasi-periodic w.r.t. t.

Theorem 6. ([10]) System (3.1) has the following properties.
1. In the region of hyperbolicity (all eigenvalues are real and distinct) there exists a change

of variables (Riemann invariants) (a0, . . . , an−1) → (r1, . . . , rn) which transforms system (3.1)
to a diagonal form:

(ri)t + λi(r1, . . . , rn)(ri)x = 0, i = 1, . . . , n;

2. there exists a regular change of variables (a0, . . . , an−1) → (G1, . . . , Gn) such that sys-
tem (3.1) can be written in the form of conservation laws:

(Gi(a0, . . . , an−1))t + (Hi(a0, . . . , an−1))x = 0, i = 1, . . . , n.

It turns out that quasi-linear systems having such a pair of properties as in Theorem 6 are
necessarily semi-Hamiltonian. More precisely, the following theorem holds true.

Theorem 7. ([42], [43]) The hyperbolic diagonal system (2.3) can be written in the form of
conservation laws

gi(r)t + hi(r)x = 0, i = 1, . . . , n

if and only if condition (2.4) holds true.

This statement is crucial since it guaranties that system (3.1) arising in the problem of
integrable geodesic flows is in fact semi-Hamiltonian. This allows to apply the generalized
hodograph method to construct solutions to (3.1).

4. Cases n = 1, n = 2

In the simplest cases n = 1 and n = 2 solutions to system (3.1) are well-known (e.g., see [17]).
In this section we expose them for the sake of completeness.

The case n = 1 is trivial: the general solution is given by

a0(t, x) = g(t, x) = f(t− x), a1(t, x) ≡ 1,

here f is an arbitrary function of one argument. So in this case we obtain

H =
1

2

(
p21

f 2(t− x)
+ p2

2

)
, F = p1 + p2, {F,H} = 0.
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Now let us demonstrate how the generalized hodograph method can be applied to system (3.1)
in the case n = 2. The general solution in this case can be obtained in an implicit form. We
have

ds2 = g2(t, x)dt2 + dx2, H =
1

2

(
p2
1

g2(t, x)
+ p2

2

)
, F =

a0(t, x)

g2
p2
1
+

a1(t, x)

g
p1p2 + a2(t, x)p

2

2
.

Due to a1(t, x) ≡ g(t, x), a2(t, x) ≡ 1 we obtain that the condition {F,H} = 0 implies

(a0)t + ggx = 0, gt + 2(1− a0)gx + g(a0)x = 0.

This system can be written in the form of conservation laws:

(a0)t +

(
g2

2

)

x

= 0,

(
1

2g2

)

t

+

(
1− a0
g2

)

x

= 0.

In Riemann invariants r1, r2 :

a0(t, x) = 1− r1(t, x)− r2(t, x), g2(t, x) = −4r1(t, x)r2(t, x),

the system takes the diagonal form:
(

r1

r2

)

t

+

(
2r2 0
0 2r1

)(
r1

r2

)

x

= 0, (4.1)

i.e. rit + vi(r)r
i
x = 0, where v1 = 2r2, v2 = 2r1. Notice that system (4.1) has the following

property:
∂v1
∂r1

=
∂v2
∂r2

= 0. (4.2)

Diagonal systems satisfying condition (4.2) are called weakly nonlinear ([41]). Diagonal weakly
nonlinear semi-Hamiltonian systems were described in [44] (see also [45], [46]), various methods
for constructing its solutions were also discussed there.

As proved in [47], if a solution to the weakly nonlinear system is bounded on a finite time
interval, then the derivatives are also bounded. Thus, the absence of a gradient catastrophe
is typical for solutions to such systems. This implies that system (4.1) and, consequently,
system (3.1) in the case n = 2 admits smooth solutions. It is interesting that as shown in [48],
in the case n > 2 system (3.1) is no more weakly nonlinear and this is one of the reasons why
Conjecture 1 seems to be true.

Now we apply the generalized hodograph method to construct solutions to system (4.1).
Commuting flows have the form

(
r1

r2

)

τ

=

(
w1 0
0 w2

)(
r1

r2

)

x

,

where w1(r), w2(r) are unknown functions so far. Relations (2.6) take the form

∂w1

∂r2
=

w1 − w2

r2 − r1
,

∂w2

∂r1
=

w2 − w1

r1 − r2
,
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which implies ∂w1/∂r
2 = ∂w2/∂r

1. Introduce a new function Ψ(r1, r2) such that Ψr1 = w1,
Ψr2 = w2. Then Ψ satisfies the Euler-Poisson-Darboux equation:

Ψr1r2 +
Ψr1 −Ψr2

r1 − r2
= 0.

The general solution to this equation has the form (e.g., see [49]):

Ψ(r1, r2) = 2u(r1) + 2v(r2) + (r1 − r2)(v′(r2)− u′(r1)),

where u(r1), v(r2) are two arbitrary functions of one argument. Finding w1, w2 and inserting
them into (2.7) we obtain the general solution to system (4.1) (and also to system (3.1) for
n = 2) in the implicit form:

t = −1

2
(u′′(r1) + v′′(r2)), x = u′(r1) + v′(r2)− r1u′′(r1)− r2v′′(r2).

Notice that the obtained solution with the quadratic first integral corresponds exactly to
the Liouville metric in conformal coordinates: the corresponding change of coordinates is given
in [17].

5. Description of commuting flows of non-diagonal semi-Hamiltonian systems

In the case n = 2, for the system written in Riemann invariants (4.1) commuting flows were
completely described in section 4 which allowed to construct the general solution via the gener-
alized hodograph method. For n > 2, the search for Riemann invariants of a semi-Hamiltonian
system in general becomes a very complicated problem. Therefore, in this case, for construct-
ing solutions by the generalized hodograph method, it is reasonable to describe commuting
flows (2.9) of the initial non-diagonal system (2.8) without its explicit diagonalization.

Consider a non-diagonal semi-Hamiltonian system (2.8) admitting a commuting flow (2.9).
Denote U = (u1, . . . , un)T , V = (vij), W = (wi

j).

Lemma 1. ([16]) Two flows

Ut = V (U)Ux, Uτ = W (U)Ux. (5.1)

commute if and only if

[V,W ] = VW −WV ≡ 0, (5.2)

(Vτ −Wt + VWx −WVx)Ux ≡ 0. (5.3)

The proof follows immediately from the following calculation:

0 = (V Ux)τ − (WUx)t = VτUx + V (WUx)x −WtUx −W (V Ux)x

= (VW −WV )Uxx + (Vτ −Wt + VWx −WVx)Ux.

To sum it up, in order to describe symmetries of a given non-diagonal semi-Hamiltonian system
Ut = V (U)Ux, we have to do the following steps:

1) to find all matrices W, which commute with V (condition (5.2)),
2) to satisfy condition (5.3).
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First condition (5.2) is purely algebraic and in principle can be immediately solved for any
given semi-Hamiltonian system. Second condition (5.3) is much more complicated and in
general case causes great difficulties.

Let us demonstrate how this algorithm can be applied to system (3.1) in the case n = 2. We
have

V =

(
0 a1
a1 2− 2a0

)
W =

(
w1 w2

w3 w4

)
,

where components wj of symmetries are unknown functions which depend on a0, a1. Condi-
tion (5.2) implies

w3 = w2, w4 = w1 +
2(1− a0)w2

a1
.

By direct calculations we obtain that condition (5.3) is equivalent to:

(w1)a1 − (w2)a0 = 0, w2 − a1(w2)a1 + a1(w1)a0 − 2(−1 + a0)(w2)a0 = 0.

Introduce a new function Ψ(a0, a1) such that w1 = Ψa0 , w2 = Ψa1 , then Ψ(a0, a1) satisfies the
following equation:

a1Ψa0a0 − 2(a0 − 1)Ψa0a1 − a1Ψa1a1 +Ψa1 = 0.

This equation can be solved by the standard methods. So all the components wj of the sym-
metries are found. Substituting them into (2.11) we obtain the general solution to (3.1) which
is obviously equivalent to the one obtained in section 4 (see details in [48]).

Below we shall apply this algorithm for describing symmetries and constructing solutions
to (3.1) for n > 2.

6. Case n = 3

Now we are in position to deal with system (3.1) in the cases n > 2. In this section we
consider the case n = 3. We have U = (a0, a1, a2)

T , a3(t, x) ≡ 1, g(t, x) = a2(t, x),

F =
a0
a32

p3
1
+

a1
a22

p2
1
p2 + p1p

2

2
+ p3

2
(6.1)

and system (3.1) is of the form

Ut + V Ux = 0, V =




0 0 a1
a2 0 2a2 − 3a0
0 a2 3− 2a1


 . (6.2)

The following theorem describes solutions to system (6.2).

Theorem 8. The general solution to (6.2) is given implicitly by the algebraic system of equa-
tions

P = 0, R = t, S = (3− 2a1)t− x, (6.3)
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here functions P (a0, a1, a2), R(a0, a1, a2), S(a0, a1, a2) satisfy the following system of PDEs:

a1∂0P = (3a0 − 2a2)∂0R + (2a1 − 3)∂1R + a2∂2R,

∂1P = ∂0R, ∂2P = ∂1R,

∂0S = a2∂1R− 2P, ∂1S = a2∂2R − 2R,

∂2S = a1∂0R + (2a2 − 3a0)∂1R + (3− 2a1)∂2R + P,

(6.4)

where ∂i =
∂
∂ai

, i = 0, 1, 2.

Let us make one remark concerning the statement of Theorem 8.

Remark 1. In order to construct solutions to (6.2) via Theorem 8, we have to be able
to solve (6.3) w.r.t. a0, a1, a2 as functions depending on t, x. For instance, functions
P (a0, a1, a2) = R(a0, a1, a2) = S(a0, a1, a2) ≡ 0 satisfy (6.4) but they do not produce any
solutions to (6.2) since in this case equations (6.3) cannot be solved w.r.t. ak(t, x), k = 0, 1, 2.

Let us prove Theorem 8. First of all we have to describe symmetries of (6.2). We start
with searching for matrices W such that [V,W ] = 0 (see Lemma 1 above). Writing down this
condition, we obtain a linear system of rank 6 which consists of 9 equations on the unknown
components of W. Solving it we obtain

Lemma 2. For matrix V of the form (6.2) the condition [V,W ] = 0 holds true if and only if
W has the form

W =



(3a0 − 2a2)P + (2a1 − 3)R + S a1P a1R

(2a1 − 3)P + a2R (2a1 − 3)R+ S a1P + (2a2 − 3a0)R
a2P a2R S


 (6.5)

with arbitrary P, R, S.

Now the first condition (5.2) is satisfied and we need to satisfy the second one (5.3). By
direct calculations one may verify that (5.3) holds true if and only if the unknown functions
P (a0, a1, a2), R(a0, a1, a2), S(a0, a1, a2) satisfy (6.4). It is left to notice that system (2.11) is
equivalent to relations (6.3). Theorem 8 is proved.

It is not easy to construct a general solution to (6.4). However, plenty of partial solutions to
this system can be obtained. The simplest way to do this seems to be the following. Suppose
that one of the unknown functions has a certain simple form. For instance, assume that P is a
polynomial in ak of the first degree with constant coefficients, that is

P (a0, a1, a2) = k0a0 + k1a1 + k2a2 + k3, kj ∈ R.

This allows to find functions R, S from (6.4). Substituting them into (6.3) we obtain a family
of integrable examples parameterized by several arbitrary constants; the simplest one is the
following.

Example 2. Assume that functions a0(t, x), a1(t, x), a2(t, x) satisfy

2a0 + a2 = 0, k(a1 + 3 log a2) = t, 2x+ k(2a21 + 3a22) = 0, (6.6)
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here k ∈ R is an arbitrary constant.
Then the geodesic flow of the metric ds2 = g2(t, x)dt2 + dx2 (recall that a2 ≡ g) admits a

cubic in momenta first integral F3 of the form

F3 =
a0
g3

p3
1
+

a1
g2

p2
1
p2 + p1p

2

2
+ p3

2
.

Solving the first two equations of (6.6) we obtain that

a0 = −a2/2, a1 = −3 log a2 + t/k

and the metric coefficient a2(t, x) satisfies the transcendental equation:

3ka2
2
− 12t log a2 + 18k log2 a2 + 2x+ 2t2/k = 0.

In order to get rid of this implicitness, let us go back to (6.6). We have a0 = −a2/2 and

k(a1 + 3 log a2) = t, 2x+ k(2a2
1
+ 3a2

2
) = 0. (6.7)

Let us make the change of coordinates (t, x) → (a1, a2) considering (6.7) as the corresponding
formulae. New conjugate momenta P1, P2 can be found from the relation

p1dt+ p2dx = P1da1 + P2da2.

Without loss of generality assume that k = 1. Rewriting Hamiltonian and the first integral
in terms of new coordinates and momenta we finally obtain the following explicit integrable
example.

Example 3. Denote u1 = x, u2 = y. The geodesic flow of the metric ds2 = gij(u)du
iduj where

g11 = 4x2 + y2, g12 = 3y(1 + 2x), g22 = 9
(
1 + y2

)

admits a cubic in momenta first integral F = αfk(x, y)p
3−k
1

pk
2
, where

f0 = 27
(
y4 − 2y2(1 + x)− 2

)
, f1 = 18y

(
4x2 − 2y2(x− 1) + 2x+ 3

)
,

f2 = −6
(
y4 + 4x3 − y2(2x2 − 4x− 3)

)
, f3 = 2y3 (2x+ 1) ,

here α = (y2 − 2x)
−3

. Gauss curvature K of this metric is equal to

K =
y2 + 2x+ 6

9 (y2 − 2x)3
.

We note that the geodesic flow of the metric constructed in Example 3 does not admit any
linear in momenta first integrals. This can be proved with the help of Theorem 2. This also im-
plies the absence of linear integrals in Example 2. It means that the constructed cubic integrals
in these examples cannot be expressed in terms of polynomial integrals of lesser degrees.

Now assume that P is a quadratic polynomial. We obtain
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Example 4. Assume that functions a0(t, x), a1(t, x), a2(t, x) satisfy

k1(5a
2

0 + a21 + a22 + 2a0a2) + k2(2a0 + a2) + 2k1a1 + k3 = 0,

2k1a1(a0 + a2) + 2k1(a0 + 5a2) + k2a1 + k4 + 3k2 log a2 = t,

k1(−10a3
0
+ 5a3

2
− 3a2

0
a2 + 6a0a

2

1
+ 9a2

1
a2)− 6k2a

2

0
+ 3k2a

2

1

+9k2a
2

2
/2− 18k1a0a1 − 3k2a0a2 + 12k1a1a2

−6(3k1 + k3)a0 + 3k3a2 − 9k4 + 3k5 = −3x,

(6.8)

here kj ∈ R are arbitrary constants.
Then the geodesic flow of the metric ds2 = g2(t, x)dt2 + dx2 (recall that a2 ≡ g) admits a

cubic in momenta first integral F of the form

F3 =
a0
g3

p3
1
+

a1
g2

p2
1
p2 + p1p

2

2
+ p3

2
.

Many other integrable examples can be constructed by choosing P in a polynomial form of
higher degrees. They have more cumbersome form so we do not provide them here.

Another class of integrable examples can be obtained in the following way. It follows
from (6.4) that function P satisfy the following PDE of the second order:

∂02P = ∂11P.

Applying the method of separation of variables to this equation, namely, searching P in the

form P (a0, a1, a2) = P̃ (a0)P̂ (a1, a2) we obtain another integrable example.

Example 5. Functions

P = k1

(
k2

a1 − 3/2

a32
− k4

a2
+ k3

)
,

R = k5 +
(
4k1k4(2a1 − 3)a2

2
+ k1k2

(
8a0a2 − 8a2

2
− 3(3− 2a1)

2
))

/
(
8a4

2

)
,

S = k1k4 log a2 − 2k5a1 + k1k3(a2 − 2a0) + k6 + k1
(
8a4

2

)−1×

×
(
k2
(
2a22(16a1 − 27) + 20a0a2(3− 2a1) + 3(2a1 − 3)3

)
+ 4k4a

2

2(6a0a2 − 4a1(a1 − 3)− 9)
)

satisfy (6.4), here ki ∈ R are arbitrary constants. System (6.3) with such functions P, R, S
defines an implicit solution to (6.2).

Remark 2. In typical situation integrable examples obtained via the generalized hodograph
method turned out to be implicit (see Theorem 8 and Examples 2, 4, 5). However, sometimes
one can get rid of this implicitness via an appropriate change of coordinates (see Example 3
obtained from Example 2). The same can be done for Examples 4, 5. We skip these calculations.
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7. Case n = 4

In this section we consider the case n = 4. We have U = (a0, a1, a2, a3)
T , a4(t, x) ≡ 1,

g(t, x) = a3(t, x),

F =
a0
a43

p4
1
+

a1
a33

p3
1
p2 +

a2
a23

p2
1
p2
2
+ p1p

3

2
+ p4

2
(7.1)

and system (3.1) is of the form

Ut + V Ux = 0, V =




0 0 0 a1
a3 0 0 2a2 − 4a0
0 a3 0 3a3 − 3a1
0 0 a3 4− 2a2


 . (7.2)

We have

Lemma 3. For matrix V of the form (7.2) the condition [V,W ] = 0 holds true if and only if
W has the form

W =




w1 a1P a1R a1S
w2 w3 a1P + 2(a2 − 2a0)R a1R + 2(a2 − 2a0)S

a3R + 2(a2 − 2)P a3S + 2(a2 − 2)R T + 2(a2 − 2)S w4

a3P a3R a3S T




(7.3)
with arbitrary P, R, S, T. Here

w1 = 2(2a0 − a2)P + 3(a1 − a3)R + 2(a2 − 2)S + T,

w2 = 3(a1 − a3)P + 2(a2 − 2)R + a3S, w3 = 3(a1 − a3)R + 2(a2 − 2)S + T,

w4 = a1P + 2(a2 − 2a0)R + 3(a3 − a1)S.

This lemma can be proved by direct calculations.

Theorem 9. The general solution to (7.2) is given implicitly by the algebraic system of equa-
tions

P = 0, R = 0, S = t, T = (4− 2a2)t− x, (7.4)

here functions P (a0, a1, a2, a3), R(a0, a1, a2, a3), S(a0, a1, a2, a3) T (a0, a1, a2, a3) satisfy the fol-
lowing system of PDEs:

a1∂0P = 2(2a0 − a2)∂0R + 3(a1 − a3)∂1R + 2(a2 − 2)∂2R + a3∂3R +R,

∂1P = ∂0R, ∂2P = ∂1R, ∂3P = ∂2R

∂0S = ∂1R, ∂1S = ∂2R, ∂2S = ∂3R

a3∂3S = a1∂0R + 2(a2 − 2a0)∂1R + 3(a3 − a1)∂2R − 2(a2 − 2)∂3R + P,

∂0T = a3∂2R− 2P, ∂1T = a3∂3R− 2R,

∂2T = a1∂0R + 2(a2 − 2a0)∂1R + 3(a3 − a1)∂2R + 2(a2 − 2)∂3R + P − 2S,

a3∂3T = γ0∂0R + γ1∂1R + γ2∂2R + γ3∂3R + 2(2− a2)P + 2a3R,

(7.5)
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where ∂i =
∂
∂ai

, i = 0, 1, 2, 3 and

γ0 = 2a1(2− a2), γ1 = −4a22 + 8a0a2 + a1a3 − 16a0 + 8a2,

γ2 = −4a0a3 + 6a1a2 − 4a2a3 − 12a1 + 12a3, γ3 = 4(a2 − 2)2 − 3a1a3 + 3a23.

The proof of Theorem 9 is completely analogous to the one of Theorem 8. We skip the
details.

Theorem 9 describes solutions to system (7.2). As in the case n = 3, it is difficult to construct
a general solution to system (7.5). So we shall restrict ourselves by constructing several partial
solutions of a more or less simple form.

Assume that P is quadratic in ak. We obtain

Example 6. Functions P, R, S, T of the form

5P =
(
64a20 + 8a21 + 4a22 + 5a23 + 16a0a2 + 8a1a3

)
n6 − 32a0n6 + 5(4a0 + a2)n2 + 5n5,

R =

(
8

5
(2a0 + a2)n6 + n2

)
a1 +

((
8

5
a0 + 2a2 + 4

)
n6 + 3n2/2

)
a3 + n1/a3,

S =
4

5

(
2a20 + a21 + a22 +

35

8
a23 + 2a0a2 +

5

2
a1a3

)
n6 + a0n2 + 4a2n6 +

3

2
a2n2

+ (6n2 + n5 + 16n6) log a3 +
(2− a2)

a2
3

n1,

T =
(2(a2 − 2)2 − 3a1a3)

a2
3

n1 − (n1 + 2(a2 − 2)(6n2 + n5 + 16n6)) log a3 +
γ

60
,

where
γ = 60n4 − 64a0(8a

2

0 + 3a21 − 6a0)n6 − 40a32n6 − 6a22(15n2 + 8(2a0 + 5)n6)

−24a2((8a
2

0
+ 4a2

1
+ 5a1a3 − 40)n6 + 5(a0 − 3)n2 + 5n3) + 60a2n5 − 60a2

1
n2

−6a1a3(15n2 + 8(2a0 + 5)n6)− 15(16a20n2 − 3a23(5n2 + 32n6) + 8a0n5),

satisfy (7.5), here ni ∈ R are arbitrary constants. System (7.4) with such functions P, R, S, T
defines an implicit solution to (7.2).

Our next step is to extract various solutions of a simple form from Example 6. Assuming
that n5 = −6n2, n1 = n6 = 0 and solving (7.4) w.r.t. ak(t, x) we obtain an explicit example
which was constructed in [19]. We do not write it down here for brevity.

Remark 3. An integrable example in [19] was also obtained with the help of the generalized
hodograph method but more straightforwardly. More precisely, in contrast with our approach,
in [19] all the components of commuting flows are assumed to be polynomial in the field variables
ak with unknown constant coefficients from the very beginning, and after that compatibility
conditions (2.10) were verified straightforwardly. Recently the same ”straightforward” approach
yielded new integrable examples in slightly different situations ([50], [38]).

We note that splitting the compatibility conditions (2.10) into two parts — the algebraic
one (5.2) and the differential one (5.3) — essentially simplifies the search for symmetries and
allows to extend the space of possible solutions.
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Let us go back to Example 6. Assume now that n1 = 0, n2 = k, n3 = . . . = n6 = 0. Solving
the first three equations of (7.4) we obtain

Example 7. Assume that a3(t, x) is a solution to the equation

75k2a2
3
+ 96k (6k log a3 − 2t− k) log a3 + 16t2 + 16kt+ 20kx = 0.

Then the geodesic flow of the metric ds2 = g2(t, x)dt2 + dx2 (recall that a3 ≡ g) admits a
polynomial in momenta first integral F4 of the form

F4 =
a0
a43

p41 +
a1
a33

p31p2 +
a2
a23

p21p
2

2 + p1p
3

2 + p42.

with coefficients

a0 =
6k log a3 − t

5k
, a1 = −3a3

2
, a2 = −4a0,

here k ∈ R is an arbitrary constant.

An explicit example can be obtained from Example 6 in the following way. For simplicity
assume that n6 = 0. Let us solve the first two equations of (7.4) P = R = 0 w.r.t. a1(t, x),
a2(t, x). Now, as usual, let us make the change of variables (t, x) → (a0, a3) and extend this
transformation to the canonical one. We obtain a family of explicit integrable examples, the
simplest one have the following form (here n1 = n5 = 0, n2 = 1).

Example 8. Denote u1 = x, u2 = y. The geodesic flow of the metric ds2 = gij(u)du
iduj where

g11 = 64(10x− 1)2 + 100y2, g12 = 240y(5x− 1), g22 = 9(25y2 + 16)

admits a fourth degree polynomial first integral F = αfk(x, y)p
4−k
1

pk
2
, where

f0 = 81(125(5x− 6)y4 + 320(5x− 1)y2 + 256),

f1 = −27y(1875y4 + 400(100x2 − 80x+ 3)y2 − 1024(50x2 − 10x+ 3)),

f2 = 72(125(80x− 3)y4 + 80(1500x3 − 800x2 + 95x+ 12)y2 − 512(10x− 1)2x),

f3 = 24y(625y4 − 200(700x2 − 100x− 7)y2 − 128(10x− 1)2(100x2 − 20x+ 3)),

f4 = 4096(10x− 1)4x+ 2560(10x− 1)2(20x− 3)y2 − 2000(40x− 9)y4,

here α = (25y2 + 160x− 16)−4. Gauss curvature K of this metric is equal to

K =
50(25y2 − 160x+ 208)

9(25y2 + 160x− 16)3
.

The geodesic flow of this metric does not admit linear in momenta first integrals.

As in the previous case n = 3, many other integrable examples with an integral of degree
n = 4 can be constructed by choosing P in a polynomial form of higher degrees.
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8. Case n = 5

In this section we consider the case n = 5. We follow the same algorithm as in the cases
n = 3, 4 but calculations and the final form of equations and functions become very complicated.
Therefore we shall briefly describe only the main points.

We have U = (a0, a1, a2, a3, a4)
T , a5(t, x) ≡ 1, g(t, x) = a4(t, x),

F =
a0
a54

p51 +
a1
a44

p41p
2 +

a2
a34

p31p
2

2 +
a3
a24

p21p
3

2 + p1p
4

2 + p52 (8.1)

and system (3.1) is of the form

Ut + V Ux = 0, V =




0 0 0 0 a1
a4 0 0 0 2a2 − 5a0
0 a4 0 0 3a3 − 4a1
0 0 a4 0 4a4 − 3a2
0 0 0 a4 5− 2a3




. (8.2)

Lemma 4. For matrix V of the form (8.2) the condition [V,W ] = 0 holds true if and only if
W has the form

W =




∗ a1P a1R a1S a1T
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

a4P a4R a4S a4T Q




with arbitrary P, R, S, T, Q. All the missing components denoted by ∗ are of a very cumbersome
form, we skip them for brevity.

Theorem 10. The general solution to (8.2) is given implicitly by the algebraic system of equa-
tions

P = 0, R = 0, S = 0, T = t, Q = (5− 2a3)t− x,

here functions P (a0, a1, a2, a3, a4), . . . , Q(a0, a1, a2, a3, a4) satisfy a system of PDEs similar to
the ones (6.4), (7.5) in cases n = 3, 4 but having a very cumbersome form.

As previously, a family of integrable examples can be obtained for the function P linear in
a0, . . . , a4. We restrict ourselves by showing only one of such examples.

Example 9. Assume that functions a0(t, x), a1(t, x), a2(t, x) a3(t, x), a4(t, x) satisfy

24a0 + 4a2 + 3a4 = 0, 8a1 + 6a3 + 15 = 0,

8a0 + 6a2 + 15a4 = 0, 6a1 + 15a3 + 105k log a4 = 8t/k,

96a20 + 16a21 + 12a22 − 30a23 − 105a24 + 32a0a2 + 12a0a4 + 30a2a4 + 120a1 − 60a3 = 16x/k,

here k ∈ R is an arbitrary constant.
Then the geodesic flow of the metric ds2 = g2(t, x)dt2+dx2 (recall that a4 ≡ g) admits a fifth

degree polynomial in momenta first integral F of the form (8.1).
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Let us rewrite this example in the explicit form by making a suitable change of coordinates.
We obtain

Example 10. Denote u1 = x, u2 = y. The geodesic flow of the metric ds2 = gij(u)du
iduj where

g11 = (2x+ 5)2 + y2, g12 = 20y(x+ 3), g22 = 100(y2 + 1)

is completely integrable. Gauss curvature K of this metric is equal to

K =
(y2 + 2x+ 25)

(y2 − 2x− 5)3
.

An additional first integral is polynomial of degree 5, we skip its explicit expression for brevity.
This geodesic flow does not admit any linear integrals.

9. Conclusion

This paper deals with the classical problem of searching for 2-dimensional Riemannian metrics
with polynomially integrable geodesic flows. As shown in [10], this problem reduces to searching
for solutions to the semi-Hamiltonian system of PDEs (3.1), (3.2). The most difficult part of
the present work is the one related to searching for commuting flows of (3.1), (3.2). We write
down the full set of PDEs on the components of commuting flows (see systems (6.4), (7.5)
for n = 3, 4 correspondingly) and construct plenty of its partial solutions. Finally, applying
the generalized hodograph method we construct a series of explicit and implicit examples of
local 2-dimensional metrics with integrable geodesic flows admitting additional polynomial in
momenta first integrals of degrees 3, 4 or 5 (see Examples 2 — 10).

Let us make some concluding remarks.
1) We believe that following this approach, it is possible to construct new integrable examples

of 2-dimensional geodesic flows with polynomial integrals of degrees n > 5. However, all the
necessary calculations and the final form of metrics and first integrals in this case are expected
to be rather cumbersome.

2) We notice that, despite of complicated calculations, in all the cases n = 3, 4, 5 the algebraic
system of equations (2.11) turns out to have a very simple form

S1 = S2 = . . . = Sn−2 = 0, Sn−1 = t, Sn = (n− 2an−2)t− x,

where n functions Sk(a0, . . . , an−1) determine all the components of commuting flows. Moreover,
the structure of these algebraic equations will be the same for any n.

3) It is a very interesting problem to construct a general solution to systems (6.4), (7.5). It
would allow to describe a wider class of integrable metrics admitting polynomial integrals of
degrees 3, 4.

4) In typical situation examples obtained via the generalized hodograph method turn out to
be local. It would be very interesting to understand whether it is possible to construct smooth
periodic solutions on the 2-torus or to prove its non-existence (see Conjecture 1 in Introduction)
following this approach.

Acknowledgements. The author thanks S.P. Tsarev and M.V. Pavlov for helpful discus-
sions.
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