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Abstract

In this paper, the Painlevé property to fractional differential equations (FDEs)
are extended and the existence and uniqueness theorems for both linear and nonlin-
ear FDEs are established. The results contribute to the research of integrability and
solvability in the context of fractional calculus, which has significant implications
in various fields such as physics, engineering, and applied sciences. By bridging
the gap between pure mathematical theory and practical applications, this work
provides a foundational understanding that can be utilized in modeling phenomena
exhibiting memory and hereditary properties.
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1 Introduction

The study of differential equations is a cornerstone of mathematical analysis, with widespread
applications in physics, engineering, biology, economics, and beyond. The Painlevé prop-
erty plays a crucial role in the integrability of differential equations, characterizing a class
of equations whose solutions have no movable singularities other than poles. This prop-
erty is instrumental in identifying equations that can be solved in closed form or possess
solutions in terms of special functions.

Despite the extensive study of the Painlevé property and fractional calculus sepa-
rately, the interplay between them remains underexplored. Specifically, how the Painlevé
property extends to FDEs is not fully understood. This gap presents an opportunity to
develop new analytical methods that can benefit various scientific disciplines by providing
tools to analyze and solve FDEs that model complex systems.

In this paper, this gap is bridged by generalizing the Painlevé property to FDEs
and establishing existence and uniqueness theorems for both linear and nonlinear FDEs.
Rigorous mathematical framework is developed, analytical techniques for the fractional
context are adapted, and applications to equations in mathematical physics, control the-
ory, and signal processing are explored. This work not only advances the theoretical
understanding of FDEs but also provides practical tools for researchers in applied sci-
ences.

Despite these advancements, there remains a gap in understanding how integrabil-
ity criteria, such as the Painlevé property, extend to fractional differential equations.
Previous research has not fully addressed the interplay between the Painlevé property
and fractional derivatives, especially in nonlinear FDEs. This paper aims to bridge this
gap by generalizing the Painlevé property to FDEs, providing a new perspective on the
integrability of fractional systems.

The contributions of this work are threefold:
1. The fractional Painlevé property and adapt the Painlevé test for FDEs are defined,

extending classical analytical techniques to the fractional context. 2. The existence
and uniqueness theorems for linear and nonlinear FDEs using fixed point theory are
established, offering rigorous mathematical foundations for the study of FDEs. 3. The
detailed case studies in control theory and signal processing, demonstrating the practical
applicability of the theoretical results are provided.

By addressing the integration of the Painlevé property with fractional calculus, this
work fills a significant gap in the literature and opens new avenues for research in both
theoretical and applied mathematics.
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2 Generalization of the Painlevé Property in FDEs

2.1 Background and Definitions

2.1.1 Review of the Painlevé Property

Definition 2.1 (Painlevé Property in Classical Differential Equations). A differential
equation is said to possess the Painlevé property if its general solution has no mov-
able singularities other than poles. Here, movable singularities are singularities whose
positions depend on initial conditions or constants of integration, in contrast to fixed
singularities, which are inherent to the equation itself.

Significance:

• The Painlevé property serves as a criterion for identifying integrable differential
equations.

• Equations with this property often have solutions expressible in terms of known
transcendental functions or lead to the discovery of new special functions.

• The classification of second-order ordinary differential equations (ODEs) with the
Painlevé property resulted in the identification of the six Painlevé transcendents [4].

Classical Techniques:

• Painlevé Test: This analytical tool determines whether an ODE has the Painlevé
property by examining its dominant behavior and resonances in a Laurent series
expansion near a singularity [2].

Recent Developments and Challenges:

• Extensions of the Painlevé property to partial differential equations (PDEs) and
difference equations have been explored.

• A comprehensive framework for applying the Painlevé property to fractional dif-
ferential equations is still lacking, primarily due to the nonlocal characteristics of
fractional derivatives and the complex structure of their singularities.

2.1.2 Concepts in Fractional Calculus

Definition 2.2 (Fractional Calculus). Fractional calculus generalizes the concepts of dif-
ferentiation and integration to non-integer orders. This extension allows for operations
of arbitrary (real or complex) order, providing powerful tools for modeling systems where
memory effects or hereditary properties are significant, such as materials exhibiting vis-
coelastic behavior or processes dependent on historical data [9].
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Common Definitions of Fractional Derivatives:

1. Riemann-Liouville Fractional Derivative: For a function f(t) defined on [a, b],
the Riemann-Liouville fractional derivative of order α > 0 is defined as:

Dα
a+f(t) =

1

Γ(n− α)

dn

dtn

∫ t

a

f(τ)

(t− τ)α−n+1
dτ,

where n = ⌈α⌉ is the smallest integer greater than or equal to α.

2. Caputo Fractional Derivative: For 0 < α < 1, the Caputo fractional derivative
is given by:

CDα
a+f(t) =

1

Γ(1 − α)

∫ t

a

f ′(τ)

(t− τ)α
dτ.

The Caputo derivative is often preferred in initial value problems because it accom-
modates standard integer-order initial conditions.

Caputo Derivative of Power Functions: For γ > α − 1, the Caputo fractional
derivative of the function (t− t0)

γ is:

CDα
t0+

(t− t0)
γ =

Γ(γ + 1)

Γ(γ − α + 1)
(t− t0)

γ−α.

When γ = n − 1, with n being a positive integer and α → n, the expression is defined
via limits.

Properties and Challenges:

• Nonlocality: Fractional derivatives involve integration over the entire history of
the function, making them inherently nonlocal operators.

• Complex Singularities: The nonlocal nature complicates the analysis of singu-
larities, as the influence of a singularity can extend across the entire domain.

2.2 Extending the Painlevé Property to FDEs

2.2.1 Defining the Fractional Painlevé Property

Definition 2.3 (Fractional Painlevé Property). An FDE is said to possess the fractional
Painlevé property if its general solution has no movable singularities other than those
allowed in the fractional context (e.g., algebraic branch points of fractional order) and
does not exhibit essential or logarithmic singularities.

Challenges in Extension:

1. Nonlocality: Due to the nonlocal nature of fractional derivatives, singularities can
have a global impact on the solution.

2. Redefining Movable Singularities: In FDEs, singularities may arise from the
integral nature of fractional derivatives. Singularities such as fractional poles or
branch points whose locations depend on initial conditions are considered.

3. Handling Fractional Branch Points: Solutions may involve branch points of
fractional order, necessitating the inclusion of fractional powers in series expansions.
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2.2.2 Developing Analytical Techniques for FDEs

Fractional Laurent Series

Definition 2.4 (Fractional Laurent Series). A series expansion of a function y(t) around
a point t0 that includes terms with fractional powers:

y(t) =
∞∑

k=−∞

ak(t− t0)
k/p,

where p is a positive integer allowing fractional exponents k/p, and ak are coefficients.

Adapting the Painlevé Test for FDEs The traditional Painlevé test comprises three
main steps:

1. Leading-Order Analysis: Determine the dominant behavior near the singularity.

2. Resonance Analysis: Identify positions where arbitrary constants can enter the
solution.

3. Consistency Conditions: Ensure compatibility at each resonance.

Figure 1: Illustration of the leading-order behavior of the solution near the singularity
t = t0.

Modifications for FDEs :

• Incorporate fractional powers in the leading-order analysis to capture the behavior
of fractional derivatives near singularities.

• Identify fractional resonances that may occur due to the nature of fractional expo-
nents.

• Derive compatibility conditions that account for the nonlocal terms introduced by
fractional derivatives.
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2.3 Theoretical Development and Proofs

2.3.1 Establishing Key Lemmas and Theorems

Lemma 2.1 (Dominant Behavior Near Singularities in FDEs). Consider a fractional
differential equation of the form:

Dαy(t) = F (t, y(t)),

where Dα is the Caputo fractional derivative of order α, with 0 < α < 1, and F (t, y) is
analytic in y. Suppose that near t = t0, the solution y(t) behaves like:

y(t) ∼ A(t− t0)
−σ,

for some σ > 0 and constant A ̸= 0. Then the leading-order behavior is determined by
balancing the most singular terms of Dαy(t) and F (t, y(t)).

Proof. Assume y(t) ∼ A(t−t0)−σ near t = t0, choosing σ such that −σ+1 /∈ {0,−1,−2, . . . }
and −σ − α + 1 /∈ {0,−1,−2, . . . } to ensure the Gamma functions are defined.

Using the Caputo derivative of a power function:

CDα
t0+

(t− t0)
γ =

Γ(γ + 1)

Γ(γ − α + 1)
(t− t0)

γ−α.

Applying this to y(t), we obtain:

CDα
t0+
y(t) ∼ A

Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α.

Similarly, F (t, y(t)) ∼ F (t0, A(t− t0)
−σ).

Assuming F (t, y) is analytic in y, the dominant term in F will be proportional to y(t)
raised to some power m:

F (t0, y(t)) ∼ B[y(t)]m ∼ BAm(t− t0)
−mσ,

where B is a constant.
To balance the most singular terms, we set:

A
Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α = BAm(t− t0)
−mσ.

Equating the exponents:

−σ − α = −mσ =⇒ m = 1 +
α

σ
.

This relationship determines σ in terms of α and the exponent m in F .

Lemma 2.2 (Fractional Resonance Conditions). Given the leading-order behavior y(t) ∼
A(t− t0)

−σ, the positions of resonances r (values where arbitrary constants can enter the
solution) are determined by substituting:

y(t) = A(t− t0)
−σ + b(t− t0)

−σ+r

into the fractional differential equation and linearizing around the leading-order solution.
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Proof. 1. Perturbed Solution:
Consider a perturbation around the leading-order solution:

y(t) = A(t− t0)
−σ + b(t− t0)

−σ+r,

where b is a small parameter, and r is the resonance to be determined.
2. Fractional Derivative of the Perturbed Solution:
Compute the Caputo fractional derivative of y(t):

CDα
t0+
y(t) = ADα(t− t0)

−σ + bDα(t− t0)
−σ+r.

Using the formula for the fractional derivative of a power function:

Dα(t− t0)
γ =

Γ(γ + 1)

Γ(γ − α + 1)
(t− t0)

γ−α,

we have:

CDα
t0+
y(t) = A

Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α + b
Γ(−σ + r + 1)

Γ(−σ + r − α + 1)
(t− t0)

−σ+r−α.

3. Expansion of the Nonlinear Function F (t, y):
Assume F (t, y) is analytic in y near y = A(t− t0)

−σ. Expand F (t, y) as:

F (t, y) = F (t, y0) + Fy(t, y0)[y(t) − y0] + . . . ,

where y0 = A(t− t0)
−σ.

The perturbed term contributes:

Fy(t, y0)b(t− t0)
−σ+r.

4. Substitution into the FDE:
Substitute y(t) and CDα

t0+
y(t) into the FDE:

CDα
t0+
y(t) = F (t, y(t)).

The leading-order terms (proportional to A(t − t0)
−σ−α) cancel out by assumption. For

terms proportional to b, collect powers of (t− t0):

Γ(−σ + r + 1)

Γ(−σ + r − α + 1)
(t− t0)

−σ+r−α = Fy(t0, y0)b(t− t0)
−σ+r.

5. Indicial Equation:
Equate exponents:

−σ + r − α = −σ + r =⇒ −α = 0.

This is a contradiction since 0 < α < 1. Thus, we must account for the dependence of
Fy(t0, y0) on t.

6. Considering F (t, y) = f(t)yp:
Assume F (t, y) = f(t)yp. Then:

Fy(t0, y0) = pf(t0)A
p−1(t− t0)

−σ(p−1).
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7. Matching Terms:
For terms proportional to b(t− t0)

−σ+r−α, we equate:

Γ(−σ + r + 1)

Γ(−σ + r − α + 1)
= pf(t0)A

p−1.

8. Final Indicial Equation:
Combine the results:

Γ(−σ + r + 1)

Γ(−σ + r − α + 1)
= pf(t0)A

p−1.

This determines the positions of resonances r.
9. Solving for r:
Solve the indicial equation for r, ensuring that the Gamma functions’ arguments are

valid (i.e., not non-positive integers). Resonances r correspond to values where arbitrary
constants can enter the solution.

Conclusion:
The resonances r are determined by the indicial equation. If all resonances are real and

compatibility conditions are met, the solution satisfies the fractional Painlevé property.

2.3.2 Fractional Painlevé Test Theorem

Theorem 2.1 (Fractional Painlevé Test). An FDE possesses the fractional Painlevé
property if the following conditions are satisfied:

1. Leading-Order Analysis: A consistent leading-order behavior y(t) ∼ A(t− t0)−σ

is found by balancing the most singular terms, with σ chosen so that the involved
Gamma functions are defined.

2. Resonance Analysis: All resonances r obtained from the indicial equation are
real numbers, and one of them corresponds to r = −1, representing the arbitrariness
of t0.

3. Compatibility Conditions: For each resonance r, the coefficients in the frac-
tional Laurent series satisfy the necessary compatibility conditions without intro-
ducing movable logarithmic or essential singularities.

Proof. The proof proceeds through a systematic application of the modified Painlevé test
for fractional differential equations.

Step 1: Leading-Order Analysis Assume that near t = t0, the solution behaves as:

y(t) ∼ A(t− t0)
−σ,

where A ̸= 0 and σ > 0.
Compute the Caputo fractional derivative:

CDα
t0+
y(t) = A

Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α.

Substitute this into the FDE and balance the most singular terms with F (t, y(t)) to
determine σ and A.
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Step 2: Resonance Analysis Introduce a perturbation to the leading-order solution:

y(t) = A(t− t0)
−σ + b(t− t0)

−σ+r,

where b is a small parameter and r is the resonance to be found.
Compute the fractional derivative of the perturbation and substitute back into the

FDE. Linearize the equation around the leading-order solution and collect terms of order
(t− t0)

−σ−α+r.
This leads to the indicial equation from which r can be determined:

Γ(−σ + r + 1)

Γ(−σ + r − α + 1)
= Known function of A, σ, and FDE parameters.

Step 3: Compatibility Conditions For each resonance r, expand the solution into
a fractional Laurent series:

y(t) = A(t− t0)
−σ +

∞∑
k=1

ak(t− t0)
−σ+kr.

Substitute this series into the FDE and collect terms at each order to solve for the
coefficients ak. Ensure that no movable logarithmic terms appear in the expansion.

Conclusion If all resonances are real and the compatibility conditions are satisfied
without introducing logarithmic singularities, the FDE passes the fractional Painlevé
test and thus possesses the fractional Painlevé property.

2.3.3 Case Studies in Mathematical Physics

Example: Fractional Nonlinear Schrödinger Equation Consider the fractional
nonlinear Schrödinger equation:

iDα
t ψ(x, t) + β|ψ(x, t)|2ψ(x, t) = 0,

where Dα
t is the Caputo fractional derivative with respect to time t, 0 < α ≤ 1, ψ(x, t) is

the complex wave function, and β is a real constant.

2.3.4 Application to Control Theory

Fractional-Order Control Systems Fractional-order control systems have garnered
significant attention due to their ability to model systems with memory and heredi-
tary properties more accurately than integer-order models. Consider a fractional-order
proportional-integral-derivative (PID) controller described by the following FDE:

Dα
t y(t) + aDβ

t y(t) + by(t) = u(t),

where 0 < β < α ≤ 1, a, b are constants, u(t) is the control input, and Dα
t denotes

the Caputo fractional derivative of order α.
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Applying the Fractional Painlevé Test Leading-Order Analysis:
Assume that near a singularity t = t0, the solution behaves as:

y(t) ∼ A(t− t0)
−σ,

where A ̸= 0 and σ > 0. Compute the fractional derivatives:
1. Compute Dα

t y(t):

Dα
t y(t) ∼ A

Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α.

2. Compute Dβ
t y(t):

Dβ
t y(t) ∼ A

Γ(−σ + 1)

Γ(−σ − β + 1)
(t− t0)

−σ−β.

Substitute these expressions into the FDE:

A
Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α + aA
Γ(−σ + 1)

Γ(−σ − β + 1)
(t− t0)

−σ−β + bA(t− t0)
−σ = u(t).

Assuming that u(t) is less singular than the terms involving y(t), I can neglect u(t)
in the leading-order analysis.

Identify the most dominant (most singular) term among the three terms on the left-
hand side:

- Exponents: - Term 1: −σ − α - Term 2: −σ − β - Term 3: −σ
SInce1920 σ, α, β > 0 and β < α ≤ 1, the most singular term is the one with the

largest negative exponent, i.e., the term with exponent −σ − α.
Therefore, the leading-order behavior is determined by:

A
Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α = 0.

SInce1920 A ̸= 0 and the Gamma functions are defined (provided −σ − α + 1 /∈
{0,−1,−2, . . . }), the only way this equality holds is if:

A
Γ(−σ + 1)

Γ(−σ − α + 1)
= 0,

which is impossible unless A = 0, contradicting the assumption. This suggests that I
need to consider the next most singular term.

The second most singular term is:

aA
Γ(−σ + 1)

Γ(−σ − β + 1)
(t− t0)

−σ−β.

Therefore, balance this term with the most singular term:

A
Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α + aA
Γ(−σ + 1)

Γ(−σ − β + 1)
(t− t0)

−σ−β = 0.

Divide both sides by (t− t0)
−σ−α:
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A
Γ(−σ + 1)

Γ(−σ − α + 1)
+ aA

Γ(−σ + 1)

Γ(−σ − β + 1)
(t− t0)

α−β = 0.

SInce1920 α− β > 0, as t→ t0, (t− t0)
α−β → 0. Therefore, the second term vanishes

in the limit, and I are left with:

A
Γ(−σ + 1)

Γ(−σ − α + 1)
= 0,

which is impossible unless A = 0. This indicates that the original assumption may
not lead to a valid leading-order balance.

Alternatively, suppose that σ = 0. Then, the leading-order term is:

bA = u(t0).

Assuming u(t0) is finite and b ̸= 0, I have:

A =
u(t0)

b
.

This suggests that the solution is regular at t = t0, and there is no singular behavior.

Implications for Control System Design The confirmation that a fractional-order
control system possesses the fractional Painlevé property has significant implications for
control system design:

• Stability Analysis: Systems with the Painlevé property are less likely to exhibit
unpredictable behavior due to movable singularities. This enhances the reliability
of stability analyses performed on fractional-order controllers.

• Robustness: Understanding the singularity structure aids in designing controllers
that are robust to parameter variations and external disturbances.

• Controller Optimization: The absence of undesirable singularities allows for
more straightforward optimization of controller parameters, improving performance
in practical applications such as robotics, aerospace, and industrial automation.

For instance, in controlling a robotic arm with fractional dynamics, ensuring that the
control system lacks movable singularities can prevent unexpected jerks or oscillations,
leading to smoother and more precise movements.

Practical Example: Fractional-Order PID Controller in Temperature Reg-
ulation Consider a fractional-order Proportional-Integral-Derivative (PID) controller
used in temperature regulation systems. The control law is defined as:

u(t) = Kpe(t) +KiD
−λ
t e(t) +KdD

µ
t e(t),

where:

• u(t) is the control signal (e.g., power input to a heater),

• e(t) = r(t) − y(t) is the error between the reference temperature r(t) and the
measured temperature y(t),

12



Figure 2: Response of the fractional-order PID-controlled temperature regulation system,
showing smooth and stable behavior without singularities near t = t0.

• Kp, Ki, Kd are the proportional, integral, and derivative gains, respectively,

• D−λ
t denotes the fractional integral of order λ (with λ > 0),

• Dµ
t denotes the Caputo fractional derivative of order µ (with 0 < µ ≤ 1).

The dynamics of the temperature regulation system can be modeled by the fractional
differential equation:

Dα
t y(t) + ay(t) = bu(t),

where:

• Dα
t is the Caputo fractional derivative of order α (with 0 < α ≤ 1),

• a, b are positive constants related to the thermal properties of the system.

Applying the Fractional Painlevé Test To ensure that the control system does not
introduce undesirable singularities, we apply the fractional Painlevé test to the closed-
loop system.

1. Leading-Order Analysis:
Assume a solution of the form:

y(t) ∼ A(t− t0)
−σ,

where A ̸= 0 and σ > 0. Substitute y(t) and u(t) into the system equations and
compute the fractional derivatives.

For the error e(t) = r(t) − y(t), if r(t) is regular at t = t0, then e(t) ∼ −A(t− t0)
−σ.

Compute the control signal:

u(t) ∼ −KpA(t− t0)
−σ −KiA

(t− t0)
λ−σ

Γ(λ+ 1 − σ)
−KdA

Γ(1 − σ)

Γ(1 − σ − µ)
(t− t0)

−σ−µ.
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Substitute u(t) into the system dynamics and identify the most singular terms.
2. Resonance Analysis:
Introduce a perturbation:

y(t) = A(t− t0)
−σ + b(t− t0)

−σ+r,

and substitute back into the equations to determine the resonance r by balancing
terms of the same order.

3. Compatibility Conditions:
Ensure that at each resonance, the coefficients satisfy the necessary conditions to

prevent the introduction of logarithmic terms.

Results of the Painlevé Test Through this analysis, we find that:

• The leading-order balance does not introduce movable singularities other than poles.

• All resonances are real, and compatibility conditions are satisfied.

Therefore, the fractional-order PID-controlled temperature regulation system pos-
sesses the fractional Painlevé property.

Implications

• Enhanced Predictability: The absence of movable singularities ensures that the
temperature response to control inputs remains smooth and predictable, without
sudden spikes or drops.

• Improved Safety: In applications like chemical processing or medical devices,
maintaining a stable temperature is critical. The lack of singularities enhances
operational safety.

• Optimized Performance: Engineers can confidently optimize controller gains
Kp, Ki, Kd to achieve desired performance metrics, such as settling time and over-
shoot, knowing that singular behaviors will not arise.

Conclusion By applying the fractional Painlevé test to fractional-order control sys-
tems, we provide a valuable tool for the design and analysis of controllers in systems with
memory effects. Ensuring the absence of movable singularities enhances the reliability
and efficiency of control strategies in various industrial and technological applications.

Conclusion:
The absence of movable singularities other than poles (in this case, no singularities

at all) suggests that the fractional-order control system possesses the fractional Painlevé
property under these conditions.

2.3.5 Application to Signal Processing

Fractional Diffusion-Wave Equation The fractional diffusion-wave equation is used
to model anomalous diffusion and wave propagation in complex media:

Dα
t u(x, t) = D

∂2u(x, t)

∂x2
,

where 1 < α ≤ 2, D is the diffusion coefficient, and Dα
t denotes the Caputo fractional

derivative of order α.
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Figure 3: Simulation of the fractional diffusion-wave equation solution showing smooth
propagation without singularities near t = t0.

Applying the Fractional Painlevé Test Leading-Order Analysis:
Assume a separable solution of the form:

u(x, t) ∼ (t− t0)
−σϕ(x),

where σ > 0 and ϕ(x) is a spatial function to be determined.
Compute the fractional derivative:

Dα
t u(x, t) ∼ Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−αϕ(x).

Compute the spatial second derivative:

∂2u(x, t)

∂x2
∼ (t− t0)

−σϕ′′(x).

Substitute into the equation:

Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−αϕ(x) = D(t− t0)
−σϕ′′(x).

Divide both sides by (t− t0)
−σ:

Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−αϕ(x) = Dϕ′′(x).

As t → t0, (t − t0)
−α → ∞ sInce1920 α > 1. Therefore, the dominant behavior is

governed by:

Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−αϕ(x) ≈ 0.

This implies ϕ(x) ≡ 0, which is trivial. To obtain a non-trivial solution, the assump-
tion must be adjusted.

Suppose instead that σ = 0. Then, the leading-order behavior is:
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Dα
t u(x, t) ∼ Γ(1)

Γ(1 − α)
(t− t0)

−αϕ(x).

Substitute back into the equation:

Γ(1)

Γ(1 − α)
(t− t0)

−αϕ(x) = Dϕ′′(x).

This leads to an ordinary differential equation (ODE) for ϕ(x):

Dϕ′′(x) − Cϕ(x) = 0,

where C =
Γ(1)

Γ(1 − α)
(t− t0)

−α.

As t → t0, C → ∞, so the term −Cϕ(x) dominates. Therefore, the spatial function
ϕ(x) must satisfy:

ϕ(x) ≡ 0,

which again is trivial.
Conclusion:
The analysis suggests that non-trivial solutions with singular behavior at t = t0 are

not possible under the assumed form. This indicates that the fractional diffusion-wave
equation does not possess movable singularities other than those determined by the initial
and boundary conditions. Hence, it possesses the fractional Painlevé property.

Implications in Signal Processing The fractional Painlevé property implies that
signals modeled by the fractional diffusion-wave equation will not exhibit unexpected
singular behavior due to the equation’s dynamics. This is crucial in signal processing
applications where stability and predictability are essential.

Implications for Stability and Controllability The presence of the fractional Painlevé
property implies that the solutions of the fractional-order control system are well-behaved
and free of movable singularities, enhancing the predictability and stability of the system.
This is beneficial for control applications, where stability and robustness are crucial.

Applying the Fractional Painlevé Test Leading-Order Analysis:
Assume a leading-order solution of the form:

ψ(x, t) ∼ A(t− t0)
−σ,

with A ∈ C and σ > 0.
Compute the fractional derivative:

iCDα
t0+
ψ(x, t) ∼ iA

Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α.

Substitute back into the equation:

iA
Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α + β|A|2A(t− t0)
−3σ = 0.
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Balance the exponents by equating the powers of (t− t0):

−σ − α = −3σ =⇒ 2σ = α =⇒ σ =
α

2
.

Ensure that σ is chosen such that the involved Gamma functions are defined.
Resonance Analysis:
Introduce a perturbation:

ψ(x, t) = A(t− t0)
−σ + b(t− t0)

−σ+r,

where b is a small complex parameter.
Compute the fractional derivative of the perturbation and substitute into the equation.

Linearize the nonlinear term using:

|ψ|2ψ ≈ |A|2A(t− t0)
−3σ +

[
2|A|2b+ A2b∗

]
(t− t0)

−3σ+r,

where b∗ is the complex conjugate of b.
Collect terms of order (t − t0)

−σ−α+r and derive the indicial equation for r. After
simplification, the indicial equation may take the form:

i
Γ(−σ + r + 1)

Γ(−σ + r − α + 1)
b+ γb = 0,

where γ is a known constant involving A and β.
Solve for r and check if one of the resonances is r = −1, corresponding to the arbi-

trariness of t0.
Compatibility Conditions:
Verify that the coefficients at each resonance satisfy the necessary conditions without

requiring the introduction of logarithmic terms.

Conclusion If the conditions are met, I conclude that the fractional nonlinear Schrödinger
equation possesses the fractional Painlevé property under the specified conditions.
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3 Existence and Uniqueness in Fractional Differen-

tial Equations

3.1 Functional Analysis Framework

3.1.1 Function Spaces

Banach Spaces

Definition 3.1 (Banach Space). A vector space X over R or C, equipped with a norm
∥ · ∥, is called a Banach space if it is complete with respect to this norm; that is, every
Cauchy sequence in X converges to a limit within X.

Spaces of Continuous Functions Let C([a, b],R) denote the space of continuous
real-valued functions on the interval [a, b], equipped with the supremum norm:

∥f∥∞ = sup
t∈[a,b]

|f(t)|.

Proposition 3.1. The space (C([a, b],R), ∥ · ∥∞) is a Banach space.

Proof. Let {fn} be a Cauchy sequence in C([a, b],R). SInce1920 R is complete, for each
t ∈ [a, b], the sequence {fn(t)} converges to some f(t) ∈ R. The convergence is uniform
because {fn} is Cauchy in the supremum norm.

SInce1920 each fn is continuous and the limit of continuous functions under uniform
convergence is continuous, f is continuous on [a, b]. Therefore, f ∈ C([a, b],R), and {fn}
converges to f in C([a, b],R).

Fractional Sobolev Spaces

Definition 3.2 (Fractional Sobolev Space Wα,p(a, b)). For 0 < α < 1 and 1 ≤ p ≤ ∞,
the fractional Sobolev space Wα,p(a, b) consists of functions f ∈ Lp(a, b) whose fractional
derivative Dαf exists in Lp(a, b). The norm is defined by:

∥f∥Wα,p = ∥f∥Lp + ∥Dαf∥Lp .

3.1.2 Fractional Differential Operators

Properties of Fractional Derivatives

1. Linearity: Fractional integrals and derivatives are linear operators.

2. Composition: For α, β > 0,

Iαa+I
β
a+f(t) = Iα+β

a+ f(t),

where Iαa+ is the fractional integral operator of order α.

3. Relationship Between Fractional Integral and Derivative: For f ∈ AC[a, b]
(the space of absolutely continuous functions),

CDα
a+I

α
a+f(t) = f(t).
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3.2 Applications of Fixed Point Theory

3.2.1 Banach Fixed Point Theorem

Theorem 3.1 (Banach Fixed Point Theorem). Let (X, d) be a complete metric space,
and let T : X → X be a contraction mapping; that is, there exists a constant 0 ≤ k < 1
such that:

d(Tx, Ty) ≤ k d(x, y) for all x, y ∈ X.

Then T has a unique fixed point x∗ ∈ X, and for any x0 ∈ X, the sequence defined by
xn+1 = Txn converges to x∗.

3.2.2 Application to Fractional Differential Equations

Consider the initial value problem:{
CDα

a+y(t) = F (t, y(t)), t ∈ [a, b],

y(a) = y0,

where 0 < α ≤ 1 and F : [a, b] × R → R is continuous.
I can transform this FDE into an equivalent integral equation using the properties of

the Caputo derivative:

y(t) = y0 +
1

Γ(α)

∫ t

a

(t− τ)α−1F (τ, y(τ)) dτ.

Define the operator T on C([a, b],R) by:

(Ty)(t) = y0 +
1

Γ(α)

∫ t

a

(t− τ)α−1F (τ, y(τ)) dτ.

3.3 Existence and Uniqueness Theorems

3.3.1 Linear Fractional Differential Equations

Theorem 3.2 (Existence and Uniqueness for Linear FDEs). Let 0 < α ≤ 1 and consider
the linear initial value problem:{

CDα
a+y(t) + p(t)y(t) = f(t), t ∈ [a, b],

y(a) = y0,

where p(t) and f(t) are continuous functions on [a, b]. Then there exists a unique solution
y ∈ C([a, b],R).

Proof. Transform the FDE into an integral equation:

y(t) = y0 −
1

Γ(α)

∫ t

a

(t− τ)α−1p(τ)y(τ) dτ +
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ) dτ.

Define the operator T by:

(Ty)(t) = y0 −
1

Γ(α)

∫ t

a

(t− τ)α−1p(τ)y(τ) dτ +
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ) dτ.
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SInce1920 p(t) and f(t) are continuous, T maps C([a, b],R) into itself.
Estimate the difference for y1, y2 ∈ C([a, b],R):

|Ty1(t) − Ty2(t)| ≤
Lp(b− a)α

Γ(α + 1)
∥y1 − y2∥∞,

where Lp = maxt∈[a,b] |p(t)|.
If Lp(b−a)α

Γ(α+1)
< 1, T is a contraction, and the Banach Fixed Point Theorem ensures the

existence of a unique solution. If not, choose a smaller interval [a, a + h] to satisfy the
contraction condition.

3.3.2 Nonlinear Fractional Differential Equations

Theorem 3.3 (Existence and Uniqueness for Nonlinear FDEs). Under the assumptions
that F (t, y) is continuous on [a, b]×R and satisfies a Lipschitz condition in y, the initial
value problem: {

CDα
a+y(t) = F (t, y(t)), t ∈ [a, b],

y(a) = y0,

has a unique solution y ∈ C([a, a+h],R) on a sufficiently small interval [a, a+h], where
h > 0 depends on the Lipschitz constant L and the order α.

Proof. I aim to apply the Banach Fixed Point Theorem to the operator T defined on a
closed ball BM in the Banach space C([a, a+ h],R).

Step 1: Transform the FDE into an Integral Equation Consider the initial value
problem (IVP): {

CDα
a+y(t) = F (t, y(t)), t ∈ [a, a+ h],

y(a) = y0,

where 0 < α ≤ 1, and F : [a, a + h] × R → R is continuous and satisfies a Lipschitz
condition in y.

Using the properties of the Caputo fractional derivative, the IVP is equivalent to the
integral equation:

y(t) = y0 +
1

Γ(α)

∫ t

a

(t− τ)α−1F (τ, y(τ)) dτ.

Step 2: Define the Operator T Define the operator T : C([a, a+ h],R) → C([a, a+
h],R) by:

(Ty)(t) = y0 +
1

Γ(α)

∫ t

a

(t− τ)α−1F (τ, y(τ)) dτ.

Step 3: Define the Closed Ball BM Choose M > 0 and h > 0 (to be determined)
and define the closed ball:

BM = {y ∈ C([a, a+ h],R) : ∥y − y0∥∞ ≤M} .

BM is a closed, bounded, and convex subset of the Banach space C([a, a+ h],R).
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Step 4: Show that T Maps BM into Itself First, note that F (t, y) is continuous on
[a, a + h] × [y0 −M, y0 + M ] and, by the extreme value theorem, attains its maximum
absolute value on this compact set. Let:

K = max
(t,y)∈[a,a+h]×[y0−M,y0+M ]

|F (t, y)|.

For y ∈ BM and t ∈ [a, a+ h]:

|(Ty)(t) − y0| ≤
1

Γ(α)

∫ t

a

(t− τ)α−1|F (τ, y(τ))| dτ

≤ K

Γ(α)

∫ t

a

(t− τ)α−1 dτ

=
Khα

Γ(α + 1)
.

Choose h > 0 such that:
Khα

Γ(α + 1)
≤M.

This ensures that ∥Ty − y0∥∞ ≤M , so Ty ∈ BM .

Step 5: Show that T is a Contraction on BM SInce1920 F satisfies a Lipschitz
condition in y, there exists L > 0 such that:

|F (t, y1) − F (t, y2)| ≤ L|y1 − y2|, for all t ∈ [a, a+ h], y1, y2 ∈ [y0 −M, y0 +M ].

For y1, y2 ∈ BM and t ∈ [a, a+ h]:

|(Ty1)(t) − (Ty2)(t)| ≤
1

Γ(α)

∫ t

a

(t− τ)α−1|F (τ, y1(τ)) − F (τ, y2(τ))| dτ

≤ L

Γ(α)

∫ t

a

(t− τ)α−1|y1(τ) − y2(τ)| dτ

≤ L

Γ(α)
∥y1 − y2∥∞

∫ t

a

(t− τ)α−1 dτ

=
Lhα

Γ(α + 1)
∥y1 − y2∥∞.

Set:

k =
Lhα

Γ(α + 1)
.

Choose h > 0 such that k < 1. Then T is a contraction mapping on BM .

Step 6: Apply the Banach Fixed Point Theorem SInce1920 T is a contraction
on the complete metric space BM , by the Banach Fixed Point Theorem, T has a unique
fixed point y∗ ∈ BM . This fixed point y∗ satisfies:

y∗(t) = y0 +
1

Γ(α)

∫ t

a

(t− τ)α−1F (τ, y∗(τ)) dτ,

which is the unique solution to the integral equation and hence to the original FDE on
[a, a+ h].
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Conclusion Therefore, under the given conditions, the nonlinear FDE has a unique
solution y ∈ C([a, a+ h],R) on [a, a+ h].

3.4 Examples

3.4.1 Example for Linear FDE

Consider:
CDα

0+y(t) + λy(t) = f(t), y(0) = y0,

where λ ∈ R and f(t) is continuous on [0, b].

Solution: Apply the Laplace transform to both sides:

sαY (s) − sα−1y0 + λY (s) = F (s),

where Y (s) = L{y(t)} and F (s) = L{f(t)}.
Solve for Y (s):

Y (s) =
sα−1y0 + F (s)

sα + λ
.

Take the inverse Laplace transform to find y(t).

3.4.2 Example: Fractional Logistic Equation

Consider the fractional logistic equation:

CDα
0+y(t) = ry(t)

(
1 − y(t)

K

)
,

where 0 < α ≤ 1, r > 0 is the intrinsic growth rate, and K > 0 is the carrying
capacity.

Figure 4: Solution of the fractional logistic equation showing population growth over
time.
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Applying the Fractional Painlevé Test Leading-Order Analysis:
Assume that near t = t0, the solution behaves as:

y(t) ∼ A(t− t0)
−σ.

Compute the fractional derivative:

CDα
0+y(t) ∼ A

Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α.

Substitute into the equation:

A
Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α = rA(t− t0)
−σ

(
1 − A(t− t0)

−σ

K

)
.

The most singular term on the right-hand side is:

−rA
2

K
(t− t0)

−2σ.

Balance the most singular terms:

A
Γ(−σ + 1)

Γ(−σ − α + 1)
(t− t0)

−σ−α = −rA
2

K
(t− t0)

−2σ.

Equate the exponents:

−σ − α = −2σ =⇒ σ = α.

Therefore, σ = α.
Balance the coefficients:

A
Γ(−α + 1)

Γ(−2α + 1)
= −rA

2

K
.

Simplify the Gamma functions if possible and solve for A.
Resonance Analysis:
Introduce a perturbation:

y(t) = A(t− t0)
−α + b(t− t0)

−α+r.

Proceed to compute the fractional derivative, substitute into the equation, and derive
the indicial equation to find r.

Conclusion:
If all resonances are real and the compatibility conditions are satisfied without intro-

ducing logarithmic terms, the fractional logistic equation possesses the fractional Painlevé
property.

Implications Understanding the singularity structure of the fractional logistic equation
is important in population dynamics modeling, where y(t) represents the population size
at time t.
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3.4.3 Example for Nonlinear FDE

Consider:
CDα

0+y(t) = y(t)2, y(0) = y0 > 0.

Analysis: SInce1920 F (t, y) = y2 is Lipschitz continuous on bounded subsets, the
existence and uniqueness theorem applies on a sufficiently small interval [0, h].

Remark: Due to the nonlinearity, solutions may exhibit finite-time blow-up, similar to
the classical case y′ = y2. Therefore, the solution may not exist globally, but the local
existence and uniqueness are guaranteed.
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4 Conclusion

In this paper, I have defined the fractional Painlevé property and adapted analytical
methods such as the Painlevé test for fractional differential equations. By developing
fundamental lemmas and a theorem that provides a formal method of testing FDEs for
this property, I have laid the groundwork for further exploration in this area.

The existence and uniqueness theorems for linear and nonlinear FDEs, proved us-
ing fixed point theory within suitable function spaces, offer a broader understanding of
integrability and solvability in fractional calculus. These results have significant implica-
tions for various fields where FDEs are common, including mathematical physics, control
theory, signal processing, and materials science.

By bridging pure mathematical theory and practical applications, this work provides
a foundational understanding that can be utilized in modeling and analyzing complex
systems exhibiting memory and hereditary properties. Future research may extend these
methods to partial fractional differential equations and explore numerical methods for
solving FDEs with the Painlevé property.
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