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Abstract

The Monte Carlo differential operator sampling method is applied to the computation of

sensitivity coefficients of unresolved resonance probability table cross sections. Three new

analytical benchmarks for verifying unresolved resonance treatments and sensitivity coeffi-

cient computations are developed. The method and its research-code implementation are

verified against these benchmarks and agreement is observed. Numerical results for un-

resolved resonance sensitivity coefficients are obtained for the Big Ten benchmark and a

simplified Molten Chloride Fast Reactor model. Energy-integrated eigenvalue sensitivity co-

efficients for the unresolved resonance range agree with MCNP6.2 calculations of these two

models.

I Introduction

This paper presents a Monte Carlo method to compute sensitivity coefficients of cross sections

in unresolved resonance probability tables [1], analytical benchmarks, and results showing

agreement.

Neutron cross sections have a complicated energy dependence because of nuclear res-

onances. These resonances need to be well represented to obtain accurate estimates of

engineering quantities of interest. For many heavy nuclides, the resonances are too close

together for currently available experimental data to resolve each resonance individually.
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Statistical models that estimate the distribution of resonance spacings and widths are used

to describe for the resonance behavior in this unresolved region, and probability tables are

constructed by nuclear data processing codes using random sampling approaches [2].

Monte Carlo calculations subsequently use these probability tables by randomly sampling

cross sections from them, typically during the neutron random walks. Sampling the random

cross sections as opposed to simply using their expected values allows for the effect of self-

shielding of the unresolved resonances to be accurately accounted for. The impact may

be significant in many applications including fast spectrum reactors, neutron detection in

nuclear nonproliferation and safeguards, criticality safety, and experiments designed to assess

and improve the accuracy of specific nuclear cross sections. For instance, the impact on the

effective multiplication factor k in fast reactors may be as high as a few hundred pcm

(1 pcm = 10−5 or ten parts per million), large enough to have a significant impact on the

design. Additionally, Monte Carlo calculations are increasingly used to generate application-

specific multigroup cross section sets for fast deterministic transport solvers. Including the

unresolved resonance self-shielding effects when generating these multigroup cross sections

is important for accurate deterministic transport calculations.

In addition to estimating the expected value of some response or quantity of interest, it

is often desirable for establishing safety limits to have a measure of its uncertainty as well.

An efficient approach for uncertainty quantification involves the use of a first-order Taylor

series expansion of the variation of model parameters. This approach requires the estimation

of first derivatives of responses with respect to the nuclear cross sections and is often cast in

terms of the sensitivity coefficient,

SR,x =
∂ (logR)

∂ (log x)
=

R

x

∂R

∂x
. (1)

The sensitivity coefficient is the derivative of the logarithm of the response R with respect

to the logarithm of the model parameter x. More commonly, this is stated as the expected
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relative differential change in the response with respect to some relative differential change

of a model parameter. The model parameter x relevant in this paper is a cross section or

multiplicative factor on the cross section within the resonance probability table.

There are established approaches for computing sensitivity coefficients in Monte Carlo

calculations [3]. The simplest method is to perform direct perturbations using a finite differ-

ence approximation (usually a central difference) involving two or more calculations where

the parameter is perturbed by a small amount ∆x. While this approach is useful for validat-

ing a sensitivity coefficient produced using other methods, it often impractical as it requires

running numerous particle histories to statistically resolve ∆R for a sufficiently small ∆x.

More efficient approaches are based on perturbation theory. One approach is the differ-

ential operator sampling method that produces an estimator for the sensitivity coefficient

directly. Another is the correlated sampling technique that estimates the sensitivity coef-

ficient using a small change in a response ∆R caused by some small, but finite change in

response parameter ∆x. Another class of perturbation-based methods employs computing

adjoint weighting functions within the integrals of the mathematical expressions from per-

turbation theory. These integrals can be evaluated either explicitly during post processing

using the computed adjoint functions or implicitly during Monte Carlo sampling.

In this article, the differential operator sampling method is applied to devise a scheme

for computing sensitivity coefficients for the unresolved resonance cross sections stored in

the probability tables. This method is implemented in a continuous-energy Monte Carlo

research code called Shuriken written in C++. A version of Shuriken specifically for testing

the unresolved resonance physics along with the analytical benchmarks and results included

in this article are in available in a software repository1.

To the best knowledge of the author, there are currently no analytical benchmarks

that verify the probability table sampling implementation. To address this gap, this ar-

ticle presents three new benchmarks. Analytical solutions of leakage and collision rates are

1Shuriken software repository: https://github.com/bckiedrowski/shuriken-urr
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obtained for 1-D slab geometry, fixed-source problems that use continuous-energy cross sec-

tions sampled from probability table data. The benchmark solutions are consistent with

the sampling implementation in the production MCNP code, specifically version 6.2 [4], and

the research code Shuriken, which uses the same algorithm. Derivatives of the analytical

solutions are taken to obtain expressions that benchmark the sensitivity coefficients. The

results of these comparisons show agreement, suggesting the method and its implementation

in Shuriken are correct.

Unfortunately, the paper cannot apply these sensitivity coefficients to uncertainty quan-

tification because covariance data for unresolved resonance probability tables does not yet

exist. Furthermore, the Evaluated Nuclear Data File (ENDF) format [5] does not have a

method for representing the data and, to best knowledge of the author, nor do any of the

formats of derivative processed files such as A Compact ENDF (ACE). The Generalized Nu-

clear Database Structure (GNDS) format should have the necessary capabilities to support

this. The author hopes that providing a method for computing the sensitivity coefficients

motivates the creation of the necessary formats, covariance data, and the routines in the

nuclear data processing codes to put them into a readily usable format for Monte Carlo

transport solvers.

This article is divided into three major sections. Section II provides an overview of

unresolved resonance probability tables, details the method for the computation of sensitiv-

ity coefficients to the probability table parameters, and gives information on the Shuriken

implementation. Section III gives derivations of three analytical benchmarks of increasing

complexity using 90Zr data. This section provides numerical comparisons with these bench-

mark results. Finally, Sec. IV provides numerical results of unresolved resonance probability

table sensitivity coefficients for 238U and 235U for the Big Ten benchmark [6] and a Molten

Chloride Fast Reactor model [7]. Agreement between Shuriken and MCNP6.2 is observed for

the integral quantities and eigenvalue sensitivity coefficients integrated over the unresolved

resonance range.
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II Methodology

The computation of sensitivity coefficients of unresolved resonance parameters is done using

differential operator sampling with a fission source correction. Section II.A explains the

unresolved resonance data and the sampling and interpolation schemes that need to be

considered. Section II.B then summarizes the theory of the differential operator sampling

technique, providing a generic form of the estimators including partial derivatives of cross

sections with respect to the unresolved resonance probability table data. Section II.C derives

specific forms of these partial derivatives. Finally, Sec. II.D provides the algorithm and details

implementation requirements.

II.A Unresolved Resonance Probability Tables

Monte Carlo neutron transport codes usually represent the unresolved resonances using the

probability table method. While different codes have slightly different implementations, usu-

ally in the interpolation schemes, the general features are largely the same and the resultant

differences typically range from being insignificant to minor.

The probability tables represent the resonances as a set of cross section bands on a grid

of incident neutron energies. At each band, a cross section value or multiplicative factor

applied to a mean-value cross section is given along with a probability that the cross section

is within that band. The relevant nuclear reactions for which unresolved resonances occur

are elastic scattering, fission, and radiative capture (n,γ). Sometimes derived data such as

the total cross section, the sum of the individual reactions in the unresolved resonance table

plus the contributions from other reactions, or neutron heating values are provided. The

band probabilities are shared among all of the reactions, but could differ between energy

grid points.

An implementation for the unresolved resonance cross section is as follows: When a

neutron of energy E enters a region, the code checks which nuclides are present within

that region and then for any nuclide for which unresolved resonance cross sections have
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not already been computed, the code samples the probability tables for each nuclide. Each

probability table sampling begins by first finding the energy bin on the unresolved resonance

probability tables with bounds Eg ≤ E < Eg−1; the usual convention of descending energy

with ascending group index is adopted here. Next, a single uniform random number [0, 1)

is sampled that is then used to determine the band kg and kg−1 based upon the cumulative

probability distribution provided at both energy grid points Eg and Eg−1. The subscripts

on the band index emphasize that the probabilities for each band can vary with energy.

For the case where the cross sections for reaction x and band k, σx,g,kg and σx,g−1,kg−1 , are

provided, the value of the sampled cross section is determined from an interpolation. The

most common interpolation scheme is linear interpolation

σx(E) = (1− ρ)σx,g,kg + ρσx,g−1,kg−1 , (2)

where ρ is the energy interpolation factor ranging from [0, 1). For linear interpolation in

energy,

ρ(E) =
E − Eg

Eg−1 − Eg

, Eg ≤ E < Eg−1. (3)

Sometimes logarithmic interpolation is employed. The cross section using logarithmic inter-

polation is

σx(E) = σx,g,kg

(
σx,g−1,kg−1

σx,g,kg

)ρ

. (4)

The logarithmic energy interpolation factor is

ρ(E) =

log

(
E

Eg

)
log

(
Eg−1

Eg

) , Eg ≤ E < Eg−1. (5)
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Semi-logarithmic interpolations are also possible by mixing and matching the interpolation

schemes for the cross sections and energies.

Some implementations, such as the one found in MCNP6.2, directly use the value of the

cross section as given in Eqs. (2) or (4). Other implementations, such as the one employed by

Shift, perform a second interpolation of the cross sections between bands kg and kg+1 based

on the uniform random number that was sampled, leading to a bilinear (or bilogarithmic)

interpolation across energy and band. This paper uses the simple linear interpolation and

fixed band values. In practice, the difference in calculated values is usually small.

The other case for the data on the probability tables is multiplicative factors. These are

given by κx,g,kg and κx,g−1,kg−1 for the respective energy group and band. The factors at

each energy grid point are then interpolated in the same manner as in the case of linear-

linear interpolation with Eq. (2), except the cross sections are replaced with the factors, to

obtain κx(E). The computed cross section is then determined by taking the product of the

interpolated factor and the mean-value cross section:

σx(E) = κx(E)σx(E). (6)

The mean-value cross section σx(E) is obtained from the standard energy-cross section grid

in the same manner as the code uses to determine any other cross section outside the un-

resolved resonance region (e.g., linear-linear interpolation on pointwise cross section data).

An advantage of the multiplicative factor representation is the factors and the mean-value

cross sections can be on different energy grids, where usually the unresolved resonance grid

is coarser than the mean-value cross section grid.

It is vital that is that the randomly sampled cross sections preserve balance and sum to the

total to ensure the Monte Carlo sampling has well-formed reaction probabilities for collision

sampling and consistent reaction multipliers for estimators. This is done in MCNP6.2 by

using the sampled random number to compute the elastic, fission, and radiative capture
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cross sections and then computing the total cross section from

σt(E) = σel(E) + σf (E) + σγ(E) + σin(E) + σoa(E), (7)

where σel, σf , and σγ are the respective randomly sampled cross sections and σin and σoa are

the inelastic scattering and other non-radiative capture absorption, e.g. (n,p), (n,α), etc.

reaction cross sections that lack resonances and are therefore determined from the standard

energy-cross section grid. Note that the ACE format provides unresolved resonance data for

the total cross sections, but these are not used by MCNP6.2 and the total cross section is

determined from the balance relation in Eq. (7).

Once the cross sections are determined, they must be preserved for the duration that the

particle and any copies produced from variance reduction techniques (e.g., particle splitting)

have the initial incident energy E. In this manner, should the particle leave the current

region and at some point during the trajectory enter a different one with the same nuclide,

the sampled cross sections are the same. Also, any copies that would be put into the particle

bank need information stored so that they would use the same cross sections upon being

pulled from particle bank.

There are two options that may be used to accomplish this task, both involving caching

some information. The first is to cache the sampled cross section values for each nuclide

in the problem as they are sampled from the unresolved resonance probability table. The

alternative is to cache the random number used to sample each nuclide and recompute the

cross section as needed. This information also needs to be stored in the particle bank when

copies from variance reduction are made along with the rest of the particle state. The cache

is flushed and the cross sections values are resampled using a different random number only

when the particle’s energy changes following a collision. The advantage of caching the cross

sections for each nuclide is that it is more computationally efficient, avoiding binary search

operations, but requires more memory usage than storing the respective random numbers.
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The other important consideration is that the correlation between different cross section

datasets of the same nuclide but different temperatures needs to be preserved in the manner

that Doppler broadening is applied consistently. This is usually accomplished by storing the

random number used to sample the cross sections of that nuclide at one temperature and

using that same random number to compute new cross sections when the particle encounters

a region with the same nuclide at a different temperature.

II.B Differential Operator Sampling

Differential operator sampling provides an estimator for a derivative of a response R with

respect to a model parameter x that is made during a standard Monte Carlo history ξ. A

general abstract description of the response R is given as the following expectation:

R =

∫
Ξ

r(ξ)p(ξ)dξ. (8)

The integral here is actually a formal integral operator that denotes taking the ensemble of

the set of all possible random histories Ξ where each history is denoted by the variable ξ. In

the integrand, r(ξ) is the score made for random history ξ and p(ξ) is the probability of that

random history. This integral is estimated with Monte Carlo by simulating random histories

and taking the sample mean of the score r in each history.

To obtain an estimator of the sensitivity coefficient with respect to parameter x, apply

the operator x∂/∂x to Eq. (8). An assumption is made that the differential perturbation

of x is such that it does not change the space of all possible random walks Ξ (a contrary

example is adding material to a voided region) so that the operator can be brought into the

integral. After some rearrangement, the derivative is

x
∂R

∂x
=

∫
Ξ

(
x
∂r

∂x
+ r(ξ)

x

p(ξ)

∂p

∂x

)
p(ξ)dξ. (9)

The term in parentheses is the score made during each history. The sensitivity coefficient is
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then obtained by dividing this by the response R.

The first term in the score in Eq. (9) is the partial derivative of the score with respect

to the model parameter x. This is called the direct effect because it is accounts for how the

perturbation immediately changes the interaction causing the response. For a given history,

the score is sum of the contributions rm over all steps m in the random walk,

r(ξ) =
∑
m

rm(ξ). (10)

Applying x∂/∂x gives

x
∂r

∂x
=
∑
m

x
∂rm
∂x

. (11)

This expression implies that at each step in the random walk a contribution for the derivative

of the contribution must be added to an accumulator for that history. For a track-length

estimator of a reaction rate with macroscopic cross section Σy for a particle traveling a

random distance s, this is

x
∂r

∂x
=
∑
m

x
∂Σy

∂x
s. (12)

The partial derivative with respect to the cross section is specific to the type of sensitivity

coefficient and is discussed in detail in the next section.

The second term within the parentheses in Eq. (9) is the score times the indirect effect.

The indirect effect accounts for how the perturbation changes the random walk within the

history. The probability for a given history p(ξ) can be expressed as the product of the

probabilities or densities of each step. For example, if a history terminates upon absorption

after M steps,

p(ξ) = QT1C1T2C2 · · ·TMCM . (13)
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Here Q is the source probability density. Tm is the transition or streaming probability density

for the mth step. The transition begins following a source emission or collision and ends

with a neutron either undergoing a collision or exiting the problem. The transition step may

be further decomposed into multiple segments,

Tm = Tm,1Tm,2 · · ·Tm,J , (14)

where each segment j < J denotes free flight across a single region without a collision. The

probability density function for the jth segment is

Tm,j = Σte
−Σts + δ(s− b)e−Σtb, 0 ≤ s ≤ b. (15)

Here s denotes the random distance travelled during the segment, Σt is the total cross

section during the segment, and b is the distance to the edge of the region, which may be

an internal interface or exterior boundary. (The m subscript for the random walk step is

nominally present, but excluded here for clarity.) The first term is the particle colliding

between 0 ≤ s < b and the second term containing the Dirac delta function at x = b denotes

the particle reaching the edge of the region.

Cm is the probability for the mth collision with reaction y,

Cm =
Σy

Σt

. (16)

A history that terminates with leakage is identical except that Eq. (13) ends with TM

and does not include CM . To keep notation simple here, the form is given for an analog sim-

ulation (no variance reduction) and no within-history multiplication. Within an eigenvalue

calculation, multiplication from fission is handled by banking the resulting secondaries as a

source term in the subsequent cycle and other multiplying reactions such as (n,2n) can be

handled by multiplying the particle statistical weight by the multiplicity of the reaction. This
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equation can be extended to include those, but it clutters the notation and is unnecessary

for the topic of this paper.

Applying the operator x∂/∂x to Eq. (13) gives

x

p

∂p

∂x
=

x

Q

∂Q

∂x
+

M∑
m=1

x

Tm

∂Tm

∂x
+

x

Cm

∂Cm

∂x
. (17)

The first term gives the effect of the perturbation of the source, and is discussed after

the others. The terms in the summation provide the indirect effects on the transition and

collision steps in the random walk.

Inserting Eq. (15) into the term for the derivative of the transition step and writing

the resulting expression separately for the case where a collision occurs within the segment,

0 ≤ s < b, or does not, s = b, gives

x

Tm

∂Tm

∂x
=


x
∂Σt

∂x

(
1

Σt

− s

)
, 0 ≤ s < b,

−x
∂Σt

∂x
b, s = b.

(18)

The partial derivative of the total cross section is specific to the model parameter x.

The analogous collision derivative term for reaction y is obtained by inserting Eq. (16).

After expanding, this gives

x

Cm

∂Cm

∂x
=

x

Σy

∂Σy

∂x
− x

Σt

∂Σt

∂x
. (19)

Note that the second term with a 1/Σt in this collision derivative is equal and opposite to

the first term of the transition derivative when a collision occurs, so they cancel. Since the

1/Σt term is also absent when the neutron streams through the transition segment without

collision, then it is always absent for either event.

In a fixed source calculation, the derivative of the source term in Eq. (17) is usually

zero since the emission of source neutrons is typically, but not always, independent of most
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model parameters. In an eigenvalue calculation, however, the fission source depends on

the random histories in the previous cycles and the term contains contributions from how

the perturbation impacted the transport and fission neutron production in those cycles.

Furthermore, between cycles the fission neutron population is renormalized to retain a fixed

average population and the effect of the perturbation must also be propagated through this

renormalization.

Accounting for the perturbation in the fission source can be done in a couple mathemat-

ically equivalent ways. The first stores contributions in the current cycle and and applies

adjoint weighting functions, either computed directly with Monte Carlo in a future cycle or

serving as a precomputed multiplier based on the location of the fission production site.

The other approach, which is used in this paper, is to account for the cumulative effect

of the perturbation across the previous cycles using differential operator sampling. This

is done each cycle using Eq. (17), including the accumulated perturbed source effect from

the previous cycles, the indirect effect contributions during transport, using Eqs. (18) and

(19), plus the direct effect contribution capturing the impact on the production of a fission

neutrons during each collision. For this direct effect, the expected number of fission neutrons

produced each collision is determined by a collision estimator as

rf =
1

k

νΣf

Σt

. (20)

The effect of perturbation on the production rate of each neutron, assuming x is a cross

section, is

x

rf

∂rf
∂x

=
x

Σf

∂Σf

∂x
− x

Σt

∂Σt

∂x
. (21)

This gives the impact on the perturbation of the fission source particles produced. This

equation is analogous to Eq. (12), except that it is for a collision estimator and not a track-

length estimator.
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The sum of all the various effects (perturbed source, indirect, and direct for fission pro-

duction) is stored for each fission neutron production site, which is given as wf,j. Between

cycles the effect of the perturbation for each source particle is renormalized such that the

total change in the fission source weight is zero, such that the initial perturbed source weight

in the following cycle is

x

Q

∂Q

∂x
= w0 −

∑
j

njwf,j∑
j

nj

. (22)

Here w0 is the fission source particle weight for the current cycle, j is an index for fission

producing events in the previous cycle, nj is the number of fission neutrons banked in the

jth event, and wf,j is the cumulative indirect and direct effect banked in the previous cycle

for that fission event. This process of accumulating this perturbed source effect requires

several cycles to reach an equilibrium similar to the standard fission source convergence.

The accumulation however, can begin in the inactive cycles and so long as a few more

(typically 5-10) cycles are skipped past when the fission source would be converged, then the

perturbed source effect can be adequately determined.

II.C Unresolved Resonance Sensitivity Coefficients

The previous section provides the equations for the scoring functions necessary for computing

response sensitivities with respect to cross sections using differential operator sampling.

Applying these to the unresolved resonance table requires that the partial derivatives of the

cross sections in Eqs. (12), (18), (19), and (21) be explicitly evaluated. For each interpolation

scheme, there are two cases that need to be considered. The first is where the unresolved

resonance data is given as cross section values and the second is where they are given as

factors.

The model parameter x is taken to be some provided reaction cross section for some
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nuclide j that is on the unresolved probability table, σj
x,g,kg

, where the reaction type is

either total, elastic scattering, fission, or radiative capture and j is a superscript index for

the nuclide. The total macroscopic cross section for a material containing multiple nuclides

is the sum of the product of atomic densities and their respective microscopic total cross

sections:

Σt(E) =
∑
j

N jσj
t (E). (23)

Inserting Eq. (7) for the microscopic total cross section gives

Σt(E) =
∑
j

N j
[
σj
el(E) + σj

f (E) + σj
γ(E) + σj

in(E) + σj
oa(E)

]
(24)

Taking the partial derivative with respect to the unresolved resonance microscopic cross

section gives

x
∂Σt

∂x
= σj

x,g,kg

∂Σt

∂σj
x,g,kg

= N jσj
x,g,kg

∂σj
x(E)

∂σj
x,g,kg

. (25)

The next step is to evaluate the partial derivative of the microscopic reaction cross section

σj
x(E). If a linear interpolation scheme is used for the cross section, this microscopic reaction

cross section is given by Eq. (2). Inspecting this equation, there are a few cases that need

to be considered depending on the energy of the incident neutron. If the neutron energy is

within the range Eg ≤ E < Eg−1, where g is taken to be the energy index of the cross section

on the unresolved resonance probability table, then the model parameter cross section is on

the lower grid point of the range. Likewise, if Eg+1 ≤ E < Eg, then the model parameter

cross section is on the upper grid point. Finally, if it is neither of those, then the reaction

cross section does not depend upon the model parameter cross section.
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For linear interpolation in the cross section, Eq. (25) becomes

x
∂Σt

∂x
= N jσx,g,kg

∂σj
x(E)

∂σj
x,g,kg

=


N jσj

x,g,kg
(1− ρ) Eg ≤ E < Eg−1,

N jσj
x,g,kg

ρ Eg+1 ≤ E < Eg,

0, otherwise,

(26)

where ρ is the interpolation factor within the grid element containing energy E from Eqs. (3)

or (5) for linear and logarithmic interpolation in energy respectively.

For logarithmic interpolation in the cross section, the corresponding expression is

x
∂Σt

∂x
= N jσx,g,kg

∂σj
x(E)

∂σj
x,g,kg

=



N jσj
x,g,kg

(1− ρ)

(
σj
x,g−1,kg−1

σj
x,g,kg

)ρ

Eg ≤ E < Eg−1,

N jσj
x,g,kg

ρ

(
σj
x,g,kg

σj
x,g+1,kg+1

)1−ρ

Eg+1 ≤ E < Eg,

0, otherwise.

(27)

Equation (19) for the collision probability derivative requires the derivative of the macro-

scopic cross section for the reaction y that occurs in the simulation. Likewise, Eq. (21)

requires the derivative for the macroscopic fission cross section. The result of this is other-

wise identical to Eqs. (26) or (27) except that they are zero if the reaction in the derivative

does not match the perturbed cross section.

The unresolved resonance data may also be represented as energy-dependent multiplica-

tive factors κx(E) as in Eq. (6). The expression for the total cross section in Eq. (24) in this

case is

Σt(E) =
∑
j

N j
[
κj
el(E)σj

el(E) + κj
f (E)σj

f (E) + κj
γ(E)σj

γ(E) + σj
in(E) + σj

oa(E)
]
. (28)

The partial derivative of the macroscopic total cross section in Eq. (23) with respect to a
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multiplicative factor for a particular reaction and nuclide j is

x
∂Σt

∂x
= κj

x,g,kg

∂Σt

∂κj
x,g,kg

= N jκj
x,g,kg

σj
x(E)

∂κj
x(E)

∂κj
x,g,kg

. (29)

Equation (26) for linear interpolation of the multiplicative factor and Eq. (27) for the corre-

sponding logarithmic interpolation are instead

x
∂Σt

∂x
=


N jκj

x,g,kg
σj
x(E)(1− ρ) Eg ≤ E < Eg−1,

N jκj
x,g,kg

σj
x(E)ρ Eg+1 ≤ E < Eg,

0, otherwise,

(30)

and

x
∂Σt

∂x
=



N jκj
x,g,kg

σj
x(E)(1− ρ)

(
κj
x,g−1,kg−1

κj
x,g,kg

)ρ

Eg ≤ E < Eg−1,

N jκj
x,g,kg

σj
x(E)ρ

(
κj
x,g,kg

κj
x,g+1,kg+1

)1−ρ

Eg+1 ≤ E < Eg,

0, otherwise,

(31)

respectively. Based on these equations, the only difference in the estimator between linear

and logarithmic interpolation is an extra factor of the ratio of the unresolved resonance

probability data to either the power of ρ or 1−ρ. These results can be applied to the partial

derivatives with respect to other macroscopic cross sections in the same manner as the linear

interpolation case.

Note that the forms of the partial derivatives are the same as the ones obtained for sen-

sitivity coefficients with respect to pointwise cross sections. Usually, however, sensitivity

coefficients are tabulated over an energy range. For the most common case of linear interpo-

lation, the sensitivity coefficients follow the linear summation rule: the sum of the sensitivity

coefficients is equal to the sensitivity coefficient of the sum. This is straightforward to show

since the factors of 1 − ρ and ρ in Eqs. (26) and (30) sum to one and equals the result ob-
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tained for the case of the sensitivity integrated over the entire bin. Therefore, the sensitivity

coefficient of a cross section is taken over the entire unresolved resonance energy range is,

for the case of linear interpolation, equal to the sum of the sensitivity coefficients over all

energy grid points and cross section bands.

The net result of this is that the current methods of computing sensitivity coefficients

containing all or part of the unresolved resonance range are consistent with this more de-

tailed approach. Differences are expected, however, if logarithmic interpolation is used for

the unresolved resonance probability table data. A survey of evaluated nuclear data files in

the ENDF/B-VII.1 library [8] shows that linear interpolation is the predominant scheme,

suggesting that logarithmic interpolation is rarely prescribed. Therefore, any observed dif-

ferences should be rare.

II.D Implementation

The method for computing unresolved resonance sensitivity coefficients is implemented in a

research Monte Carlo code named Shuriken that supports continuous-energy physics using

nuclear data read from ACE files. Shuriken supports history-based transport, analog physics

(no variance reduction), basic constructive solid geometry, estimators for surface currents,

fluxes, and reaction rates, in both fixed source and k eigenvalue calculation modes. The

focus of this section is primarily on eigenvalue calculations since fixed source calculations

are a simpler version. The purpose of this section is to document what was done to provide

the results in this paper by providing enough information so that another developer could

implement the method in their code.

In the eigenvalue calculations, sensitivity coefficients for the k eigenvalue and reaction

rate ratios are supported. (A sensitivity coefficient with respect to an arbitrary estimate in a

k eigenvalue calculation does not make sense since the eigenfunction is only unique to within

an arbitrary constant.) The sensitivity coefficient of a reaction rate ratio is obtained as

difference of the sensitivity coefficients of the numerator and denominator. Let R = R1/R2,
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the sensitivity coefficient of this ratio is then

SR,x =
x

R

∂R

∂x
=

x

R1

∂R1

∂x
− x

R2

∂R2

∂x
. (32)

In the problem input, the user defines the relevant unresolved probability data of interest

along with the relevant estimators to serve as the responses that the sensitivity coefficients

are computed for. In the implementation used in this paper, the user specifies a vector

of unresolved resonance data to have sensitivities computed with respect to a vector of

responses. The user specifies the nuclide, reaction, and geometric cells for each element of

the unresolved resonance data. For each element, the code produces an array dimensioned

by the number of energy grid points times the number of probability bands on the unresolved

resonance table (the ACE format only permits the data to have the same number of bands).

Each element in this array contains memory to store indirect effect contributions and another

array for direct effect contributions dimensioned by the number of responses.

At the beginning of a particle history, a source particle is taken from the fission source

bank, which includes a pointer to an array of perturbed weights for each sensitivity coefficient

for the perturbed fission source effect of this source particle. Equation (22) is used to compute

the starting perturbed source weight for the history that is used to initialize the accumulator

for the indirect effect. The accumulator for the direct effect is initialized to zero. (In a fixed-

source calculation, the indirect effect is initialized to zero since there is no perturbed source

effect from previous cycles.)

A random distance to collision is sampled and the distance to the next event s is de-

termined as the minimum of this distance to collision or the distance to the boundary or

interface. This distance s is used to accumulate an estimator for the indirect effect using the

negative term of Eq. (18) for each perturbation. [As mentioned, when a collision occurs this

cancels with an equal and opposite term in Eq. (19).] For unresolved resonance probability
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data, the indirect effect score contribution is

IjTm,x,g,kg
=


−wN jσj

x,g,kg
(1− ρ), Eg ≤ E < Eg−1,

−wN jσj
x,g,kg

ρs, Eg+1 ≤ E < Eg,

0, otherwise,

(33)

for linear interpolation; here, w is the particle statistical weight at the time of collision. The

case for multiplicative factors with follows where the cross section σj
x,g,kg

is replaced by the

factor κj
x,g,kg

σj
x(E). An additional factor of the ratio to the ρ or 1 − ρ power is made per

Eqs. (27) or (31) in the case of logarithmic interpolation depending on the format of the

data. To emphasize, there are two scores that get made per particle trajectory. The first

case in the piecewise function in Eq. (33) applies to the data at lower energy grid point. The

second case is for the upper energy grid point. This is the case for all of the estimators that

are subsequently discussed in this section.

In active cycles, a contribution to the direct effect track-length estimator is made using

Eq. (12) for the combinations of all estimators and perturbations. The form is otherwise

identical to Eq. (33).

If a collision occurs in an eigenvalue calculation, then a random number nj fission neutrons

for the source term in the following cycle are banked based on the expected value given by

Eq. (20). If nj > 0, then information about the perturbed fission source weight wf,j is

stored for this fission source event j for each perturbation. This wf,j is the accumulated

indirect effect up to this point plus a potential contribution from the direct effect from the

derivative of the collision estimate of fission production given in Eq. (20). The direct effect
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score contribution to the perturbed source weight wf,j is

F j
x,g,kg

=


wN jσj

x,g,kg
(1− ρ)

(
δxf
Σf

− 1

Σt

)
, Eg ≤ E < Eg−1,

wN jσj
x,g,kg

ρ

(
δxf
Σf

− 1

Σt

)
, Eg+1 ≤ E < Eg,

0, otherwise,

(34)

where δxf is one if reaction x is fission and zero otherwise. Note that the cross sections

are that for the entire material and not for just for the nuclide causing fission. An im-

portant point here is that information about the perturbed source is stored for all of the

unresolved resonance data under consideration because of the accumulated indirect effect,

whereas Eq. (34) only applies to the specific collision event.

A pointer or index for this information is stored within the fission source bank to prevent

unnecessary duplication of data. Additionally, for each perturbation a score of njwf,j is

made to an accumulator that is used to renormalize the fission source at the beginning of

each history in the following cycle with Eq. (22).

Following the potential production of fission source neutrons, the outgoing reaction y of

the neutron with nuclide j is sampled from the cross section data. If this reaction y and

nuclide j matches the reaction of the perturbation, then for the linear interpolation case, the

contribution based on the first term of Eq. (19) is

IjCm,x,g,kg
=


w(1− ρ), Eg ≤ E < Eg−1,

wρ, Eg+1 ≤ E < Eg,

0, otherwise.

(35)

Note that this score contribution appears to be missing a factor of 1/Σj
y. This is factor is

accounted for in the random walk process itself by virtue that it is the probability of reaction

y with nuclide j occurring.

The estimators in this section require information that is normally not readily available at
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the time of scoring. The following is required: the relevant reaction cross section on the lower

and upper bound, σj
x,g,kg

and σj
x,g−1,kg−1

when cross sections are provided and κj
x,g,kg

σj
x(E)

and κj
x,g−1,kg−1

σj
x(E) when multiplicative factors are provided, respectively; the interpolation

factor ρ; and the indices of the energy range g and the band for lower and upper bounds, kg

and kg−1 respectively, for scoring in the appropriate bin for the band.

There are two options for handling this data, having the classic memory versus compu-

tational time tradeoff. The memory efficient approach is to recompute this data as needed

based upon the stored random number. In practice, this requires significant computational

expense from searching the data. The computationally efficient approach, and the one em-

ployed in the code referenced in this paper is to cache the relevant data during the sampling

and computation of the unresolved resonance cross sections.

One drawback to the current implementation is that there is significant memory require-

ment for the perturbed source effect, as information is retained for all previous cycles as

opposed to a fixed number of this. This is mathematically correct provided enough inactive

cycles have been run to reach stationarity in the localized perturbed source following the

convergence of the fission source. While this simplifies the implementation, eventually there

will be nonzero contributions accrued for every unresolved resonance energy grid point and

probability band and this informations need to be stored for every fission neutron produc-

ing event. This limits the practical batch size that can be stored in memory. The author

recommends that a developer making a production implementation be mindful of this and

adapt a strategy of limiting the number of cycles for the perturbed source effect. Should this

be done, a large portion of the data for the perturbed source effect will be zero, and sparse

storage schemes could be employed.

III Analytical Benchmark Verification

This section presents three analytical benchmark problems for the unresolved probability ta-

bles. The benchmarks are fixed-source problems in 1-D slab geometry using real continuous-
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energy nuclear data. These benchmarks can be employed both as a test of the implementation

of the unresolved resonance probability table sampling and, for the purposes of this article

specifically, the computation of sensitivity coefficients of the cross sections specified on the

probability tables.

A survey of nuclear data relevant to nuclear reactor applications (and specifically fast

reactors where the unresolved resonance range is expected to be significant) was conducted,

and the ENDF/B-VII.1 90Zr ACE files at room temperature (293.6 K) have attractive fea-

tures that make them ideal for an analytical benchmark.

In terms of application relevance, zirconium has a low overall capture cross section and

good structural properties making it useful as a fuel cladding or constituent in a fuel matrix.

Properties that make the 90Zr data ideal for an analytical benchmark are that the pre-

scribed energy grid for the probability tables aligns with the energy grid for the cross sections,

which is often not the case for nuclides such as 238U. Because of this alignment, only a single

energy discretization needs to be considered in constructing the solutions. Another useful

property is that there are only two reactions in this energy range: elastic scattering and

radiative (n, γ) capture, and no fission or contributions from inelastic scattering or other

absorptions. Finally, the unresolved resonance data is also given as cross sections, as op-

posed to multiplicative factors, and the prescribed interpolation between energy grid points

is linear-linear. In principle, any other nuclear data file with these properties could also be

used with the following benchmark solutions.

There are G incident neutron energy grid points within the unresolved resonance range

where the cross section probability tables are provided. As in the previous section, the

convention of using descending energies where the top energy is defined by E0 and the bottom

EG is adopted. The energy range with index g includes all energies such that Eg ≤ E < Eg−1,

including the lower energy bound and excluding of the upper energy.

For the purposes of these benchmarks, zirconium is assumed to be pure 90Zr with an

atomic density of N = 4.3675 × 10−2 b−1·cm−1, which is typical of zirconium metal. The
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microscopic elastic scattering and radiative capture cross sections along with their associated

probabilities are provided in Table I. There are 13 energy grid points in the data ranging from

53.5 keV to 100 keV. At the lower end of the unresolved range there is an energy bin from

53.5 keV to 54.0 keV. The remaining energy bins increase by 5 keV intervals up to 99 keV.

The remaining two bins from 99 keV to 100 keV involve a large bin covering almost all of the

energy range up to 1 eV below 100 keV and another very small bin to 100 keV; this small bin

ensures a smooth transition into the unresolved resonance range, but since it is extremely

narrow and the cross sections are effectively identical on each side, it is neglected and only

12 grid points are used. The unresolved resonance tables at each energy grid point have 16

probability bands. Each probability table has a different spacing of cumulative probabilities,

and this fact must be considered when constructing the analytical solutions.

Three different responses from fixed-source calculations are considered in this section,

each having sensitivity coefficients computed for responses that are significant and mean-

ingful to that particular quantity. The general layout for this section is that each analytic

solution is derived and then results for the equivalent Shuriken Monte Carlo calculation are

reported and the degree of agreement is discussed. These results show that the implementa-

tion of the unresolved resonance probability table sampling is correct (or at least consistent

with the provided implementation), the equations for the differential operator sampling sen-

sitivity coefficients were derived correctly, and that the computation of the indirect and

direct effects are implemented correctly.

The first of the three cases, detailed in Sec. III.A, considers the leakage of uncollided

neutrons (or a purely absorbing problem), for which analytical solutions can readily be

obtained. A reference solution for the sensitivity coefficients of this leakage rate with respect

to the total cross sections (the sum of the sensitivity coefficients for elastic scattering plus

radiative capture) provided in the unresolved resonance tables are computed. This simple

case establishes the computation of indirect effects in Eqs. (33) and (35) are done correctly.

The second case, discussed in Sec. III.B, considers the response of neutrons being captured
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on their first collision. This is essentially equivalent to a purely absorbing problem, except

that the response involves a reaction cross section, leading to a more complicated solution.

Sensitivity coefficients with respect to the radiative capture and elastic scattering cross

sections given in the unresolved resonance probability tables are computed. In addition to

the expression being more complicated, the sensitivity coefficient for the radiative capture

cross section tests the implementation of the direct effect.

The third case, given in Sec. III.C, considers the response being the leakage of neutrons

that have had exactly one collision. Modified scattering physics is used to make the solution

tractable. The purpose of this benchmark is to establish that unresolved resonance cross

section sampling following a collision is done correctly and that the sensitivity coefficients

can handle more than an uncollided response.

As shown for case, the Monte Carlo results generally agree with the reference solutions.

This provides evidence that the equations derived in the previous section and their implemen-

tation is correct. This and the limitations of these benchmarks are discussed in Sec. III.D.
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Table I: Unresolved Resonance Data for 90Zr at 293.6 K from ENDF/B-VII.1 Processed by
NJOY

E (keV) 53.5 54.0 59.0
Band k σs,k (b) σγ,k (b) pk σs,k (b) σγ,k (b) pk σs,k (b) σγ,k (b) pk
1 1.0015e-06 3.9687e-04 1.5625e-05 1.2251e-06 9.6691e-04 1.3125e-03 9.9801e-07 5.1658e-04 2.1094e-04
2 1.1854e-06 6.1470e-04 4.6094e-04 1.7389e-03 4.9979e-03 2.6812e-03 1.0390e-06 1.2455e-03 1.3000e-03
3 2.7649e-01 4.2641e-03 1.1316e-02 8.2760e-01 4.6443e-03 1.6761e-02 2.9736e-01 4.4895e-03 8.9938e-03
4 1.9634e+00 4.7909e-03 3.2094e-02 2.5949e+00 3.6598e-03 3.6297e-02 1.5853e+00 4.2088e-03 2.2658e-02
5 3.7732e+00 2.8310e-03 5.4078e-02 4.1598e+00 2.6054e-03 6.9805e-02 3.3021e+00 3.4658e-03 4.5559e-02
6 4.9900e+00 1.6768e-03 1.3471e-01 5.1072e+00 1.8127e-03 1.1324e-01 4.5420e+00 2.2358e-03 7.6086e-02
7 5.7063e+00 1.4092e-03 1.8533e-01 5.6399e+00 1.5591e-03 1.1971e-01 5.3223e+00 1.8017e-03 1.4240e-01
8 6.1685e+00 2.6604e-03 1.5177e-01 5.8934e+00 1.5847e-03 8.1573e-02 5.9074e+00 1.8959e-03 2.1041e-01
9 6.7023e+00 4.5730e-03 1.2146e-01 6.2628e+00 2.8397e-03 1.5076e-01 6.5428e+00 4.1062e-03 1.5972e-01
10 7.6021e+00 8.1334e-03 1.0852e-01 6.9717e+00 5.4599e-03 1.4828e-01 7.5577e+00 8.4072e-03 1.2122e-01
11 1.0234e+01 1.8853e-02 1.0204e-01 8.8966e+00 1.3020e-02 1.3609e-01 1.0217e+01 1.6672e-02 1.0547e-01
12 1.9774e+01 3.7937e-02 5.4930e-02 1.5835e+01 3.1984e-02 6.8822e-02 1.9197e+01 3.2770e-02 5.9692e-02
13 3.9799e+01 7.0792e-02 2.5867e-02 3.5348e+01 6.5917e-02 3.6155e-02 3.7745e+01 6.1906e-02 2.8952e-02
14 6.0311e+01 1.5651e-01 1.1920e-02 5.9014e+01 1.4220e-01 1.3112e-02 5.9604e+01 1.4794e-01 1.2626e-02
15 9.3155e+01 2.3798e-01 3.9984e-03 9.3536e+01 2.2616e-01 4.0531e-03 8.9057e+01 1.8227e-01 3.3219e-03
16 1.0772e+02 1.6797e-01 1.4969e-03 1.0842e+02 1.6840e-01 1.3546e-03 1.0131e+02 1.4719e-01 1.3859e-03
E (keV) 64.0 69.0 74.0
Band k σs,k (b) σγ,k (b) pk σs,k (b) σγ,k (b) pk σs,k (b) σγ,k (b) pk
1 3.2226e-06 1.1791e-03 1.6187e-03 1.7563e-05 2.2014e-03 2.7672e-03 1.5742e-06 8.0556e-04 1.0891e-03
2 8.4717e-02 4.5135e-03 4.0156e-03 3.0330e-01 5.1479e-03 5.6984e-03 1.5181e-04 3.2993e-03 2.0188e-03
3 9.2825e-01 4.5031e-03 1.5298e-02 1.3017e+00 4.2478e-03 1.5811e-02 6.5329e-01 4.5050e-03 1.1970e-02
4 2.7294e+00 3.8757e-03 4.1387e-02 3.0753e+00 3.5586e-03 4.4548e-02 2.1525e+00 3.9612e-03 2.7244e-02
5 4.3453e+00 2.2663e-03 7.6112e-02 4.4345e+00 2.1952e-03 6.6017e-02 3.9766e+00 2.5309e-03 7.0242e-02
6 5.2782e+00 1.8343e-03 1.5239e-01 5.2422e+00 1.7244e-03 1.3052e-01 5.1367e+00 1.7770e-03 1.2550e-01
7 5.8013e+00 1.7533e-03 1.3780e-01 5.7132e+00 1.5648e-03 1.0178e-01 5.7606e+00 1.6428e-03 1.7791e-01
8 6.1983e+00 2.6016e-03 1.2885e-01 5.9786e+00 2.0245e-03 9.5342e-02 6.2916e+00 2.8255e-03 1.6863e-01
9 6.7087e+00 4.5736e-03 1.1477e-01 6.3278e+00 2.9744e-03 1.1765e-01 7.0015e+00 5.3752e-03 1.2130e-01
10 7.6856e+00 8.7563e-03 1.2001e-01 6.9548e+00 5.4664e-03 1.3385e-01 8.1405e+00 1.0314e-02 9.5981e-02
11 1.0785e+01 1.7180e-02 1.1089e-01 8.8082e+00 1.2452e-02 1.4647e-01 1.1822e+01 1.8939e-02 1.0987e-01
12 2.1960e+01 3.6627e-02 5.8445e-02 1.6328e+01 2.6713e-02 8.5653e-02 2.4012e+01 3.5136e-02 5.1761e-02
13 4.0768e+01 6.2057e-02 2.5400e-02 3.4406e+01 4.8175e-02 3.6648e-02 3.9020e+01 5.5448e-02 2.3409e-02
14 6.5699e+01 1.6266e-01 8.8797e-03 5.8054e+01 1.2422e-01 1.2556e-02 6.2316e+01 1.2244e-01 9.1641e-03
15 8.4962e+01 1.4270e-01 2.7656e-03 7.8902e+01 1.2963e-01 2.6875e-03 7.5915e+01 9.9826e-02 2.4234e-03
16 9.4619e+01 1.3707e-01 1.3610e-03 8.7495e+01 1.1431e-01 1.9984e-03 8.3880e+01 1.0683e-01 1.4907e-03
E (keV) 79.0 84.0 89.0
Band k σs,k (b) σγ,k (b) pk σs,k (b) σγ,k (b) pk σs,k (b) σγ,k (b) pk
1 2.3288e-06 8.7044e-04 1.1875e-03 1.0117e-06 7.4938e-04 7.8750e-04 2.6618e-04 2.5107e-03 2.7062e-03
2 4.0687e-06 2.1522e-03 1.1562e-03 2.4771e-06 1.8826e-03 1.3078e-03 5.0324e-01 3.7969e-03 7.8516e-03
3 5.5878e-01 4.0103e-03 1.1780e-02 5.8466e-01 4.4962e-03 1.1672e-02 2.0863e+00 3.7970e-03 3.1059e-02
4 1.9696e+00 4.0135e-03 2.3458e-02 2.3198e+00 3.5093e-03 3.2233e-02 3.7487e+00 2.7513e-03 4.4200e-02
5 3.6493e+00 2.6237e-03 5.5123e-02 3.9918e+00 2.5713e-03 5.6453e-02 4.6753e+00 1.9233e-03 6.1550e-02
6 4.9549e+00 1.8515e-03 1.3802e-01 5.1212e+00 1.7696e-03 1.3362e-01 5.2627e+00 1.6863e-03 1.0671e-01
7 5.6729e+00 1.6751e-03 1.6975e-01 5.7685e+00 1.5536e-03 1.6228e-01 5.6789e+00 1.6131e-03 1.0718e-01
8 6.2055e+00 2.7008e-03 1.6384e-01 6.2763e+00 2.6387e-03 1.6468e-01 5.9423e+00 1.9421e-03 6.6983e-02
9 6.8995e+00 5.0101e-03 1.2437e-01 6.9988e+00 5.1951e-03 1.3614e-01 6.2466e+00 2.7770e-03 1.1118e-01
10 8.1676e+00 1.0175e-02 1.1528e-01 8.2446e+00 9.9528e-03 9.9184e-02 6.8481e+00 4.6997e-03 1.3342e-01
11 1.2343e+01 1.8820e-02 1.0852e-01 1.1859e+01 1.7643e-02 1.0663e-01 8.7282e+00 1.1151e-02 1.6889e-01
12 2.3735e+01 3.1954e-02 4.7191e-02 2.2475e+01 2.9549e-02 5.3222e-02 1.5752e+01 2.1491e-02 9.3975e-02
13 3.6891e+01 5.0720e-02 2.5564e-02 3.6048e+01 4.8780e-02 2.7402e-02 2.9797e+01 3.3837e-02 4.3406e-02
14 6.0627e+01 1.0090e-01 1.2133e-02 5.7818e+01 9.6771e-02 1.0319e-02 4.9005e+01 7.7229e-02 1.4350e-02
15 7.3424e+01 7.7556e-02 2.0875e-03 6.9993e+01 7.8967e-02 3.6875e-03 6.3056e+01 7.2694e-02 4.7359e-03
16 8.6975e+01 1.1059e-01 5.3580e-04 8.8185e+01 1.0001e-01 3.7800e-04 7.2835e+01 7.0098e-02 1.8109e-03
E (keV) 94.0 99.0 100.0
Band k σs,k (b) σγ,k (b) pk σs,k (b) σγ,k (b) pk σs,k (b) σγ,k (b) pk
1 9.9817e-07 4.6185e-04 6.4063e-05 9.9130e-07 3.6552e-04 8.7500e-05 1.6554e-02 2.9001e-03 3.1234e-03
2 4.9320e-06 1.7766e-03 1.8656e-03 1.0980e-06 1.3407e-03 1.5594e-03 5.1654e-01 3.4423e-03 6.3656e-03
3 5.9691e-01 3.9790e-03 9.6297e-03 6.0589e-01 4.0979e-03 1.0705e-02 2.2319e+00 3.7857e-03 3.6392e-02
4 2.0892e+00 3.4760e-03 2.4109e-02 1.9985e+00 3.8804e-03 2.0891e-02 4.0495e+00 2.4340e-03 5.3967e-02
5 3.7665e+00 2.8012e-03 5.0667e-02 3.5637e+00 2.7693e-03 4.5509e-02 4.9593e+00 1.7486e-03 7.9911e-02
6 4.9418e+00 1.6963e-03 1.1112e-01 4.7784e+00 1.6255e-03 1.0207e-01 5.4441e+00 1.5444e-03 9.0811e-02
7 5.6092e+00 1.5368e-03 1.5987e-01 5.5649e+00 1.6364e-03 2.0084e-01 5.7232e+00 1.5183e-03 7.4145e-02
8 6.0935e+00 2.2340e-03 1.4337e-01 6.1497e+00 2.6640e-03 1.4630e-01 5.9492e+00 1.9865e-03 7.4277e-02
9 6.6055e+00 3.7941e-03 1.1325e-01 6.8460e+00 4.7992e-03 1.3814e-01 6.2868e+00 2.8011e-03 1.1668e-01
10 7.4433e+00 6.9140e-03 1.2459e-01 8.1801e+00 8.8582e-03 1.1723e-01 7.0484e+00 4.9809e-03 1.6333e-01
11 1.0000e+01 1.3487e-02 1.3083e-01 1.1996e+01 1.5788e-02 1.1258e-01 9.6600e+00 1.1919e-02 1.6703e-01
12 1.7965e+01 2.3011e-02 7.2963e-02 2.1080e+01 2.4082e-02 5.3548e-02 1.8570e+01 2.2235e-02 8.2780e-02
13 3.0438e+01 3.5273e-02 3.6708e-02 3.2165e+01 3.7894e-02 3.2952e-02 3.1563e+01 3.7439e-02 3.3094e-02
14 4.9070e+01 7.0938e-02 1.5078e-02 4.9264e+01 6.5617e-02 1.0375e-02 4.9750e+01 6.6062e-02 1.2558e-02
15 6.0636e+01 6.1442e-02 3.4015e-03 5.6994e+01 5.8523e-02 3.8656e-03 5.8033e+01 5.2787e-02 3.1657e-03
16 6.7556e+01 6.9233e-02 2.4750e-03 6.3282e+01 5.8553e-02 3.3437e-03 6.5873e+01 6.8787e-02 2.3687e-03
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III.A Uncollided Transmittance Sensitivity

The first test problem consists of a monodirectional beam with a prescribed energy spectrum

normally incident upon the slab of thickness L. For simplicity the energy spectrum of

the source is constant over the entirely unresolved resonance energy range such that the

probability of a particular source neutron being within an energy range g is

wg =
Eg − Eg−1

E0 − EG

. (36)

The uncollided beam intensity is simply an exponential attenuated by the cross section

Σt(E). Within an energy range, the total cross section is determined from a linear inter-

polation in energy and randomly sampled cross sections at endpoints from the prescribed

probability tables.

Because the endpoints have different band probabilities pkg and pkg−1 , a unionized grid

of cumulative sampling probabilities of each band within every energy range g must be

constructed to obtain a consistent expression for the linear interpolation. This grid is built

by first building the cumulative probabiliites for each endpoint and taking the union. Each

range of cumulative probabilities is assigned an index ℓ and mapped to a pair of band indices

kg and kg−1 that give the cross sections at the end points. The probability of selecting a

particular pair of endpoints is then denoted by pg,ℓ, which is obtained by taking the difference

of the cumulative probabilities on the unionized grid.

An example of this unionized grid is displayed in Table II. The data is for a neutron with

an energy within range 54 ≤ E < 59 keV on 90Zr. The table can be viewed on two sides. The

left side of the table consists of the first three columns giving the cumulative probabilities

for the endpoints at 54 and 59 keV. The right side of the table are the remaining columns

giving the unionized index ℓ, the cumulative probability, and probability of that range on

the unionized table, and the two corresponding non-unionized indices for the left and right

sides. For the most part, there is an alternating pattern, but the pattern changes at ℓ = 16
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Table II: Example of Unionized Probability Grid for 54 ≤ E < 59 keV

Endpoint Data Unionized Grid

k ckg ckg−1 ℓ cg,ℓ pg,ℓ kg kg−1

1 1.313e-03 2.109e-04 1 2.109e-04 2.109e-04 1 1
2 3.994e-03 1.511e-03 2 1.313e-03 1.102e-03 1 2
3 2.075e-02 1.050e-02 3 1.511e-03 1.984e-04 2 2
4 5.705e-02 3.316e-02 4 3.994e-03 2.483e-03 2 3
5 1.269e-01 7.872e-02 5 1.050e-02 6.511e-03 3 3
6 2.401e-01 1.548e-01 6 2.075e-02 1.025e-02 3 4
7 3.598e-01 2.972e-01 7 3.316e-02 1.241e-02 4 4
8 4.414e-01 5.076e-01 8 5.705e-02 2.389e-02 4 5
9 5.921e-01 6.673e-01 9 7.872e-02 2.167e-02 5 5
10 7.404e-01 7.886e-01 10 1.269e-01 4.813e-02 5 6
11 8.765e-01 8.940e-01 11 1.548e-01 2.795e-02 6 6
12 9.453e-01 9.537e-01 12 2.401e-01 8.529e-02 6 7
13 9.815e-01 9.827e-01 13 2.972e-01 5.711e-02 7 7
14 9.946e-01 9.953e-01 14 3.598e-01 6.260e-02 7 8
15 9.987e-01 9.986e-01 15 4.414e-01 8.157e-02 8 8
16 1.000e+00 1.000e+00 16 5.076e-01 6.624e-02 9 8

17 5.921e-01 8.452e-02 9 9
18 6.673e-01 7.520e-02 10 9
19 7.404e-01 7.308e-02 10 10
20 7.886e-01 4.814e-02 11 10
21 8.765e-01 8.795e-02 11 11
22 8.940e-01 1.752e-02 12 11
23 9.453e-01 5.130e-02 12 12
24 9.537e-01 8.388e-03 13 12
25 9.815e-01 2.777e-02 13 13
26 9.827e-01 1.185e-03 14 13
27 9.946e-01 1.193e-02 14 14
28 9.953e-01 6.990e-04 15 14
29 9.986e-01 3.322e-03 15 15
30 9.987e-01 3.216e-05 15 16
31 1.000e+00 1.348e-03 16 16

and then again at ℓ = 30.

The expected transmittance probability or current for monodirectional neutrons uni-

formly distributed within this energy range is then

J0 =
1

E0 − EG

G∑
g=1

∑
ℓ

pg,ℓ

∫ Eg−1

Eg

exp [−Σt,ℓ(E)L] dE. (37)
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Since the interpolation scheme is linear-linear, the total cross section in the unresolved region

for the particular probability band ℓ is obtained from Eq. (2) as

Σt,ℓ(E) = N [(1− ρ)σt,g,ℓ + ρσt,g−1,ℓ] , Eg ≤ E < Eg−1, (38)

where ρ is the linear interpolation factor from Eq. (3) and the σt,g,ℓ are given in the probability

table. Contrasting with Eq. (2), the band indices kg and kg−1 for the respective lower and

upper energy grid points are replaced with the unionized index ℓ.

The integral for the current given in Eq. (37) can be evaluated by performing a change

of variables from energy to the interpolation fraction via

dE = (Eg−1 − Eg)dρ, (39)

giving

J0 =
G∑

g=1

∑
ℓ

wgpg,ℓ

∫ 1

0

exp [−NL (σt,g,ℓ + ρ(σt,g−1,ℓ − σt,g,ℓ))] dρ. (40)

Carrying out the integral gives

fg,ℓ =

∫ 1

0

exp [−NL (σt,g,ℓ + ρ(σt,g−1,ℓ − σt,g,ℓ))] dρ =
e−τg,ℓ − e−τg−1,ℓ

τg−1,ℓ − τg,ℓ
, (41)

where τ is the optical distance at an energy grid point:

τg,ℓ = NLσt,g,ℓ. (42)

The total transmittance is the sum of the transmittances for each energy bin g weighted by

the relative bin width or probability of a source neutron within energy range g. The total

29



transmittance is then written as

J0 =
G∑

g=1

∑
ℓ

wgpg,ℓfg,ℓ. (43)

The sensitivity coefficient of the transmittance with respect to each provided probability

table total cross section on the grid points σt,g,kg (here again kg is an index for the grid

endpoints, not the unionized grid for the energy range) may be computed by taking the log-

arithmic derivative of Eq. (43). To complicate matters, the summation over the probability

bands is over the unionized grid for the energy range, whereas the parameters are given at

on the grid endpoints, each having a different structure. Therefore, multiple values of ℓ on

the unionized grid for the energy range may correspond to the same value at the energy grid

point k. Furthermore, these grid points reside on the upper or lower edges of the energy

range, which results in a different form for the derivative. Finally, for cross sections specified

at the top (g = 0) and bottom (g = G) of the unresolved resonance range, the values are

only used on a single side as opposed to both.

To address these notational complexities, an indicator function 1±g,kg ,ℓ is used that is

either one or zero. The value is one if the energy range g specified is between 1 ≤ g ≤ G

(this handles the edges of the unresolved resonance range) and if the unionized grid index

ℓ corresponds to the index kg on either the upper (+ superscript) or lower (− superscript)

energy grid point of the energy range:

1±g,kg ,ℓ =

 1, 1 ≤ g ≤ G, ℓ ∈ kg for upper + or lower − grid point,

0, otherwise.
(44)

The sensitivity coefficient of the transmittance with respect to a grid total cross section
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is then

SJ0,σt,g,kg
=

wgNσt,g,kgL

J0

∑
ℓ

1−g,kg ,ℓpg,ℓ

(
fg,ℓ − e−τg,ℓ

τg−1,ℓ − τg,ℓ

)
+ 1+g+1,kg+1,ℓ

pg+1,ℓ

(
e−τg,ℓ − fg+1,ℓ

τg,ℓ − τg+1,ℓ

)
.

(45)

Considering an energy grid point g, the first term in the summation corresponds to the upper

energy range Eg ≤ E < Eg−1 where Eg is on its lower bound. The second term therefore

corresponds to the lower energy range Eg+1 ≤ E < Eg where Eg is on its upper bound. In

this manner, the data on each interior energy grid point contributes to the neutron transport

in the neighboring ranges. The case of the top or bottom of the unresolved resonance range,

g = 0 or g = G respectively, is handled by the value of the first index of the indicator

function. At the top of the unresolved resonance range, 1−0,k,ℓ = 0 meaning that there is

no energy range where g = 0 resides on the lower edge. Likewise, at the bottom of the

unresolved resonance range, 1+G+1,k,ℓ = 0 meaning there is no energy range where g = G

resides on the upper edge.

The sensitivity coefficient for the total cross section over the entire unresolved resonance

range can be found by taking the sum of the sensitivity coefficients for each energy grid point

g and probability table band k:

SJ0,σt =
G∑

g=1

∑
k

SJ0,σt,g,k
. (46)

Equation (45) is evaluated using the provided 90Zr unresolved resonance cross sections to

obtain reference solution for the sensitivity coefficients of the uncollided current or transmis-

sion to the total cross section for a slab with a thickness of L = 10 cm. The numerical results

for the sensitivity coefficient of each individual datum in the unresolved resonance table is

provided in Table III. Sum totals over all the probability bands at each energy grid point

are given along with the grand total over all bands and energy grid points. The reference

solution shows that for this specific problem, only probability bands 3 through 12 have a
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significant impact on the result.

Numerical results were obtained using a Shuriken Monte Carlo calculation with 109 par-

ticle histories. These results are given in Table IV. The uncertainties for the sensitivity

coefficient for each individual cross section value are not displayed because it would be diffi-

cult to fit into a table meaningfully, but the significant values have uncertainties that are on

the order of few tenths of a percent. The uncertainty is provided for the overall current and

the energy-integrated sensitivity coefficient, which has a 1-σ uncertainty within 0.016%. The

agreement of these overall values is within 1.5σ of the respective analytic reference solution,

which is within the generally accepted value of 2σ (a 95% confidence interval). There is also

general agreement in the individual sensitivity coefficients that are significant in magnitude.

Note that the Monte Carlo results are zero for probability bands 14 through 16. This

is because there were no scores to those specific estimators. In other words, no uncollided

particles leaked out of the slab when these bands were selected. This is expected for two

reasons. First, and most importantly, the cross section values in Table I are large enough

such that when it is multiplied by the number density and thickness and exponentiated, the

leakage probability is extremely small. Second, the probability of sampling these bands is

each less than 1%, meaning that there are relatively fewer chances to leak out. Besides, as

mentioned, the reference solutions show that the sensitivity coefficients are on the order of

10−10 or small in all but a few instances.
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Table III: Benchmark Sensitivity Coefficients for the Uncollided Transmission Probability
with Respect to the Total Cross Section for Slab Thickness L = 10 cm

E (keV) 53.5 54.0 59.0 64.0 69.0 74.0

Band = 1 -1.774e-10 -3.980e-07 -6.232e-08 -1.091e-06 -3.494e-06 -5.017e-07
2 -8.102e-09 -5.439e-06 -9.248e-07 -1.920e-04 -8.469e-04 -3.901e-06
3 -7.708e-05 -2.951e-03 -1.310e-03 -5.276e-03 -6.610e-03 -3.331e-03
4 -7.563e-04 -9.472e-03 -1.001e-02 -1.934e-02 -2.052e-02 -1.279e-02
5 -1.128e-03 -1.488e-02 -2.042e-02 -2.853e-02 -2.442e-02 -2.827e-02
6 -2.203e-03 -1.951e-02 -2.727e-02 -4.581e-02 -3.949e-02 -3.959e-02
7 -2.501e-03 -1.808e-02 -4.242e-02 -3.594e-02 -2.738e-02 -4.759e-02
8 -1.796e-03 -1.149e-02 -5.352e-02 -3.046e-02 -2.391e-02 -3.894e-02
9 -1.220e-03 -1.925e-02 -3.412e-02 -2.347e-02 -2.692e-02 -2.273e-02
10 -8.106e-04 -1.534e-02 -1.899e-02 -1.789e-02 -2.523e-02 -1.226e-02
11 -3.563e-04 -7.579e-03 -7.229e-03 -6.319e-03 -1.506e-02 -4.391e-03
12 -8.620e-06 -4.010e-04 -2.145e-04 -8.568e-05 -9.669e-04 -4.034e-05
13 -1.661e-09 -8.872e-07 -2.781e-07 -2.184e-08 -1.161e-06 -3.207e-08
14 -8.530e-14 -3.369e-11 -4.020e-11 -3.705e-13 -1.221e-10 -7.526e-13
15 -1.259e-17 -7.881e-16 -9.360e-17 -1.482e-17 -1.282e-15 -4.030e-15
16 -5.018e-23 -4.146e-22 -1.097e-20 -1.673e-19 -6.215e-18 -2.720e-17

Sum -1.086e-02 -1.190e-01 -2.155e-01 -2.133e-01 -2.114e-01 -2.099e-01

E (keV) 79.0 84.0 89.0 94.0 99.0 100.0

Band = 1 -5.916e-07 -3.373e-07 -4.198e-06 -1.693e-08 -1.098e-08 -3.314e-06
2 -1.410e-06 -1.407e-06 -1.799e-03 -1.884e-06 -7.161e-07 -1.487e-04
3 -2.935e-03 -2.986e-03 -1.462e-02 -2.539e-03 -1.690e-03 -1.722e-03
4 -1.080e-02 -1.553e-02 -1.831e-02 -1.156e-02 -5.879e-03 -2.143e-03
5 -2.302e-02 -2.272e-02 -2.076e-02 -2.146e-02 -1.161e-02 -2.663e-03
6 -4.460e-02 -4.235e-02 -3.223e-02 -3.638e-02 -2.057e-02 -2.576e-03
7 -4.568e-02 -4.357e-02 -2.901e-02 -4.459e-02 -3.346e-02 -2.036e-03
8 -3.829e-02 -3.827e-02 -1.671e-02 -3.497e-02 -2.088e-02 -1.904e-03
9 -2.390e-02 -2.530e-02 -2.580e-02 -2.368e-02 -1.610e-02 -2.724e-03
10 -1.525e-02 -1.235e-02 -2.595e-02 -1.985e-02 -8.986e-03 -3.005e-03
11 -3.636e-03 -4.085e-03 -1.846e-02 -9.530e-03 -2.846e-03 -1.345e-03
12 -2.131e-05 -7.427e-05 -1.204e-03 -4.076e-04 -5.723e-05 -4.358e-05
13 -1.154e-07 -1.632e-07 -4.068e-06 -1.593e-06 -3.339e-07 -6.494e-08
14 -4.232e-11 -9.105e-12 -9.075e-10 -1.560e-09 -7.805e-11 -4.994e-11
15 -1.155e-15 -2.040e-14 -5.454e-13 -4.102e-13 -2.296e-12 -9.803e-14
16 -8.144e-18 -6.415e-18 -2.144e-15 -2.161e-14 -6.304e-14 -4.203e-15

Sum -2.081e-01 -2.072e-01 -2.049e-01 -2.050e-01 -1.221e-01 -2.031e-02

Energy Integrated Sensitivity = -1.94750

Transmission Probability = 8.22421e-2
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Table IV: Shuriken Monte Carlo Computed Sensitivity Coefficients for the Uncollided Trans-
mission Probability with Respect to the Total Cross Section for Slab Thickness L = 10 cm

E (keV) 53.5 54.0 59.0 64.0 69.0 74.0

Band = 1 -1.762e-10 -3.996e-07 -6.249e-08 -1.091e-06 -3.487e-06 -5.022e-07
2 -7.977e-09 -5.445e-06 -9.243e-07 -1.919e-04 -8.481e-04 -3.886e-06
3 -7.690e-05 -2.953e-03 -1.310e-03 -5.287e-03 -6.620e-03 -3.325e-03
4 -7.509e-04 -9.468e-03 -1.002e-02 -1.932e-02 -2.051e-02 -1.279e-02
5 -1.126e-03 -1.490e-02 -2.043e-02 -2.852e-02 -2.441e-02 -2.827e-02
6 -2.198e-03 -1.950e-02 -2.724e-02 -4.578e-02 -3.944e-02 -3.959e-02
7 -2.503e-03 -1.807e-02 -4.241e-02 -3.589e-02 -2.739e-02 -4.761e-02
8 -1.796e-03 -1.152e-02 -5.347e-02 -3.043e-02 -2.389e-02 -3.901e-02
9 -1.221e-03 -1.926e-02 -3.413e-02 -2.349e-02 -2.693e-02 -2.273e-02
10 -7.994e-04 -1.534e-02 -1.901e-02 -1.789e-02 -2.522e-02 -1.230e-02
11 -3.585e-04 -7.564e-03 -7.224e-03 -6.347e-03 -1.504e-02 -4.375e-03
12 -7.595e-06 -3.988e-04 -2.224e-04 -8.729e-05 -9.609e-04 -4.045e-05
13 0.000e+00 -1.008e-06 -3.395e-07 -1.722e-07 -1.873e-06 -4.769e-08
14 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
15 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
16 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

Sum -1.084e-02 -1.190e-01 -2.155e-01 -2.132e-01 -2.113e-01 -2.100e-01

E (keV) 79.0 84.0 89.0 94.0 99.0 100.0

Band = 1 -5.925e-07 -3.372e-07 -4.198e-06 -1.708e-08 -1.091e-08 -3.334e-06
2 -1.408e-06 -1.401e-06 -1.798e-03 -1.883e-06 -7.166e-07 -1.480e-04
3 -2.932e-03 -2.985e-03 -1.463e-02 -2.539e-03 -1.691e-03 -1.728e-03
4 -1.081e-02 -1.553e-02 -1.828e-02 -1.157e-02 -5.886e-03 -2.149e-03
5 -2.303e-02 -2.270e-02 -2.077e-02 -2.148e-02 -1.161e-02 -2.670e-03
6 -4.465e-02 -4.235e-02 -3.222e-02 -3.639e-02 -2.057e-02 -2.577e-03
7 -4.565e-02 -4.350e-02 -2.902e-02 -4.458e-02 -3.350e-02 -2.043e-03
8 -3.825e-02 -3.822e-02 -1.671e-02 -3.503e-02 -2.090e-02 -1.904e-03
9 -2.394e-02 -2.533e-02 -2.579e-02 -2.369e-02 -1.611e-02 -2.726e-03
10 -1.527e-02 -1.234e-02 -2.595e-02 -1.985e-02 -8.979e-03 -2.976e-03
11 -3.628e-03 -4.072e-03 -1.846e-02 -9.519e-03 -2.847e-03 -1.334e-03
12 -2.237e-05 -7.538e-05 -1.204e-03 -4.190e-04 -5.967e-05 -4.416e-05
13 -3.824e-07 -2.834e-08 -4.015e-06 -1.472e-06 -3.147e-07 -1.482e-07
14 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
15 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00
16 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00 0.000e+00

Sum -2.082e-01 -2.071e-01 -2.048e-01 -2.051e-01 -1.222e-01 -2.030e-02

Energy Integrated Sensitivity = -1.947481e+00 ± 3.103477e-04

Transmission Probability = 8.222908e-02 ± 8.687201e-06
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III.B Analytic Benchmark for First-Collision Radiative Capture Sensitivities

The analytic uncollided transmittance sensitivity benchmark is relatively simple, but is

rather limited in the portions of the method verified. Only the total cross section can

be meaningfully tested, and the transmittance does not involve any direct effect. A slightly

more complicated version of this benchmark can be constructed by computing the sensitivity

coefficient to the probability that a neutron experiences a particular reaction type on its first

collision. Using the same problem setup as the transmittance benchmark, the probability

that neutrons undergo radiative capture (n, γ) on their first collision is

Rγ =
1

E0 − EG

G∑
g=1

∑
ℓ

pg,ℓ

∫ Eg−1

Eg

Σγ,ℓ(E)

Σt,ℓ(E)

(
1− exp [−Σt,ℓ(E)L]

)
dE. (47)

The radiative capture (n, γ) cross section is Σγ(E), which like the total cross section in

Eq. (38), is given by a linear interpolation within an energy range Eg ≤ E < Eg−1 using the

same interpolation factor ρ.

As with the transmittance case, the integral can be evaluated by transforming from

energy to interpolation factor using the relationship in Eq. (39) to give an expression of the

form

Rγ =
G∑

g=1

∑
ℓ

wgpg,ℓfg,ℓ (48)

with

fg,ℓ =

∫ 1

0

σγ,g,ℓ + ρ(σγ,g−1,ℓ − σγ,g,ℓ)

σt,g,ℓ + ρ(σt,g−1,ℓ − σt,g,ℓ)

(
1− exp

[
−NL (σt,g,ℓ + ρ(σt,g−1,ℓ − σt,g,ℓ))

])
dρ

=
hg,ℓ

(τg,ℓ − τg−1,ℓ)2
, (49)
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where

hg,ℓ = (τγ,g,ℓ − τγ,g−1,ℓ)

[
τg,ℓ − τg−1,ℓ + e−τg,ℓ − e−τg−1,ℓ

]
+ (τγ,g−1,ℓτg,ℓ − τγ,g,ℓτg−1,ℓ)

[
ln

(
τg,ℓ
τg−1,ℓ

)
+ E1(τg,ℓ)− E1(τg−1,ℓ)

]
. (50)

The quantity τγ,g,ℓ is the optical distance [Eq. (42)] reduced by the radiative capture proba-

bility,

τγ,g,ℓ = NLσγ,g,ℓ. (51)

The En(x) function is the exponential integral defined by

En(x) =

∫ ∞

1

e−xt

tn
dt. (52)

Two sensitivity coefficients are computed. The first is the sensitivity to the capture rate

with respect to the radiative capture (n, γ) cross section, and the second is with respect to

the elastic scattering cross section. Note that when taking the derivatives, the total cross

section is the sum of the radiative capture and elastic scattering cross sections.

The sensitivity coefficient for the capture rate with respect to an unresolved resonance

probability table capture cross section is

SRγ ,σγ,g,kg
=

wgNσγ,g,kgL

Rγ

∑
ℓ

1−g,kg ,ℓpg,ℓ

[
h−
γ,g,ℓ − 2(τg,ℓ − τg−1,ℓ)fg,ℓ

(τg,ℓ − τg−1,ℓ)2

]

+ 1+g+1,kg+1,ℓ
pg+1,ℓ

[
h+
γ,g+1,ℓ + 2(τg+1,ℓ − τg,ℓ)fg+1,ℓ

(τg+1,ℓ − τg,ℓ)2

]
, (53)

where h±
γ,g,ℓ are derivatives of hg,ℓ with respect to the capture cross section located at the

upper (+ superscript) or lower (− superscript) respective edges at the energy range; these
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are

h−
γ,g,ℓ = τg,ℓ − τg−1,ℓ + e−τg,ℓ − e−τg−1,ℓ + (τγ,g,ℓ − τγ,g−1,ℓ)

(
1− e−τg,ℓ

)
+ (τγ,g−1,ℓ − τg−1,ℓ)

[
ln

(
τg,ℓ
τg−1,ℓ

)
+ E1(τg,ℓ)− E1(τg−1,ℓ)

]
+ (τγ,g−1,ℓτg,ℓ − τγ,g,ℓτg−1,ℓ)

[
1− e−τg,ℓ

τg,ℓ

]
, (54a)

h+
γ,g,ℓ = τg−1,ℓ − τg,ℓ + e−τg−1,ℓ − e−τg,ℓ + (τγ,g−1,ℓ − τγ,g,ℓ)

(
1− e−τg−1,ℓ

)
+ (τg,ℓ − τγ,g,ℓ)

[
ln

(
τg,ℓ
τg−1,ℓ

)
+ E1(τg,ℓ)− E1(τg−1,ℓ)

]
+ (τγ,g,ℓτg−1,ℓ − τγ,g−1,ℓτg,ℓ)

[
1− e−τg−1,ℓ

τg−1,ℓ

]
. (54b)

Using a similar process, the sensitivity coefficient for the capture rate with respect to an

unresolved resonance probability table elastic scattering cross section may be obtained. The

form is almost identical to the result for the capture cross section sensitivity coefficient,

SRγ ,σs,g,kg
=

wgNσs,g,kgL

Rγ

∑
ℓ

1−g,kg ,ℓpg,ℓ

[
h−
s,g,ℓ − 2(τg,ℓ − τg−1,ℓ)fg,ℓ

(τg,ℓ − τg−1,ℓ)2

]

+1+g+1,kg+1,ℓ
pg+1,ℓ

[
h+
s,g+1,ℓ + 2(τg+1,ℓ − τg,ℓ)fg+1,ℓ

(τg+1,ℓ − τg,ℓ)2

]
, (55)

with the major difference being in the h±
s,g,ℓ:

h−
s,g,ℓ = (τγ,g,ℓ − τγ,g−1,ℓ)

(
1− e−τg,ℓ

)
+ τγ,g−1,ℓ

[
ln

(
τg,ℓ
τg−1,ℓ

)
+ E1(τg,ℓ)− E1(τg−1,ℓ)

]
+ (τγ,g−1,ℓτg,ℓ − τγ,g,ℓτg−1,ℓ)

[
1− e−τg,ℓ

τg,ℓ

]
, (56a)

h+
s,g,ℓ = (τγ,g−1,ℓ − τγ,g,ℓ)

(
1− e−τg−1,ℓ

)
− τγ,g,ℓ

[
ln

(
τg,ℓ
τg−1,ℓ

)
+ E1(τg,ℓ)− E1(τg−1,ℓ)

]
+ (τγ,g,ℓτg−1,ℓ − τγ,g−1,ℓτg,ℓ)

[
1− e−τg−1,ℓ

τg−1,ℓ

]
. (56b)
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These derivatives are somewhat simpler than the capture case because the only dependence

on the elastic scattering cross section is in the total cross section.

Inserting the 90Zr cross section values from Table I into the above expressions for a width

L = 10 cm provides a set of reference solutions that are given in Tables V and VI for

the sensitivity coefficients with respect to the capture and elastic scattering cross sections

respectively. As with the previous section, solutions are given for: each energy grid point

and probability band, the sum over all probability bands at each energy grid point, and the

sum over the entire unresolved resonance table.

The radiative capture sensitivity coefficients given in Table V are strictly positive. This

makes sense because increasing the capture cross section will always increase the radiative

capture rate, either through directly increasing the reaction probability in a collision or

indirectly through raising the total cross section and decreasing the likelihood of neutrons

leaking out of the slab. Note that the direct effect is dominant in this case.

Conversely, the elastic scattering sensitivity coefficients given in Table VI are all negative.

The reason for this is because the slab, having a thickness of L = 10 cm, is optically thick.

There is a small increase in the radiative capture rate by increasing the collision probability,

but this is offset by decrease in the probability that a neutron is captured as a consequence

of independently increasing the elastic scattering cross section.

The Shuriken Monte Carlo results were obtained using 109 histories in the same calcu-

lation as the one used to generate the sensitivity coefficients to the leakage detailed in the

previous section. The calculated sensitivity coefficients are provided for the radiative capture

cross section in Table VII and for the elastic scattering cross section in Table VIII.

As with those previously presented results, uncertainties are only provided for the energy-

integrated values since providing them for this large dataset in a presentable manner would

be difficult. As before, the uncertainties of each individual cross section value is on the

order of a few tenths of a percent for those that contribute significantly. The conclusions

are essentially the same as for the sensitivity coefficient to the leakage with respect to the
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total cross section. There is broad agreement for the significant values. Some of the results

for the lower probability bands for the elastic scattering sensitivity coefficients are positive,

having the wrong sign, however, this is because the magnitude of the reference values are

very small and difficult to sample sufficiently. The computed energy-integrated sensitivity

coefficient for the radiative capture cross section has an uncertainty of about 0.006% and

agrees with the reference solution within 0.03σ. The computed elastic scattering analog has

an uncertainty of about 0.013% and agrees within 0.96σ. This level of agreement is within

the accepted 95% confidence interval or 2σ.
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Table V: Benchmark Sensitivity Coefficients for the First-Collision Capture Rate with Re-
spect to the Capture Cross Section for Slab Thickness L = 10 cm

E (keV) 53.5 54.0 59.0 64.0 69.0 74.0

Band = 1 1.930e-08 4.339e-05 6.782e-06 1.187e-04 3.784e-04 5.460e-05
2 8.817e-07 4.488e-04 1.007e-04 1.092e-03 1.677e-03 4.103e-04
3 1.384e-04 2.197e-03 2.310e-03 3.473e-03 3.168e-03 2.896e-03
4 3.190e-04 2.707e-03 4.221e-03 5.791e-03 5.427e-03 4.302e-03
5 2.336e-04 2.870e-03 5.203e-03 4.818e-03 4.002e-03 5.255e-03
6 2.873e-04 2.810e-03 4.607e-03 6.794e-03 5.494e-03 5.554e-03
7 2.992e-04 2.374e-03 6.200e-03 5.450e-03 3.644e-03 6.659e-03
8 4.340e-04 1.587e-03 8.880e-03 7.193e-03 4.262e-03 1.011e-02
9 5.553e-04 5.009e-03 1.344e-02 1.055e-02 7.392e-03 1.263e-02
10 7.848e-04 8.640e-03 1.840e-02 1.864e-02 1.422e-02 1.664e-02
11 1.318e-03 1.511e-02 2.417e-02 2.473e-02 2.839e-02 2.474e-02
12 7.621e-04 1.074e-02 1.460e-02 1.418e-02 2.020e-02 1.099e-02
13 3.373e-04 5.426e-03 6.898e-03 5.570e-03 7.531e-03 4.771e-03
14 2.210e-04 2.489e-03 4.483e-03 3.210e-03 3.891e-03 2.588e-03
15 7.259e-05 7.919e-04 9.721e-04 6.601e-04 6.351e-04 4.587e-04
16 1.663e-05 1.679e-04 2.865e-04 2.807e-04 3.727e-04 2.713e-04

Sum 5.780e-03 6.341e-02 1.148e-01 1.125e-01 1.107e-01 1.083e-01

E (keV) 79.0 84.0 89.0 94.0 99.0 100.0

Band = 1 6.433e-05 3.672e-05 4.181e-04 1.841e-06 1.194e-06 5.507e-05
2 1.541e-04 1.532e-04 1.653e-03 2.055e-04 7.803e-05 1.212e-04
3 2.594e-03 2.854e-03 4.771e-03 2.095e-03 1.427e-03 5.423e-04
4 3.870e-03 4.420e-03 3.714e-03 3.418e-03 2.003e-03 3.839e-04
5 4.472e-03 4.286e-03 3.110e-03 4.361e-03 2.375e-03 3.585e-04
6 6.490e-03 5.904e-03 4.384e-03 4.814e-03 2.593e-03 3.313e-04
7 6.522e-03 5.749e-03 3.971e-03 5.719e-03 4.595e-03 2.591e-04
8 9.460e-03 9.243e-03 2.874e-03 6.973e-03 5.039e-03 3.284e-04
9 1.221e-02 1.366e-02 6.573e-03 8.728e-03 7.830e-03 6.957e-04
10 1.987e-02 1.645e-02 1.235e-02 1.568e-02 1.044e-02 1.564e-03
11 2.354e-02 2.218e-02 2.984e-02 2.460e-02 1.274e-02 2.864e-03
12 9.074e-03 1.015e-02 1.855e-02 1.354e-02 5.384e-03 1.444e-03
13 5.029e-03 5.330e-03 7.142e-03 6.098e-03 3.321e-03 5.562e-04
14 2.895e-03 2.477e-03 3.239e-03 3.135e-03 1.179e-03 2.377e-04
15 3.120e-04 5.984e-04 7.829e-04 4.900e-04 3.407e-04 4.077e-05
16 9.834e-05 6.305e-05 2.507e-04 3.626e-04 2.613e-04 3.566e-05

Sum 1.067e-01 1.036e-01 1.036e-01 1.002e-01 5.961e-02 9.819e-03

Energy Integrated Sensitivity = 0.999011

First-Collided Capture Probability = 7.54284e-4
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Table VI: Benchmark Sensitivity Coefficients for the First-Collision Capture Rate with Re-
spect to the Elastic Scattering Cross Section for Slab Thickness L = 10 cm

E (keV) 53.5 54.0 59.0 64.0 69.0 74.0

Band = 1 -6.242e-15 -1.288e-11 -2.009e-12 -9.768e-11 -1.502e-09 -2.444e-11
2 -2.719e-13 -1.610e-07 -2.369e-11 -1.982e-05 -1.034e-04 -1.277e-08
3 -8.250e-06 -3.635e-04 -1.472e-04 -6.474e-04 -8.185e-04 -3.882e-04
4 -1.107e-04 -1.265e-03 -1.286e-03 -2.728e-03 -2.824e-03 -1.683e-03
5 -1.433e-04 -1.867e-03 -2.835e-03 -3.285e-03 -2.740e-03 -3.339e-03
6 -2.215e-04 -2.086e-03 -3.163e-03 -5.006e-03 -4.133e-03 -4.127e-03
7 -2.413e-04 -1.928e-03 -4.615e-03 -4.314e-03 -2.914e-03 -5.293e-03
8 -3.480e-04 -1.328e-03 -7.136e-03 -5.888e-03 -3.436e-03 -8.251e-03
9 -4.742e-04 -4.176e-03 -1.098e-02 -8.828e-03 -5.970e-03 -1.085e-02
10 -7.109e-04 -7.591e-03 -1.600e-02 -1.655e-02 -1.217e-02 -1.510e-02
11 -1.193e-03 -1.389e-02 -2.259e-02 -2.352e-02 -2.587e-02 -2.356e-02
12 -7.693e-04 -1.010e-02 -1.490e-02 -1.408e-02 -1.984e-02 -1.095e-02
13 -3.440e-04 -5.244e-03 -7.013e-03 -5.725e-03 -7.723e-03 -4.817e-03
14 -2.157e-04 -2.492e-03 -4.364e-03 -3.129e-03 -3.791e-03 -2.552e-03
15 -7.129e-05 -7.640e-04 -9.833e-04 -6.763e-04 -6.389e-04 -4.772e-04
16 -1.689e-05 -1.647e-04 -2.904e-04 -2.763e-04 -3.818e-04 -2.675e-04

Sum -4.869e-03 -5.326e-02 -9.630e-02 -9.467e-02 -9.336e-02 -9.166e-02

E (keV) 79.0 84.0 89.0 94.0 99.0 100.0

Band = 1 -3.525e-11 -1.151e-11 -2.329e-08 -6.843e-13 -4.459e-13 -1.899e-07
2 -1.517e-10 -8.658e-11 -1.815e-04 -2.352e-10 -2.161e-11 -1.396e-05
3 -3.144e-04 -3.314e-04 -1.797e-03 -2.594e-04 -1.760e-04 -2.172e-04
4 -1.390e-03 -1.901e-03 -2.241e-03 -1.367e-03 -7.239e-04 -2.422e-04
5 -2.678e-03 -2.688e-03 -2.128e-03 -2.642e-03 -1.398e-03 -2.533e-04
6 -4.676e-03 -4.369e-03 -3.253e-03 -3.479e-03 -1.892e-03 -2.549e-04
7 -4.968e-03 -4.620e-03 -3.035e-03 -4.501e-03 -3.507e-03 -2.074e-04
8 -7.604e-03 -7.643e-03 -2.338e-03 -5.735e-03 -3.975e-03 -2.672e-04
9 -1.033e-02 -1.184e-02 -5.266e-03 -7.446e-03 -6.622e-03 -5.659e-04
10 -1.754e-02 -1.505e-02 -1.053e-02 -1.386e-02 -9.410e-03 -1.380e-03
11 -2.301e-02 -2.120e-02 -2.673e-02 -2.273e-02 -1.233e-02 -2.660e-03
12 -9.168e-03 -1.015e-02 -1.837e-02 -1.346e-02 -5.546e-03 -1.441e-03
13 -5.048e-03 -5.272e-03 -7.386e-03 -6.089e-03 -3.330e-03 -5.549e-04
14 -2.922e-03 -2.426e-03 -3.179e-03 -3.112e-03 -1.207e-03 -2.351e-04
15 -3.274e-04 -6.094e-04 -8.035e-04 -5.003e-04 -3.543e-04 -4.206e-05
16 -9.660e-05 -6.275e-05 -2.606e-04 -3.561e-04 -2.702e-04 -3.432e-05

Sum -9.007e-02 -8.816e-02 -8.751e-02 -8.554e-02 -5.074e-02 -8.369e-03

Energy Integrated Sensitivity = -0.844514

First-Collided Capture Probability = 7.54284e-4
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Table VII: Shuriken Monte Carlo Computed Sensitivity Coefficients for the First-Collision
Capture Rate with Respect to the Capture Cross Section for Slab Thickness L = 10 cm

E (keV) 53.5 54.0 59.0 64.0 69.0 74.0

Band = 1 1.916e-08 4.356e-05 6.800e-06 1.187e-04 3.777e-04 5.464e-05
2 8.681e-07 4.493e-04 1.007e-04 1.092e-03 1.680e-03 4.087e-04
3 1.382e-04 2.199e-03 2.310e-03 3.477e-03 3.171e-03 2.893e-03
4 3.183e-04 2.708e-03 4.223e-03 5.786e-03 5.423e-03 4.302e-03
5 2.336e-04 2.872e-03 5.206e-03 4.818e-03 4.002e-03 5.253e-03
6 2.869e-04 2.809e-03 4.607e-03 6.791e-03 5.490e-03 5.555e-03
7 2.990e-04 2.374e-03 6.200e-03 5.450e-03 3.644e-03 6.660e-03
8 4.340e-04 1.589e-03 8.880e-03 7.192e-03 4.260e-03 1.011e-02
9 5.542e-04 5.013e-03 1.345e-02 1.055e-02 7.390e-03 1.263e-02
10 7.838e-04 8.641e-03 1.840e-02 1.865e-02 1.422e-02 1.665e-02
11 1.321e-03 1.511e-02 2.417e-02 2.474e-02 2.839e-02 2.473e-02
12 7.610e-04 1.073e-02 1.461e-02 1.418e-02 2.019e-02 1.098e-02
13 3.373e-04 5.431e-03 6.903e-03 5.570e-03 7.525e-03 4.772e-03
14 2.222e-04 2.491e-03 4.481e-03 3.204e-03 3.891e-03 2.588e-03
15 7.283e-05 7.901e-04 9.738e-04 6.627e-04 6.369e-04 4.593e-04
16 1.671e-05 1.675e-04 2.860e-04 2.818e-04 3.712e-04 2.716e-04

Sum 5.780e-03 6.342e-02 1.148e-01 1.126e-01 1.107e-01 1.083e-01

E (keV) 79.0 84.0 89.0 94.0 99.0 100.0

Band = 1 6.443e-05 3.671e-05 4.181e-04 1.859e-06 1.187e-06 5.541e-05
2 1.539e-04 1.525e-04 1.652e-03 2.053e-04 7.808e-05 1.206e-04
3 2.592e-03 2.853e-03 4.772e-03 2.095e-03 1.427e-03 5.430e-04
4 3.870e-03 4.421e-03 3.711e-03 3.419e-03 2.003e-03 3.840e-04
5 4.472e-03 4.285e-03 3.110e-03 4.363e-03 2.375e-03 3.590e-04
6 6.491e-03 5.905e-03 4.383e-03 4.813e-03 2.592e-03 3.313e-04
7 6.520e-03 5.747e-03 3.972e-03 5.718e-03 4.595e-03 2.592e-04
8 9.457e-03 9.240e-03 2.875e-03 6.976e-03 5.041e-03 3.286e-04
9 1.221e-02 1.367e-02 6.573e-03 8.729e-03 7.831e-03 6.964e-04
10 1.986e-02 1.644e-02 1.235e-02 1.567e-02 1.043e-02 1.562e-03
11 2.355e-02 2.219e-02 2.985e-02 2.459e-02 1.274e-02 2.864e-03
12 9.082e-03 1.015e-02 1.855e-02 1.354e-02 5.384e-03 1.449e-03
13 5.031e-03 5.323e-03 7.142e-03 6.093e-03 3.326e-03 5.557e-04
14 2.901e-03 2.477e-03 3.234e-03 3.137e-03 1.178e-03 2.382e-04
15 3.117e-04 5.977e-04 7.831e-04 4.890e-04 3.412e-04 4.021e-05
16 9.850e-05 6.254e-05 2.501e-04 3.612e-04 2.614e-04 3.565e-05

Sum 1.067e-01 1.035e-01 1.036e-01 1.002e-01 5.961e-02 9.822e-03

Energy Integrated Sensitivity = 9.990123e-01 ± 5.685807e-05

First-Collided Capture Probability = 7.542643e-04 ± 3.037407e-08
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Table VIII: Shuriken Monte Carlo Computed Sensitivity Coefficients for the First-Collision
Capture Rate with Respect to the Elastic Scattering Cross Section for Slab Thickness L =
10 cm

E (keV) 53.5 54.0 59.0 64.0 69.0 74.0

Band = 1 -1.225e-14 1.271e-07 -4.030e-12 1.895e-07 7.423e-07 6.756e-11
2 -5.359e-13 8.148e-06 1.821e-09 -5.604e-06 -7.695e-05 4.208e-06
3 -5.264e-06 -3.353e-04 -1.068e-04 -6.120e-04 -8.165e-04 -3.722e-04
4 -1.092e-04 -1.268e-03 -1.257e-03 -2.709e-03 -2.857e-03 -1.656e-03
5 -1.445e-04 -1.885e-03 -2.870e-03 -3.311e-03 -2.762e-03 -3.370e-03
6 -2.230e-04 -2.086e-03 -3.175e-03 -5.006e-03 -4.126e-03 -4.156e-03
7 -2.415e-04 -1.927e-03 -4.619e-03 -4.297e-03 -2.915e-03 -5.307e-03
8 -3.472e-04 -1.331e-03 -7.109e-03 -5.875e-03 -3.427e-03 -8.260e-03
9 -4.703e-04 -4.167e-03 -1.095e-02 -8.825e-03 -5.976e-03 -1.083e-02
10 -6.904e-04 -7.541e-03 -1.587e-02 -1.637e-02 -1.210e-02 -1.495e-02
11 -1.191e-03 -1.367e-02 -2.250e-02 -2.333e-02 -2.529e-02 -2.334e-02
12 -7.834e-04 -9.999e-03 -1.506e-02 -1.442e-02 -2.014e-02 -1.120e-02
13 -3.557e-04 -5.405e-03 -7.177e-03 -5.760e-03 -7.966e-03 -4.840e-03
14 -2.212e-04 -2.511e-03 -4.368e-03 -3.194e-03 -3.846e-03 -2.583e-03
15 -7.254e-05 -7.891e-04 -9.906e-04 -6.783e-04 -6.519e-04 -4.854e-04
16 -1.675e-05 -1.663e-04 -2.887e-04 -2.789e-04 -3.817e-04 -2.680e-04

Sum -4.872e-03 -5.307e-02 -9.634e-02 -9.467e-02 -9.333e-02 -9.161e-02

E (keV) 79.0 84.0 89.0 94.0 99.0 100.0

Band = 1 6.749e-11 5.790e-10 5.685e-06 1.164e-10 1.546e-09 1.036e-06
2 1.038e-06 1.349e-09 -1.713e-04 9.929e-07 2.325e-08 -1.302e-05
3 -3.018e-04 -3.109e-04 -1.774e-03 -2.584e-04 -1.676e-04 -2.174e-04
4 -1.340e-03 -1.918e-03 -2.234e-03 -1.372e-03 -7.117e-04 -2.452e-04
5 -2.669e-03 -2.706e-03 -2.105e-03 -2.688e-03 -1.395e-03 -2.570e-04
6 -4.676e-03 -4.399e-03 -3.255e-03 -3.486e-03 -1.888e-03 -2.532e-04
7 -4.945e-03 -4.637e-03 -3.032e-03 -4.517e-03 -3.497e-03 -2.096e-04
8 -7.574e-03 -7.647e-03 -2.322e-03 -5.745e-03 -3.966e-03 -2.682e-04
9 -1.032e-02 -1.176e-02 -5.254e-03 -7.415e-03 -6.583e-03 -5.691e-04
10 -1.752e-02 -1.491e-02 -1.047e-02 -1.363e-02 -9.250e-03 -1.364e-03
11 -2.315e-02 -2.093e-02 -2.643e-02 -2.249e-02 -1.250e-02 -2.622e-03
12 -9.230e-03 -1.039e-02 -1.876e-02 -1.377e-02 -5.724e-03 -1.489e-03
13 -5.083e-03 -5.291e-03 -7.526e-03 -6.121e-03 -3.340e-03 -5.545e-04
14 -2.955e-03 -2.444e-03 -3.180e-03 -3.150e-03 -1.210e-03 -2.382e-04
15 -3.236e-04 -6.165e-04 -8.134e-04 -4.970e-04 -3.587e-04 -4.039e-05
16 -9.802e-05 -6.387e-05 -2.619e-04 -3.526e-04 -2.654e-04 -3.411e-05

Sum -9.018e-02 -8.802e-02 -8.758e-02 -8.548e-02 -5.086e-02 -8.374e-03

Energy Integrated Sensitivity = -8.444024e-01 ± 1.163467e-04

First-Collided Capture Probability = 7.542643e-04 ± 3.037407e-08
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III.C Once-Collided Transmittance Sensitivity

The previous two analytic benchmarks involve uncollided monodirectional neutron beams,

which does not allow for any testing that the sensitivity methods can adequately handle

collision physics and the emergence of secondaries. Unfortunately, analytic solutions to the

transport problem involving scattering are few in number.

A simple extension is presented to calculate the sensitivity coefficients for the transmission

probability of neutrons that have undergone exactly one collision with respect to the elastic

scattering cross sections in the unresolved resonance tables. The same slab geometry in

the previous sections with 90Zr is used, but some modifications are made to the problem

to permit an analytic solution that is not terribly unwieldy. First, the incident neutrons

are monoenergetic, having an energy Eg−1 corresponding to the a point on the unresolved

resonance table energy grid.

The most significant change is that the elastic scattering physics is fictitious in this

benchmark problem. The outgoing energy is distributed uniformly within the energy range

on the grid directly below the incident energy grid point, Eg ≤ E ≤ Eg−1, as opposed to the

normal physics of requiring the outgoing energy to be between αE and E. Additionally, the

scattering is isotropic in the lab frame on the half-range with direct cosine 0 ≤ µ ≤ 1 and

perfectly correlated with the outgoing energy such that µ = 1 corresponds to an outgoing

energy at the top of the energy range and µ = 0 corresponds to the bottom of the energy

range. This results in the interpolation parameter ρ and the direction cosine µ being identical,

which simplifies the solution considerably. To use this modified physics in a transport code, a

fictitious thermal scattering law or S(α, β) table could be supplied, which would override the

free-gas elastic scattering. (This depends on the code supporting unresolved resonance cross

sampling and thermal scattering simultaneously, which may not have been considered by the

developers as a practical case worth consideration.) Note that Shuriken does not currently

support thermal scattering data, so some chicanery was performed for the purposes of this

study by temporarily inserting a line of code that to overwrites the outgoing energy and
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direction after the normal collision physics.

When neutrons with energy Eg−1 enter the slab, cross sections are randomly sampled

from the unresolved resonance probability table and whether or not the neutron scatters

is determined. If the neutron scatters, an outgoing energy and direction are randomly

sampled along with a new set of cross sections from the unresolved resonance probability

table. This second set of cross sections is used to determine if the particle exits the slab

before undergoing another collision. If it does, then it is counted toward the once-collided

transmission probability. For clarity, neutrons are not counted if they pass through the slab

without experiencing their first collision nor if they undergo a second collision.

The once-collided transmission probability can be expressed with the following double

integral for the first-collided source:

J1 =
∑
ℓ

∑
m

pg,ℓpg,m

∫ L

0

∫ 1

0

exp

(
−Σt,ℓ(E)(L− x)

µ

)
Σs,m(Eg−1) exp (−Σt,m(Eg−1)x) dµdx.

(57)

The double summation accounts for two different random cross section samplings from the

unresolved resonance probability table. The index m corresponds to the cross section sam-

pled for the incident neutrons, where the total and scattering cross sections are

Σt,m(Eg−1) = Nσt,g−1,m, (58a)

Σs,m(Eg−1) = Nσs,g−1,m, (58b)

and the index ℓ corresponds to the probability table band sampled for the collided neutron.

Bothm and ℓ are on the unionized energy grid. Note that for the source neutrons specifically,

there is no need for a linear interpolation since they are monoenergetic on a grid point. The
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term

Σs,m(Eg−1) exp (−Σt,m(Eg−1)x) dx

gives the probability of scattering within some dx about x between 0 and L. The term

exp

(
−Σt,ℓ(E)(L− x)

µ

)

gives the transmission probability for a particle traveling with direction cosine µ with respect

to the x axis across the remaining distance to the end of the slab. Recall the artificial physics

of this benchmark problem causes the interpolation factor ρ and the direction cosine µ to be

identical. This implies that the cross section for the collided neutron energy is

Σt,ℓ(E) = N [σt,g,ℓ + µ(σt,g−1,ℓ − σt,g,ℓ)]. (59)

Note that it may seem that a factor of µ is missing from this integral, as one would expect

from the definition of neutron current. This factor is absent in this case because the first-

collision source (as opposed to the angular flux) is isotropic on the forward angular half-space,

leading to a factor of 1/µ canceling out the factor.

To proceed, the integral over the cosine can be evaluated to obtain

J1 =
∑
ℓ

∑
m

pg,ℓpg,m

∫ L

0

exp [N(σt,g−1,ℓ − σt,g,ℓ)(L− x)] E2 [Nσt,g,ℓ(L− x)]

×Nσs,g−1,m exp (−Nσt,g−1,mx) dx. (60)

This expression can be recast into the form

J1 =
∑
ℓ

∑
m

pg,ℓpg,mNσs,g−1,m exp (−Nσt,g−1,mL) fg,ℓ,m, (61)
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where

fg,ℓ,m =

∫ L

0

e−(b−a)xE2(ax)dx (62)

with

a = Nσt,g,ℓ, (63a)

b = N(σt,g−1,ℓ − σt,g−1,m). (63b)

Subscripts on a and b are omitted since they can be trivially applied based on the subscripts

of fg,ℓ,m and this declutters the subsequent equations. An important point here is that fg,ℓ,m,

unlike for the previous two benchmarks where it is dimensionless, now carries units of length.

Next the integral must be evaluated. Note that for certain values of ℓ and m on the

unionized grid the upper bound cross sections are the same, meaning the same probability

band is sampled for both the incident and scattered neutron, and b = 0. It turns out that

this leads to a non-trivial special case that needs to be considered. There is another special

case when b = a that could arise, but this can only occur in the very peculiar instance when

the total cross section specified on the lower grid point for the outgoing neutron precisely

equals the difference between the specified cross sections between the outgoing and incident

neutrons. This would only happen if somehow the nuclear data were either engineered in

this manner or as the result of an incredible coincidence.

The function fg,ℓ,m for the two cases of concern can be expressed as

fg,ℓ,m =
h

b− a
, (64)
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where

h =


1− e−bL +

ac

b− a
, b ̸= 0,

−(1− aL)eaLE1(aL)− ln(aL)− γ, b = 0.
(65)

with

c = (1 + (b− a)L)e−(b−a)LE1(aL) + ln

(
a

|b|

)
+ Ei(−bL). (66)

Here an alternative form of the exponential integral

Ei(x) =

∫ x

−∞

et

t
dt (67)

is used. The reason for this form as opposed to E1(x) function is that Ei(x) naturally handles

a negative argument, whereas E1(x) would require special cases involving complex numbers.

The constant γ is the Euler-Mascheroni constant that arises when taking the difference of

the Ei(−bL)−ln(bL) in the limit as b → 0. (This can be shown by the power series expansion

Ei(x) = γ + ln(x) + x2/4 + . . .) For completeness, the special case when b = a is

fg,ℓ,m =

∫ L

0

E2(ax)dx =
1

2a
[1− 2E3(aL)] . (68)

The sensitivity coefficients can be computed by taking the appropriate derivatives. Since

the energy index g is fixed in this benchmark versus the previous ones presented, it makes

sense to take derivatives with respect to the cross sections on the lower edge at E = Eg and

at the upper edge at E = Eg−1. The sensitivity coefficient for the elastic scattering cross

section for an unresolved resonance table band kg for the lower energy edge of the range is

SJ1,σs,g,kg
=

1

J1

∑
ℓ

∑
m

1g,kg ,ℓpg,ℓpg,mN
2σs,g−1,mσs,g,ℓ exp (−Nσt,g−1,mL)

∂fg,ℓ,m
∂a

, (69)
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and for the upper edge is

SJ1,σs,g−1,kg
=

1

J1

∑
ℓ

∑
m

pg,ℓpg,m exp (−Nσt,g−1,mL)

×
[
1g−1,kg−1,mNσs,g−1,m

(
(1−Nσs,g−1,mL)fg,ℓ,m −Nσs,g−1,m

∂fg,ℓ,m
∂b

)
+ 1g−1,kg−1,ℓN

2σs,g−1,mσs,g−1,ℓ
∂fg,ℓ,m
∂b

]
. (70)

The function 1g,kg ,ℓ is an indicator function that is one if the first index on the unionized grid

ℓ corresponds to the index kg on the energy grid point g and zero otherwise. The derivatives

(omitting the redundant subscripts) are

∂f

∂a
=

1

b− a

dh

da
+

h

(b− a)2
, (71a)

∂f

∂b
=

1

b− a

dh

db
− h

(b− a)2
. (71b)

The derivatives of h are

dh

da
=


bc

(b− a)2
+

a

b− a

dc

da
, b ̸= 0,

−L(1− aLeaLE1(aL)), b = 0,

(72a)

dh

db
= Le−bL − ac

(b− a)2
+

a

b− a

dc

db
. (72b)

And the derivatives of c are

dc

da
= L2(b− a)e−(b−a)LE1(aL) +

1

a

(
1− (1 + (b− a)L)e−bL

)
, (73a)

dc

db
= L2(a− b)e−(b−a)LE1(aL)−

1

b

(
1− e−bL

)
. (73b)

Note that in Eq. (70), the b = 0 case is handled implicitly because both indicator functions

evaluate to one and the terms with derivatives of f with respect to b cancel.

The sensitivity coefficient for the elastic scattering cross section at a particular energy
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grid point may be obtained by adding the sensitivity coefficients for each band kg at that

corresponding point.

Reference numerical values are provided for the energy range where Eg = 54 keV and

Eg−1 = 59 keV. The numerical evaluations of the analytical expressions are provided in

Table IX for various slab thicknesses. The reference leakage or transmittance of only once-

collided particles is computed from Eq. (60) following analytical integration as described

previously. Next, the corresponding sensitivity coefficients to the lower and upper edge

elastic scattering cross sections are given for each band on the probability tables. These are

computed using Eqs. (69) and (70) respectively. Finally, the sum of the sensitivity coefficients

over all the probability table bands for each energy grid point is reported.

The range of slab thicknesses was selected to demonstrate the trends in the once-collided

leakage. For an optically thin slab, increasing the cross sections on the upper edge (impacting

only the incident neutrons) increases the rate that once-collided particles leak out of the slab

because it enhances the rate that the first scattering event occurs. Recall that uncollided

particles that leak out are not counted in this specific quantity of interest. For optically thick

slabs, the sensitivity coefficients on the upper edge are entirely negative because increases

in the scattering cross section reduce the ability of neutrons to leak out after their first

collision more than the effect of increasing the production of those once-collided neutrons.

The breakeven point occurs at around a thickness of L = 3.3 cm where the once-collided

leakage is near its maximum value and the sum of the sensitivity coefficients on the upper

energy grid point is small in magnitude. The sensitivity coefficients of the scattering cross

section on the lower range are always negative and become increasingly so as the thickness

increases. This is because the lower edge cross section does not participate at all in the

scattering of the uncollided neutrons (the production of once-collided neutrons), but does

hamper the ability of the once-collided neutrons from leaking out of the slab.

The process is simulated in Shuriken and the sensitivity coefficients are estimated using

differential operator sampling using 109 samples (in a different calculation than in the previ-
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ous two sections because of the modified collision physics). The results for three different slab

thicknesses are reported in Table X. Since the size data set is more manageable in this case,

only being for two energy grid points, statistical uncertainties are provided for all computed

values.

The once-collided leakage results agree within 2σ of the reference analytic solutions in

all cases. The sum of the sensitivity coefficients across the probability band show similar

agreement, although the L = 3.3 cm case is right on the edge of 2-σ error. This value is

actually difficult to estimate precisely because it involves the sum of positive and negative

contributions of almost equal magnitude. The individual sensitivity coefficients for the dif-

ferent probability bands show general agreement, except for some of the first few bands,

which have both a very small cross section and low probability of being sampled, leading to

a very small reference sensitivity coefficient.
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Table IX: Benchmark First-Collided Leakage and Sensitivity Coefficients to Elastic Scatter-
ing Cross Sections

L = 0.5 cm L = 1 cm L = 3.3 cm

Leakage 0.12400 0.17971 0.20648

Sensitivity 54 keV 59 keV 54 keV 59 keV 54 keV 59 keV

Band = 1 -2.359e-10 2.537e-11 -5.449e-10 2.554e-11 -3.237e-09 3.460e-12
2 -5.443e-07 1.628e-10 -1.227e-06 1.639e-10 -6.820e-06 2.241e-11
3 -6.227e-04 3.214e-04 -1.202e-03 3.251e-04 -4.436e-03 1.172e-04
4 -2.763e-03 4.206e-03 -4.794e-03 4.163e-03 -1.290e-02 1.642e-03
5 -6.803e-03 1.699e-02 -1.106e-02 1.622e-02 -2.437e-02 5.081e-03
6 -1.212e-02 3.800e-02 -1.903e-02 3.528e-02 -3.761e-02 8.104e-03
7 -1.338e-02 8.194e-02 -2.064e-02 7.472e-02 -3.864e-02 1.325e-02
8 -9.284e-03 1.327e-01 -1.419e-02 1.193e-01 -2.585e-02 1.638e-02
9 -1.758e-02 1.100e-01 -2.657e-02 9.738e-02 -4.672e-02 9.165e-03
10 -1.800e-02 9.429e-02 -2.658e-02 8.141e-02 -4.357e-02 2.365e-03
11 -1.788e-02 1.043e-01 -2.491e-02 8.385e-02 -3.423e-02 -1.177e-02
12 -1.021e-02 9.000e-02 -1.208e-02 5.578e-02 -1.074e-02 -2.530e-02
13 -5.419e-03 5.493e-02 -4.924e-03 1.753e-02 -2.638e-03 -1.195e-02
14 -1.614e-03 2.184e-02 -1.158e-03 1.421e-03 -4.713e-04 -3.105e-03
15 -4.000e-04 3.865e-03 -2.483e-04 -7.802e-04 -9.582e-05 -4.815e-04
16 -1.151e-04 1.276e-03 -6.714e-05 -4.053e-04 -2.565e-05 -1.714e-04

Total -1.162e-01 7.547e-01 -1.674e-01 5.862e-01 -2.823e-01 3.329e-03

L = 5 cm L = 10 cm L = 20 cm

Leakage 0.16911 0.07521 0.01748

Sensitivity 54 keV 59 keV 54 keV 59 keV 54 keV 59 keV

Band = 1 -7.218e-09 -4.685e-11 -3.997e-08 -5.876e-10 -3.686e-07 -7.439e-09
2 -1.466e-05 -2.999e-10 -7.394e-05 -3.761e-09 -5.782e-04 -4.754e-08
3 -7.714e-03 -3.292e-04 -2.391e-02 -4.529e-03 -9.118e-02 -4.593e-02
4 -1.876e-02 -2.560e-03 -3.712e-02 -3.076e-02 -6.465e-02 -1.760e-01
5 -3.156e-02 -8.815e-03 -4.599e-02 -7.262e-02 -4.425e-02 -2.208e-01
6 -4.568e-02 -2.031e-02 -5.645e-02 -1.216e-01 -4.073e-02 -2.426e-01
7 -4.552e-02 -4.478e-02 -5.222e-02 -2.212e-01 -3.376e-02 -3.437e-01
8 -2.997e-02 -7.384e-02 -3.305e-02 -3.173e-01 -2.018e-02 -4.121e-01
9 -5.312e-02 -6.230e-02 -5.604e-02 -2.312e-01 -3.250e-02 -2.495e-01
10 -4.764e-02 -5.421e-02 -4.604e-02 -1.616e-01 -2.432e-02 -1.333e-01
11 -3.415e-02 -6.115e-02 -2.758e-02 -1.091e-01 -1.292e-02 -5.355e-02
12 -9.011e-03 -3.591e-02 -5.833e-03 -2.292e-02 -2.676e-03 -8.128e-03
13 -1.978e-03 -8.345e-03 -1.193e-03 -3.643e-03 -5.788e-04 -1.525e-03
14 -3.490e-04 -1.878e-03 -2.133e-04 -8.567e-04 -1.067e-04 -3.720e-04
15 -7.131e-05 -2.952e-04 -4.384e-05 -1.390e-04 -2.212e-05 -6.148e-05
16 -1.912e-05 -1.059e-04 -1.178e-05 -5.024e-05 -5.968e-06 -2.250e-05

Total -3.256e-01 -3.748e-01 -3.858e-01 -1.297e+00 -3.684e-01 -1.888e+00
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Table X: Shuriken Monte Carlo Results of First-Collided Leakage and Sensitivity Coefficients
to Elastic Scattering Cross Sections

L = 0.5 cm L = 3.3 cm L = 10 cm

Leakage 1.2401e-01 ± 1.0423e-05 2.0649e-01 ± 1.2800e-05 7.5198e-02 ± 8.3392e-06

Sensitivity 54 keV 54 keV 54 keV

Band = 1 -2.509e-10 ± 1.552e-11 -3.188e-09 ± 4.378e-11 -4.008e-08 ± 3.290e-10
2 -5.347e-07 ± 9.535e-09 -6.796e-06 ± 3.856e-08 -7.366e-05 ± 2.293e-07
3 -6.240e-04 ± 1.232e-06 -4.436e-03 ± 3.324e-06 -2.392e-02 ± 1.531e-05
4 -2.763e-03 ± 3.004e-06 -1.290e-02 ± 6.647e-06 -3.708e-02 ± 2.208e-05
5 -6.807e-03 ± 5.038e-06 -2.436e-02 ± 9.698e-06 -4.597e-02 ± 2.571e-05
6 -1.214e-02 ± 6.920e-06 -3.760e-02 ± 1.233e-05 -5.647e-02 ± 2.890e-05
7 -1.337e-02 ± 7.355e-06 -3.864e-02 ± 1.265e-05 -5.221e-02 ± 2.790e-05
8 -9.281e-03 ± 6.176e-06 -2.585e-02 ± 1.041e-05 -3.303e-02 ± 2.223e-05
9 -1.759e-02 ± 8.556e-06 -4.671e-02 ± 1.406e-05 -5.601e-02 ± 2.900e-05
10 -1.799e-02 ± 8.779e-06 -4.358e-02 ± 1.374e-05 -4.604e-02 ± 2.635e-05
11 -1.787e-02 ± 9.050e-06 -3.423e-02 ± 1.246e-05 -2.757e-02 ± 2.038e-05
12 -1.021e-02 ± 7.403e-06 -1.075e-02 ± 7.294e-06 -5.826e-03 ± 9.303e-06
13 -5.414e-03 ± 5.956e-06 -2.641e-03 ± 3.720e-06 -1.195e-03 ± 4.159e-06
14 -1.616e-03 ± 3.430e-06 -4.737e-04 ± 1.543e-06 -2.128e-04 ± 1.704e-06
15 -3.992e-04 ± 1.769e-06 -9.566e-05 ± 6.950e-07 -4.616e-05 ± 8.196e-07
16 -1.163e-04 ± 9.721e-07 -2.570e-05 ± 3.592e-07 -1.243e-05 ± 4.114e-07

Total -1.162e-01 ± 2.241e-05 -2.823e-01 ± 3.334e-05 -3.857e-01 ± 7.360e-05

Sensitivity 59 keV 59 keV 59 keV

Band = 1 -3.213e-12 ± 1.967e-14 -5.521e-11 ± 1.683e-13 -8.084e-10 ± 1.939e-12
2 -2.043e-11 ± 2.043e-11 4.488e-09 ± 4.843e-09 -5.192e-09 ± 5.192e-09
3 3.206e-04 ± 1.701e-06 1.177e-04 ± 1.848e-06 -4.531e-03 ± 6.074e-06
4 4.209e-03 ± 6.105e-06 1.639e-03 ± 5.956e-06 -3.078e-02 ± 1.936e-05
5 1.699e-02 ± 1.212e-05 5.080e-03 ± 1.024e-05 -7.259e-02 ± 3.354e-05
6 3.799e-02 ± 1.795e-05 8.116e-03 ± 1.368e-05 -1.215e-01 ± 4.733e-05
7 8.190e-02 ± 2.611e-05 1.326e-02 ± 1.835e-05 -2.213e-01 ± 6.757e-05
8 1.327e-01 ± 3.292e-05 1.640e-02 ± 2.162e-05 -3.172e-01 ± 8.474e-05
9 1.100e-01 ± 2.996e-05 9.157e-03 ± 1.956e-05 -2.313e-01 ± 7.570e-05
10 9.428e-02 ± 2.762e-05 2.371e-03 ± 1.768e-05 -1.616e-01 ± 6.733e-05
11 1.043e-01 ± 2.861e-05 -1.176e-02 ± 1.794e-05 -1.091e-01 ± 6.281e-05
12 8.999e-02 ± 2.547e-05 -2.529e-02 ± 1.868e-05 -2.291e-02 ± 3.494e-05
13 5.493e-02 ± 1.894e-05 -1.195e-02 ± 1.574e-05 -3.654e-03 ± 1.664e-05
14 2.185e-02 ± 1.261e-05 -3.095e-03 ± 9.619e-06 -8.473e-04 ± 9.640e-06
15 3.860e-03 ± 7.176e-06 -4.837e-04 ± 4.466e-06 -1.374e-04 ± 4.671e-06
16 1.280e-03 ± 4.947e-06 -1.719e-04 ± 2.808e-06 -5.502e-05 ± 2.997e-06

Total 7.547e-01 ± 6.658e-05 3.395e-03 ± 3.274e-05 -1.297e+00 ± 1.746e-04
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III.D Discussion

To summarize, three analytic benchmark solutions for cross section sensitivity coefficients us-

ing real continuous-energy unresolved resonance data were derived. Monte Carlo calculations

were performed and the results show general agreement within the accepted 2-σ confidence

band. The benchmark solutions were obtained by solving specific transport problems for a

quantity of interest and then sensitivity coefficients were computed by taking the appropriate

derivatives. On the other hand, the Monte Carlo estimators for the sensitivity coefficients

using differential operator sampling were derived for a general random process. While these

two are obviously related, the approaches for obtaining the end results are quite different, so

it should hopefully provide some confidence that the equations for the estimators that were

derived in Sec. II are correct and consistent with the transport process. Additionally, the

agreement should provide confidence that the specific implementation used to generate the

results in this paper is also correct.

Admittedly, these analytic benchmarks only cover a subset of the cases that this paper

addresses. To review, the processed 90Zr unresolved resonance data from ENDF/B-VII.1

represent their cross sections as values as opposed to multiplicative factors and linear-linear

interpolation is used. Stated another way, the results for multiplicative factors nor those for

the seldom-used logarithmic interpolation are tested by these analytical benchmark solutions.

Additionally, the solutions were obtained assuming that the cross section values (or factors)

are not interpolated across probability bands with the only interpolation being in energy.

This may limit their applicability to some codes depending on the implementation. Future

work could attempt to extend these solutions to bilinear interpolation across both energy

and probability band.

Constructing analytical solutions using multiplicative factors is possible, but the results

would be more complicated by the fact that the energy grids for the unresolved resonance

data and the mean-value cross sections that they are applied to are different and do not

usually align. Furthermore, the implementation of the estimators for the case of provided
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multiplicative factors is identical to the case of provided values with the difference being

in the routines for the computation of the actual cross sections. In other words, only the

final cross sections are returned for or cached within the routines sampling the unresolved

resonance cross sections, whereas the multiplicative factors are only used in the intermediate

processing steps. Additionally, testing done for eigenvalue problems with 235/238U, which

uses multiplicative factors, shows favorable agreement. So while there is certainly value in

obtaining an analytic benchmark solution for the case of multiplicative factors, the fact they

are so similar suggests that the results should be correct regardless.

Unfortunately, these analytic benchmarks are only for fixed-source problems and not

eigenvalue or criticality problems. As such, the derived equations specific to eigenvalue

problems are not covered. Additional testing that is not given in this paper was performed

to test these cases. In particular, the sensitivity coefficient to the total cross sections were

tested using direct perturbations on the constituent atomic density with the central difference

method. Additionally, the computation of sensitivity coefficients for k with respect to the

individual reaction cross sections was tested by comparing the energy-integrated values to the

equivalent quantities obtained from the adjoint-based method in MCNP6.2. (Unfortunately,

the currently available version of MCNP does not support sensitivity coefficients of reaction

rate ratios.) The results show agreement in all the cases that were tested, so this provides

confidence that the equations specific to eigenvalue problems have been correctly derived

and the corresponding estimators have been correctly implemented.

IV Numerical Results

Given that the method shows agreement with analytical benchmarks, the next step is to

demonstrate it on more realistic calculations. This section presents two systems: the Big

Ten benchmark (Sec. IV.A) and a simplified Molten Chloride Fast Reactor model (Sec. IV.B).

Both calculations use cross sections from the ENDF/B-VII.1 nuclear data library.
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IV.A Big Ten Critical Experiment

Big Ten was a cylindrical critical assembly at the Los Alamos Critical Experiments Facility

that was used for experiments in the 1970s and the early 1990s. The primary purpose of the

experiment was to assess the quality of uranium cross sections in the fast spectrum range

that was representative of the liquid metal cooled reactor designs of the time. The assembly

had about 10 metric tons of metallic uranium having a core with an average enrichment of

10%. The core consisted of various metallic uranium plates of different enrichments and was

surrounded by a depleted uranium reflector. The Big Ten experiment is documented in the

International Criticality Safety Benchmark Evaluation Project (ICSBEP) Handbook with

the identifier IEU-MET-FAST-007.

Big Ten was selected as a test case for this paper because its geometric created a neutron

spectrum such that a significant portion is in the unresolved resonance range of 238U and

less so for 235U. The simplified benchmark model consisting of a homogenized central core

region surrounded by the depleted uranium reflector. The homogenized cylindrical core has

a height of 57.6338 cm and a radius of 26.67 cm. The reflector surrounding the core is

described as another cylinder with a height of 96.5200 cm and a radius of 41.91 cm. The

atomic densities are given in Table XI.

The two dominant reaction cross sections are fission in 235U and capture in 238U, and

therefore the sensitivity coefficients are computed with respect to those values. Three re-

sponses are considered: the effective multiplication factor k, the ratio of leakage to fission

production (i.e. the leakage probability), and the ratio of the volume-integrated 238U capture

to 235U fission within the core region (excluding the reflector).

These sensitivity coefficients were calculated by Shuriken. The calculation used 105 source

neutrons (on average) per batch, 20 inactive batches, and 1000 active batches. The responses

and sensitivity coefficients of k were compared to an analogous calculation with MCNP6.2

to assess the level of agreement. The eigenvalue sensitivity coefficients are computing using

adjoint-weighting with the iterated fission probability method using a block size of 5 gen-
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erations. As mentioned, MCNP6.2 cannot compute reaction rate sensitivity coefficients in

eigenvalue problems.

The results are displayed in Table XII, where the top value is the one obtained from the

Shuriken and the bottom is the one from MCNP6.2. Note that the sensitivity coefficients

in this table are over the unresolved energy range of each respective nuclide. Based on

the calculated magnitudes of the sensitivity coefficients, the unresolved resonance data of

238U(n,γ) is generally more important. This is perhaps not too surprising given that the

unresolved resonance range of 238U occurs at a higher energy range than 235U and that the

neutron spectrum in the Big Ten assembly is quite fast.

The calculated integral values all agree within the 2-σ confidence band. The eigenvalue

sensitivity coefficients for 235U(n,f) agree to about 1σ. On the other hand, the agreement

for the eigenvalue sensitivity coefficients for 238U(n,γ) are just outside 2σ where the re-

ported statistical uncertainties in the calculated and MCNP6.2 results are just under 1%

and around 0.15% respectively. Ideally the difference would be somewhat smaller, but it is

not too far outside of reasonable confidence bounds considering the level of agreement in the

other results given in this paper and those from other testing not presented herein. Also, the

uncertainty estimates in eigenvalue correlations are reported lower than they actually are

because autocorrelation between batches is neglected. Moreover, even excluding the possi-

bility that minor software errors exist in Shuriken, some differences are to be expected when

performing code-to-code comparisons. Even though nominally both Shuriken and MCNP6.2

are doing very similar operations, there are some small differences in, for example, how the

continuous-energy nuclear data is handled that can lead to minor differences in results that

only become apparent when solutions are tightly resolved.

Detailed numerical results for the sensitivity coefficients with respect to all of the 238U(n,γ)

unresolved resonance data for the effective multiplication factor k and the 238U capture to

235U core fission ratios are provided in Tables XIII and XIV respectively. (The sensitivity

coefficients for the leakage to neutron production ratio do not show anything significantly

57



different in shape, so they are not reported.)

Table XI: Atomic Densities (b−1cm−1) of the Simplified Big Ten Model

Homogenized Core Reflector
234U 4.8416× 10−5 2.8672× 10−7

235U 4.8151× 10−3 1.0058× 10−4

236U 1.7407× 10−5 1.1468× 10−6

238U 4.3181× 10−2 4.7677× 10−2

Table XII: Energy-Integrated Response and Unresolved Resonance Range Sensitivity Coef-
ficients of the Simplified Big Ten Benchmark Model (Top: Shuriken, Bottom: MCNP6.2)

Response Value Sensitivity 235U(n,f) Sensitivity 238U(n,γ)

k
0.99475 ± 0.00009 2.0092e-02 ± 4.0312e-04 -1.0758e-01 ± 9.8814e-04
0.99470 ± 0.00005 2.0499e-02 ± 1.0659e-04 -1.0552e-01 ± 1.4773e-04

Leakage
0.10881 ± 0.00003 -2.0142e-02 ± 9.9846e-04 -1.6554e-01 ± 2.4480e-03
0.10885 ± 0.00002 — —

238U(n,γ) / 235U(n,f)
0.97209 ± 0.00017 -4.9678e-02 ± 6.7460e-04 3.7862e-01 ± 1.6498e-03
0.97190 ± 0.00014 — —
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Table XIII: Computed Unresolved Resonance Sensitivity Coefficients for k With Respect to
238U(n,γ) of the Simplified Big Ten Benchmark Model

E (keV) 20 23 26 30 35 40 45 45.09 50
Band = 1 -6.358e-07 -5.690e-06 -6.994e-06 -2.360e-06 -1.760e-05 -1.429e-05 -7.829e-06 -2.061e-06 -1.434e-05
2 -1.717e-06 -1.413e-05 -2.021e-05 -2.523e-05 -4.489e-05 -1.945e-05 -6.461e-06 -6.541e-06 -4.012e-05
3 -2.254e-05 -5.428e-05 -6.324e-05 -1.249e-04 -7.386e-05 -8.967e-05 -4.973e-05 -3.620e-05 -8.757e-05
4 -4.148e-05 -8.667e-05 -1.264e-04 -1.728e-04 -1.705e-04 -2.682e-04 -1.102e-04 -6.879e-05 -1.653e-04
5 -6.630e-05 -1.728e-04 -2.049e-04 -2.688e-04 -2.652e-04 -3.648e-04 -1.830e-04 -1.753e-04 -3.776e-04
6 -1.310e-04 -2.740e-04 -3.414e-04 -5.742e-04 -6.963e-04 -6.527e-04 -3.524e-04 -3.412e-04 -5.595e-04
7 -1.384e-04 -2.983e-04 -3.840e-04 -5.914e-04 -6.940e-04 -8.045e-04 -4.312e-04 -3.671e-04 -6.756e-04
8 -1.920e-04 -3.770e-04 -4.908e-04 -6.723e-04 -6.984e-04 -8.825e-04 -4.111e-04 -4.013e-04 -6.945e-04
9 -2.776e-04 -5.317e-04 -5.935e-04 -7.985e-04 -9.402e-04 -9.256e-04 -4.449e-04 -3.650e-04 -6.687e-04
10 -2.857e-04 -5.710e-04 -6.357e-04 -8.509e-04 -1.002e-03 -1.036e-03 -4.846e-04 -4.126e-04 -9.290e-04
11 -3.063e-04 -5.783e-04 -6.450e-04 -7.930e-04 -1.014e-03 -8.408e-04 -4.595e-04 -4.552e-04 -9.092e-04
12 -1.486e-04 -2.135e-04 -2.814e-04 -3.906e-04 -4.581e-04 -4.130e-04 -2.143e-04 -2.484e-04 -3.819e-04
13 -5.888e-05 -1.080e-04 -1.152e-04 -1.741e-04 -1.911e-04 -1.776e-04 -1.150e-04 -7.922e-05 -1.642e-04
14 -8.864e-06 -3.660e-05 -3.911e-05 -7.780e-05 -7.620e-05 -4.357e-05 -3.899e-05 -1.487e-05 -6.314e-05
15 -1.679e-06 -6.348e-06 -6.755e-06 -9.447e-06 -1.399e-05 -7.456e-06 -9.310e-06 -4.692e-06 -1.215e-05
16 -1.244e-06 -3.463e-06 -5.797e-06 -6.983e-06 -1.612e-05 -5.827e-06 -5.974e-06 -6.684e-06 -1.220e-05
Sum -1.683e-03 -3.332e-03 -3.961e-03 -5.533e-03 -6.373e-03 -6.546e-03 -3.325e-03 -2.985e-03 -5.755e-03
E (keV) 55 60 70 80 90 100 120 140 149
Band = 1 -5.494e-07 -6.773e-06 -4.129e-06 -1.845e-05 -2.810e-05 -2.879e-05 -5.872e-07 -2.158e-05 7.323e-08
2 -1.467e-05 -2.336e-05 -3.318e-05 -8.174e-05 -3.736e-05 -4.910e-05 -4.984e-05 -1.456e-05 -8.836e-06
3 -5.733e-05 -1.058e-04 -8.521e-05 -1.551e-04 -1.642e-04 -1.525e-04 -1.849e-04 -8.006e-05 -2.339e-05
4 -1.362e-04 -2.081e-04 -2.679e-04 -2.638e-04 -2.622e-04 -4.141e-04 -5.054e-04 -3.106e-04 -7.884e-05
5 -2.759e-04 -3.968e-04 -4.353e-04 -4.466e-04 -4.412e-04 -6.778e-04 -8.369e-04 -4.765e-04 -1.153e-04
6 -6.019e-04 -7.580e-04 -9.821e-04 -8.125e-04 -8.001e-04 -1.085e-03 -1.283e-03 -8.296e-04 -3.302e-04
7 -6.930e-04 -8.236e-04 -1.135e-03 -8.107e-04 -8.325e-04 -1.139e-03 -1.417e-03 -9.099e-04 -3.422e-04
8 -7.337e-04 -9.836e-04 -1.338e-03 -9.185e-04 -8.337e-04 -1.076e-03 -1.533e-03 -1.041e-03 -2.651e-04
9 -8.320e-04 -1.005e-03 -1.404e-03 -9.869e-04 -9.514e-04 -1.305e-03 -1.519e-03 -1.014e-03 -2.728e-04
10 -7.304e-04 -1.037e-03 -1.298e-03 -1.370e-03 -8.850e-04 -1.123e-03 -1.264e-03 -9.388e-04 -2.578e-04
11 -8.349e-04 -1.037e-03 -1.209e-03 -1.241e-03 -9.586e-04 -1.092e-03 -1.509e-03 -1.007e-03 -2.661e-04
12 -3.552e-04 -5.111e-04 -6.467e-04 -5.118e-04 -4.914e-04 -6.221e-04 -8.069e-04 -4.939e-04 -1.566e-04
13 -1.170e-04 -2.881e-04 -2.405e-04 -3.576e-04 -2.527e-04 -3.833e-04 -3.926e-04 -2.953e-04 -5.504e-05
14 -4.667e-05 -1.034e-04 -5.339e-05 -1.605e-04 -1.583e-04 -1.663e-04 -1.751e-04 -1.059e-04 -2.650e-05
15 -1.100e-05 -2.223e-05 -2.479e-05 -2.985e-05 -3.401e-05 -1.143e-04 -4.920e-05 -2.041e-05 -1.177e-06
16 -1.411e-06 -2.532e-05 -2.753e-05 -3.655e-05 -2.707e-05 -2.372e-05 -2.808e-05 -3.249e-06 -5.829e-07
Sum -5.442e-03 -7.335e-03 -9.184e-03 -8.201e-03 -7.158e-03 -9.452e-03 -1.155e-02 -7.562e-03 -2.200e-03

Table XIV: Computed Unresolved Resonance Sensitivity Coefficients for the 238U(n,γ) to
235U(n,f) Ratio With Respect to 238U(n,γ) of the Simplified Big Ten Benchmark Model

E (keV) 20 23 26 30 35 40 45 45.09 50
Band = 1 5.486e-06 2.159e-05 2.878e-05 1.063e-05 6.948e-05 5.308e-05 2.282e-05 9.190e-06 4.778e-05
2 1.303e-05 5.419e-05 6.788e-05 7.693e-05 1.411e-04 6.423e-05 3.012e-05 4.068e-05 1.188e-04
3 6.774e-05 1.980e-04 2.292e-04 4.201e-04 3.027e-04 2.858e-04 1.659e-04 1.352e-04 3.004e-04
4 1.547e-04 3.096e-04 4.519e-04 5.400e-04 6.590e-04 9.051e-04 3.908e-04 2.698e-04 5.698e-04
5 2.667e-04 5.437e-04 7.415e-04 9.678e-04 9.998e-04 1.271e-03 5.449e-04 5.906e-04 1.279e-03
6 5.116e-04 1.019e-03 1.278e-03 1.944e-03 2.406e-03 2.265e-03 1.183e-03 1.232e-03 1.966e-03
7 5.173e-04 1.007e-03 1.444e-03 2.043e-03 2.533e-03 2.762e-03 1.468e-03 1.264e-03 2.352e-03
8 7.223e-04 1.296e-03 1.733e-03 2.368e-03 2.542e-03 3.097e-03 1.419e-03 1.374e-03 2.420e-03
9 9.491e-04 1.782e-03 2.002e-03 2.832e-03 3.369e-03 3.272e-03 1.565e-03 1.327e-03 2.374e-03
10 9.932e-04 1.920e-03 2.155e-03 2.913e-03 3.409e-03 3.551e-03 1.749e-03 1.444e-03 3.140e-03
11 9.963e-04 2.098e-03 2.234e-03 2.794e-03 3.496e-03 2.939e-03 1.674e-03 1.576e-03 3.257e-03
12 4.856e-04 7.798e-04 9.604e-04 1.316e-03 1.543e-03 1.405e-03 7.617e-04 8.485e-04 1.277e-03
13 1.882e-04 4.138e-04 3.513e-04 5.994e-04 6.723e-04 6.037e-04 4.172e-04 2.761e-04 5.452e-04
14 2.662e-05 1.248e-04 1.383e-04 2.700e-04 2.605e-04 1.720e-04 1.386e-04 5.538e-05 2.274e-04
15 6.604e-06 2.029e-05 3.363e-05 4.209e-05 4.436e-05 3.654e-05 2.947e-05 2.071e-05 4.071e-05
16 2.508e-06 1.748e-05 2.303e-05 1.894e-05 4.877e-05 1.651e-05 1.680e-05 1.719e-05 4.381e-05
Sum 5.907e-03 1.161e-02 1.387e-02 1.916e-02 2.250e-02 2.270e-02 1.158e-02 1.048e-02 1.996e-02
E (keV) 55 60 70 80 90 100 120 140 149
Band = 1 3.392e-06 3.190e-05 2.156e-05 6.977e-05 1.060e-04 1.104e-04 2.657e-06 7.721e-05 7.482e-07
2 5.774e-05 1.019e-04 1.093e-04 3.171e-04 1.276e-04 1.899e-04 1.703e-04 4.702e-05 2.945e-05
3 1.911e-04 4.013e-04 3.264e-04 5.541e-04 5.895e-04 5.308e-04 6.351e-04 2.853e-04 8.195e-05
4 4.493e-04 7.629e-04 9.138e-04 9.605e-04 9.964e-04 1.523e-03 1.804e-03 1.105e-03 2.839e-04
5 9.730e-04 1.406e-03 1.517e-03 1.560e-03 1.658e-03 2.466e-03 2.988e-03 1.639e-03 4.088e-04
6 2.081e-03 2.732e-03 3.492e-03 2.807e-03 2.918e-03 3.985e-03 4.561e-03 3.016e-03 1.160e-03
7 2.366e-03 2.890e-03 3.818e-03 2.827e-03 3.026e-03 4.102e-03 5.073e-03 3.286e-03 1.219e-03
8 2.547e-03 3.375e-03 4.537e-03 3.184e-03 3.080e-03 3.869e-03 5.404e-03 3.716e-03 9.780e-04
9 2.832e-03 3.418e-03 4.912e-03 3.442e-03 3.362e-03 4.702e-03 5.379e-03 3.569e-03 9.686e-04
10 2.556e-03 3.553e-03 4.486e-03 4.762e-03 3.195e-03 4.101e-03 4.521e-03 3.371e-03 9.197e-04
11 2.890e-03 3.590e-03 4.136e-03 4.331e-03 3.345e-03 3.983e-03 5.489e-03 3.595e-03 9.391e-04
12 1.194e-03 1.770e-03 2.236e-03 1.774e-03 1.737e-03 2.233e-03 2.880e-03 1.805e-03 5.570e-04
13 3.964e-04 9.645e-04 8.756e-04 1.238e-03 9.174e-04 1.382e-03 1.418e-03 1.058e-03 2.131e-04
14 1.544e-04 4.111e-04 1.736e-04 5.330e-04 5.718e-04 5.940e-04 6.438e-04 3.862e-04 1.052e-04
15 4.023e-05 7.358e-05 8.814e-05 8.953e-05 1.158e-04 3.826e-04 1.606e-04 7.910e-05 7.607e-06
16 5.024e-06 9.399e-05 9.363e-05 1.360e-04 1.103e-04 8.666e-05 9.906e-05 8.846e-06 6.651e-07
Sum 1.874e-02 2.558e-02 3.174e-02 2.858e-02 2.586e-02 3.424e-02 4.123e-02 2.704e-02 7.874e-03
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IV.B Molten Chloride Fast Reactor

The Molten Chloride Fast Reactor (MCFR) is an advanced reactor design that has attracted

commercial interest. The design typically involves dissolving fissile material into a chloride-

based salt such as NaCl and running the molten salt through a reactor vessel where fission

generates heat. The MCFR can operate at much high temperatures while remaining at

atmospheric pressure without boiling the fuel and coolant. This allows for high thermal and

operational efficiency. For the purposes of this paper, as the name implies, the MCFR has a

fast spectrum and is an ideal candidate to assess the importance of unresolved resonances.

A simplified model for an MCFR with was constructed using parameters from Ref. [7].

The geometric model is qualitatively similar to that of the Big Ten model in the previous

section, consisting of two axisymmetric cylinders: a central core and a reflector. The central

core is a cylinder with a diameter and height of 4 m. The core contains a molten chloride

salt that consists of 33.3% UCl3 and 66.7% NaCl. The uranium has an enrichment of 15.5%.

The temperature of the core is 900 K, giving an estimated mass density of 3.112 g/cm2.

The reflector is a cylinder surrounding the core region with a thickness of 20 cm in both the

axial (top and bottom) and radial directions. The reflector made of 316-stainless steel with

material data from Ref. [9]. The temperature of the reflector is taken to be room temperature

for simplicity. The isotopic atom densities are provided in Table XV. Note that the model

is purely conceptual and lacks important design features such as channels for circulating the

salt into the reactor vessel or cooling the reflector.

As with the Big Ten model, the most important reactions are 235U(n,f) and 238U(n,γ).

The responses considered are as in the previous case: the eigenvalue k, the ratio of leakage

to neutron production, and the ratio of 238U(n,γ) to 235U(n,f) in the core. Calculations were

done in both the research code Shuriken and MCNP6.2 using 105 particles (on average) per

batch, 50 inactive batches, and 1000 active batches.

The energy-integrated results for the responses and unresolved resonance sensitivity co-

efficients are given in Table XVI. All three responses considered are quite sensitive to the
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unresolved resonance cross sections of 235U(n,f) and 238U(n,γ). While still a fast spectrum

system, the neutron spectrum in this MCFR model is considerably softer than the Big Ten

model. For reference, about 50% of the fissions in the MCFR model are from neutrons with

a kinetic energy < 100 keV, whereas in the Big Ten model this is about 20%. Because the

spectrum is softer, there is a larger overlap with the unresolved resonance range of 235U than

in the Big Ten case.

The obtained results largely agree within 2σ of their MCNP6.2 counterparts. The ratio of

leakage to neutron production ratio is slightly outside 2σ, but the agreement is within 0.1%,

so this could be the result of either a statistical anomaly or perhaps from minor differences

in the implementation of handling and sampling the continuous-energy nuclear data.

Tables XVII and XVIII provide unresolved resonance sensitivity coefficients for 235U(n,f)

with respect to k and the ratio of the core 238U(n,γ) to 235U(n,f) reaction rates. As with Big

Ten, the values for leakage are not significantly different in shape.

Table XV: Atomic Densities (b−1cm−1) of the Molten Chloride Fast Reactor Model

UCl3-NaCl Core
23Na 8.1425× 10−3 235U 6.3010× 10−4

35Cl 1.5410× 10−2 238U 3.4350× 10−3

37Cl 4.9279× 10−3

316 SS Reflector

C 3.2090× 10−4 58Ni 6.7052× 10−3

28Si 1.5815× 10−3 60Ni 2.5828× 10−3

29Si 8.0620× 10−5 61Ni 1.1228× 10−4

30Si 5.3175× 10−5 62Ni 3.5803× 10−4

50Cr 6.8436× 10−4 64Ni 9.1107× 10−5

52Cr 1.3197× 10−2 92Mo 1.8389× 10−4

53Cr 1.4965× 10−3 94Mo 1.1535× 10−4

54Cr 3.7250× 10−4 95Mo 1.9920× 10−4

55Mn 1.7538× 10−3 96Mo 2.0924× 10−4

54Fe 3.3044× 10−3 97Mo 1.2025× 10−4

56Fe 5.1825× 10−2 98Mo 3.0489× 10−4

57Fe 1.1975× 10−3 100Mo 1.2226× 10−4

58Fe 1.5816× 10−4
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Table XVI: Energy-Integrated Response and Unresolved Resonance Range Sensitivity Coef-
ficients of the Molten Chloride Fast Reactor Model (Top: Shuriken, Bottom: MCNP6.2)

Response Value Sensitivity 235U(n,f) Sensitivity 238U(n,γ)

k
1.00007 ± 0.00010 1.1080e-01 ± 1.0651e-03 -1.0849e-01 ± 4.7897e-04
1.00011 ± 0.00004 1.1147E-01 ± 2.3409e-04 -1.0821E-01 ± 7.5747e-05

Leakage
0.09570 ± 0.00003 -1.0527e-01 ± 2.6950e-03 8.2752e-02 ± 1.2075e-03
0.09578 ± 0.00003 — —

238U(n,γ) / 235U(n,f)
0.76162 ± 0.00013 -2.3053e-01 ± 1.6872e-03 3.8511e-01 ± 7.5835e-04
0.76145 ± 0.00011 — —

Table XVII: Computed Unresolved Resonance Sensitivity Coefficients for k With Respect to
235U(n,f) of the Molten Chloride Fast Reactor Model

E (keV) 2.25 2.5 3 3.5 4 4.5 5.5 6.5 7.5
Band = 1 6.585e-08 1.376e-06 5.469e-07 1.968e-06 -1.334e-06 8.198e-07 -4.987e-07 9.895e-06 -3.440e-06
2 -9.520e-07 2.207e-06 2.438e-06 1.519e-06 8.887e-07 -1.207e-06 3.239e-06 1.983e-06 9.263e-06
3 -6.955e-07 4.342e-06 3.701e-06 1.437e-05 3.124e-05 2.303e-05 6.068e-05 3.037e-05 1.329e-04
4 -2.384e-06 9.180e-06 2.665e-06 1.701e-05 7.944e-05 3.320e-05 1.430e-04 1.098e-04 2.276e-04
5 2.350e-05 3.670e-05 1.074e-05 3.624e-05 7.780e-05 2.218e-04 2.950e-04 2.421e-04 2.933e-04
6 4.203e-05 2.359e-05 4.364e-05 1.263e-04 2.398e-04 2.843e-04 6.055e-04 4.398e-04 4.580e-04
7 3.653e-05 4.654e-05 1.917e-06 1.614e-04 1.710e-04 4.133e-04 7.057e-04 8.884e-04 4.862e-04
8 2.723e-05 3.136e-05 9.914e-05 1.901e-04 3.220e-04 3.920e-04 7.093e-04 7.432e-04 5.577e-04
9 4.083e-05 1.022e-04 3.044e-05 1.094e-04 2.188e-04 4.543e-04 6.263e-04 7.116e-04 9.014e-04
10 3.399e-05 6.551e-05 8.174e-05 1.637e-04 3.026e-04 4.507e-04 5.791e-04 7.111e-04 9.447e-04
11 8.878e-05 1.211e-04 1.078e-04 1.914e-04 3.059e-04 7.250e-04 7.849e-04 1.047e-03 1.185e-03
12 2.846e-05 6.612e-05 1.929e-05 7.662e-05 1.024e-04 3.362e-04 6.807e-04 5.671e-04 4.548e-04
13 1.946e-05 7.488e-06 1.287e-05 5.362e-05 1.362e-04 2.786e-04 5.135e-04 4.366e-04 3.273e-04
14 5.856e-06 1.031e-05 1.314e-06 9.514e-06 1.758e-05 1.764e-04 1.111e-04 2.711e-04 2.511e-04
15 2.177e-06 1.812e-05 1.222e-06 6.223e-07 1.850e-05 2.913e-05 1.365e-05 1.995e-05 6.682e-05
16 -7.800e-07 1.167e-05 1.967e-07 -8.238e-07 1.042e-05 3.047e-05 3.014e-04 6.387e-05 1.312e-04
Sum 3.441e-04 5.578e-04 4.197e-04 1.153e-03 2.033e-03 3.848e-03 6.133e-03 6.293e-03 6.424e-03
8.5 9.5 10 12.5 13.1 15 17 20 24 25
8.496e-05 2.992e-06 1.503e-05 2.341e-05 3.327e-06 7.712e-05 6.289e-05 4.271e-05 2.521e-04 1.023e-05
4.272e-05 4.841e-06 5.608e-06 6.246e-06 1.974e-06 1.748e-06 9.947e-06 2.508e-05 1.901e-05 2.391e-08
6.355e-05 2.455e-05 4.961e-05 2.763e-05 4.806e-05 8.042e-05 5.979e-05 2.199e-04 4.517e-05 4.369e-05
1.044e-04 6.530e-05 8.528e-05 1.537e-04 2.008e-04 1.515e-04 9.329e-05 9.388e-04 2.701e-04 1.023e-04
2.439e-04 1.134e-04 3.637e-04 5.609e-04 3.567e-04 4.313e-04 3.180e-04 8.074e-04 4.690e-04 1.373e-04
4.755e-04 4.363e-04 8.468e-04 7.029e-04 8.028e-04 1.079e-03 8.828e-04 2.076e-03 1.060e-03 3.002e-04
4.401e-04 4.763e-04 1.528e-03 8.514e-04 7.780e-04 9.248e-04 1.338e-03 2.227e-03 1.468e-03 3.590e-04
6.533e-04 5.777e-04 1.356e-03 8.712e-04 7.786e-04 1.046e-03 1.805e-03 1.644e-03 1.585e-03 3.241e-04
4.881e-04 6.370e-04 9.024e-04 1.193e-03 1.024e-03 8.259e-04 1.805e-03 1.885e-03 1.771e-03 2.891e-04
6.693e-04 6.641e-04 1.112e-03 1.119e-03 1.014e-03 9.611e-04 1.294e-03 2.142e-03 1.055e-03 2.579e-04
6.546e-04 5.838e-04 9.619e-04 1.563e-03 9.556e-04 1.587e-03 1.722e-03 2.843e-03 1.253e-03 2.129e-04
3.220e-04 5.054e-04 4.777e-04 3.945e-04 5.665e-04 8.032e-04 9.399e-04 8.486e-04 1.396e-03 5.516e-05
1.776e-04 2.898e-04 2.929e-04 2.822e-04 2.686e-04 4.787e-04 8.892e-04 6.272e-04 4.134e-04 5.220e-05
2.927e-05 1.095e-04 2.858e-04 1.839e-04 1.158e-04 2.150e-04 7.803e-05 3.039e-04 1.954e-04 6.479e-05
4.725e-05 2.918e-05 2.031e-05 1.029e-05 2.263e-05 4.583e-05 -6.709e-07 5.236e-05 2.613e-05 5.154e-06
7.457e-05 3.009e-06 2.997e-06 8.148e-05 2.602e-04 2.469e-04 4.977e-05 1.045e-04 3.578e-04 3.659e-05
4.571e-03 4.523e-03 8.306e-03 8.025e-03 7.197e-03 8.956e-03 1.135e-02 1.679e-02 1.164e-02 2.251e-03
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Table XVIII: Computed Unresolved Resonance Sensitivity Coefficients for the 238U(n,γ) to
235U(n,f) Ratio With Respect to 235U(n,f) of the Molten Chloride Fast Reactor Model

E (keV) 2.25 2.5 3 3.5 4 4.5 5.5 6.5 7.5
Band = 1 -1.053e-06 -8.079e-07 -6.827e-07 -4.803e-06 -4.783e-06 -3.633e-06 -6.197e-06 -4.882e-05 -4.981e-05
2 -1.053e-06 -2.257e-06 -8.491e-07 -8.058e-06 -3.958e-06 -4.013e-06 -6.223e-06 -2.616e-06 -1.799e-05
3 -3.271e-06 -1.008e-05 -1.276e-05 -4.003e-05 -7.099e-05 -3.786e-05 -6.678e-05 -6.332e-05 -2.481e-04
4 -6.343e-06 -1.405e-05 -2.112e-05 -5.552e-05 -1.010e-04 -1.456e-04 -2.897e-04 -2.654e-04 -3.746e-04
5 -4.452e-05 -5.494e-05 -6.973e-05 -1.459e-04 -2.145e-04 -3.137e-04 -5.091e-04 -4.768e-04 -6.795e-04
6 -1.193e-04 -9.677e-05 -1.041e-04 -2.440e-04 -4.633e-04 -6.493e-04 -1.282e-03 -9.484e-04 -9.448e-04
7 -1.126e-04 -1.249e-04 -1.012e-04 -2.776e-04 -4.269e-04 -7.885e-04 -1.556e-03 -1.601e-03 -1.024e-03
8 -1.394e-04 -1.266e-04 -1.152e-04 -3.979e-04 -4.399e-04 -8.874e-04 -1.519e-03 -1.538e-03 -1.235e-03
9 -1.461e-04 -1.614e-04 -1.419e-04 -3.318e-04 -4.804e-04 -8.180e-04 -1.332e-03 -1.432e-03 -1.778e-03
10 -1.453e-04 -1.962e-04 -1.006e-04 -4.071e-04 -6.918e-04 -1.141e-03 -1.384e-03 -1.509e-03 -2.010e-03
11 -1.571e-04 -2.026e-04 -1.533e-04 -4.522e-04 -6.989e-04 -1.469e-03 -1.611e-03 -2.005e-03 -1.998e-03
12 -1.040e-04 -1.377e-04 -8.461e-05 -1.913e-04 -3.382e-04 -8.270e-04 -1.345e-03 -1.031e-03 -8.702e-04
13 -4.049e-05 -5.994e-05 -3.821e-05 -1.010e-04 -3.012e-04 -8.678e-04 -9.932e-04 -9.276e-04 -6.214e-04
14 -2.413e-05 -6.905e-05 -2.271e-05 -8.098e-05 -8.485e-05 -2.876e-04 -3.595e-04 -4.651e-04 -4.018e-04
15 -4.518e-06 -1.503e-05 -1.646e-06 -7.509e-06 -2.328e-05 -5.523e-05 -3.814e-05 -5.590e-05 -1.677e-04
16 -6.964e-06 -1.106e-05 -3.216e-06 -4.749e-06 -1.801e-05 -7.531e-05 -3.878e-04 -1.368e-04 -2.111e-04
Sum -1.056e-03 -1.283e-03 -9.719e-04 -2.750e-03 -4.362e-03 -8.371e-03 -1.269e-02 -1.251e-02 -1.263e-02
8.5 9.5 10 12.5 13.1 15 17 20 24 25
-1.260e-04 -6.553e-06 -9.832e-06 -1.090e-04 -7.456e-06 -1.473e-04 -1.255e-04 -1.153e-04 -4.863e-04 -6.671e-06
-2.338e-05 -1.567e-06 -1.141e-05 -1.245e-05 -8.285e-06 -2.039e-05 -1.960e-05 -2.910e-05 -5.837e-05 -1.156e-06
-1.196e-04 -2.819e-05 -1.105e-04 -8.708e-05 -9.230e-05 -1.131e-04 -1.654e-04 -4.421e-04 -9.416e-05 -7.490e-05
-1.922e-04 -1.086e-04 -2.161e-04 -2.921e-04 -3.149e-04 -3.656e-04 -1.762e-04 -2.010e-03 -5.898e-04 -2.302e-04
-5.165e-04 -2.627e-04 -6.610e-04 -1.236e-03 -9.411e-04 -1.003e-03 -7.096e-04 -1.591e-03 -1.018e-03 -3.198e-04
-1.063e-03 -7.453e-04 -1.884e-03 -1.716e-03 -1.633e-03 -2.293e-03 -1.767e-03 -4.129e-03 -2.461e-03 -6.048e-04
-9.508e-04 -9.308e-04 -3.163e-03 -1.830e-03 -1.628e-03 -1.831e-03 -2.422e-03 -4.420e-03 -2.980e-03 -5.833e-04
-1.062e-03 -1.128e-03 -2.503e-03 -1.909e-03 -1.735e-03 -2.202e-03 -3.608e-03 -3.218e-03 -3.155e-03 -5.067e-04
-1.046e-03 -1.078e-03 -2.270e-03 -2.440e-03 -2.165e-03 -1.823e-03 -3.809e-03 -4.218e-03 -3.853e-03 -5.480e-04
-1.393e-03 -1.326e-03 -2.252e-03 -2.707e-03 -2.124e-03 -2.091e-03 -2.744e-03 -4.396e-03 -2.045e-03 -5.301e-04
-1.500e-03 -1.350e-03 -2.168e-03 -3.157e-03 -1.948e-03 -3.169e-03 -3.273e-03 -5.713e-03 -2.651e-03 -4.255e-04
-6.346e-04 -8.983e-04 -1.066e-03 -1.060e-03 -1.123e-03 -1.812e-03 -2.056e-03 -1.775e-03 -3.261e-03 -2.616e-04
-2.709e-04 -6.813e-04 -9.181e-04 -6.680e-04 -6.193e-04 -1.157e-03 -1.667e-03 -1.075e-03 -8.955e-04 -6.643e-05
-8.855e-05 -2.084e-04 -4.973e-04 -3.325e-04 -2.336e-04 -5.110e-04 -1.787e-04 -5.199e-04 -3.457e-04 -6.127e-05
-7.504e-05 -4.167e-05 -7.747e-05 -4.102e-05 -5.300e-05 -5.500e-05 -1.795e-05 -8.902e-05 -4.955e-05 -9.763e-06
-1.316e-04 -6.722e-05 -2.445e-05 -1.919e-04 -7.083e-04 -5.534e-04 -1.313e-04 -2.575e-04 -6.162e-04 -9.073e-05
-9.192e-03 -8.864e-03 -1.783e-02 -1.779e-02 -1.533e-02 -1.915e-02 -2.287e-02 -3.400e-02 -2.456e-02 -4.321e-03
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V Conclusions & Future Work

A Monte Carlo method for computing sensitivity coefficients of unresolved resonance prob-

ability table data using differential operator sampling was derived and implemented in a

research code, Shuriken. Analytical benchmarks using slab geometry were created to ver-

ify the method and implementation. Numerical calculations of eigenvalue problems were

performed quantifying the magnitude of the unresolved resonance sensitivity coefficients in

representative application problems.

Implementing this method in a production transport code should be feasible provided

it already supports differential operator sampling. The one significant modification to the

codebase would be to provide the perturbation routines access to the sampled data and bands

from the probability table. This may necessitate modifying or exposing data structures used

in the collision physics routines to the scoring routines.

The hope of the author is that by providing a method to compute sensitivity coefficients

to unresolved resonance probability table data, it provides a reason for the nuclear data

community to develop a format for unresolved resonance covariances and to populate the

data for important nuclides. This covariance data could then be used to obtain more accurate

estimates of uncertainties of quantities of interest in fast spectrum systems.

Regardless of whether new unresolved resonance covariance table data is developed, the

three analytical benchmarks developed in this paper can be applied to existing or newly

developed Monte Carlo neutron transport codes to verify their probability table sampling

algorithms. As stated previously, the benchmarks made some simplifying assumptions and

followed the MCNP-style implementation. Their application to other codes therefore may

require some adjustment to be consistent with other implementations. The benchmarks can

in principle be further generalized to relax many of the assumptions, albeit increasing the

complexity of the analytical solution.
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