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ABSTRACT

Data augmentation is a widely adopted technique utilized to
improve the robustness of automatic speech recognition (ASR).
Employing a fixed data augmentation strategy for all training
data is a common practice. However, it is important to note
that there can be variations in factors such as background noise,
speech rate, etc. among different samples within a single train-
ing batch. By using a fixed augmentation strategy, there is a risk
that the model may reach a suboptimal state. In addition to the
risks of employing a fixed augmentation strategy, the model’s
capabilities may differ across various training stages. To address
these issues, this paper proposes the method of sample-adaptive
data augmentation with progressive scheduling(PS-SapAug).
The proposed method applies dynamic data augmentation in a
two-stage training approach. It employs hybrid normalization
to compute sample-specific augmentation parameters based on
each sample’s loss. Additionally, the probability of augmen-
tation gradually increases throughout the training progression.
Our method is evaluated on popular ASR benchmark datasets, in-
cluding Aishell-1 and Librispeech-100h, achieving up to 8.13%
WER reduction on LibriSpeech-100h test-clean, 6.23% on test-
other, and 5.26% on AISHELL-1 test set, which demonstrate the
efficacy of our approach enhancing performance and minimizing
errors.

Index Terms— ASR, hybrid normalization, progressive
scheduling, data augmentation

1. INTRODUCTION

In recent years, end-to-end models have emerged as the primary
paradigm for automatic speech recognition (ASR) applications.
These models are commonly implemented using frameworks like
Connectionist Temporal Classification (CTC) loss function [1,
2], attention mechanism [3, 4], or joint CTC-attention [5], in con-
junction with various neural network structures such as LSTM
[6], Transformer [7], and Conformer [8].

Training end-to-end ASR systems typically require a large
amount of data to prevent overfitting. Data augmentation offers
a promising approach to address this challenge by increasing the
quantity of speech data using existing resources [9, 10]. How-
ever, much of the existing work on data augmentation primarily
focuses on exploring fixed methods to introduce more diverse
data to the model. For instance, the widely effective SpecAug-
ment [11] method applies a fixed number and size of masks to
the temporal and frequency domains(log mel spectrogram) of the
data features.

Using a fixed data augmentation strategy can lead to exces-
sive or insufficient augmentation. If the applied augmentation
operations are too many or too few, it can have negative effects
on the model training [12]. For instance, within the same batch
after applying SpecAugment, if a sample has a higher loss, it
indicates that it is difficult for the model to learn from that sam-
ple, suggesting that the data augmentation applied may be too
intense. Conversely, if a sample has a lower loss, it means that
it is relatively easy for the model, indicating that the data aug-
mentation applied may be too mild [13]. In such cases, using
manual fixed strategies makes it difficult to precisely control the
intensity of data augmentation. On the other hand, allowing the
model to automatically learn data augmentation strategies can
better adapt to the varying learning difficulties of different sam-
ples [14, 15, 16], leading to optimal augmentation effects.

SpecAugment and SpecSub [17] have achieved promising
improvements in ASR by using fixed augmentation strategies.
Sapaugment builds upon SpecAugment by introducing sample
adaptation and augmentation policy search methods, leading to
further enhancements. However, Sapaugment’s calculation of
augmentation policy solely relies on the ranking of sample losses
[13], disregarding the individual differences among samples. Ad-
ditionally, its strategy search method is time-consuming. Simi-
larly, G-Augment adopts spatial search techniques to determine
the sequence and parameter values for applying various data aug-
mentation methods [18]. The contributions of this paper can be
summarized as follows:

In this paper, we introduce a novel training method called
Sample Adaptive Data Augmentation with Progressive Schedul-
ing. This method aims to improve the Character Error Rate
(CER) performance in automatic speech recognition. The en-
tire experiment is conducted using the Wenet framework with
the Conformer model. Firstly, we perform pre-training using
the basic SpecAug method. Secondly, we apply the proposed
innovative method on top of the pre-trained model, making ad-
justments in two dimensions. At the micro-level within a single
batch, we calculate the appropriate data augmentation intensity
using hybrid normalization methods. At the macro level during
training, we gradually adjust the probability of applying data
augmentation based on the epoch. This progressive scheduling
allows for adaptive data augmentation without increasing model
parameters or introducing time-consuming processes. The pro-
posed method demonstrates superior performance compared to
WeNet Conformer with SpecAugment, with a relative improve-
ment of 8.13% on the test-clean set and 6.2% on the test-other set
in the LibriSpeech dataset. Additionally, the proposed method
achieves a relative reduction of 5.2% in Character Error Rate
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(CER) on the AISHELL-1 dataset.

• Introduces Hybrid Normalization, a novel algorithm for
calculating adaptive strategy values in this study.

• Progressive Learning adapts data augmentation probabil-
ity based on training epochs, accounting for the model’s
evolving capabilities.

• Pre-training and adaptation involve further training a pre-
trained model using the aforementioned strategy. This ap-
proach effectively utilizes available data to achieve addi-
tional performance improvements.

2. RELATED WORK

In the field of speech recognition, several spectral augmentation
methods have been proposed with the aim of improving the per-
formance of speech recognition systems. These methods intro-
duce variations in the audio spectrogram, allowing the models to
learn from a more diverse set of training data.
SpecAug (Spectral Augmentation) [11], the method applies time
masking to mask blocks of time steps, and frequency masking to
mask blocks of frequency steps. In the training process of ASR,
X (t, f) represents the input feature in the form of a spectrogram
before data augmentation, where t represents the time dimension
and f represents the frequency dimension.

• Time masking technique randomly erases portions of the
audio signal in the time domain. It performs Nt rounds
masking operations of the X(t1 : t2, f) = 0, where t1 <

t2 < Tmax, resulting in a new sample Xt mask.

• Frequency masking technique randomly removes value in
the frequency domain, it performs Nf times operations of
the X(t, f1 : f2) = 0, where f1 < f2 < Fmax, resulting
in a new sample Xf mask.

SpecSub (Spectral Substitution) [17] is a spectral augmentation
method that randomly substitutes a framed chunk with the previ-
ous chunk. The primary technology of SpecSub is time substitu-
tion.

• Time Sub technique randomly substitutes a framed chunk
with the previous chunk in the temporal dimension. It per-
forms Ns substitution operations of the X(t : t+∆t, f) =

X(t′: t′+∆t, f), where t, t′< Tmax −∆t , resulting in a
new sample Xt sub.

Sapaugment [13] proposed a data-augmentation framework that
automatically adapts the strength of the perturbation based on the
loss values of the samples. The sample sample-adaptive policy,
f , maps the training loss value, l, of a sample to a scalar, λ ∈
[0, 1]. The λ = f(l) determines the amount of augmentation ap-
plied. The policy, f , is parameterized by two hyperparameters,s,
a, and is defined using incomplete beta function (IBF) [19] as
follows:

fs,a(l) = 1− IBF (s(1− a), s · a; lrank/B) (1)

where lrank = 1,2,...,B is the ranking of the loss value l in a
mini-batch, B is the mini-batch size. The range of normalized
loss ranking lrank/B to standardize the input to the policy.
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Fig. 1: The overall process

3. PROPOSED METHOD

SpecAugment utilizes a fixed augmentation strategy without
adaptive adjustments. It applies a constant number of masks,
typically set to 2 in the case of WeNet Conformer [17]. SapAug-
ment [13]introduces adaptive policy adjustments to data aug-
mentation. However, the policy based on loss rank fails to
consider the variability of individual samples within a batch. To
address these issues, as shown in Figure 1, we propose a novel
normalization calculation algorithm that is applied within a sin-
gle batch to obtain sample-specific adaptive data augmentation
intensity values. Additionally, in the overall training process, we
progressively increase the probability of applying stronger data
augmentation as the number of epochs increases.

3.1. Hybrid Normalization policy

In training, we begin by calculating the sample loss within a
batch that hasn’t experienced data augmentation. Li represents
the loss of the i-th sample, while Lvar and Lmean represent the
variance and mean of the sample losses, respectively. The pro-
cess and functions of the Hybrid Normal policy can be summa-
rized as follows:

L′
i=


Lmean − 2Lvar if Li < Lmean − 2Lvar

Lmean + 2Lvar if Li > Lmean + 2Lvar

Li otherwise
(2)

L′′
i =

L′
i

L′
i+mean(L′)

(3)

L′′′
i =

L′′
i −min(L′′)

max(L′′)−min(L′′)
(4)

λi = 1− IBF (L′′′
i ) (5)

As shown in Equations 2, 3, and 4, the first step is to limit the
noisy points (either too large or small) in the original loss values.
In the second step, the processed loss values are normalized using
mean normalization, which involves centering each value around
the mean. Subsequently, maximum-minimum normalization is
applied to scale the normalized losses within a specified range.
Finally, the IBF function is employed to determine the policy λi



for each sample. Table 1 shows how DA is applied during train-
ing, The sample’s policy λ is mapped to the times of use of data
augmentation operations using a straightforward 1-dimensional
linear mapping.

Table 1: The relationship between the times of use of the three
spectrum data augmentation (DA) methods and sample’s Hybrid
Normalization policy value λ.

Times of DA Prob of DA Mapping from λ Range

Nt(time mask)
pmask Nt = ⌈4 ∗ λ⌉ [0, 1, 2, 3, 4, 5, 6]

1− pmask Nt = 2 [2]

Nf (freq mask)
pmask Nf = ⌈4 ∗ λ⌉ [0, 1, 2, 3, 4, 5, 6]

1− pmask Nf = 2 [2]

Ns(time sub)
psub Ns = ⌈2 ∗ λ⌉ [0, 1, 2, 3, 4]

1− psub Ns = 1 [1]

3.2. Progressive Scheduling

Throughout the entire training process, we have observed the
following trends: In the early stages of training, the model ex-
hibits limited capability, resulting in relatively high loss values
for the training samples. However, as the model’s performance
improves through training, the overall loss of the entire train
dataset tends to gradually decrease per epoch. This indicates
that the model has successfully adapted to the existing level of
data augmentation strength and adopted stronger data augmenta-
tion to train the model, enhancing its capabilities. In our work,
each data augmentation method has an associated probability P
to control its application. With probability P, adaptive data aug-
mentation is performed during training. With probability 1-P,
non-adaptive augmentation is performed. We use progressive
scheduling to increase adaptive data augmentation strength by
raising the probability P over time. The detailed process is out-
lined as follows:

epochpolicy = IBF (epoch/totalepoch) (6)

pmask, psub = Flinear(epochpolicy) (7)

As defined by Equations 6 and 7, we first calculate the
scheduling policy value epochpolicy based on the current training
epoch. Secondly, based on the epochpolicy , compute the pmask

and psub values by a linear transform function Flinear , in which
the output DA probability increases as the input epochpolicy
increases. pmask is applied to time mask and freq mask,
and psub is applied to time sub. As depicted by columns 2,
3, and 4 in Table 1, pmask and psub determine which type of
DA training method to apply. In Table 1, the upper halves of
rows 2 through 4 present results for the adaptive method, while
the lower halves show the fixed method. The adaptive technique
employed more intense DA compared to the fixed approach Con-
sequently, pmask and psub gradually increase along with more
training epochs, indicating that the model will be trained with
stronger DA as epochs progress.

3.3. Two-stage Training

We employ a two-stage training approach. In the first stage,
we train a base model using a fixed data augmentation strategy.
This pre-trained model has enough capability to recognize gen-
eral samples. In the subsequent adaptive training stage, We fo-
cus on strengthening the model’s performance in a more specific
way. For relatively difficult training samples, we apply fewer
data augmentation techniques to allow the model to first learn
their fundamental features. Once the model’s capabilities ade-
quately cover these fundamental features, we gradually increase
the intensity of data augmentation. Conversely, for simpler sam-
ples, we utilize more extensive data augmentation to help the
model further learn the fine-grained features of those samples.

By dividing the training process into separate stages, we can
more effectively address different sample complexities. This
staged approach can achieve better results.

4. EXPERIMENTS

4.1. Dataset

For the speech recognition task, we utilize two datasets to eval-
uate this method: AISHELL-1 [20] and LibriSpeech [21].
AISHELL-1 contains 120,098 utterances for training, 14,326
utterances for development, and 7,176 utterances for testing.
LibriSpeech consists of around 1,000 hours of English audio-
book speech recordings. For the purpose of efficient model
training, we use the 100-hour LibriSpeech-100h subset con-
taining US English accents. Performance is evaluated on the
test-clean and test-other sets from LibriSpeech.

4.2. Experimental settings

Aishell-1. We conducted an evaluation of the Aishell-1 dataset
using the encoder-decoder architecture based on Wenet [17] Con-
former [8]. The model architecture consists of a 12-layer encoder
with a feed-forward dimension of 2048 and depth-wise convolu-
tion with a kernel size of 3. The decoder comprises 6 layers with
2048 units and 4 attention heads with a dimension of 512. The
acoustic feature used is an 80-dimensional Fbank computed with
a 25-ms window and a 10-ms shift. During the training phase,
we used the following configurations: a learning rate of 0.002, a
batch size of 18, 4 GPUs were utilized, the dither was set to 0.1,
and the CTC weight was set to 0.3. The model was trained for a
total of 240 epochs. In the decoding phase, the CTC weight was
set to 0.5.
LibriSpeech 100h. For the evaluation of the LibriSpeech
dataset, we employed the Wenet Conformer architecture, us-
ing the same model configuration as Aishell-1. The training was
performed with a batch size of 24 and trained for 120 epochs,
utilizing a learning rate of 0.004. 80-dimensional mel-filter bank
features were used for acoustic feature extraction.

4.3. Evaluation

In this section, we present experimental results on the Aishell-
1 and LibriSpeech 100h benchmark datasets. Our proposed



method, PS-SapAug, is compared against other speech data aug-
mentation techniques, namely NoAug, SpecAug and SapAug.
Additionally, pre-trained model results derived from intermedi-
ate SpecAug training are reported. The PS-SapAug results were
obtained by further training the pre-trained SpecAug model.

Table 2: Comparison of Proposed Augmentation against base-
lines on the Aishell-1 and Librispeech 100h dataset. All num-
bers are percentage character word error (CER) or word error
rate (WER) (lower is better).

Method Aishell-1 LibriSpeech 100h

CER/WER Test Test-clean Test-other

NoAug 5.04 9.20 26.82

SpecAug [11] 4.62 8.36 23.34

SapAugment [13] 4.60 8.03 22.74

Pre-trained 6.01 10.66 28.43

PS-SapAug 4.36 7.59 21.46

According to the results in Table 2, our proposed PS-SapAug
method achieves the best performance among the tested data
augmentation methods. The pre-trained model, which came
from an intermediate stage of SpecAug training, performs more
poorly. These results demonstrate that PS-SapAug, compared
to SapAugment utilizes a loss rank strategy and is shown to be
superior.
Aishell-1. We compare the proposed method to the model with-
out any augmentation, and the model trained with SpecAugment
[11] in Wenet Conformer architecture, additionally, we present
the results of SapAugment for comparison. As shown in Table 2,
The proposed method performs better than SapAugment and out-
performs SpecAugment with up to a 5.62% relative reduction in
CER when evaluated on the Aishell-1 Mandarin speech dataset.
Librispeech 100h. We further evaluate our method on the Lib-
rispeech English dataset. The results demonstrate comparable
performance improvements over SpecAugment and SapAug-
ment, consistent with the result on the Aishell-1 Mandarin
dataset. The proposed method demonstrates relative WER im-
provements of 8.13% and 6.23% on the Librispeech test-clean
and test-other datasets respectively, compared to the baseline
SpecAugment method.

4.4. Ablation Study

In this section, we perform ablation studies on the LibriSpeech
100h and AISHELL-1 datasets to analyze the individual contri-
butions of each component of the proposed method.

As can be seen from Table 3, we conducted a study on the ef-
fects of hybrid normalization and progressive scheduling method
on the experimental results. Row 1 shows the results using basic
SpecAugment data augmentation as the baseline model. Row 2
shows the results by only adding our proposed hybrid normal-
ization approach on top of the baseline model. Row 3 shows
the results by only adding our proposed progressive learning rate

Table 3: The ablation study analyzes the effect of hybrid nor-
malization and progressive scheduling strategies on model per-
formance. Character error rate(CER) on the Aishell-1 and Word
Error Rate (WER) on the LibriSpeech 100h

Method Aishell-1 LibriSpeech 100h

WER Test Test-clean Test-other

SpecAug 4.62 8.36 23.34

+ Hybrid Normalization 4.50 7.87 22.55

+ Progressive Scheduling 4.45 7.75 22.14

PS-SapAug 4.36 7.59 21.46

scheduling strategy on top of the baseline model. Row 4 shows
the results by adding both hybrid normalization and progres-
sive learning rate scheduling strategies on top of the baseline
model. Based on the obtained results, we can draw the follow-
ing conclusions: First, augmentation with the proposed Hybrid
Normalization policy and Progressive scheduling augmentation
probability can help to improve the performance compared to the
SpecAugment, respectively. Second, adopting Sample Adaptive
Data Augmentation with Progressive Scheduling to train is better
than either one of them.
Table 4: The ablation study examines the influence of a two-
stage training strategy on model performance. Character error
rate(CER) on the Aishell-1 and Word Error Rate (WER) on the
LibriSpeech 100h

Method/Dataset Aishell-1 LibriSpeech 100h

CER/WER Test Test-clean Test-other

Standard PS-SapAug 4.64 8.13 23.12

Two-Stage PS-SapAug 4.36 7.59 21.46

As shown in Table 4, ”Standard” refers to training PS-
SapAug from scratch, whereas ”Two-Stage” first involves SpecAug
pre-training before applying PS-SapAug. When considering the
Aishell-1 and LibriSpeech 100h datasets, the Two-Stage process
led to markedly stronger results than the Standard approach.
The results suggest that a two-stage training workflow is a more
effective strategy.

5. CONCLUSION

In this paper, we propose a novel two-stage training approach
called PS-SapAug for applying data augmentation to ASR. At
the micro-level, hybrid normalization is introduced to compute
sample-specific augmentation based on loss, allowing adaptive
adjustment of augmentation strength. At the macro level, pro-
gressive scheduling automatically increases the augmentation
probability over training to address varying model capabili-
ties. Evaluation on Aishell-1 and Librispeech demonstrates
PS-SapAug achieves significantly improved performance com-
pared to standard fixed augmentation, highlighting the benefits
of the proposed dynamic sample-adaptive and stage-aware aug-
mentation techniques.
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