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THE SHARP DIAMETER BOUND OF STABLE MINIMAL SURFACES

QIXUAN HU, GUOYI XU, SHUAI ZHANG

Abstract. For three dimensional complete Riemannian manifolds with scalar

curvature no less than one, we obtain the sharp upper bound of complete stable

minimal surfaces’ diameter.

Mathematics Subject Classification: 53C21, 53C23.

1. Introduction

Let (M3, g) be a complete 3-dim Riemannian manifold with scalar curvature

R ≥ 1, for any stable minimal surface Σ in M (possibly ∂Σ , ∅), and γ ⊂ Σ be a

closed curve, if

Uρ(γ) ∩ ∂Σ = ∅, Image[H1(γ)→ H1(Uρ(γ))] . 0.(1.1)

where Uρ(γ) := {x ∈ Σ : distΣ(x, γ) ≤ ρ}, Gromov and Lawson [GL83, Theorem

10.2] showed ρ ≤ π. Furthermore they [GL83, Remark 10.6] conjecture that the

best possible conclusion would be ρ ≤ π√
2

which is achieved by M = S2(
√

2)× S1,

Σ = S2(
√

2) ⊂ M, and γ be the great circle in Σ.

On the other hand, Schoen-Yau [SY83, Proof of Proposition 1] showed that

ρ ≤
√

6
3
π.

In this note, we show that ρ <
√

6
3
π and it is the sharp upper bound, which is a

corollary of the following theorem.

Theorem 1.1. Let Σ be a complete stable minimal surface in a complete 3-dim

Riemannian manifold (M3, g) with scalar curvature R(g) ≥ 1. Then

Diam(Σ) <
2
√

6π

3
.(1.2)

The upper bound is sharp in the following sense: there is a sequence of complete

3-dim manifolds Mk := (S 2×S 1, gk) with R(gk) ≥ 1 and k ∈ Z+, and compact stable

minimal surfaces Σk ⊆ Mk such that lim
k→∞

Diam(Σk) =
2
√

6

3
π.

The strictness of (1.2) is obtained by a simple observation, the main contribu-

tion of this note is the construction of the example manifolds, which shows the

sharpness of this upper bound.
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From [Gro20, 4.C], we know

FillRad(M) ≤ 1

2
widthn−1(M) ≤ 1

2
Diam(M)

for complete Riemannian manifold (Mn, g), where FillRad(M) is the filling radius

and widthn−1(M) is the (n − 1)-th Uryson width, defined as in [Gro20, section 4].

The results in section 3 show that for a complete stable minimal surface Σ in

a complete 3-dim Riemannian manifold (M3, g) with scalar curvature R ≥ 1, we

have FillRad(Σ) <

√
6π

3
.

Gromov [Gro07] proposed the following conjecture on the filling radius.

Conjecture 1.2. If (Mn, g) is a complete Riemannian manifold with scalar curva-

ture R(g) ≥ σ2 > 0, then there exists a universal constant cn depending only on n

such that

FillRad(M) ≤ cn

σ
.

The conjecture has been partially answered by [WXYZ24] for manifolds with

finite asymptotic dimension.

In 3-dim complete manifolds with scalar curvature no less than −1, Munteanu,

Sung, Wang [MSW23] obtained the area upper bound of stable minimal surfaces,

In [Gro23, 3.10] Gromov conjectured that a complete manifold with scalar

curvature R(g) ≥ 6 admits a singular foliation by surfaces of area and diameter

bounded by a universal constant. The compact case was solved in [LM23], and the

non-compact case was solved in [LW23]; also see [WZ23] when M has boundary.

The organization of this paper is as follows. In section 2, we firstly get a general

sharp diameter upper bound, for surfaces with the positive first eigenvalue corre-

sponding to Laplace operator with suitable curvature potential term. The example

Riemannian surfaces are also constructed in this section. The key is to get the

suitable function from some special ODE (see (2.12)), which comes from the sym-

metrization of the corresponding PDE along the diameter (or ‘radius’) direction.

In section 3, we use the functions from the example Riemannian surfaces to

construct the corresponding 3-dim complete Riemannian manifolds containing the

stable minimal surfaces, whose diameter approximates the sharp upper bound.

2. The first eigenvalue and the diameter

Definition 2.1. For a complete Riemannian manifold (Mn, g) and w ∈ C∞(Mn), we

define

λ1(−∆ + w) := inf
f∈H1

c (Mn)

∫

M
|∇ f |2 + w · f 2

∫

M
f 2

,

where H1
c (M) is the closure of C∞c (Mn) in H1(Mn).

Lemma 2.2. For a complete Riemannian manifold (Mn, g) with w ∈ C∞(Mn), λ ∈
R
+, assume λ1(−∆ + w) ≥ λ, then there is ϕ ∈ C∞(Mn) satisfying

ϕ > 0, and − ∆ϕ + (w − λ) · ϕ ≥ 0.
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Proof: By definition of λ1, we get

λ1(−∆ + (w − λ)) = inf
f∈H

1,2
c (Mn)

∫

M
|∇ f |2 + (w − λ) · f 2

∫

M
f 2

= inf
f∈H

1,2
c (Mn)

∫

M
|∇ f |2 + w · f 2

∫

M
f 2

− λ

= λ1(−∆ + w) − λ ≥ 0.(2.1)

The compact case follows from similar argument of [GT83, Theorem 8.38]. The

non compact case follows from [FCS80, Theorem 1]. �

Theorem 2.3. For any β > 1
4

and λ > 0, assume λ1(−∆Σ + β · KΣ) ≥ λ on a

complete 2-dim Riemannian manifold (Σ, g), where KΣ is the sectional curvature

of (Σ, g). Then

Diam(Σ) <
2βπ

√

λ · (4β − 1)
.

The upper bound is sharp in the following sense: there is a sequence of complete

Riemannian manifolds Σk = (S 2, gk) with λ1(−∆Σk
+ β · KΣk

) ≥ λ and

lim
k→∞

Diam(Σk) =
2βπ

√

λ · (4β − 1)
.

Remark 2.4. Most part of the following proof is similar to [WXZ, Lemma 2.4]

(also see [Xu, Appendix A]) except the last part, we include the complete proof

here for readers’ convenience. For β = 1, Theorem 2.3 also answers a question

raised in [WXZ, Remark 2.5].

Proof: Step (1). By Lemma 2.2, we get there exists a positive function v ∈
C∞(M), such that

−∆v + (β · KΣ − λ)v ≥ 0.

Let u = v
1
β , we get

−∆u + (KΣ − λβ−1)u + (1 − β)u−1 |∇u|2 ≥ 0.(2.2)

Case(i):If Σ is compact, let p, q ∈ Σ be two points with largest distance. Define

I[γ] by

I[γ] =

∫

γ

uds,

where ds is arclength along γ and γ is any curve from p to q.

Case(ii): If Σ is non compact, chose p ∈ Σ and R =
2βπ√
λ·(4β−1)

, Define I[γ] by

I[γ] =

∫

γ

uds,

where ds is arclength along γ and γ is any curve from p to ∂BR(p).

Since u is positive, for any curve γ : [0, L] → M connecting p and ∂BR(p), if

there exists L1 ∈ (0, L), such that γ(L1) ∈ ∂BR(p). Let γ1 be the restriction of γ on
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[0, L1], we have

I[γ] =

∫

γ

uds >

∫

γ1

uds = I[γ1].

So

inf
γ⊂M

I[γ] = inf
Int(γ)⊂BR(p)

I[γ],

where Int(γ) is the interior of γ.

In both cases, there are at least one minimizer of I[·]. Let γ0 : [0, l] → M be one

of the minimizers of I[·] and parametrized with unit speed.

Step (2). Let V(s) = ϕ(s) · ~n be the variation vector field along γ0(s), where ~n is

the unit normal vector field along γ and

ϕ(s) = u−
1
2 (γ0(s))ψ(s), ψ(s) = sin

(π

l
s
)

.(2.3)

The first variation formula yields

〈∇∂s∂s, ~n〉 = ∂

∂~n
ln u.(2.4)

The non-negativity of the second variation of I at γ0 gives

0 ≤ δ2I[γ0] =

∫

γ0

[D2u(~n, ~n) − 2u · ( ∂
∂~n

ln u)2] · ϕ2 + u ·
(

(ϕ′)2 − KΣ · ϕ2
)

ds.

(2.5)

Note ∆Σu = D2u(~n, ~n) + D2u(∂s, ∂s), combining (2.4), we get

∆Σu = D2u(~n, ~n) + D2u(∂s, ∂s) = D2u(~n, ~n) + u′′ − (
∂

∂~n
ln u)2 · u,(2.6)

where u′ := d
ds

u(γ0(s)).

Plugging (2.6) into (2.5), using (2.2), we obtain

0 ≤
∫

γ0

(∆Σu − u′′ − u · ( ∂
∂~n

ln u)2) · ϕ2 + u ·
(

(ϕ′)2 − KΣ · ϕ2
)

ds

≤
∫

γ0

(

(1 − β)|∇u|2u−1 − u′′ − u · ( ∂
∂~n

ln u)2
)

· ϕ2 + u ·
(

(ϕ′)2 − λβ−1ϕ2
)

ds.

≤
∫

γ0

(

(1 − β)(u′)2u−1 − u′′
)

· ϕ2 + u ·
(

(ϕ′)2 − λβ−1ϕ2
)

ds.(2.7)
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Plugging (2.3) into (2.7), and use integration by part, we get

0 ≤
∫

γ0

[

(1 − β)(u′)2u−2ψ2 + u′(−u−2u′ψ2 + 2u−1ψψ′) + u(−1

2
u−

3
2 u′ψ + u−

1
2ψ′)2 − λβ−1ψ2

]

ds

=

∫

γ0

[

(1 +
1

4
(β − 1

4
)−1)(ψ′)2 − λβ−1ψ2 −

(

(β − 1

4
)

1
2 u′uψ − 1

2
(β − 1

4
)−

1
2ψ′
)2]

ds

≤
∫

γ0

[

(1 +
1

4
(β − 1

4
)−1)(ψ′)2 − λβ−1ψ2

]

ds

=

∫ l

0

[

(1 +
1

4
(β − 1

4
)−1)(

π

l
)2 cos2(

π

l
s) − λβ−1 sin2(

π

l
s)
]

ds

=
[ 4β

4β − 1
(
π

l
)2 − λβ−1

]

· l

2
.

So we get l ≤ 2βπ√
λ·(4β−1)

. If l =
2βπ√
λ·(4β−1)

, we get

∫ l

0

(

(β − 1

4
)

1
2 u′uψ − 1

2
(β − 1

4
)−

1
2ψ′
)2

ds = 0.(2.8)

Note (β − 1
4
)

1
2 u′uψ − 1

2
(β − 1

4
)−

1
2ψ′ is a continuous function on [0, l], so

(β − 1

4
)

1
2 u′uψ − 1

2
(β − 1

4
)−

1
2ψ′ ≡ 0, ∀s ∈ [0, l].(2.9)

However, for s = 0, we have ψ(0) = 0 and ψ′(0) = π
l
, which is the contradiction.

Now we have l <
2βπ√
λ·(4β−1)

. If Σ is not compact, from the definition of l, we

know that

l ≥ d(p, ∂BR(p)) =
2βπ

√

λ · (4β − 1)
,

which is the contradiction.

Hence Σ must be compact, and from the definition of l in compact case we get

Diam(Σ) <
2βπ

√

λ · (4β − 1)
.

Step (3). In the rest argument, we construct Σk. We assume k ∈ Z+ with

k−1 ∈
(

0,
π

4

√

β

λ

)

.(2.10)

Define

φ(x) =

{

e−
1
x , x > 0,

0, x ≤ 0.

ηk(x) =
φ(2k−1 − x)

φ(x − k−1) + φ(2k−1 − x)
, ∀x ∈ R.(2.11)

Note ηk is a smooth function on R.
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We define

(2.12)



















ψ′
k
(t) = − 1

βψ
2
k
+

1−η2
k

4β2 ψ
2
k
− λ, ∀t ∈ [k−1, bk),

ψk(t) =
√
βλ · cot(

√

λ
β t), ∀t ∈ (0, k−1],

where [k−1, bk) is the largest interval for the solution to (2.12).

By (2.12), note β > 1
4
, we get

ψ′k(t) < 0, ∀t ∈ [0, bk).(2.13)

Using (2.12) , note |ηk | ≤ 1, we get

(2.14)



















ψ′
k
(t) ≥ − 1

βψ
2
k
− λ , ∀t ∈ [k−1, 2k−1],

ψk(k−1) =
√
βλ · cot(

√

λ
β
k−1).

From (2.14), taking integral from k−1 to 2k−1 with respect to t, we get

ψk(2k−1) ≥
√

λβ cot
{

√

λ

β
k−1 + cot−1(

ψk(k−1)
√
λβ

)
}

=
√

λβ cot
(

2

√

λ

β
k−1
)

> 0,

(2.15)

where the last inequality follows from (2.10).

Step (4). Now we consider ψk(t) for t ∈ [2k−1, bk), and we have

ψ′k(t) = −(
1

β
− 1

4β2
)ψ2

k − λ , ∀t ∈ [2k−1, bk).(2.16)

Note β > 1
4
, hence 1

β −
1

4β2 > 0. Direct integration yields

ψk(t) = 2β

√

λ

4β − 1
· cot
{

√

(4β − 1)λ

2β
(t − 2k−1) + cot−1(

1

2β

√

4β − 1

λ
ψk(2k−1))

}

, ∀t ∈ [2k−1, bk).

(2.17)

From (2.17), we get bk < ∞ and lim
t→bk−

ψk(t) = −∞.

Define lk = min{t ∈ (0, bk) : ψk(t) = 0}, from (2.15) and (2.13), we get

lk ≥ 2k−1, ψk(lk) = 0.

From (2.17) we get
√

(4β − 1)λ

2β
(lk − 2k−1) + cot−1(

1

2β

√

4β − 1

λ
ψk(2k−1)) =

π

2
,

which implies

lk =
2β

√

(4β − 1)λ

{π

2
− cot−1(

1

2β

√

4β − 1

λ
ψk(2k−1))

}

+ 2k−1

=
βπ

√

(4β − 1)λ
− 2β
√

(4β − 1)λ
cot−1(

1

2β

√

4β − 1

λ
ψk(2k−1)) + 2k−1.(2.18)
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From (2.15) and (2.18), we have

lk ≥
βπ

√

(4β − 1)λ
− 2β
√

(4β − 1)λ
cot−1

(

√

1 − 1

4β
cot
(

2

√

λ

β
k−1
))

+ 2k−1.(2.19)

One key fact is that

lim
k→∞

lk ≥
βπ

√

(4β − 1)λ
.(2.20)

Step (5). Now we define fk : [0, 2lk]→ R by

(2.21)







































(ln fk)′(t) = 2β+ηk(t)−1

2β2 ψk(t) , ∀t ∈ (0, lk];

fk(k−1) =

√

β
λ

sin(
√

λ
β
k−1) ;

fk(t) = fk(2lk − t) , ∀t ∈ [lk, 2lk);

fk(0) = fk(2lk) = 0.

From the property of fk, we get the complete Riemannian surface Σk = (S 2, dr2 +

fk(r)2dθ) for r ∈ [0, 2lk], where θ ∈ S1.

Now we define ζk : [0, 2lk]→ R by

(2.22)































(ln ζk)′(t) = 1−ηk(t)

2β
ψk(t) , ∀t ∈ (0, lk];

ζk(k−1) = 1 ;

ζk(t) = ζk(2lk − t) , ∀t ∈ [lk, 2lk);

ζk(0) = ζk(2lk) = 1.

Note ψk(t) ≥ 0 for t ∈ (0, lk] by the choice of lk, then from (2.22), we get ζk(t) > 0

for any t ∈ [0, 2lk].

Define uk(r, θ) = ζk(r), from (2.22) we know that uk ∈ C∞(Σk). From (2.12),

(2.21) and (2.22), we get that for r ∈ (0, lk],

− ∆Σk
uk + β · KΣk

uk − λuk = −(ζ′′k +
f ′
k

fk
ζ′k) + β(−

f ′′
k

fk
)ζk − λζk(2.23)

= − ζk

{

ψ′k +
1

β
ψ2

k −
1 − η2

k

4β2
ψ2

k + λ
}

= 0.

By the symmetry definition of uk, fk, we get (2.23) also holds for r ∈ [lk, 2lk).

So

−∆Σk
uk + β · KΣk

uk = λuk.

From (2.20) and Theorem 2.3, we have

2βπ
√

(4β − 1)λ
≥ lim

k→∞
Diam(Σk) ≥ lim

k→∞
Diam(Σk) ≥ 2 lim

k→∞
lk ≥

2βπ
√

(4β − 1)λ
.

�

Remark 2.5. We shall point out that in our example, for the case of β = 1
2
, from

(2.12) we have

ψk(t) ≤ ψk(k−1) =

√

λ

2
· cot(

√
2λk−1) ≤ k

2
, t ∈ (k−1, 2k−1].
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From (2.21) we have

(2.24)



























(ln fk)′(t) ≤ 2ψk(t) ≤ k , ∀t ∈ (k−1, 2k−1],

(ln fk)′(t) = 0 , ∀t ∈ (2k−1, lk],

fk(k−1) =

√

1
2λ sin(

√
2λk−1).

So

fk(t) ≡ fk(2k−1) ≤ e · fk(k−1) ≤ e · k−1, t ∈ [2k−1, 2lk − 2k−1].

and Σk = (S 2, gk) converges to a segment [0, 2π] as k → ∞. So fk converges to 0

as k → ∞, which implies Σk converges to a segment (see Figure 1).

Cylinder of width ≤ 2k−1

Figure 1. Figure of Σk as k → ∞.

As an corollary, we get a sharp version of [CL, Lemma 16].

Corollary 2.6. For compact surface (Σ2, g), if there is a smooth function u > 0

such that

∆u

u
≤ (KΣ − 2−1) +

1

2

|∇Σu|2

u2
,(2.25)

then the diameter of Σ satisfies the sharp upper bound Diam(Σ) < 2π.

Proof: Let v =
√

u > 0, from (2.25), we get

−∆v + (
1

2
KΣ −

1

4
) · v ≥ 0.(2.26)

Using (2.26) in the proof of Theorem 2.3, we get the conclusion. �

3. The diameter of stable minimal surfaces in 3-dim manifolds

Lemma 3.1. Let Σ be a complete stable minimal surface in a complete 3-dim

Riemannian manifold (M3, g) with scalar curvature R ≥ 1, then λ1(−∆Σ+KΣ) ≥
1

2
,

where KΣ is the sectional curvature of Σ.
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Proof: Let e1, e2, e3 be an orthonormal frame defined locally on Σ with e1, e2

tangential and e3 be unit normal. Since Σ is a stable minimal surface, for all f ∈
C∞c (Σ) we have

∫

Σ

|∇ f |2 − (Rc(e3, e3) +
∑

h2
i j) f 2 ≥ 0,(3.1)

where hi j =< ∇ei
e j, e3 > is the second fundamental form of Σ. (see [Li12, Chapter

1])

Since Σ is minimal, we have h11 + h22 = 0. By Gauss curvature equation, we

have KΣ = R1212 + h11h22 − h2
12

, and Ri jkl is the Ricci curvature tensor of M.

So (3.1) can be written as
∫

Σ

|∇ f |2 − (
1

2
R − KΣ +

1

2

∑

h2
i j) f 2 ≥ 0.

Since R ≥ 1, we get
∫

Σ

|∇ f |2 + (KΣ −
1

2
) f 2 ≥ 0,

which implies λ1(−∆ + KΣ) ≥ 1
2
. �

Theorem 3.2. Let Σ be a complete stable minimal surface in a complete 3-dim

Riemannian manifold (M3, g) with scalar curvature R ≥ 1, then

Diam(Σ) <
2
√

6π

3
.(3.2)

The upper bound is sharp in the following sense: there is a sequence of complete

3-dim manifolds Mk := (S 2 × S 1, gk) with R ≥ 1 and k ∈ Z+, and compact stable

minimal surfaces Σk ⊆ Mk such that lim
k→∞

Diam(Σk) =
2
√

6

3
π.

Proof: Step (1). The inequality (3.2) follows from Lemma 3.1 and Theorem 2.3

for the case β = 1, λ = 1
2
.

Let gk = dr2 + f 2
k

(r)dθ2 + ζ2
k
(r)dφ2, where (r, θ) is the polar coordinate on S 2, φ

is the coordinate on S 1, and fk, ζk are defined as in (2.21) and (2.22).

Note r ∈ [0, 2lk], then by (2.20) and (3.2), we have

lim
k→∞

Diam(Σk) =
2
√

6

3
π.

Define Σk = S 2 × {φ0} ⊆ Mk in the rest argument.

If the r-coordinate of p ∈ Mk is 0 or 2lk, by the definition of Mk, the k−1-

neighborhood of p in Mk is an open set in S2(
√

2) × S1(1); where S2(
√

2) is a

round sphere with radius
√

2, S1(1) is a round unit circle and S2(
√

2) × S1(1) has

the product metric.

The k−1-neighborhood of p in Σ is an open set of S2(
√

2)×{φ0} ⊂ S2(
√

2)×S1(1)

for some φ0 ∈ S1.

Since S2(
√

2) is a minimal surface of S2(
√

2) × S1(1) with the product metric,

we get the mean curvature of Σk is 0 in a neighborhood of p.
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Step (2). Now we assume p ∈ Σk, where φ0 ∈ S 1, and the r-coordinate of p is

not equal to 0 or 2lk.

Let {e1, e2, e3} = { ∂∂r
, 1

fk

∂
∂θ ,

1
ζk

∂
∂φ } be a local orthonormal frame on a neighbor-

hood of p in Mk, we have e1, e2 is tangential and e3 is unit normal. The second fun-

damental form of Σk is defined by symmetric quadratic tensor hi j =< ∇ei
e j, e3 >,

i, j ∈ {1, 2}, where ∇ is the Riemannian connection of Mk.

Let Γk
i j
= 1

2
glk
(

∂g jl

∂xi
+

∂gil

∂x j
− ∂gi j

∂xl

)

be the Christoffel symbol, where ∂
∂x1
, ∂
∂x2
, ∂
∂x3

are ∂
∂r
, ∂∂θ ,

∂
∂φ respectively, and (gi j) is the matrix corresponding to the metric of

Mk.

By direct computation, we get Γ1
33
= −ζk

∂ζk

∂r
, Γ3

13
= Γ3

31
= 1

ζk

∂ζk

∂r
, Γ1

22
= − fk

∂ fk
∂r

,

and Γ2
12
= Γ2

21
= 1

fk

∂ fk
∂r

. Other Christoffel symbols are zero.

We have

∇e1
e2 = ∇ ∂

∂r
(

1

fk

∂

∂θ
) =

∂

∂r
(

1

fk
)
∂

∂θ
+

1

f 2
k

∂ fk

∂r

∂

∂θ
= 0,

∇e1
e1 = ∇ ∂

∂r

∂

∂r
= 0,

∇e2
e2 = ∇( 1

fk

∂
∂θ )(

1

fk

∂

∂θ
) =

1

fk

∂

∂θ
(

1

fk
)
∂

∂θ
− 1

fk

∂ fk

∂r

∂

∂r
.

We get ∇ei
e j is in the tangent plane of Σk, and

hi j = 0, ∀i, j ∈ {1, 2}.
So on a neighborhood of p in Σk, we have the mean curvature of Σk is 0.

So we get Σk is a minimal surface.

Step (3). Since hi j = 0, we get the scalar curvature of Mk is 2KΣk
+ 2Rc(e3, e3),

where KΣk
is the sectional curvature of Σk.

By the definition of Ricci curvature tensor, we have

Ri j =
∂

∂xk

Γk
i j −

∂

∂x j

Γk
ik + Γ

s
i jΓ

k
sk − Γ

s
ikΓ

k
s j.

We get

Rc(e3, e3) =
1

ζ2
k

Rc(
∂

∂φ
,
∂

∂φ
) = − 1

ζk

· (∂
2ζk

∂r2
+

1

fk

∂ fk

∂r

∂ζk

∂r
).

On Σk, we have ∆Σk
= ∂2

∂r2 +
f ′
k

fk

∂
∂r
+ 1

f 2
k

∂2

∂θ2 , and KΣk
= − f ′′

k

fk
, where ∆Σk

is the

Laplacian operator on Σk.

Define uk(r, θ) = ζk(r), then uk ∈ C∞(Σk). So Rc(e3, e3) = −∆Σk
uk

uk
.

By (2.23), we get

−∆Σk
uk + (KΣk

− 1

2
)uk = 0.(3.3)

We get the scalar curvature of Mk is

R(gk) = 2KΣk
− 2
∆Σk

uk

uk

= 1.
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Step (4). Let wk = ln uk, from (3.3) we get

∆Σk
wk =

∆Σk
g

g
− |∇g

g
|2 = KΣk

− 1

2
− |∇wk |2.(3.4)

For any ϕ ∈ C∞(Σk), we multiply both sides of (3.4) by ϕ2 and take integration

on Σk to get
∫

Σk

−2ϕ∇ϕ · ∇wk =

∫

Σk

(KΣk
− 1

2
)ϕ2 − ϕ2 · |∇wk |2.(3.5)

Note

−2ϕ∇ϕ · ∇wk ≥ −|∇ϕ|2 − ϕ2 · |∇wk |2.(3.6)

By (3.6) and (3.5), we obtain
∫

Σk

|∇ϕ|2 + (KΣk
− 1

2
)ϕ2 ≥ 0, ∀ϕ ∈ C∞(Σk).

Since KΣk
− 1

2
=
∆Σk

uk

uk
= −Rc(e3, e3) and hi j = 0, we get

∫

Σk

|∇ϕ|2 − (Rc(e3, e3) +
∑

h2
i j)ϕ

2 ≥ 0, ∀ϕ ∈ C∞(Σk).

So Σk is a stable minimal surface of Mk. �
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