
 

 

Abstract — Incorporating cloud technology with Internet of 
Medical Things for ubiquitous healthcare has seen many 
successful applications in the last decade with the advent of 
machine learning and deep learning techniques. One of these 
applications, namely voice-based pathology, has yet to receive 
notable attention from academia and industry. Applying voice 
analysis to early detection of fatal diseases holds much promise 
to improve health outcomes and quality of life of patients. In this 
paper, we propose a novel application of acoustic machine 
learning based triaging into commoditised conversational 
virtual assistant systems to pre-screen for onset of diabetes. 
Specifically, we developed a triaging system which extracts 
acoustic features from the voices of n=24 older adults when they 
converse with a virtual assistant and predict the incidence of 
Diabetes Mellitus (Type 2) or not. Our triaging system achieved 
hit-rates of 70% and 60% for male and female older adult 
subjects, respectively. Our proposed triaging uses 7 non-
identifiable voice-based features and can operate within 
resource-constrained embedded systems running voice-based 
virtual assistants. This application demonstrates the feasibility 
of applying voice-based pathology analysis to improve health 
outcomes of older adults within the home environment by early 
detection of life-changing chronic conditions like diabetes.   
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I. INTRODUCTION 

Several medical and pathological conditions have been 
shown to affect the voice due to changes that either occur in 
the speaker’s speech organs or in the brain. These changes in 
voice could theoretically be analysed to learn specific 
acoustic patterns, and generalised across populations, 
irrespective of languages spoken.  There has been some work 
done in clinical literature in the past decade to study voice 
patterns of different neurological and psychological 
conditions like Stress [1], Autism [2], Dysphonia [3], 
Parkinson’s Disease [4], Alzheimer’s Disease [5], COVID19 
[6], etc. Of note, a “digital biomarker” is a characteristic 
objectively measured by a digital device or captured by a 
digital algorithm that is evaluated as an indicator of normal 
biological processes, pathogenic processes or pharmacologic 
response to therapeutic treatments. A voice-based digital 
biomarker in this regard, converts human speech audio input 
into an evaluation of subject’s speech generation capabilities. 
Voice-based (vocal) digital biomarkers are alluring and well-
suited features for predictive algorithms like that in machine 
learning and deep learning as they are non-invasive, 
instantaneous and cost-effective to use and easy to scale 
across large populations. There is a pressing need of such 
innovative solutions in medicine to study the disease better 

and improve health outcomes, but to also alleviate the ever-
restrictive health care budgets. Nonetheless, vocal biomarkers 
have only seen constrained applications in neurology [7] as 
per our review of clinical literature. Applications of vocal 
biomarkers in endocrinology is sparse, on the other hand. 

We noted that almost all of the existing works using voice 
biomarkers to predict for pathologies use audio data collected 
in controlled acoustic scenes [3, 8, 9, 10, 11, 12, 13] with little 
to no ambient noise and presence of overlapping acoustic 
events. The authors of [12] collected speech data by having 
the participants say pre-written words to reduce influence of 
language during the analysis. The data-capture primarily 
happens several times within a well-defined data collection 
period. We were unable to find relevant literature where voice 
biomarkers were collected continuously to showcase changes 
over periods longer than a few weeks [10, 13, 14] or days [8, 
12, 13]. Such methodologies for voice biomarkers are 
restrictive by design and do not lend into ease of integration 
within existing care pathways in real-world deployments. 
Similarly, accessibility by vulnerable demographics like older 
adults and those with high social deprivation [15], 
disadvantageous social determinants of health [16] (SDOH) 
and the cognitively challenged is an influencing factor. It is 
therefore our motivation to establish a new approach to collect 
voice biomarkers more sustainably where data-capture can 
happen within widely accepted Assistive Technologies (AT) 
which rely on voice-based conversations as a medium of 
engagement and care treatment delivery. 

 Conversation-based AT fall within the domain of 
“telehealth” which promises the advantage of enabling 
patients to self-care by delivering supportive care, guidance 
and necessary health literacy, remotely [17, 18, 19]. The 
COVID19 pandemic gave strong impetus [17] to the rise of 
telehealth tools and saw rapid adoption of programmable 
conversational agents [18] and virtual assistants [19] like 
chatbots and voice-based assistants. Since 2020, there has 
been several published literature reviews demonstrating [17, 
18, 19] that virtual assistants and chatbots can be used to assist 
in clinical workflows, deliver health programs, personalise 
support at scale with low costs.  

In this paper, we explore the feasibility of using a 
commercially available conversational virtual assistant 
product to capture speech audio of community-dwelling older 
adults to extract voice biomarkers with strong correlation with 
a diagnosis of type 2 diabetes and predict the same for the 
individual. We also foresee our method used as a “triaging 
toolkit” that can be repurposed to predict for other conditions 
[1, 2, 3, 4] which affect voice like high stress, mental 
disorders, neurodegenerative conditions and non-
communicable diseases [8, 10, 12]. However, these are not 
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part of the scope of this study. We summarise the 
contributions of this work as follows: 

1. Using virtual assistants to perform voice-based 
triaging for type 2 diabetes, one of the most prevalent 
[20] medical conditions across the world.  

2. Developing a “triaging toolkit” suited for embedded 
system applications to comply with data-protection 
and user-privacy regulations like GDPR and HIPPA. 

3. Improving triaging robustness in voice biomarker 
extraction in noisy polyphonic environment of the 
home environment.       

We have organised the paper as follows: In Section II, we 
present the current state-of-the-art of voice biomarkers, its 
extraction from voice-based sources, diagnostic relationships 
drawn between these biomarkers and diabetes, and 
underpinnings of virtual assistants in personalised care 
coaching and delivery. In Section III, we explain our approach 
leveraging Monica, a voice-based conversational health 
assistant developed by MiiCare [21]. In Section IV, we lay 
out the results of our method applied to a cohort of older 
adults where Monica had already been deployed to support 
daily chronic management. 

II. BACKGROUND 

A. Voice Disorders  
Voice and speech production relies on complex and multi-

organ cooperation. Airflow obtained by releasing the pressure 
in the lungs reaches the vocal folds in the larynx and vibrates 
the vocal cords that result in voice and articulating the voice 
makes up speech [22]. This functional dependency between 
several biological structures makes the voice vulnerable to 
being affected by diverse conditions. 

The anomalies and absence of vocal quality in relation to 
pitch, height, resonance and duration, which are unexpected 
for individuals irrespective of their gender and age are 
characteristics of disordered voice.  There is no globally 
accepted nomenclature for voice disorders. The authors of 
[22] list structural, inflammatory, traumatic, systemic, 
aerodigestive, psychiatric and psychological, neurological 
and functional voice disorders as major categories in this 
subfield. Medical specialists (like a Speech Therapist) can 
diagnose voice disorders through several in-person 
examinations and tests. The current approach relies on clinical 
examinations consisting of interviews, perceptual voice 
evaluation, patient-reported outcomes, laryngoscopy, 
aerodynamic assessment, voice profiles, acoustic spectral 
analysis, and laryngeal electromyography [22], which is time 
consuming, resource expensive and generates high economic 
burden. Appraising the vocal biomarkers gathered by a 
clinician is what ultimately leads to a formal diagnosis of a 
disorder. Pre-screening at source, for instance, within the 
home environment of the patient, not only reduces the overall 
cost of diagnosis, but also the workload on the healthcare 
system by prioritising the undiagnosed who are at higher risk.   

B. Blood Glucose and Voice  
Diabetes is a chronic metabolic disorder which impairs an 

individual’s body to process blood glucose. This disease is 
associated with two mechanisms: inadequate production of 

insulin by pancreas (type 1) or inadequate sensitivity of the 
cells to action insulin (type 2). The ratio of cases in type 2 
diabetes is higher than type 1 diabetes however, with 90-95% 
of cases of diabetes nowadays are of type 2 diabetes.  

Authors of studies like [23, 24, 25, 26] make the following 
claims as to how voice is affected by blood glucose: 

1. Glucose related changes in voice can be perceived. For 
example, the authors of [23] and [24] found that people 
who know a diabetic subject well can hear when they 
are hypoglycaemic, i.e. the blood glucose level drops 
below their normal baseline. 

2. The change in glucose levels in the blood flowing into 
the larynx and the vocal cords cause changes in the 
elastic properties of the biological tissue of these 
organs, which results in the changes of the spectral 
properties of the diabetic subjects’ voice. The authors 
of [25] and [26] put forward this idea in compliance 
with Hooke’s law of physics. 

3. Hypoglycaemia is often accompanied [27] by feelings 
of anxiety, causing people to speak faster and with 
greater urgency, whereas hyperglycaemia (higher 
levels of blood glucose over normal baseline) is often 
accompanied by feelings of lethargy causing speech 
patterns to be slow or slurred.  

Although no supporting references was found in these 
publications, our review found that these assumptions have 
scientific underpinnings. Subjective claims like detecting 
abnormal glucose levels from changes in voice has been 
reported since 1990s [28] and the similarity of symptoms in 
anxiety and hypoglycaemia [29]. Literature using Hooke’s 
law or changes in elasticity of the larynx and vocal cords to 
explain changes in voice is sparse. The earliest work detected 
by the authors of [25] on this argument provided experimental 
evidence that increase in blood glucose levels reduce 
elasticity in the muscles of the aforementioned organs. 
Authors of [8, 10, 11, 12] recently investigated this hypothesis 
and found that glucose levels and the fundamental frequency 
(F0) [30] of the voice had significant positive correlation per 
subject. They also reported that this effect was observed 
across subjects even when grouped by their diagnosis of non-
diabetic, pre-diabetic, and type 2 diabetes).     

C. Current State of Voice-based Virtual Assistants   
Intelligent conversational agents and virtual assistants 

proved [17] their potential to benefit over-burdened 
healthcare systems and provide personalised care to patients 
within the comfort of their own homes during the COVID19 
pandemic through their versatility, accessibility, scalability 
for naturalistic communications with them. Arguably, the 
popularity of consumer facing virtual assistants may have 
started with the launch of Apple Siri in 2011. After Amazon 
introduced Alexa and Echo devices in 2014, the technology 
around automatic speech recognition, text-to-speech and 
speech-to-text, natural language processing methods, and 
conversational AI has been continuously improving as the 
number of users has been increasing [17, 18]. Recently, with 
the introduction of GPT models [31], Large Language Models 
(LLM) [32] have taken over this field as the state-of-art for 
any conversational virtual assistant technology due to its 



 

ability to conduct extremely realistic human-like 
conversations in real time.  Virtual assistants have been 
adopted [17] by healthcare institutions for applications such 
as healthcare literacy, to respond to health information, tips 
and guidelines requested by users , health news, updates about 
hospital operations, first aid guidance, and medical 
communications. The convenience of natural conversation 
and hands-free interaction through digital devices has the 
potential to improve the effectiveness of health information 
delivery and communication.  

D. Current State of Predictive Analysis of Diabetes 
Accurate classification of the type of diabetes is a 

fundamental step towards controlling health outcomes. 
However, early and onset identification of diabetes has more 
benefits towards managing it. The identification process, as it 
exists now, is tedious at early stages, because the patient must 
visit a clinician regularly. Several techniques have been 
proposed to address this challenge. The authors of [33] 
proposed stacking-based ensemble classification methods to 
predict type 2 diabetes. They used the publicly available 
PIMA Indian dataset [34]. The authors of  [35] presented a 
soft computing-based diabetes prediction that uses the PIMA 
Indian dataset alongside breast cancer datasets for evaluation 
purposes. Both publications rely on traditional machine 
learning algorithms like SVM, Decision Tree, RBF SVM, 
Logistic Regression and Naïve Bayes. The authors of [35] 
were able to achieve a cross-validated accuracy of 79%. The 
authors of [36] used the learnings from the work of [35] and 
applied the algorithms on a dataset of 529 individuals from a 
hospital in Bangladesh through questionnaires. Their 
experimental results show that Random forests tend to 
outperform compared to other algorithms. A review of 
machine learning and statistical learning methods in 
publications produced between 2010 – 2020 [37] found that 
Random Forest tends to be superior across different tabular 
datasets compared to other machine learning and even neural 
network-based models. All of these works use demographic 
and patient health data to predict the subject’s risk of diabetes.  

Recently, there has been renewed interest in predicting 
whether a subject’s blood glucose levels are high or low by 
analysing their voice audio. The authors of [8] positions 
speech audio as a “biomarker sensor” by applying machine 
learning classification. They achieved a 𝑓(1) score of 0.88 in 
a leave-one-out cross-validated dataset of 70 audio samples 
per subject with 49 participants in total. The authors of [10] 
investigated whether voice analysis can be used as a pre-
screening tool for type 2 diabetes by examining the difference 
in voice recordings between non-diabetic and diabetic 
individuals. They found significant differences, both in the 
entire dataset and in age-matched and BMI-matched samples 
and their predictive models achieved 𝑓(1) scores of 0.75 for 
women and 0.7 for men separately. Both works [8, 10] found 
that frequency-based voice features like pitch, jitter, shimmer, 
etc show high predictive power and collected data from a 
south-east Asian population via a smartphone based voice 
recorder.  

III. METHODOLOGY 

Our method focuses on collecting voice biomarkers from 
regular everyday engagements between a voice based virtual 
assistant and patients who are primarily community-dwelling 
older adults, living alone. In this section, we present the end-
to-end pipeline we developed for data collection and 
application of a machine-learning based classifier in a triaging 
system for the continuous screening of the onset of type 2 
diabetes.  

A.  Research Motivations 
The works of [8, 10, 12, 33, 34, 35, 36, 37] have shown 

that it is feasible to use machine learning algorithms to analyse 
voice features and classify them to belong to someone with 
diabetes or not. Applications of such models in real world 
clinical practice has however been challenged [38] regarding 
reliability and utility of its predictions. The existing works [8, 
10, 12, 33, 34, 35, 36] prioritise demonstrating sample 
classification performance but fails to demonstrate how such 
models can be used for early intervention where its efficacy to 
be optimal. They rely exclusively on discrete collection of 
feature samples and is difficult to integrate within the daily 
routine of older adults who may not be comfortable using 
smartphones or similar data-collection devices. Our 
motivation is therefore to develop a triaging system instead of 
a simple classifier, which can be: 

1. seamlessly integrated with voice-based virtual 
assistants which do not require digital literacy to use. 

2. used alongside assistive technology in clinical and 
social care pathways like virtual wards [39], hospital-
at-home [40], and discharge-to-assess [41] 

3. used to prioritise those who are at high risk to avoid 
adding unnecessary burden on healthcare systems 

4. flag for early intervention to improve patient 
outcomes. 

B.  System Design 
To support our motivations, we put forward the following 

conceptual design of our triaging system in Figure 1 below.   

 
Figure 1 Conceptual Flowchart of Our Proposed Triaging System 

The system has 4 steps in implementation: 
1. Voice Capture: A home hub which hosts the virtual 

assistant is deployed in the home of an older adult 
patient who needs support and long-term care 
monitoring. The assistant interacts with the patient 
every day and collects their responses as voice 
recordings. 

2. Biomarker Extraction: The home hub runs a 
program that analyse the voice recordings and extract 
relevant acoustic and vocal features required to 
ascertain risk. The program only sends non-
identifiable features to the cloud in accordance with 
user privacy regulations like GDPR and HIPPA. 



 

3. Diagnostic Claim Generation: A machine learning 
model is trained and accepts specific voice features to 
output the probability that these features are similar to 
those on the trained dataset of features from people at 
risk. The model generates probability values 
accordingly, for all feature sets captured every day and 
averages them to give a confidence percentage or 
score for the older adult is at risk. 

4. Intervention Thresholding: The daily confidence 
scores are then monitored over a period of time. 
Medical expertise will advise how long the data will 
need to monitored and what confidence threshold 
criteria will need to be met before the patient will be 
deemed to be at risk and require a formal intervention 
from the healthcare system.    

 
In this paper, we focus only on the first 3 steps, and we 

discuss the method we followed to train a machine learning 
model and use it to generate confidence scores for tracking 
onset of diabetes. The last step pertaining to threshold 
confidence scores for intervention is out of scope of this paper 
and will be covered in a future publication.   

C.  Sourcing a Voice-based Virtual Assistant 
The first step in our triaging system required a virtual 

assistant technology. We needed a voice-based conversational 
assistant which would not only help us to collect speech voice 
samples but also provide value to the older adult subjects. The 
works of [42, 43] have noted that older adults are more likely 
to adopt new digital technology as part of their daily life if it 
actively supplements their regular needs.  

We sourced Monica (abbreviated for “MiiCare’s On-
demand Neural Intelligence Care Assistant”), a new voice-
based conversational virtual assistant from MiiCare [21], 
marketed as a virtual companion and health coach for older 
adults who live alone and have chronic management needs. 
Monica is housed within the MiiCube, a small cube-shaped 
device that serves as a home hub controlling a wireless remote 
patient monitoring ecosystem within the home environment. 

The MiiCube uses a ARM4 processer coupled with a 2-
microphone setup from Seed Studio’s ReSpeaker Pi Hat [44] 
enclosed in a cubical box enclosure as shown in Figure 2. The 
microphones are located immediately beneath the top grill to 
ensure it is capturing the acoustic scene and all acoustic events 
including the patients’ speech responses without exposing the 
computing unit.  
 

 
Figure 1 The MiiCube recording device from MiiCare 

To comply with user privacy regulations, the device does 
not background record audio. It captures the audio recording 
of the patient’s responses only when either Monica or the 
patient initiates a conversation. In this study, we record the 

patient’s response at each turn of the conversation and for a 
maximum of 10s, to minimise unnecessary recording. The 
speech audio is sampled at 16 KHz 16-bits in PCM WAV 
format and immediately processed within the MiiCube to 
return a response. Monica uses Azure OpenAI [45]’s GPT 
inference to provide human-like natural conversational 
experience for the older adult subjects as well as to provide 
personalised content in the form of reminders and behavioural 
prompts to support self-care and condition management. 

D.  Voice Biomarker Extraction  
As part of this research study, we modified the MiiCube to 

run a Python-based script alongside its main system program. 
This Python script accepts a copy of the speech recording data 
captured by the MiiCube system program and extracts voice 
biomarkers. The reasoning behind running the voice 
biomarker extraction step at the point of collection instead of 
in the cloud is to comply with ethics review and ensure highest 
levels of user privacy and data leak protection. This 
implementation demonstrates regulatory compliance by 
design, for privacy-sensitive applications like in clinical trials 
and even the commercial mass market.  

The MiiCube’s compute environment runs Python 3.7.3, 
which can only support 32-bit operating systems. The authors 
of [8, 10, 11, 12] had used Python modules like Librosa [46], 
praat-parselmouth [47] and disvoice [48] to process voice 
audio files and extract voice biomarkers. Librosa cannot be 
used in 32-bit compute environments, therefore we used 
scipy.utils [49] instead to load the voice audio recordings and 
praat-parselmouth to extract the acoustic features as they were 
supported by our compute environment.  

We extracted 7 acoustic features from the voice recordings 
using praat-parselmouth. Some of these acoustic features have 
already been demonstrated to have strong correlation with 
blood glucose levels in the works of [8, 10, 11, 12, 23, 24, 25, 
26]. We list these features in Table 1 below. 

 
TABLE I. Acoustic features used as voice biomarkers for type 2 diabetes 

Feature 
name  Description Citations 

Articulation 
Rate 

Syllables spoken per second, 
excluding pauses. The average rate for 
English speakers is 6.19 syllables per 
second 

[47, 50] 

Speaking 
Rate 

Words spoken by a speaker within a 
minute to deliver information. Slow 
casual conversations are usually 
between 120 – 150 words per minute. 

[47, 50] 

Jitter 

Frequency variation in voice pitch, 
measuring cycle-to-cycle variations in 
the fundamental frequency during 
phonation. Expressed as a percentage. 

[30, 47, 
50, 51] 

Shimmer 

Amplitude variation in the loudness of 
voice. Measures cycle-to-cycle 
variations in amplitude during 
phonation. Expressed either as a 
percentage or in decibels (dB). 

[47, 50, 
52] 

𝜇(𝐹0) Mean approximation of the 
fundamental frequency of voice [47, 50] 

𝜎(𝐹0) 
Standard deviation of the 
approximation of fundamental 
frequency of voice 

[47, 50] 



 

𝜎!(𝐹1) 

Variance in the first formant frequency 
associated with vowel quality and 
resonance of the vocal tract during 
speech production. This frequency 
contributes to the perceived sound 
quality of vowels, specifically their 
open-ness and closedness during 
phonation. 

[47, 50, 
52] 

 

E.  Data Collection 
To collect the acoustic features from the MiiCubes, we 

built an API endpoint connected with a noSQL database on 
Azure Cloud. The API endpoint was written using Python and 
FastAPI [53] to accept 1x7 floating-point row vectors along 
with the subject identifier and MiiCube device identifier. This 
API accepted each feature vector and stored them in an Azure 
Cosmos DB in an unstructured JSON Collection. This step is 
unique to our setup, as far as we are aware, and can be replaced 
with any suitable data collection and storage suitable with 
voice assistant devices. Storing the data using this way made 
it easy for us to add or remove subjects to the research in a 
staggered fashion without worrying about the data collection. 

MiiCare received consent from n=50 older adult MiiCube 
users living in the UK to be part of this study. Our python 
script, written to extract the 7 acoustic features, was remotely 
installed in these MiiCubes. We let the script run continuously 
for 30 days across these 50 MiiCubes for the entire duration of 
October 2024. All these users shared the following 
similarities: 

1. The subject lives alone and can self-care. 
2. The subject resides in the UK and speaks English as 

their main language. 
3. The subject takes one or more medications as part of 

their daily chronic management needs. 
4. The subject had consented to have Monica be pro-

active in its engagement approach to collect more 
voice recordings from them.  

We set the system to collect 6 voice recordings over 3 
separate days, i.e. 2 recordings per day at least. We have noted 
that it is possible for a subject to have several conversations 
with Monica and thereby collect more than 2 recordings in a 
single day. The acoustic features in these recordings is 
influenced by the varying blood glucose levels throughout the 
day due to factors like meal timings, physical activity, stress 
levels, etc. and this holds for diabetic as well as non-diabetic 
subjects. We do not want our triage to be impacted by this and 
by setting a minimum data collection duration of 3 days, we 
minimise the influence of temporary blood glucose 
fluctuations on the triage’s performance to track onset of 
diabetes. There was no attempt undertaken to introduce any 
strict daily routine because we wanted to demonstrate 
feasibility of the method in real-world applications where the 
subjects are not expected to change their daily routine to 
accommodate the assistive technology. 

Monica was setup to support the older adult users with their 
daily chronic management needs. This included daily 
reminders for timely medication and fluid intake. In addition 
to this, Monica was programmed to initiate engagement with 
the user at home when they are idle. Users were free to chat 
with Monica whenever they wanted. The setup is similar to 

real world deployments of smart home assistants and virtual 
agents like Alexa, Siri and Google Home when used in 
healthcare applications [17, 54]. 

F.  Dataset 
After 30 days, we took stock of all the features collected 

for each subject from our cloud database and applied our 
sampling threshold of 2 recordings every day. We found that 
n=24/50 MiiCube users had enough data to satisfy this 
threshold. The reasons for the remaining 26 MiiCubes failing 
to collect enough data was attributed to poor internet 
connectivity as those patients lived in rural areas. We 
summarise the feature samples collected for each user in Table 
II below. In total, we had data from n=17 male users (11 with 
diabetes and 6 without diabetes) and n=7 female users (3 with 
diabetes and 4 without diabetes).  

TABLE II. Acoustic feature samples collected for n=24 MiiCube users 

Gender User ID Feature samples Days 

male 

n=11 users with confirmed diagnosis of type 2 diabetes 
ID-M1 396 28 
ID-M2 201 30 
ID-M3 101 28 
ID-M4 89 20 
ID-M5 83 24 
ID-M6 59 20 
ID-M7 29 15 
ID-M8 22 11 
ID-M9 16 8 

ID-M10 12 6 
ID-M11 11 7 

n=6 users without diabetes 
ID-M12 181 25 
ID-M13 163 28 
ID-M14 147 29 
ID-M15 73 15 
ID-M16 42 11 
ID-M17 30 13 

female 

n=3 users with confirmed diagnosis of type 2 diabetes 
ID-F1 56 17 
ID-F2 29 16 
ID-F3 17 4 

n=4 users without diabetes 
ID-F4 194 18 
ID-F5 113 9 
ID-F6 62 19 
ID-F7 40 10 

 

G. Preprocessing Voice Biomarkers 
Since the voice features captured were all continuous 

floating-point numbers, preprocessing them requires careful 
feature scaling which should have clinical underpinnings. We 
enlisted with the following considerations as part of the 
scaling process: 

 
1. The authors of [50] defined normative ranges for 

articulation rate for human speakers across a variety 
of languages. English speakers have an articulation 
rate of 6.19 syllables per second on average across the 
globe. We defined the scaling as a percentage ratio of 
how fast the observed rate is relative to this average. 



 

In formulaic terms, if the articulation rate is 𝑎𝑟, then 
the scaling rule is 𝑎𝑟!"#$%& =	

#'	)*.,-
*.,-

  
2. The authors of [50] establishes the normative range 

of speaking in English speakers at different paces for 
different settings. We used the rate of 150 words per 
minute (WPM) as the upper bound for casual 
everyday conversation and applied the scaling rule 
for speaking rate 𝑠𝑟!"#$%& as s𝑟/150. 

3. The authors of [52] gave us the normative range for 
jitter in both males and females to be between 
0.00106% and 0.02312%. We applied min-max 
scaling rule for jitter as follows 𝑗𝑖𝑡𝑡𝑒𝑟!"#$%& =
	 ./00%')1.11,1*
1.123,2)1.11,1*

. 
4. As per praat-parselmouth’s documentation, shimmer 

is measured as a percentage and is already scaled. 
There is however no normative range established for 
voice shimmer for pathologic conditions. For normal 
human voices, the expected value is less than 5% 
[52]. We used this instead and applied max-scaling 
rule for shimmer as follows: 𝑠ℎ𝑖𝑚𝑚𝑒𝑟!"#$%& =
!4/55%'
1.16

 
5. As per praat-parselmouth’s documentation, the 

fundamental frequency 𝐹0 is set between 75 Hz and 
300 Hz for human beings.  We again applied min-max 
scaling rule for 𝜇(𝐹0) and 𝜎(𝐹0) as follows:  

a. 𝜇(𝐹0)!"#$%& =
7(91));6
311);6

 

b. 𝜎(𝐹0)!"#$%& =
<(91)
311);6

 
6. As per praat-parselmouth’s documentation, the first 

formant frequency 𝐹1 is set between 200 Hz to 1000 
Hz for human beings. We therefore applied min-max 
scaling rule as 𝜎2(𝐹1)!"#$%& =

<!(9,))211
,111)211

 
 

H. Training the Machine Learning model 
Taking inspiration from the work of [10], we adopted the 

leave-one-out (LOO) approach to train and cross-validate the 
performance of the machine learning model for ex-situ 
samples for a subject whose features the model hasn’t been 
trained on. The LOO approach was applied separately for the 
male and female subjects.  

The works of [8, 10, 11, 12, 23, 24, 25, 26] has used 
various shallow machine learning algorithms like SVM [55], 
Logistic Regression [56], KNN [56], Decision Trees [56] and 
Random Forests [56]. The authors of [37] have even claimed 
the shallow algorithms are superior to neural network based 
deep learning approaches as they demonstrate similar 
predictive power at lower computational complexity and 
resource needs. The authors of [10] concur with this 
observation and added that neural networks overfit on such 
datasets as these are sparse in nature with only a few hundred 
samples that could be collected per patient in real life 
deployments. We agreed with this analysis and therefore we 
only focused on evaluating the set of algorithms and choosing 
the best performing model using our acoustic features. 

We describe the exact steps followed for evaluation as 
follows: 

1. Choose 1 subject identifier 	𝐼𝐷4=$&=>0 from among the 
subjects available.  

2. Separate the feature samples for 𝐼𝐷4=$&=>0 from the 
other subject identifiers 𝐼𝐷=04%'!. 

3. Train the machine learning model 𝑀 on the feature 
dataset for 𝐼𝐷=04%'!. Please note that the label for each 
feature set will be 1 if the subject has diabetes and 0 
if they do not.  

4. Once the training is complete, apply 𝑀	on the feature 
set for 𝐼𝐷4=$&=>0 and extract the probability values 
{𝑝,} for label=1 only. We want to focus on how likely 
the model thinks each feature set from 𝐼𝐷4=$&=>0 has 
similar characteristics to that of features of subjects in 
𝐼𝐷=04%'! who had label=1 (with diabetes).  

5. 𝜇({𝑝1}) gives us an averaged probability score that 
𝑀 thinks the features of 𝐼𝐷4=$&=>0 is like those with 
diabetes. Please note that the feature set must be 
collected over a period of several days when this step 
is executed in a real-life inference application (3 days 
as a minimum as explained already in Subsection E). 
This will give assurance that factors affecting blood 
glucose levels is controlled for in the generation of 
the average probability score for diabetes within that 
period of time. 

6. We now apply a decision framework to determine 
whether we make the claim 𝐶 that subject 𝐼𝐷4=$&=>0 
has diabetic symptoms using 𝜇({𝑝1}). We reason that 
(a) if 𝜇({𝑝1}) > 0.6, then it is highly probable that the 
subject is diabetic and should be flagged for 
intervention (𝐶 = 1); (b) If 𝜇({𝑝1}) < 0.4, then the 
subject is less probable to be diabetic and therefore 
currently at low risk for the same (𝐶 = 0); (c) If 0.4 
<= 𝜇({𝑝1}) <= 0.6, then we are not confident enough 
at this stage to make a diagnostic claim about the 
subject (𝐶 = 	−1).  

7. We repeat Steps 1 – 6 for all subjects available for a 
either gender separately and tabulate the following 
information: 𝐼𝐷4=$&=>0,  𝜇({𝑝1}), claim made using 
our decision framework 𝐶, and lastly whether 𝐶 
matches the ground truth diagnostic label for 
𝐼𝐷4=$&=>0 (1 if has diabetes and 0 otherwise).  

Tracking the number of claims for 𝐶 = 1 over time will show 
the probability of onset of diabetes in undiagnosed subjects 
when the triage is applied to real-life. Determining the 
threshold of positive claims needed and the number of days to 
track onset must be made in consultation with clinical experts 
and is outside of the scope of this paper, as mentioned earlier.  

IV. RESULTS 

We choose to evaluate the following algorithms in our 
machine learning based triaging system. We include the 
specific parametric configurations we set for each algorithm 
[57] as well: 

 
1. sklearn.linear_model.LogisticRegression(max_iter

=500,class_weight=”balanced”) 
2. sklearn.tree.DecisionTreeClassifier(class_weight 

= “balanced”) 
3. sklearn.ensemble.RandomForestClassifier(n_estima

tors = 500, class_weight = “balanced”) 



 

4. xgboost.XGBClassifier(n_estimators = 300) 
5. sklearn.neighbours.KNeighboursClassifier(n_neigh

bours = 5, weights = “distance”) 
6. sklearn.naive_bayes.GaussianNB() 
7. sklearn.svm.SVC(kernel = “rbf”, class_weight = 

“balanced”, probability=true) 
8. sklearn.svmSVC(kernel = “linear”, class_weight = 

“balanced”, probability=true) 
We compiled the information points extracted in each LOO 

run for each of the above algorithms for either gender as 
Tables III and IV below. The columns are defined as follows 
in terms of the number of claims 𝐶 made for each subject 
using our decision framework: 

1. 𝐶"=''%"0 : how many subjects were correctly diagnosed 
2. 𝐶/?"=''%"0: how many subjects were wrongly 

diagnosed 
3. 𝐶>?&%"/&%&: how many subjects could not be diagnosed 
4. 𝐻𝑖𝑡	𝑟𝑎𝑡𝑒: defined as @"#$$%"&

@"#$$%"&A@'("#$$%"&
 

 
TABLE III. Diagnostic Performance using LOO on n=17 male subjects 

Algorithm Hit rate 𝑪𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝑪𝒊𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝑪𝒖𝒏𝒅𝒆𝒄𝒊𝒅𝒆𝒅 
RF 0.7 7 3 7 
DT 0.67 6 3 8 

KNN 0.64 7 4 6 
XGB 0.64 7 4 6 

SVM-RBF 0.5 5 5 7 
GNB 0.5 4 4 9 

SVM-Linear 0.4 4 6 7 
LR 0 0 2 15 

 

TABLE IV. Diagnostic Performance using LOO on n=7 female subjects 

Algorithm Hit rate 𝑪𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝑪𝒊𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝑪𝒖𝒏𝒅𝒆𝒄𝒊𝒅𝒆𝒅 

DT 0.6 3 2 2 
KNN 0.571 4 3 0 
RF 0.571 4 3 0 

SVM-Linear 0.571 4 3 0 
SVM-RBF 0.571 4 3 0 

XGB 0.571 4 3 0 
GNB 0.5 3 3 1 
LR 0 0 0 7 

 

We make the following observations: 

1. For n=17 male subjects, Tree based models Random 
Forests (RF) and Decision Tree (DT) showed the 
highest diagnostic hit rate at 70% with 7 correct claims 
out of 10 total claims made against each of them. 

2. For n=7 female subjects, Decision Tree (DT) had the 
highest diagnostic hit rate at 60% with 3 correct claims 
out of 5 total claims made against each of them. 

3. Algorithms favoured by the authors of [10], notably 
Logistic Regression (LR), SVM and Naïve Gaussian 
Bayes (GNB) came second to the tree-based models 
for both genders. The authors explained that tree-based 
models are not suitable in such cases as they are likely 
to overfit. But we observe that for both genders, these 
algorithms had a lower ratio (around 1:1) of the 

number of correct diagnostic claims against incorrect 
ones compared to that for tree-based models using our 
LOO approach (almost ~2:1).   

V. CONCLUSION  

This paper has presented a unique approach to use shallow 
machine learning algorithms in voice pathology, specifically 
in the area of early diabetes detection as a triage to identify 
those who are at risk and require early intervention. We also 
demonstrate the suitability of this novel method as an 
alternative to the constrained discrete non-continuous and 
intermittent data-capture methodologies using smartphone 
apps. The results presented provides reasonable validation as 
to how this innovative triaging system can be used alongside 
pre-existing commercial voice-based virtual assistants. Many 
of these virtual assistants are now being adopted by healthcare 
institutions in telehealth and digital health supported 
pathways to improve patient experience, health outcomes and 
reduce pressure on the healthcare system. By embedding our 
triaging system in mainstream channels and solutions, we 
believe that the roll out, adoption and distribution of our 
system will be easier. Principally, we evaluated our concept 
and showed how it can be used as a continuous pre-diagnostic 
tool for older adult patients at home who may be undiagnosed 
or are pre-diabetic, without inconveniencing their daily life.  

We foresee future works focusing on extending this voice-
based triaging system for other medical conditions which can 
be managed better with early intervention like onset of 
cognitive decline, hypertension and respiratory tract 
infections like COPD.   
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