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Abstract. In this paper we introduce the target flow—a specific curve shortening flow with
an ambient forcing term—that, given an embedded (not necessarily convex) target curve

η : S → R2, will attempt to evolve a given source curve to that target. The motivation

for this flow is to address a question of Yau. Our main result is that the target flow with
uniformly normal graphical data converges smoothly to the target, broadening the class of

known sources and targets such that Yau’s problem has a solution.

1. Introduction

Let η : S1 → R2 be an embedded smooth curve. Our main object of study is the curvature
flow

(1) ∂tγ = κ+ V η(γ)

where γ : S× [0, T ) → R2 is a one-parameter family of evolving curves, κ = kν is the curvature
vector, and V η : R2 → R2 is defined as follows. In the maximal uniform tubular neighbourhood
T η ⊂ R2 of η(S), with normal coordinates (u, r) 7→ (η(u), η(u) + rνη(u)) (where u and νη are
the arc-length parameter of η and the unit normal to η respectively), we define

V η(η(u) + rνη(u)) :=

(
− kη

1− kηr
− C(η)r

)
νη(u) .

We call γ0(·) = γ(·, 0) the source curve and η the target curve. The constant C(η) depends on
the target only and is determined in Section 5, specifically Propositions 5.1 and 5.2.

The flow (1) will not move a (normal graphical) source curve from inside T η to the outside
R2 \ T η, and so the definition of V η on R2 \ T η is not important. We set V η(x, y) = 0 for
(x, y) ∈ R2 \ T η.

The flow (1) is stationary if the evolving curve γ is equal to the target η. Furthermore, the
flow moves to match the curvature scalars and position vectors of γ(·, t) and η. Our main result
is that the flow (1) drives all initial data γ0 that is normal graphical over the target η to η
smoothly in infinite time.

Theorem 1.1. Let η : S → R2 be an embedded smooth curve, and γ0 : S → R2 a curve with
γ0(S) ⊂ T η, that is, normal graphical over η. Assume further that r0 ∈ h2+α([0, L(η)]), that is,
the initial graph function r0 is in the (2 + α) little Hölder space.

Then, the solution γ : S × [0, T ) → R2 to the target flow (1) exists uniquely and has the
following properties:

(i) γ(·, t) remains normal graphical,
(ii) is smooth (or analytic if η is analytic),
(iii) the maximal time of existence is infinite, and
(iv) γ(·, t) converges exponentially fast in C∞ to η.
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Figure 1. (Left) A plot of the vector field V η for a circle of radius 1. Arrows
have been scaled by 1.5 for visual effect. (Right) A plot of the vector field V η in
the tubular neighbourhood of a bean parametrised by η(u) = (x(u), y(u)) with
x(u) = 7 sin(u) + 2 sin(2u), and y(u) = 4− 2 cos(u)− 4 cos(u)2 + sin2(u). Note
that (1) on the target, the vector field is −kηνη, and (2) some vectors are very
large (especially near points of high curvature) on one side, which can obscure
the smaller vectors.

Remark 1.2. The little Hölder space h2+α is the closure of smooth functions in the standard
C2+α norm. It is a subset of C2+α, and has improved compactness and approximation properties
over the standard space. We are using it here as it is a natural setting in which to apply An-
genent’s linearisation approach to obtain existence and uniqueness (see Section 4). The atypical
degeneracy of the target flow is the primary technical obstacle preventing us from weakening this
assumption.

Our main motivation for studying this flow is to resolve Yau’s problem for broader classes of
source and target curves. Yau’s problem asks if, given a target curve η, it is possible to find a
parabolic flow that evolves as many source curves as possible to the target. Our flow addresses
this directly as the velocity of (1) depends only on η. Thus, Theorem 1.1 implies that Yau’s
problem is solvable for embedded smooth target curves, and normal graphical source curves of
regularity class h2+α.

There are a number of recent results on Yau’s problem, which we now briefly survey. Lin and
Tsai considered [9] the flow

γt = −
(
1

k
− 1

kη

)
ν ,

in the angle parametrisation (θ, t). Their analysis requires convexity and that the initial curve
and the target have the same length. The advantage of this flow is that the difference of inverse
curvature, z(θ, t) = 1

kγ(θ,t) −
1

kη(θ,t) satisfies the linear equation

zt = zθθ + z .

This makes the convergence argument more straightforward, and the authors are able to show
that convex source curves converge to convex targets.

Gage-Li [5, 6] studied convex curves evolving under the equation

γt = f(θ)kν .
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They showed that if the function f took the form

f(θ) =
−hη(θ)

kη(θ)

where hη = ⟨η, (cos(θ), sin(θ))⟩, the support function of the target curve of some smooth, sym-
metric convex curve η, then the flow converges in shape to η as it shrinks to a point.

In an important contribution, Chou-Zhu [4] studied the anisotropic flow of convex curves:

β(θ)γt = (g(θ)k + F )ν .

Here both β and g are positive and F is a constant. They proved that there exists a negative
F ∗ such that the curve converges in shape to a solution of

g(θ)k(θ) + F ∗ + ⟨c∗, (cos(θ), sin(θ))⟩β(θ) = 0 ,

where c∗ = (c∗1, c
∗
2) is the unique point satisfying∫ 2π

0

g(θ)eiθdθ

β(θ)(c∗1 cos(θ) + c∗2 sin(θ)) + F
= 0 .

Gao-Zhang [7] suggested the flow

(2) γt = (k − λ(t)kη) ν .

They choose

λ(t) =
2π∫

S1 k
η|γu|du

.

The quantity λ ensures that the evolving curve has constant area. Their analysis uses convexity

as well, and they proved that the flow converges to a curve congruent to
√

A[γ0]
A[η] η.

The main advantage of our flow (1) over the existing literature is that we allow for (1) non-
convex source curves, (2) non-convex target curves, and (3) we do not require any action that
depends on the initial curve in order for the position vector of the source to converge to the
target (for example, a translation of the final image). The disadvantages with our approach
are that (a) we do require relatively high regularity of the source in order to overcome the
degeneracy of the flow and obtain uniqueness of the solution, and (b) we require the normal
graphical condition on the source curve.

We prove Theorem 1.1 in three main steps. In Section 2, we set our notation and derive
the evolution equations for the graph function. First, in Section 2 we introduce our notation,
setting, and derive the graph flow. Then, in Section 3, we establish the existence of appropriate
barriers and prove a-priori estimates using maximum principle arguments. Second, in Section 4,
we prove global existence and uniqueness, which is non-standard due to the strong degeneracy
in the speed of the flow once written in graphical coordinates; to deal with this, we use ideas
due to Angenent. Third, in Section 5, we prove explicit decay estimates for the normal distance
to the target curve, in order to conclude smooth convergence.

2. Preliminaries

2.1. Evolution equation for the graph function with arbitrary V . Let η : [0, Lη] → R2

be a given embedded curve parametrised by arclength u. We work only with curves γ that can
be parametrised by

(3) γ(u) = η(u) + r(u)νη ,

where r : [0, Lη) → R2. Such a curve will be referred to as normal graphical and the function
r is the graph function. This is a standing assumption throughout the paper (we will preserve
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normal graphicality in Section 3), and so when we consider solutions to (1), we are assuming
also that these solutions can be parametrised according to (3).

It is important to note that, as we use the inward-pointing unit normal νη in (3), positive
values of r correspond to the curve γ being inside η, and negative values of r correspond to γ
being outisde η. If η is convex, the uniform tubular neighbourhood in which a curve can be
normal-graphical is infinite on one side. Set

Iη =


(
−∞, 1

kmax

)
if η is convex(

1
kmin

, 1
kmax

)
if η is nonconvex.

The maximal uniform tubular neighbourhood of η(S) in R2, called earlier T η, is the following
strip around η:

T η = {p ∈ R2 : p = η(u) + rνη(u) , for some u ∈ [0, Lη], r ∈ Iη} .

There is a map between functions r : [0, Lη] → R and curves γr : [0, Lη] → R2. Given a function
r such that r(u) ∈ Iη for all u, the curve γr generated by r is that given by the formula (3), that
is,

γr(u) = η(u) + r(u)νη .

Let us now consider a one-parameter family of curves γ : [0, Lη]× [0, T ) → R2, all of which are
normal graphical (satisfying (3) with r = r(u, t)). This family evolves according to the target
flow (1) if and only if the function r evolves according to a specific non-linear parabolic PDE,
which we shall now derive.

Differentiating (3) gives

γu = τη + ruν
η − kηrτη = (1− kηr)τη + ruν

η , so

|γu| =
√

(1− kηr)2 + (ru)2 .

Thus the tangent and normal vectors along γ are given by

τ =
(1− kηr)τη + ruν

η√
(1− kηr)2 + (ru)2

and ν =
(1− kηr)νη − ruτ

η√
(1− kηr)2 + (ru)2

.

Continuing to the curvature of γ, we calculate

γuu = kη(1− kηr)νη − (kη)urτ
η − 2kηruτ

η + ruuν
η

= (ruu + kη(1− kηr))νη − ((kη)ur + 2kηru)τ
η , so

k =
(1− kηr)(ruu + kη(1− kηr)) + ru((k

η)ur + 2kηru)

((1− kηr)2 + (ru)2)
3
2

=
(1− kηr)ruu + kη

(
(1− kηr)2 + (ru)

2
)
+ ru(k

ηr)u

((1− kηr)2 + (ru)2)
3
2

=
(1− kηr)ruu + kηr2u + r(kη)u

((1− kηr)2 + (ru)2)
3
2

+
kη

((1− kηr)2 + (ru)2)
1
2

.

Note that also

(4) νη · ν =
1− kηr

((1− kηr)2 + (ru)2)
1
2

.
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Thus γ is a curve shortening flow with ambient force field V , γt = κ+ V (γ), if and only if

rt =
1

νη · ν
(k + V (γ) · ν)

=
((1− kηr)2 + (ru)

2)
1
2

1− kηr

(
(1− kηr)ruu + kηr2u + r(kη)u

((1− kηr)2 + (ru)2)
3
2

+
kη

((1− kηr)2 + (ru)2)
1
2

+ V (γ) · ν
)

=
((1− kηr)2 + (ru)

2)
1
2

1− kηr

(
(1− kηr)ruu + kηr2u + r(kη)u

((1− kηr)2 + (ru)2)
3
2

+
kη

((1− kηr)2 + (ru)2)
1
2

+ V (γ) · ν
)

=
ruu

(1− kηr)2 + (ru)2
+

kηr2u + (kη)ur

((1− kηr)2 + (ru)2)(1− kηr)
+

kη

1− kηr

+

√
(1− kηr)2 + (ru)2

(1− kηr)
V (η + rνη) · ν

(5)

for (u, t) ∈ [0, L(η))× (0, T ), with initial condition r(u, 0) = r0 for u ∈ [0, L(η)).

2.2. Derivation of V . We will define V to be parallel to normal rays of η. In particular, for
some function f(r, kη) we set

V (η + rνη) = f(r, kη)νη.

Observe that we must have f(0, kη) = −kη so that V (η) = −kηνη. This ensures that the flow
stops once the solution curve agrees with that of the target.

Let r be a solution to the flow equation (1) that is constant in space, that is, r(u, t) = r̂(t).
Then (recall (4)) νη · ν = 1 and

r̂t =
kη

1− kη r̂
+ f(r̂, kη).

We wish to have exponential decay of r̂, which is ensured by a differential equation of the form
r̂t = −Cr̂ where C is some constant.

We guarantee that this holds by choosing, in general,

f(r, kη) = −Cr − kη

1− kηr
.

We leave the constant C > 0 as a parameter for now (it will be set to a constant depending only
on η in Section 5).

With this choice, we have at our disposal solutions r̂(t) = r̂(0)e−Ct, which will be very useful
in our analysis.

2.3. Evolution equation for the graph function of the target flow. Incorporating the
definition of V given above, we find that γ(u, t) is a target flow (1) if and only if
(6)

rt =
ruu

(1− kηr)2 + (ru)2
+

ru(k
ηr)u

((1− kηr)2 + (ru)2)(1− kηr)
− Cr , r(·, t) periodic , r(·, 0) ∈ Iη .

Note that if the initial data r(·, 0) does not have values contained in Iη, then the curve generated
by r(·, 0) will not be contained in the uniform tubular neighbourhood T η. We do not consider
such initial data.

We assume that r0 ∈ h2+α([0, Lη]). For each fixed t, the solution curve γ(·, t) generated by
r(·, t) belongs to the space

Xη = {γ ∈ h2+α(S1,R2) : γ(S1) ⊂ T η and is normal graphical}.
In fact, much more than this is true: The solution will be smooth (or analytic) for t > 0. This
uses smoothness of η (or analyticity).



6 SAMUEL CUTHBERTSON, GLEN WHEELER, AND VALENTINA WHEELER

From here on we will remove the η superscript unless needed to avoid confusion. For conve-
nience we use the abbreviation v = (1− kr)2 + (ru)

2.

3. A-priori estimates

First, we take advantage of the barriers we mentioned earlier.

Lemma 3.1. (Comparison with barriers) Suppose there are constants r1 ≤ 0 ≤ r2 such that
r1 < r(u, 0) < r2 for all u ∈ [0, L(η)), and that r1, r2, r(·, t) ∈ I. Then any solution to (6) with
initial data r(·, 0) satisfies

r1e
−Ct < r(u, t) < r2e

−Ct .

Proof. First, our hypothesis implies that the curves generated by r1 and r2 are normal graphical
and admissible for the flow. The solution curves are generated by rie

−Ct (see the calculation in
Section 2.2).

Let ε > 0 be a parameter. Set r̃ = r2e
−C(1−ε)t and w(u, t) = r̃ − r(u, t). Suppose for

contradiction that there is a first point (u∗, t∗) such that w(u∗, t∗) = 0. Since such a point is a
new minimum we have

wt(u
∗, t∗) ≤ 0

wu(u
∗, t∗) = 0

wuu(u
∗, t∗) ≥ 0.

The evolution equation (6) then implies, at (u∗, t∗),

0 ≥ wt = −C(1− ε)r2e
−C(1−ε)t − rt

= −C(1− ε)r̃ − ruu
v

− ru(kr)u
v(1− kr)

+ Cr

= −Cw +
wuu

v
+

wu(kr)u
v(1− kr)

+ Cεr̃

≥ Cεr̃ > 0 .

The inequality for r1 follows analogously by replacing w with r(u, t)− r̂ = r(u, t)− r1e
−C(1−ε)t.

Since the estimate is valid for all ε > 0, we obtain the claimed result. □

This shows that the size of the graph function |r| decays exponentially. Next we prove a
gradient bound.

Lemma 3.2. Any solution r to (6) satisfies

|ru(u, t)| ≤ e
c1
2 t

√
sup

u∈[0,L]

r2u(u, 0) +
c2
c1

where c1, c2 are constants that depend on the initial data r0 and η only.

Proof. Differentiate equation (6) in u to see that

(ru)t =
ruuu
v

− vuruu
v2

− Cru + ruu

(
kur + kru
v(1− kr)

)
+ ru

(
kur + kru
v(1− kr)

)
u

=
ruuu
v

− vuruu
v2

− Cru + ruu

(
kur + kru
v(1− kr)

)
+ ru

(
kuur + 2kuru + kruu

v(1− kr)
− (kur + kru)vu

v2(1− kr)
+

(kur + kru)
2

v(1− kr)2

)
.
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Substituting
vu = −2(1− kr)(kur + kru) + 2ruruu

we have

rut =
ruuu
v

− Cru − ruu
v2

(−2(1− kr)(kur + kru) + 2ruruu) + ruu

(
kur + kru
v(1− kr)

)
+ ru

(
kuur + 2kuru + kruu

v(1− kr)
+ 2

(kur + kru)
2

v2
− 2

ruruu(kur + kru)

v2(1− kr)
+

(kur + kru)
2

v(1− kr)2

)
.

Arranging by the powers of ru we find

rut −
ruuu
v

= ru

(
−C +

kuur

v(1− kr)
+

2k2ur
2

v2
+

k2ur
2

v(1− kr)2

)
+

r2u
v

(
2ku

(1− kr)
+

4rkku
v

+
2rkku

(1− kr)2

)
+

r3u
v

(
2k2

v
+

k2

(1− kr)2

)
+

ruu
v

(
2(1− kr)(kur + kru)− 2ruruu

v
+

kur + kru
(1− kr)

+
kru

(1− kr)
− 2ru(kur + kru)

v(1− kr)

)
.

Now, setting Q = r2u, we have

Qt = 2rurut

Qu = 2ruruu

Quu = 2(ruu)
2 + 2ruruuu.

Thus we have

Qt −
Quu

v
= 2ru

(
rut −

ruuu
v

)
− 2r2uu

v

= 2Q

(
−C +

kuur

v(1− kr)
+

2(ku)
2r2

v2
+

(ku)
2r2

v(1− kr)2

)
+

2(ru)Q

v

(
2ku

(1− kr)
+

4rkku
v

+
2rkku

(1− kr)2

)
+

2Q2

v

(
2k2

v
+

k2

(1− kr)2

)
+

Qu

v

(
−vu +

(kur + kru)

v(1− kr)
+

k

v(1− kr)
− 2ru(kur + kru)

v2(1− kr)

)
− 2r2uu

v
.

Since v = (1 − kr)2 + Q, we have Q
v ≤ 1. The uniform bounds for r from Lemma 3.1 imply

1/(1− kr) is uniformly bounded. Thus

Qt −
Quu

v
≤ c1Q+ c2 +Qub(k, ku, r, ru)

where b is a continuous function and ci = ci(η, r0).
The maximum principle applied to the quantity

X = e−c1t

(
Q+

c2
c1

)
yields the estimate

|ru(u, t)| ≤ e
c1
2 t

√√√√( sup
u∈[0,L]

ru(u, 0)

)2

+
c2
c1

,
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as required. □

Lemma 3.2 proves part (i) of Theorem 1.1.

4. Existence and Uniqueness

Section 3 gives a uniform bound on the gradient on a bounded time interval for any solution
to (6). In this section, we use results of Angenent [1, 2, 3] to obtain global existence, uniqueness,
and smoothing. We summarise this in the following.

Proposition 4.1. Let η : S → R2 be an embedded smooth (or analytic) curve, and γ0 : S →
R2 a curve with γ0(S) ⊂ T η, that is, normal graphical over η. Assume further that r0 ∈
h2+α([0, L(η)]).

Then, the solution γ : S× [0,∞) → R2 to the target flow (1) exists globally in time, is unique,
and γ(·, t) is smooth (or analytic) for each t ∈ (0,∞).

The rest of this section is devoted to proving Proposition 4.1. We begin by recalling the
following theorem.

Theorem 4.2 ([1, Theorem 10.1]). Let F : S1 × R3 → R satisfy

(F1) F (x, r, p, q) is a locally Lipschitz function of its four arguments.

(F2) λ ≤ Fq ≤ λ−1

(F3) |F (x, r, p, 0)| ≤ µ

(F4) |Fx|+ |Fr|+ |qFp| ≤ ν(1 + |q|2)
where λ, µ and ν are constants. Let r0 be a given Lipschitz function. Then the problem

(7)

{
rt = F (u, r, ru, ruu) in S1 × (0, T ),

r(·, 0) = r0 on S1

has a solution for any T > 0.

We can apply the above theorem to (6) . With the above notation we set

F (x, r, p, q) =
q

(1− kr)2 + p2
+

p(kp+ kur)

(1− kr)((1− kr)2 + p2)
− Cr .

Note that F is smooth (or analytic) since η is smooth (or analytic) and the a-priori estimates
ensure 1− kr is uniformly bounded away from zero.

Next we calculate:

Fx = 0

Fr =
2(1− kr)k

((1− kr)2 + p2)2
q +

pku
((1− kr)2 + p2)(1− kr)

+
kp(kp+ kur)

(1− kr)2((1− kr)2 + p2)

+
2kp(kp+ kur)

((1− kr)2 + p2)2
− C

Fp = − 2p

((1− kr)2 + p2)2
q +

2kp+ kur

(1− kr)((1− kr)2 + p2)
− 2p2(kp+ kur)

(1− kr)((1− kr)2 + p2)2

Fq =
1

(1− kr)2 + p2
.

The a-priori estimates imply that we may restrict the domain of F to be a set where each of
the conditions (Fi) of Angenent’s theorem hold. Applying Angenent’s theorem, we conclude
existence of a solution r : [0, Lη]× [0, T ] → R for any T > 0, where r0 is Lipschitz.
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While existence only requires Lipschitz data, we need much more in order to obtain unique-
ness. The theorem that we shall apply is as follows:

Theorem 4.3 ([3, Theorem 2.7]). Let O ⊂ E1 be open and F : O → E0 be a Ck map. Consider
the abstract initial value problem

(8)

{
rt = F (r(t)) on [0, T ]

r(0) = r0 for t = 0.

If the Frechet derivative dF belongs to M1(E) for all r ∈ O then the initial value problem (8)
has a unique (strict) solution on some small enough interval.

The theorem essentially converts uniqueness of solutions to the linearised equation to unique-
ness for the nonlinear equation (8).

Let us explain the notation used above. Set E = (E1, E0) to be a Banach couple, where E1

is densely included in E0. We put

X1(E) = C([0, 1];E0) and Y1(E) = C([0, 1];E1) ∩ C1([0, 1];E0) .

Write ∂t for the bounded differentiation operator mapping from Y to X. For any operator
A ∈ L(E1, E0) (where L(E1, E0) is the space of bounded, linear operators from E1 to E0), let

Â : Y1(E) → X1

⊕
E be defined by

Âu = (∂tu(t)−Au(t), u(0)) .

Denote by Hol(E) the set of A ∈ L(E1, E0) that generate an analytic semigroup etA.
Finally we define

M1(E) =
{
A ∈ Hol(E) | Â is an isomorphism between Y1 and X1

⊕
E
}
.

To apply the theorem we set E0 = hα(S1) and E1 = h2+α(S1). These are little Hölder spaces,
defined as the closure of C∞(S1) in the usual Ck,α norm. Here, we are using S = [0, Lη] with
the endpoints identified (as in the rest of the paper).

Define the open set
O = {r ∈ E1 : r ∈ Iη} ⊂ E1 .

Set F to be

F (r) := F (u, r, ru, ruu) =
ruu
v(r)

+
ru(kr)u

v(r)(1− kr)
− Cr

with
v(r) = (1− kr)2 + (ru)

2 .

Note that we have conflated two uses of F : That of Theorem 4.2 and that of Theorem 4.3.
Now we wish to show that F is Fréchet differentiable. We first calculate the Gateaux deriv-

ative of F :

GF (h) =
d

dε
F (r + εh)

∣∣∣∣
ε=0

.

For GF (h) to be the Fréchet derivative, it must satisfy

(9)
|F (r + h)− F (r)−GF (h)|

||h||C2,α

→ 0 as ||h||C2,α → 0 .

We use the fact that Fréchet differentiable maps form an algebra, building our way up to F
slowly.

For the first term of F the Gateaux derivative of r 7→ ruu is

Gruu(h) = huu .

The numerator of the Fréchet limit (9) of ruu is zero, and so r 7→ ruu is Fréchet differentiable.
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Next we calculate the Gateuax derivative of r 7→ v(r):

d

dε
v[r + εh]

∣∣∣∣
ε=0

= −2kh(1− kr) + 2ruhu .

Therefore

v(r + h)− v(r)−Gv(h) = (1− kr − kh)2 + (ru + hu)
2 − (1− kr)2

− (ru)
2 − 2ruhu + 2kh(1− kr)

= k2h2 + h2
u ≤ C||h||2C2,α .

Above C is a constant dependent on k = kη, which is uniformly bounded. Hence r 7→ v(r) is
also Fréchet differentiable.

It is now clear that the first fraction of F (r) is Fréchet differentiable. The second term consists
of three parts: the numerator r 7→ ru(kr)u, and the product of r 7→ v(r), r 7→ 1 − kr in the
denominator. Since r 7→ 1 − kr is clearly Fréchet differentiable, we only check the numerator.
We find

Gru(kr)u(h) = hu(kr)u + ru(kuh+ khu)

and then the numerator of the Fréchet limit (9) is

(r + h)u(kr + kh)u − ru(kr)u − (hu(kr)u + ru(kuh+ khu)) = hu(kh)u ≤ C||h||2C2,α .

Again the constant C depends on k and ku.
Thus the second term in F is also Fréchet differentiable. Finally, the term −Cr is also clearly

Fréchet differentiable. This settles the Fréchet differentiability of F .
Now we can apply standard parabolic theory (for example [8, Theorem 5.6]) to see that the

linear PDE ht = GF (r)(h) has a unique solution. Indeed, since r0 ∈ h2+α the coefficients of

GF (r)(h) are in hα ⊂ C0,α (which is Hα in the notation of [8]). In particular, we conclude that
the Fréchet derivative of F is in the space M1(E).

Applying Theorem 4.3 shows that the solution generated by Theorem 4.2 is unique. If not,
then there must exist a T0 ∈ [0,∞) such that there are at least two distinct solutions with initial
data given by r0 = r(·, T0). This is in contradiction with Theorem 4.3.

Now let us turn to the smoothing effect. This time it is a straightforward application of [3,
Corollary 2.10], which does not require checking any further assumptions. The conclusion is
that

tmr(m)(t) ∈ C0([0, T ];E1)

for all t > 0 and all T . The above regularity holds for all m, guaranteeing that r(t) is smooth
for t > 0. Furthermore, the same result gives

||tmr(m)(t)||E1
≤ C

Mm

m!

if η is analytic, giving that r(·, t) is analytic for t > 0 in this case.
This concludes the proof of Proposition 4.1, as well as the unique global existence and smooth-

ing parts of Theorem 1.1.

5. Smooth Convergence

The goal of this section is to complete the proof of Theorem 1.1. It remains to establish
convergence of γ to η in the smooth topology, which is equivalent to convergence of r(·, t) to
zero in the smooth topology on [0, Lη].

Currently, our gradient bound Lemma 3.2, is not uniform. The key observation is that if
r is small, a uniform bound is available. We can always guarantee that r will be eventually
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arbitrarily small, as the barriers from Lemma 3.1 converge to zero. Indeed, if we set Tε > 0 to
be such that

(10) r(u, t) ∈ (−ε, ε) for all s ∈ [0, Lη] and t > Tε ,

then Lemma 3.1 implies that Tε < (1/C) log(max{|r1|, r2}/ε).
The uniform gradient estimate is as follows.

Proposition 5.1. Let γ : S× [0,∞) → R2 be the target flow solution given by Proposition 4.1,
and r : S× [0,∞) → R its graph function. There is an ε0 = ε0(η) and C0 = C0(η) such that the
following holds. For t > Tε0 (as in (10)) and C ≥ C0 we have

|ru(u, t)| ≤ e
1
2 (Tε0

−t) max
u∈[0,L]

|ru(Tε0)| .

Proof. Recall the proof of Lemma 3.2: For t > Tε the evolution of Q = r2u can be estimated
with

Qt −
Quu

v
≤ 2Q

(
− C + c3ε+

2kuru
v(1− kr)

+
2k2

v
+

k2

(1− kr)2

)
+

Qu

v

(
−vu +

(kur + kru)

v(1− kr)
+

k

v(1− kr)
− 2ru(kur + kru)

v2(1− kr)

)
where the constant c3 depends only on η via k, ku and kuu. Furthermore, as |ru/v| ≤ 1, we may
estimate

2kuru
v(1− kr)

+
2k2

v
+

k2

(1− kr)2
≤ c4

where c4 depends only on η.
Now we choose ε0 and place a restriction on C. In the case of non-convex η, choose ε0 =

max{1/|kmin|, 1/kmax}. If η is convex, choose ε0 = 1/kmax. Then, we require C ≥ C0 :=
c3ε0 + c4 + 1.

The evolution equation can thus be estimated by

Qt −
Quu

v
≤ −Q+Qu

(
−vu +

(kur + kru)

v(1− kr)
+

k

v(1− kr)
− 2ru(kur + kru)

v2(1− kr)

)
.

Let X = etQ. Then

Xt −
Xuu

v
≤ Xu

(
−vu +

(kur + kru)

v(1− kr)
+

k

v(1− kr)
− 2ru(kur + kru)

v2(1− kr)

)
.

By the maximum principle we have for t > Tε0

|ru(u, t)| ≤ e
1
2 (Tε0

−t) max
u∈[0,L]

|ru(Tε0)| ,

as required. □

Proposition 5.1 implies that ru becomes arbitrarily small. We will use this control in addition
to our established control on r to obtain control over ruu below.

Proposition 5.2. Let γ : S× [0,∞) → R2 be the target flow solution given by Proposition 4.1,
and r : S× [0,∞) → R its graph function. There is a t0 = t0(r0, η) such that the following holds.
For t > max{t0, Tε0} and C ≥ max{1, C0} (Tε0 and C0 as in Proposition 5.1) we have

r2uu(u, t) ≤
(
max r2uu(·, t0) + 2c0e

−t0
)
e(t0−t)C/2

where c1 = max r2uu(·, t0).
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Proof. Recall that

(ru)t =
ruuu
v

− vuruu
v2

− Cru + ruu

(
(kr)u

v(1− kr)

)
+ ru

(
(kr)u

v(1− kr)

)
u

so

(ruu)t =
ru4

v
− 2

vuruuu
v2

− vuuruu
v2

+
2(vu)

2ruu
v3

− Cruu

+ ruuu

(
(kr)u

v(1− kr)

)
+ 2ruu

(
(kr)u

v(1− kr)

)
u

+ ru

(
(kr)u

v(1− kr)

)
uu

.

Now (
(kr)u

v(1− kr)

)
u

=
(kr)uu

v(1− kr)
− (kr)uvu

v2(1− kr)
+

((kr)u)
2

v(1− kr)2
, so(

(kr)u
v(1− kr)

)
uu

=
(kr)uuu
v(1− kr)

− 2
(kr)uuvu
v2(1− kr)

+
(kr)uu(kr)u
v(1− kr)2

− (kr)uvuu
v2(1− kr)

+ 2
(kr)uv

2
u

v3(1− kr)
− 2((kr)u)

2vu
v2(1− kr)2

+
2(kr)u(kr)uu
v(1− kr)2

+ 2
((kr)u)

3

v(1− kr)3
.

We will also use

vu = −2(1− kr)(kr)u + 2(ru)(ruu)

vuu = −2(1− kr)(kr)uu + 2((kr)u)
2 + 2r2uu + 2ruruuu

v2u = 4(1− kr)2(kr)2u − 8(1− kr)(kr)ururuu + 4r2ur
2
uu .

We write the evolution for ruu grouping by powers of ruu.

(ruu)t −
(ruu)uu

v

= (ruu)
3

[
−2

v2
+

8(ru)
2

v3

]
+ (ruu)

2

[
−2(1− kr)k

v2
+

2

v2
(−8(1− kr)(kr)uru +

2k

v(1− kr)

− (kr)u2ru
v2(1− kr)

− −4k(ru)
2

v2(1− kr)
+

(kr)ukru
v(1− kr)

− −2(kr)uru
v3(1− kr)

+
8(kr)u(ru)

3

v2(1− kr)
+

(kr)ukru
v(1− kr)2

]
+ ruu

[
2(1− kr)(kuur + 2kuru)− 2(kr)2u + 8(1− kr)(kr)2u

v2
− C

+ 2

(
kuur + 2kuru
v(1− kr)

+
4(kuur + 2kuru)(1− kr)(kr)u

v2(1− kr)
+

(kr)2u
v(1− kr)2

)
+ ru

(
3ku

v(1− kr)
− 4ru(kuur + 2kuru)

v2(1− kr)
+

k(kr)u
v(1− kr)2

+
2(1− kr)k(kr)u

v2(1− kr)
− 4((kr)u)

2(ru)

v2(1− kr)
+

2(kr)uk

v(1− kr)2

)]
+ ruuu f4(k, ku, r, ru) + f5(k, ku, kuu, kuuu, r, ru)

= (ruu)
3 f1(k, r, ru) + (ruu)

2 f2(k, ku, r, ru) + ruu f3(k, ku, kuu, r, ru)

+ ruuu f4(k, ku, r, ru) + f5(k, ku, kuu, kuuu, r, ru) .
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As r, ru tend to zero, the functions f2, f4 and f5 tend to zero, f3 tends to −C, and f1 tends to
−2. Due to the estimates Lemma 3.1 and Proposition 5.1, this is guaranteed as t → ∞, at an
exponential rate (r decays with rate e−Ct, and ru with rate e−

1
2 t). So, for t > Tδ we have (here

c0 = c0(r0, η) and we have assumed C ≥ 1)

1

2
(r2uu)t −

(r2uu)uu
v

≤ r4uu (−2 + c0e
−t) + |ruu|3 (c0e−t)

+ r2uu (−C + c0e
− 1

2 t) +
1

2
((ruu)

2)u f4(t) + |ruu|c0e−t .

or

1

2
(r2uu)t−

(r2uu)uu
v

− 1

2
((ruu)

2)u f4(t) ≤ r4uu (−2+2c0e
−t)+r2uu (−C+c0e

− 1
2 t+(c0/2)e

−t)+c0e
−t

where we have estimated |ruu|3 ≤ r4uu + (1/4)r2uu and |ruu| ≤ (1/4)r2uu + 1.
Finally, by taking t larger than t0 = max{log(c0), log(4c0/C), log(16c20/C

2)}, we have

1

2
(r2uue

tC/2)t −
(r2uue

tC/2)uu
v

− 1

2
((ruu)

2etC/2)u f4(t) ≤ c0e
−t ,

or

1

2
(r2uue

tC/2 + 2c0e
−t)t −

(r2uue
tC/2 + 2c0e

−t)uu
v

− 1

2
((ruu)

2etC/2 + 2c0e
−t)u f4(t) ≤ 0 .

and so we obtain the estimate

r2uu ≤
(
max r2uu(·, t0) + 2c0e

−t0
)
e(t0−t)C/2

as required. □

Let us now conduct a standard bootstrapping procedure, which we briefly summarise. Propo-
sition 5.2 implies that ru ∈ Cα. The PDE for ru is

(11) (ru)t = a(k, r, ru)ruuu + ruub(kui , r, ru) + c(kui , r, ru)ru ,

where the i in kui ranges from 0 to 2. Applying a theorem from Lieberman [8, Theorem 5.14]
then yields a uniform C2,α estimate for ru. This then implies that ruuu ∈ Cα. Repeating the
process shows that there is a uniform Cα bound for an arbitrary number m of derivatives rum .
Furthermore interpolation combined with our exponential decay estimates yields the desired
smooth convergence.

Lemma 5.3. Let γ : S× [0,∞) → R2 be the target flow solution given by Proposition 4.1, and
r : S× [0,∞) → R its graph function. There exist constants such that the following holds.

rum ≤ Cme−cmt

for all m ∈ N.

Proof. By periodicity of r the average of rum = 0 (for m ≥ 1), so there exists a point u∗ ∈ [0, L]
such that rum(u∗) = 0. Then the FTC, integration by parts, the Hölder inequality, our uniform
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bounds and exponential decay estimate implies

||rum ||L∞(du) ≤
∫ L

0

|rum+1 |du

≤
√
L

(∫ L

0

(rum+1)2du

) 1
2

≤
√
L

(∫ L

0

|r| |ru2m+2 | du

) 1
2

≤ L||r(·, 0)||L∞(du)e
−Ct

2 ||ru2m+2 ||L∞(du).

where we have used the Holder inequality and integration by parts. □

With Lemma 5.3, we have completed the proof of Theorem 1.1.
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