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POSITIVE SCALAR CURVATURE AND ISOLATED CONICAL

SINGULARITY

XIANZHE DAI, YUKAI SUN, AND CHANGLIANG WANG

Abstract. We prove a Geroch type result for isolated conical singularity. Namely, we
show that there is no Riemannian metric g on X#T n with an isolated conical singularity
which has nonnegative scalar curvature on the regular part, and is positive at some
point. In particular, this implies that there is no metric on tori with an isolated conical
singularity and positive scalar curvature. We also prove that a scalar flat Riemannian
metric g on X#T n with finitely many isolated conical singularities must be flat, and
extend smoothly across the singular points. We do not a priori assume that a conically
singular point on X is a manifold point; i.e., the cross section of the conical singularity
may not be spherical.
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1. Introduction

One of the fundamental results in the study of scalar curvature is that the n-torus T n

does not admit any complete Riemannian metric of positive scalar curvature. This result,
was known as the Geroch conjecture, was first proved by Schoen-Yau [33] in dimensions
n ≤ 7 using the minimal surface method, and later by Gromov-Lawson [15, 16] in arbitrary
dimensions using the Dirac operator method. More generally, Gromov-Lawson[16] proved
that a Λ2-enlargeable manifold does not admit any complete metric with positive scalar
curvature. For the notion of Λ2-enlargeability, we refer to [16], also [39] in which this
notion is referred as area enlargeability. We note that tori T n are Λ2-enlargeable. If W
is a closed and Λ2-enlargeable manifold, then for any closed spin manifold M of the same
dimension, the connected sum M#W is also Λ2-enlargeable, in particular, so is M#T n.
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In [39], Wang-Zhang extended Gromov-Lawson’s result to allow the spin manifold M to
be non-compact. They proved that if W is a closed Λ2-enlargeable manifold and M is an
arbitrary spin manifold of the same dimension, then the connected sum M#W does not
admit any complete metric of positive scalar curvature. In the non-spin setting, Chodosh-
Li [5] proved that for 3 ≤ n ≤ 7 and any manifold M of dimension n, there is no complete
metric of positive scalar curvature on M#T n. In dimension three, this was also proved
by Lesourd-Unger-Yau [24]. Recently, Chen-Chu-Zhu [4] proved that for a n-dimensional
aspherical manifold N and any n-dimensional manifold M , the connected sum M#N

does not admit a complete positive scalar curvature metric for 3 ≤ n ≤ 5.
The resolution of the Geroch Conjecture and its generalizations have played crucial roles

in many important studies concerning scalar curvature, for example Schoen-Yau’s resolu-
tion of the positive mass theorem [34] and Schoen’s resolution of the Yamabe problem [31].
Recently, Zhu [40] has proved that the generalized Geroch conjecture implies the positive
mass theorem with arbitrary ends, which has also been proved by Lesourd-Unger-Yau
[24].

Motivated by the investigation of weak notions of nonnegative scalar curvature, e.g.,
Gromov’s polyhedral comparison theory [17], and the positive mass theorem for singular
metrics, it is natural to study the existence problem of incomplete or singular Riemannian
metrics with positive scalar curvature. In this paper, we focus on metrics with isolated
conical singularities, and our main result is as follows.

Theorem 1.1. Let M be an n-dimensional closed smooth manifold with n ≥ 3. Assume
that either n ≤ 7, or M is spin. Then there is no Riemannian metric g on M#T n with
finitely many isolated conical singularities, and positive scalar curvature on the regular
part. Moreover, the conically singular metric with nonnegative scalar curvature must be
flat everywhere on M#T n, and extend smoothly across the singular points.

Here positive scalar curvature means that the scalar curvature is nonnegative and
strictly positive somewhere.

Remark 1.2. In Theorem 1.1, when M is spin, the non-existence conclusion still holds if
we replace T n by any Λ2-enlargeable closed manifold of the same dimension, by the work
of Wang-Zhang in [39].

An isolated conical singularity is a point that has a neighborhood diffeomorphic to
(0, 1) × N , for some closed manifold N , such that the restriction of the metric on this
neighborhood is asymptotic to the model cone metric:

(1.1) g := dr2 + r2gN ,

where r is a coordinate on (0, 1) and gN is a smooth Riemannian metric on N , for a more
precise definition, see Definition 2.1 below. Note that r = 0 corresponds to the conical
singularity. In Theorem 1.1, the conically singular points are smooth manifold points, i.e.
the cross sections are diffeomorphic to the sphere, but the metrics on the cross sections
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may not be the standard one. The proof of Theorem 1.1 works in more general case.
Namely, both the non-existence and rigidity conclusions still hold in the case when the
cross section (N, gN) is allowed to be arbitrary closed Riemannian manifold, and which
we state the result in Theorem 1.5 below. Note that even though we do not assume that
the singular points are manifold points initially, in the rigidity part, they are forced to be
manifold points, and in particular the cross sections are standard spheres.

As a direct consequence of Theorem 1.1 and Remark 1.2, we have the following corollary:

Corollary 1.3. There is no Riemannian metric on a Λ2-enlargeable closed manifold that
has finitely many isolated conical singularities and positive scalar curvature.

In [6], Chou proved Corollary 1.3 in even dimensions. In [35], Shi-Tam proved Corollary
1.3 on tori for metrics with a special class of conical singularity, i.e, the cross section of
the model cone in (2.1) is a scaled round sphere.

The basic idea of proving the non-existence result in Theorem 1.1 is conformally blow-up
the singular points to obtain a complete metric with positive scalar curvature. This would
contradict the results in [5] and [39]. We provide two proofs here. In the first proof, we
first transplant the problem to an asymptotic flat manifold by doing a connect sum with
a well-chosen asymptotic flat manifold. Then the conformal factor is given by a Green’s
type function of the Laplace operator, which is solved on the asymptotically flat manifold
with a conical singularity. This proof is given in Section 2. In the second proof, we
work with the original manifold and choose the conformal factor given by a Green’s type
function of the conformal Laplacian on the compact manifold with a conical singularity.
The second approach is similar to the one used for uniformly Euclidean singular metrics
in [25, 2, 38]. However, our conical singularity also allows for a topological singularity,
which would not be uniformly Euclidean. The analysis is provided in Section 3, and the
alternative proof of the non-existence result in Theorem 1.1 is given in Section 4.

To prove the rigidity result in Theorem 1.1, we first note that a nonnegative scalar
curved Riemannian metric with a conical singularity must be scalar flat, by the non-
existence result in Theorem 1.1. Then, one shows that the conically singular metric must
be Ricci flat by contradiction. Otherwise, we could locally deform the metric along the
Ricci curvature direction and then do a conformal change for the deformed metric by using
a first eigenfunction of the conformal Laplacian of the deformed metric. This would yield
a metric with positive scalar curvature and a conical singularity, which contradicts the
nonexistence result in Theorem 1.1. This idea follows from a similar argument for smooth
compact manifolds in [21]. In our singular setting, we need to employ the spectral property
of the conformal Laplacian on compact manifolds with a isolated conical singularity, as
established in [11]. (On compact smooth manifolds, one can also globally deform metric
using Ricci flow to increase scalar curvature; however, the study of Ricci flow on conically
singular manifolds becomes much more subtle.) Once the metric is shown to be Ricci
flat away from the conical singularity, we can apply the fundamental group rigidity result
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for RCD space proved by Mondino-Wei in [30] to complete the proof. This part of the
argument will be done in Section 5.

Kazdan-Warner [22] and Schoen [32] proved that on a closed manifold, there exists a
smooth metric with positive scalar curvature iff its Yamabe constant (aka σ-constant or
Schoen constant) is positive. Moreover, their rigidity result says that on a closed manifold
with a nonpositive Yamabe constant, any metric with nonnegative scalar curvature must
be Ricci flat. Motivated by the study of weak notions of positive scalar curvature, Li-
Mantoulidis raised the question (Question 1.2 in [25]) of extending the previous rigidity
result to the singular setting. Namely, for a closed manifold with a nonpositive Yamabe
constant, they asked what conditions on a continuous, uniformly Euclidean singular metric
with nonnegative scalar curvature can ensure that the metric can be extended smoothly
to the whole manifold and is Ricci flat. Here uniformly Euclidean metrics are those that
are quasi-isometric to smooth metrics. In [25], Li-Mantoulidis answered affirmatively this
question for codimension 2 conically singular metrics (aka edge metric) with cone angles
≤ 2π. They also constructed a codimension 2 edge metric with cone angles > 2π as
a counterexample. Therefore, for codimension 2 singular metrics, additional geometric
assumptions are needed to ensure an affirmative answer to the question. In contrast, in
the case of higher codimensions, Schoen conjectured that no extra regularity assumption
is needed:

Conjecture 1.4 ( Conjecture 1.5 in [25]). Suppose M is a closed smooth manifold whose
Yamabe constant is nonpositive, and g is a uniformly Euclidean metric on M that is
smooth away from a closed, embedded submanifold S ⊂ M with codimension (S ⊂ M) ≥
3. Then

Scg ≥ 0 on M \ S and σ(M) ≤ 0

=⇒ g extends smoothly to M and Ricg ≡ 0.

Li-Mantoulidis [25] confirmed Conjecture 1.4 in dimension three. Kazaras [20] proved
that, on a four-dimensional enlargeable closed smooth manifold, a uniformly Euclidean
metric g that is smooth away from a codimension three submanifold and has positive
scalar curvature on the regular part must be Ricci flat on the regular part. Cecchini-
Frenck-Zeidler [2] proved that a uniformly Euclidean metric on a closed spin manifold
with the fundamental group satisfying some condition on Rosenberg index must be Ricci
flat on the regular part, provided that the metric is smooth away from a finite set and has
positive scalar curvature on the regular part. In particular, their work applies to manifolds
of form M#T n, where M is an arbitrary spin manifold of dimension n. Wang-Xie [38]
proved that on a closed spin enlargeable n-dimensional smooth manifold, a uniformly
Euclidean metric g that is smooth away from an embedded finite simplicial complex with
codimension≥ n

2
+ 1 and has positive scalar curvature on the regular part must be Ricci

flat on the regular part, provided the fundamental group of the singular set maps to zero
in the fundamental group of the whole manifold.
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In contrast to the positive results mentioned above, Cecchini-Frenck-Zeidler [2] also
constructed some counterexamples to Conjecture 1.4 on simply connected closed smooth
manifold of dimension≥ 8. However, if the manifold has certain topology, then Conjec-
ture 1.4 could still be true. Indeed, Theorem 1.1 confirms Conjecture 1.4 in the case of
metrics with isolated conical singularities on M#T n, where M is a closed spin manifold
of arbitrary dimension n, or a closed manifold of dimension n ≤ 7. Note that in the case
of isolated conical singularities, by carefully using the geometry and analysis on a cone,
we are able to obtain the removable singularity result; that is, the metric can be smoothly
extended across the singular points. In the works about general uniformly Euclidean sin-
gular metrics mentioned above, such smooth extension results have not yet been obtained
yet. It is an interesting question to be investigated.

For a conically singular metric on a smooth manifold, one can also use the work in
[28] and [33] to solve a Green’s type function to conformally blow-up the singular metric,
similar to the approach used for general uniformly Euclidean singular metric in [25, 20,
2, 38]. However, this method cannot deal with a conical singularity that is a topological
singularity, that is, the cross section is not diffeomorphic to a sphere. This can be viewed
as conically pinching the boundary to a point for a manifold with boundary (if connected,
otherwise, multiple points) as discussed in the following. Therefore, we apply analysis to
asymptotically flat and closed manifolds with isolated conical singularities to solve for the
desired conformal factor.

For a compact manifold M with a non-empty boundary ∂M , on pp. 31-32 in [18],
Gromov raised a Fill-in problem, asking whether any given metric on the boundary ∂M

can be extended to a metric on M with positive scalar curvature. In [36], Shi-Wang-Wei
answered affirmatively this question of Gromov. On the other hand, under the assumption
that the boundary is a sphere S

n−1 (3 ≤ n ≤ 7) with a metric satisfying some geometric
bound, Shi-Wang-Wei-Zhu [37] proved that if, in addition, the mean curvature of the
boundary is prescribed and too large, then there is no metric extension with nonnegative
scalar curvature. Interestingly, note that if we remove the singular points of the conically
singular Riemannian manifold considered in Theorem 1.1, then the remaining regular
part is diffeomorphic to a manifold with boundary whose components are spheres. Also
note that the mean curvature of the cross sections of a cone tends to positive infinity
at the cone tip. Different from the setting that Shi-Wang-Wei-Zhu worked on, we pinch
geometrically the boundary to a point (see Figure 1). Actually, the proof of Theorem 1.1
works for a more general setting where the cross section could be any closed manifold. So
for manifolds with boundary, we have the following result.

Theorem 1.5. Let M be an n-dimensional compact manifold with boundary, n ≥ 3.
Assume either that the dimension n ≤ 7, or that M is a spin manifold. Then there is
no Riemannian metric on M#T n with a conical singularity and positive scalar curvature
away from the singularity and pinching each component of the boundary into a conically
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singular point. Moreover, such a conically singular metric with nonnegative scalar curva-
ture must be flat, and in particular, each component of the boundary must be diffeomorphic
to a sphere.

Figure 1. Conically pinching the boundary

An important application of the resolution of the Geroch conjecture and its gener-
alizations is the positive mass theorem. For smooth asymptotically flat manifolds, a
well-known Schoen-Yau-Lohkamp compactification argument reduces the positive mass
theorem to the Geroch conjecture for M#T n, where M is a compact smooth manifold.
Kazaras [20] and Cecchini-Frenck-Zeidler [2] obtained the positive mass theorem on cer-
tain uniformly Euclidean asymptotically flat manifolds by compactification argument. For
an asymptotically flat manifold with isolated conical singularities studied in [9, 10], by
using the analysis near conical singularity in [10] and the analysis on asymptotically flat
ends in [34], one can check that Schoen-Yau-Lohkamp compactification argument in [29]
still works, and the positive mass theorem for asymptotically flat manifolds with isolated
conical singularities follows from the Geroch conjecture with isolated conical singularities
for M#T n as established in Theorems 1.1 and 1.5.

The paper is organized as follows: In section 2, we introduce the basic definition and
prove the non-existence result in Theorem 1.1. In section 3, we prepare some analysis
results for section 4. In section 4, we provide another way to prove the non-existence result
in Theorem 1.1. In section 5, we deal with the rigid case. In Appendix A, we provide
some details of the derivation for the Schoen-Yau-Lohkamp compactification with isolated
conical singularities.

Acknowledgement: Xianzhe Dai is partially supported by the Simons Foundation. Yukai
Sun is partially funded by the National Key R&D Program of China Grant 2020YFA0712800.
Changliang Wang is partially supported by the Fundamental Research Funds for the Cen-
tral Universities and Shanghai Pilot Program for Basic Research.

2. Proof of non-existence result in Theorem 1.1

We first give the definition of manifolds with finitely many isolated conical singularities;
for simplicity, we give the defintion for a single conical singularity.

Definition 2.1. We say (Mn, g, d, o) is a compact Riemannian manifold with a single
conical singularity at o, if

(i) d is a metric on M and (M, d) is a compact metric space,
(ii) g is a smooth Riemannian metric on the regular part M \{o}, d is the induced metric

by the Riemannian metric g on M \ {o} ,
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(iii) there exists a neighborhood Uo of o in M \ ∂M , such that Uo \ {o} ≃ (0, 1)×N for
a smooth compact manifold N , and on Uo \ {o} the metric g = g + h, where

(2.1) g = dr2 + r2gN ,

gN is a smooth Riemannian metric on N , r is a coordinate on (0, 1), r = 0 corre-
sponding the singular point o, and h satisfies

(2.2) |∇k
h|g = O(rα−k), as r → 0,

for some α > 0 and k = 0, 1 and 2, where ∇ is the Levi-Civita connection of g.

We will need the notion of asymptotically flat manifolds with finitely many isolated
conical singularities, which we recall below.

Definition 2.2. We say (Mn, g, o) is an asymptotically flat manifold with a single isolated
conical singularity at o, if Mn = M0 ∪M∞ satisfies

(i) (M0, g|M0\{o}, o) is a compact Riemannian manifold with smooth boundary and a
single conical singularity at o defined as in Definition 2.1,

(ii) M∞ is diffeomorphic to Rn \ BR(0) for some R > 0, and under this diffeomorphism
the smooth Riemannian metric g on M∞ satisfies

g = gRn +O(ρ−τ ), |(∇gRn )ig|gRn = O(ρ−τ−i), as ρ → +∞,

for i = 1, 2 and 3, where τ > 0 is the asymptotic order, ∇gRn is the Levi-Civita
connection of the Euclidean metric gRn, and ρ is the Euclidean distance to a base
point.

For our purpose, we need to produce an asymptotically flat manifold with a conical
singularity from a compact manifold with a single conical singularity. We start with:

Lemma 2.3. The manifold:

M̂n ∼= R
n#(RP 3 × S

n−3)

admits a complete asymptotically flat Riemannian metric gM̂n of asymptotic order n− 2
with positive scalar curvature.

Proof. The proof follows that for similar conclusion in dimension three in Corollary 3.2
in [19]. We take Sn with the standard metric and RP 3 × Sn−3 with the standard product
metric. By doing surgery in [14] and [33], we then obtain a metric g on Sn#(RP 3×Sn−3)
with positive scalar curvature. Let P be a point in Sn ⊂ Sn#(RP 3 × Sn−3), and GP

be the Green function of the conformal Laplacian −∆g +
(n−2)
4(n−1)

Scg with a pole at P on

Sn#(RP 3 × Sn−3). Define the metric ĝ =: ((n− 2)ωnGP )
4

n−2 g on (Sn \ {P})#(RP 3 ×
Sn−3). Note that (Sn \ {P})#(RP 3 × Sn−3) is diffeomorphic to Rn#(RP 3 × Sn−3), and ĝ

is asymptotically flat and scalar flat, but not Ricci flat. The asymptotic order of g is n−2,
since g is conformally flat in a neighborhood of P , see e.g. Lemma 6.4 in [23]. Finally, by
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deforming the metric ĝ along Ricci flow, we obtain an asmyptotically flat metric gM̂n of
order n− 2 with positive scalar curvature, see [7] and also [27]. �

Let (M#T n, g, o), n ≥ 3, be an n-dimensional compact manifold with a single conical
singularity at o. Assume that the scalar curvature of g on the regular part is nonnegative,
and is strictly positive at a point x. Then by Theorem 1.1 in [14], we make a connected

sum of (M#T n, g) (in a small neighborhood of x) and (M̂n, gM̂3), which is given in
Lemma 2.3, to obtain an asymptotically flat manifold with a single conical singularity at

o, denoted by (M̃#T n, g̃, o), such that g̃ has nonnegative scalar curvature on the regular
part and strictly positive at some point.

We recall an existence result for harmonic functions with certain asymptotic behavior
on asymptotically flat manifolds with isolated conical singularity proved in [10].

Lemma 2.4 (Lemma 4.1 in [10]). There is a harmonic function u ≥ 1 on (M̃#T n, g̃)
satisfying the following asymptotic conditions near conical singularity and the infinity on
the asymptotic flat end:

(2.3) u =

{
r2−n + o(r2−n+α′

), as r → 0,

1 + Aρ2−n + o(ρβ
′

), as ρ → +∞,

where 0 < α′ < α and β ′ < 2−n, A is a positive constant. Here α is the asymptotic order
of the metric g near the conical singularity in Definition 2.1.

Now we are ready to prove the following non-existence result.

Proof of non-existence result in Theorem 1.1. We prove it by contraction. Assume that
there exists a Riemannian metric g on M#T n with a single conical singularity at o, whose
scalar curvature Scg on the regular part is nonnegative and strictly positive somewhere.
Then, as described right after Lemma 2.3, by applying the surgery of Gromov and Lawson
[14], we obtain an asymptotically flat manifold with a single conical singularity at o,

denoted by (M̃#T n, g̃, o), whose scalar curvature Scg̃ ≥ 0 and strictly positive at some
point.

Now we use the harmonic function u in Lemma 2.4 to do a conformal change for the
metric g̃, and let

(2.4) g̃u := u
4

n−2 g̃ on M̃#T n.

By the partial asymptotic expansion of u at infinity of the Euclidean end (i.e. as ρ → +∞)
in (2.3), g̃u still has an asymptotically flat end. On the other hand, because the surgery is
operated locally near x, we have that, in a sufficiently small neighborhood of the conically
singular point o,

(2.5) g̃ = g = dr2 + r2gN + h,
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where h satisfies asymptotical control in (2.2), and then

(2.6) g̃u = u
4

n−2 g̃ = r−4
(
1 + o(rα

′

)
) (

dr2 + r2gN + h
)
, as r → 0.

Now we do a change of variable, by letting s = 1
r
, and obtain

(2.7) g̃u = (1 + o(s−α′

))(ds2 + s2gN + h̃),

where |h̃|ds2+s2gN = O(s−α) as s → ∞. Therefore,

(2.8) g̃u = ds2 + s2gN + o(s−α′

), as s → +∞,

since 0 < α′ < α. Note that the metric g̃u is asymptotically conical, tending to the infinite
end of a cone as s → ∞ (i.e. r → 0). In particular, g̃u is a complete Riemannian metric

on M̃#T n.
Moreover, the scalar curvature of g̃u is given by

(2.9) Scg̃u = 4(n−1)
n−2

u
−
n+2
n−2

(
−∆g̃u+ n−2

4(n−1)
Scg̃u

)
= u

−
4

n−2Scg̃ ≥ 0.

Recall that Scg̃ is strictly positive somewhere, and so is Scg̃u . This leads to a contradiction
with Theorem 3 in [5] respectively Theorem 1.1 in [39]. �

3. Analysis on compact Riemannian manifolds with a conical singularity

In this section, we provide some analysis preliminaries about the conformal Laplacian
on a compact manifold with a conical singularity. This will be used to solve conformal
Laplace equation and then give another proof for the non-existence result in Theorem 1.1
in Section 4.

Let (Mn, g, o) be a compact Riemannian manifold with a single conical singularity at
o as in Definition 2.1. In the rest of this section, we assume that the scalar curvature
Scg ≥ 0. In a conical neighborhood of the singular point,

(3.1) Scg =
1

r2

(
ScgN − (n− 1)(n− 2) +O(rα)

)
.

Thus, Scg ≥ 0 implies that the scalar curvature on the cross section:

(3.2) ScgN ≥ (n− 1)(n− 2).

We choose a cut-off function 0 ≤ χ ≤ 1 such that

(3.3) χ(x) =

{
1, d(x, o) < ǫ,

0, d(x, o) > 2ǫ,

where ǫ > 0 is chosen sufficiently small. For each p ≥ 1, k ∈ N and δ ∈ R, the weighted
Sobolev space W

k,p
δ (M) is defined to be the completion of C∞

0 (M \ {o}) with respect to
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the weighted Sobolev norm given by

(3.4) ‖u‖p
W k,p

δ
(M)

:=

ˆ

M

k∑

i=0

(
r−p(δ−i)−n|∇iu|pχ+ |∇iu|p(1− χ)

)
,

where r is the radial coordinate on the conical neighborhood Uo in Definition 2.1 and
|∇iu| is the norm of ith covariant derivative of u with respect to g. We denote W

0,p
δ by

L
p
δ .
By using scaling technique, the usual interior elliptic estimates, and the asymptotic

control of metric g near conical point in Definition 2.1, we have the following weighted
elliptic estimate.

Proposition 3.1. If u ∈ L
p
δ(M), and (−∆+ n−2

4(n−1)
Scg)u ∈ L

p
δ−2(M), then

(3.5) ‖u‖W 2,p
δ (M) ≤ C

(
‖(−∆g +

n−2
4(n−1)

Scg)u‖Lp
δ−2(M) + ‖u‖Lp

δ
(M)

)

holds for some constant C = C(g, n, k) independent of u.

Throughout the paper, we always use λj to denote the eigenvalues of the Schrödinger

operator −∆gN + n−2
4(n−1)

ScgN − (n−2)2

4
on the cross section (N, gN) of the model cone

(C(N), g) in (2.1). By (3.2), clearly λj ≥ 0. We set

(3.6) ν±
j :=

−(n− 2)±
√

(n− 2)2 + 4λj

2
.

Definition 3.2. We say δ ∈ R is critical if δ = ν+
j or δ = ν−

j for some j ∈ Z≥0, where νj
is defined as in (3.6).

The estimate for Laplacian in Proposition 4.5 in [10] can be adapted to the conformal
Laplacian, and we have the following:

Proposition 3.3. If δ ∈ R is not critical as in Definition 3.2, there exists a constant
C = C(g, n) and a compact set B ⊂ M \ {o} such that for any u ∈ L2

δ(M) with −∆u +
(n−2)
4(n−1)

Scgu ∈ L2
δ−2(M),

(3.7) ‖u‖W 2,2
δ

(M) ≤ C
(
‖(−∆g +

n−2
4(n−1)

Scg)u‖Lp
δ−2(M) + ‖u‖L2(B)

)
.

A direct consequence of Proposition 3.3 is the Fredholm property of the unbounded
operator:

(−∆g +
n−2

4(n−1)
Scg)δ : Dom(−∆δ +

n−2
4(n−1)

Scg)δ → L2
δ−2(M)

u 7→ −∆gu+ n−2
4(n−1)

Scgu,

where Dom(−∆g+
n−2

4(n−1)
Scg)δ is dense subset of L

2
δ(M) consisting of function u such that

−∆gu+ n−2
4(n−1)

Scgu ∈ L2
δ−2(M) in the sense of distributions.
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Proposition 3.4. If δ ∈ R is not critical as in Definition 3.2, then the operator
(
−∆g +

n−2
4(n−1)

Scg
)
δ
is Fredholm, namely, it has closed range and

(1) dim(Ker(−∆g +
n−2

4(n−1)
Scg)δ) < +∞,

(2) dim(Ker(−∆g +
n−2

4(n−1)
Scg)

∗
δ) < +∞.

For the proof of Proposition 3.4, we refer to the proof of Proposition 4.8 in [10]. In the
proof, we will be using (−∆g +

n−2
4(n−1)

Scg)
∗
δ, the adjoint operator of (−∆g +

n−2
4(n−1)

Scg)δ.

By using the L2 pairing (·, ·)L2(M), it is given as

(−∆g +
n−2

4(n−1)
Scg)

∗
δ : Dom((−∆g +

n−2
4(n−1)

Scg)
∗
δ) → L2

−δ−n

u 7→ −∆gu+ n−2
4(n−1)

Scg,

where the domain Dom((−∆g +
n−2

4(n−1)
Scg)

∗
δ) is the dense subset of L2

−δ+2−n consisting of

functions u such that −∆gu+ n−2
4(n−1)

Scgu ∈ L2
−δ−n in the distributional sense.

Then with the help of the Fredholm property in Proposition 3.4, we prove following
surjectivity property.

Proposition 3.5. Let (Mn, g, o) be a compact Riemannian manifold with a conical sin-
gularity at o as in Definition 2.1, and assume that g has positive scalar curvature on the
regular part. We have that for any noncritical δ ≤ 2−n

2
, the map

(−∆g +
n−2

4(n−1)
Scg)δ : Dom(−∆δ +

n−2
4(n−1)

Scg) → L2
δ−2(M)

u 7→ −∆gu+ n−2
4(n−1)

Scgu,

is surjective.

Proof. Note that 2−n
2

is not critical as in Definition 3.2, since λj ≥ 0.
For any noncritical δ ≤ 2−n

2
, we have

(3.8) −δ + 2− n ≥ 2−n
2
.

Thus

(3.9) Dom((−∆g +
n−2

4(n−1)
Scg)

∗
δ) ⊂ L2

−δ+2−n(M) ⊂ L2
2−n
2

(M).

For every small number r0, we can choose a smooth cut-off function

(3.10) 0 ≤ χr0 ≤ 1

such that

(3.11) χr0 =

{
0, on Br0(o),

1, on (B2r0(o))
c,

and

(3.12) |dχr0| ≤ 10
r0
.
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For any u ∈ Ker((−∆g +
n−2

4(n−1)
Scg)

∗
δ) ⊂ L2

2−n
2

(M), we have

ˆ

M

|∇(χr0u)|2 =

ˆ

M

|dχr0 |2|u|2 −
ˆ

M

(χr0)
2 〈u,∆gu〉

=

ˆ

M

|dχr0 |2|u|2 −
ˆ

M

(χr0)
2 n−2
4(n−1)

Scgu
2

≤
ˆ

M

|dχr0 |2|u|2,

since Scg ≥ 0 on M . This then implies
ˆ

(B2r0 (o))
c

|∇ϕ|2 ≤ C

(
ˆ

Ar0

|u|2r−2

)
→ 0, as r0 → 0,(3.13)

since

(3.14) ‖u‖2L2
2−n
2

(M)

=

ˆ

M

(
r−2|ϕ|2χ+ |ϕ|2(1− χ)

)
dvolg < ∞.

Here Ar0 is the annular region B2r0(o)\Br0(o). Thus ∇u = 0, hence u must be a constant
function. As a result,

(3.15) 0 = −∆gu+ n−2
4(n−1)

Scgu = n−2
4(n−1)

Scgu,

and so u ≡ 0, since Scg is not identically zero. This shows Ker((−∆g+
n−2

4(n−1)
Scg)

∗
δ) = {0}.

Now for any fixed v ∈ C∞
0 (M), if

(3.16) (v, (−∆g +
n−2

4(n−1)
Scg)δu)L2(M) = 0, ∀u ∈ Dom((−∆g +

n−2
4(n−1)

Scg)δ),

then

(3.17) ((−∆g +
n−2

4(n−1)
Scg)

∗
δv, u)L2(M) = 0, ∀u ∈ Dom((−∆g +

n−2
4(n−1)

Scg)δ).

By the density of C∞
0 (M) ⊂ Dom((−∆g+

n−2
4(n−1)

Scg)δ) in L2(M), this implies that (−∆g+
n−2

4(n−1)
Scg)

∗
δv = 0, and so v = 0. Therefore, Ran((−∆g + n−2

4(n−1)
Scg)δ)

⊥ ∩ C∞
0 (M) =

{0}. As a result, the density of C∞
0 (M) and closeness (follows from Proposition 3.4) of

Ran(−∆δ +
n−2

4(n−1)
Scg) in L2

δ−2(M) implies that Ran((−∆g +
n−2

4(n−1)
Scg)δ) = L2

δ−2(M), i.e.

(−∆g +
n−2

4(n−1)
Scg)δ is surjective. �

By Definition 3.2 and the fact that λj ≥ 0, one can easily see that there is no critical
index in the interval (2 − n, 0). As a result, similarly as in Proposition 4.15 in [10], we
can extend the range of noncritical indices δ for which −∆δ + f is surjective as following.

Proposition 3.6. For noncritical δ < 0 as in Definition 3.2,

(3.18) (−∆g +
n−2

4(n−1)
Scg)δ : Dom((−∆g +

n−2
4(n−1)

Scg)δ) → L2
δ−2(M)

is surjective.



PSC WITH CONICAL SINGULARITY 13

4. Another proof of the non-existence result in Theorem 1.1

Lemma 4.1. Let (Mn, g, o) be a n-dimensional compact Riemannian manifold with a
single conical singularity at o, and assume that g has positive scalar curvature on the
regular part. Then the equation

(4.1) −∆gu+ n−2
4(n−1)

Scgu = 0

has a solution u satisfying the following asymptotic condition near the singular point o:

(4.2) u = a(x)rν
−

1 + o(rν
−

1 +α′

), as r → 0,

for 0 < α′ < α, where α is the decay order in (2.2), ν−
1 =

−(n−2)−
√

(n−1)2+4λ1

2
, λ1 is

the least eigenvalue of −∆gN + n−2
4(n−1)

ScgN − (n−2)2

4
, and a(x) > 0 is a corresponding

eigenfunction on the cross section N .

Proof. Choose a cut-off function φ satisfying

φ =

{
1, on B 1

2
(o),

0, on M \B1(o).

Let u0 = φa(x)rν
−

1 , which is a smooth function supported in a neighborhood of the

conically singular point o. Then because (−∆g+
n−2

4(n−1)
Scg)a(x)r

ν−1 = 0, by the asymptotic

control of g near conically singular point o in Definition 2.1, we have

(−∆g +
n−2

4(n−1)
Scg)u0 = O(rν

−

1 −2+α), as r → 0.

By the definition of weighted Sobolev spaces, this implies that

(−∆g +
n−2

4(n−1)
Scg)u0 ∈ L2

δ−2(M), ∀δ < ν−
1 + α.

Then by applying Proposition 3.6, we obtain v ∈ L2
δ such that

(−∆g +
n−2

4(n−1)
Scg)v = (−∆g +

n−2
4(n−1)

Scg)u0.

So by setting u = u0 − v, we have (−∆g +
n−2

4(n−1)
Scg)u = 0.

Finally, we derive the asymptotic behavior of v near the singular point. Note that for
a sufficiently small ǫ > 0, in the ball Bǫ(o) centered at the singular point o, we have

u = a(x)rν
−

1 − v, and so

(−∆g +
n−2

4(n−1)
Scg)v = (−∆g +

n−2
4(n−1)

Scg)a(x)r
ν−1

= O(rν
−

1 −2+α) ∈ L
p
δ−2(Bǫ(o)), ∀δ < ν−

1 + α and ∀p > 1.

Then the weighted elliptic estimate in Proposition 3.1 implies that v ∈ W
2,2
δ (Bǫ(o)) for

δ < 2 − n + α. Consequently, the weighted Sobolev inequality (e.g. in Proposition

3.4 in [12]) implies that v ∈ L
2n
n−2

δ (Bǫ(o)), and by applying weighed elliptic estimate in
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Proposition 3.1 (with p = 2n
n−2

) again, we obtain v ∈ W
2, 2n

n−2

δ (Bǫ(o)) for δ < 2−n+α. By

repeating this process, we can obtain that v ∈ W
2,p
δ (Bǫ(o)) for all p > 1 and δ < 2−n+α,

and so by Proposition 3.4 in [12], we have

(4.3) v = o(r2−n+α′

), as r → 0,

for 0 < α′ < α. This completes the proof. �

Another proof of the non-existence result in Theorem 1.1: By applying Lemma 4.1, we
obtain a function u satisfying the equation

(4.4) −∆gu+ n−2
4(n−1)

Scgu = 0,

and the asymptotic control

(4.5) u = a(x)rν
−

1 + o(rν
−

1 +α′

), as r → 0,

for 0 < α′ < α. Note that

(4.6) ν−
1 =

−(n− 2)−
√
(n− 1)2 + 4λ1

2
≤ 2− n,

since λ1 ≥ 0, which follow from Scg ≥ 0. As a result, the function u tends to +∞ as one
approaches the singular point (i.e. r → 0), since a(x) > 0. As a result, the infimum of the
function u on the whole manifold M#T n is achieved in a compact subset away from the
singular point, and so inf

M#Tn\{o}
u > −∞. Thus we can take a sufficiently large positive

number C such that

(4.7) ũ := u+ C ≥ 1 on M#T n \ {o}.
Then ũ satisfies

(4.8) −∆gũ+ n−2
4(n−1)

Scgũ = C n−2
4(n−1)

Scg,

and the asymptotic control as in (4.5).
Now we do a conformal change for the metric g, and let

(4.9) g̃ := (ũ)
4

n−2 g on M#T n \ {o}.
The scalar curvature of g̃ is given by

(4.10) Scg̃ =
4(n−1)
(n−2)

ũ
−
n+2
n−2

(
−∆gũ+ n−2

4(n−1)
Scgũ

)
= Cũ

−
n+2
n−2Scg ≥ 0.

And Scg̃ is strictly positive at points where Scg is strictly positive.
Moreover, near the conically singular point o, the metric g is given as

(4.11) g = dr2 + r2gN + h,
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where h satisfies (2.2), and then

(4.12) g̃ = (ũ)
4

n−2 g = a(x)
4

n−2 r
4ν−1
n−2

(
1 + o(rα

′

)
) (

dr2 + r2gN + h
)
, as r → 0.

We do a change of variable, by letting s = 1
r
, s ∈ (1,+∞), and then rewrite g̃ as

(4.13) g̃ = a(x)
4

n−2s
−

4ν−1
n−2

−4
(1 + o(s−α′

))(ds2 + s2gN + h̃),

where |h̃|ds2+s2gN = O(s−α) as s → ∞. In addition, because ν−
1 ≤ 2 − n, we have

− 4ν−1
n−2

− 4 ≥ 0. Thus, g̃ is a complete Riemannian metric on (M \ {o})#T n, whose scalar
curvature is nonnegative and strictly positive somewhere. This contradicts with Theorem
3 in [5] and Theorem 1.1 in [39]. �

5. Rigidity of metrics with conical singularity and zero scalar
curvature

In this section, we prove the rigidity result in Theorem 1.1.

Proof of rigidity result in Theorem 1.1. . By the non-existence result in Theorem 1.1, a
metric g with nonnegative scalar curvature and isolated conical singularity must be scalar
flat. Now, we first prove that g must be Ricci flat by contradiction. Assume that g is
Riemannian metric on M#T n with a conical singularity at o ∈ M , which is scalar flat,
i.e. Scg = 0, but not Ricci flat, i.e. Ric(g) is non-zero at some point. Take a smooth
cut-off function η on (M#T n) \ {o} , which is equal to zero in a neighborhood of o and is
equal to 1 at a point where Ricg 6= 0. Let gt = g − tηRicg for small t ≥ 0. Clearly, gt = g

on a neighborhood of o by the choice of the cut-off function η, and so gt are metrics with
an isolated conical singularity at o. We consider the conformal Laplacian of the metric
gt:

(5.1) Lt := −∆gt +
n−2

4(n−1)
Scgt .

Recall that the scalar curvature of g near the conical singularity is given by

(5.2) Scg =
1

r2

(
ScgN − (n− 1)(n− 2) +O(rα)

)
.

Thus, Scg ≡ 0 implies that the scalar curvature of the cross section: ScgN = (n−1)(n−2) >
0. Then by the spectral property in Theorem 1.1 and Remark 1.3 in [11], the conformal
Laplacian Lt have discrete eigenvalues

(5.3) λ1(Lt) < λ2(Lt) ≤ λ3(Lt) ≤ · · · .
Note that the first eigenvalue is simple, i.e. the space of the corresponding eigenfunctions
is 1-dimensional, and one can take an eigenfunction u1,t > 0 on (M#T n) \ {o} (see
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Theorem 6.3 in [11]). This implies that λ1(Lt) is a smooth function of t. Similar as
Proposition 9.1 in [11], we have

(5.4)
d

dt

∣∣∣∣
t=0

λ1(Lt) = C

ˆ

M#Tn

〈−Ricg,−ηRicg〉dvolg > 0,

since Ricg 6≡ 0. In the derivation of this variation formula, we have use that at t = 0
the metric g has scalar curvature identically zero, so the conformal Laplacian L0 has
zero as the first eigenvalue and constant functions are corresponding eigenfunctions. The
variation formula (5.4) implies that for a sufficiently small t0 > 0, λ1(Lt0) > 0. We take a
corresponding eigenfunction u1,t0 > 0. Moreover, by Theorem 8.3 in [13], near the conical
singularity o, the eigenfunction u1,t0 has the partial asymptotic expansion as:

(5.5) u1,t0 = a+ o(rν
′

), as r → 0,

for a constant a and ν ′ > 0. Recall that r = 0 corresponds the conically singular point o.
Because u1,t0 > 0 on (M#T n) \ {o}, the constant a ≥ 0. Take a sufficiently small δ > 0,
and let ũ1,t0 := u1,t0 + δ, and

(5.6) g̃t0 := (ũ1,t0)
4

n−2 gt0 .

Then g̃t0 is a Riemannian metric on M#T n with a single conical singularity at o, and its
scalar curvature is given by

Scg̃t0 = 4(n−1)
n−2

(ũ1,t0)
−
n+2
n−2

(
Lt0u1,t0 + δ n−2

4(n−1)
Scgt0

)

= 4(n−1)
n−2

(ũ1,t0)
−
n+2
n−2

(
λ1,t0u1,t0 + δ n−2

4(n−1)
Scgt0

)
.

Note that in a sufficiently small neighborhood of o the metric gt0 = g and so Scgt0 = Scg =
0, and outside of this neighborhood the function u1,t0 has a positive lower bound. Thus,
we can take δ sufficiently small so that Scg̃t0 ≥ 0 and strictly positive somewhere. This
contradicts with the non-existence result in Theorem 1.1, and so Ricg ≡ 0.

Then by Theorem A in [1], the Riemannian manifold with a single conical singularity,
(M#T n, g), at o ∈ M , endowed with the distance dg and the measure vg induced by g,
satisfies the RCD(0, n) condition. Note that because the dimension n ≥ 3 and the only
singular point is o, the stratum Σn−2 = ∅, and so the singular Ricci curvature bounded
below by 0 is equivalent to the Ricci curvature on the regular set bounded below by
0. Moreover, the metric space (M#T n, dg) clearly is a connected and locally simply
connected, and so it has the simply connected universal cover. As a result, the revised
fundamental group of (M#T n, dg) in [30] is the same as the usual fundamental group, and
so it contains n independent generators of infinite order, coming from the fundamental
group of T n. Thus, Corollary 1.4 in [30] implies that (M#T n, dg, vg) is isomorphic as a
metric measure space to a flat torus T n. Actually, from their proof in [30], one can see
that (M#T n, g) is isometric to a flat torus as Riemannian manifold. �
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Appendix A. Schoen-Yau-Lohkamp compactification with conical
singularity

In this appendix, we make some remarks about Schoen-Yau-Lohkamp compactifica-
tion for asymptotically flat (AF for short) manifolds with finitely many isolated conical
singularities.

The Schoen-Yau-Lohkamp compactification consists of two steps. Let (Mn, g, o) be an
AF manifold with a conical singularity at o. In the first step, one shows that if Scg ≥ 0
but the ADM mass m(g) < 0, then there exists an asymptotically flat metric g̃ on M with

a conical singularity at o such that Scg̃ ≥ 0, and g̃ = ũ
4

n−2 gRn outside a large compact set

with ũ = 1 + m̃
ρn−2 +O(ρ1−n)(m̃ < 0) and Scg̃ = 0. Here ũ is the product of 1 + m(g)

4(n−1)ρn−2

and the solution to the conformal Laplacian equation (with truncated scalar curvature
as the potential) on M . Here the conical singularity makes some difference in analysis
from the smooth case, and so we provide some derivation for this part in Proposition A.3
below.

In the second step, Lohkamp’s main observation is that one can truncate the conformal
factor ũ on the AF end to further change the metric g̃ so that the new metric is a constant
multiple of gRn outside a large compact set in the AF end, while keeping positive scalar
curvature. Note that Scg̃ = 0 implies ∆gRn ũ = 0 outside a large compact set. This fact and
m̃ < 0 are crucial to guarantee the positivity of the scalar curvature of the new metric. By
cutting M off outside a larger compact set K such that ∂K = ∂[0, 1]n and then gluing the
opposite faces of the cube [0, 1]n together, we obtain T n#Mn

1 equipped with a metric that
has positive scalar curvature and a conical singularity. This contradicts Theorems 1.1 and
1.5, thereby establishing the positive mass theorem with isolated conical singularity. This
step only works on an AF end, so there is no difference between the conically singular
case and the smooth case, for details, see Proposition 6.1 in [29].

We will use the following Dirichlet Green’s function on AF manifold with boundary in
the proof of Lemma A.2 below.

Proposition A.1 (Green’s funcction on AF manifold with boundary). Let (Mn, g) be an
n-dimensional AF smooth manifold with smooth boundary. Then there exists a positive

Green’s function G(x, y) which is smooth on
(
M̊ × M̊

)
\D, where D = {(x, x) | x ∈ M̊},

satisfying properties:

(A.1)

ˆ

M

G(x, y)∆f(y)dvolg(y) = −f(x),

for smooth functions f with f |∂M = 0 and f(x) → 0 as x → ∞,

(A.2) G(x, y) = G(y, x),

and G(x, y) = 0 for y ∈ ∂M and x ∈ M \ ∂M .
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Moreover, let x0 be a point in the AF end, G(x, x0) has the following expansion, when
‖x− x0‖ is large,

(A.3) G(x, x0) =
C

‖x− x0‖n−2
+O

(
1

‖x− x0‖min{n−1,k−2+τ}

)

for some constant C > 0, where τ is the decay order of the AF metric g, ‖x− x0‖ is the
Euclidean distance between x and x0. Its gradient also has the asymptotic estimate

(A.4) ‖∇G(x, x0)‖ = O

(
1

‖x− x0‖n−1

)
.

Proof. Recall that the existence of the Green’s function on complete manifold without
boundary is proved in Theorem in [26] by taking limit for Green’s functions on a compact
exhaustion {Ωi}∞i=1 of the manifold. We note that this proof can be adapted to the
complete manifolds with boundary. We can take a compact exhaustion such that ∂Ωi ⊃
∂M for all i. For AF manifolds, we can take f(x) := ‖x − x0‖2−n−ǫ on the AF end
as a positive superharmonic function in Theorem 17.3 in [26], where x0 is a fixed point
on the AF end, ‖x − x0‖ is the Euclidean distance between x and x0, and ǫ is a small
positive number. For the detail of the proof, we refer to the proof of Theorem 17.3 in
[26]. Moreover, the asymptotic behavior of the Green’s function at AF infinity is proved
in Proposition 11 in [8]. �

Now as analysis preparation for proving Proposition A.3, we solve an equation in the
following lemma.

Lemma A.2. Let (Mn, g, o) be an n-dimensional asymptotically flat manifold with an
isolated conical singularity at o. There exists a constant ǫ0 = ǫ(g), such that if f is a
smooth function with compact support in M∞ and ‖f−‖Ln

2
< ǫ0, then the equation

(A.5)

{
∆gu− fu = 0 on M,

u → 1 as x → ∞
has a unique positive solution. Moreover, near the asymptotically flat infinity, u satisfying:

(A.6) u = 1− A

ρn−2
+ ω, as ρ → ∞,

where A = C
´

M
fudvolg for some constant C > 0, ρ is the Euclidean distance to a base

point, and ω satisfies

(A.7) |ω| ≤ C

1 + ρn−1
, |∇ω| ≤ C

1 + ρn
, |∇2ω| ≤ C

1 + ρn+1
.

Near the conically singular point o, the solution u has the asymptotic as

(A.8) u = B + o(rδ), as r → 0,
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for a constant B ≥ 1 and δ > 0, where r is the radial variable on the model cone and
r = 0 corresponds to the conical singularity.

Proof. The existence of the solution and the asymptotic behavior in (A.6) and (A.8)
have been proved in Lemma 5.2 in [10]; and for the proof details, we refer to the proof
that lemma. Here, we mainly prove that the constant A in (A.6) can be expressed as
A = C

´

M
fudvolg for some constant C > 0.

First of all, by setting v = 1− u, we convert the equation (A.5) into

(A.9)

{
∆gv − fv = −f on M,

v → 0 as x → ∞.

Then an approximation argument by using a compact exhaustion shows the existence of
the solution to (A.9), see the proof of Lemma 5.2 in [10] for the details.

In the following, we use the asymptotic estimate of the Green’s function G and ∇G in
Proposition A.1 to obtain the asymptotic behavior of the solution v. Let 0 < ρ1 < ρ2 be
sufficiently large, and φ be a smooth cut-off function on the AF end M∞, which is an AF
manifold with boundary, such that

φ =

{
1, onM∞ \Bρ2(0),

0, onM∞ ∩ Bρ1(0).

Let G be the Green’s function onM∞ obtained in Proposition A.1. Then for any x ∈ M∞,
we have

(φv)(x)

=

ˆ

M∞

G(x, z)∆g(φv)(z)d volg(z)

=

ˆ

M∞

[φ(z)G(x, z)(fv − f)(z) + 2G(x, z)〈∇φ,∇v〉(z) +G(x, z)(∆φ)(z)v(z)] d volg(z)

=

ˆ

M∞

[φ(z)G(x, z)(fv − f)(z)−G(x, z)〈∇(1 − φ),∇v〉( z)]d volg(z)

−
ˆ

M∞

〈∇G(x, z),∇φ(z)〉v(z)d volg(z)

=

ˆ

M∞

[φ(z)G(x, z)(fv − f)(z) +G(x, z)(1− φ)∆v] d volg(z)

+

ˆ

M∞

(1− φ(z))〈∇G(x, z),∇v(z)〉d volg(z)−
ˆ

M∞

〈∇G(x, z),∇φ(z)〉v(z)d volg(z)

=

ˆ

M∞

G(x, z)(fv − f)(z)d volg(z) +

ˆ

M∞

(1− φ(z))〈∇G(x, z),∇v(z)〉d volg(z)
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−
ˆ

M∞

〈∇G(x, z),∇φ(z)〉v(z)d volg(z).

Therefore

lim
|x|→∞

|x|n−2v((x)) =

ˆ

M∞

lim
|x|→∞

|x|n−2G(x, z)(fv − f)(z)d volg(z)

−
ˆ

M∞

lim
|x|→∞

|x|n−2〈∇G(x, z),∇φ(z)〉v(z)d volg(z)

+

ˆ

M∞

lim
|x|→∞

|x|n−2(1− φ(z))〈∇G(x, z),∇v(z)〉d volg(z).

= C

ˆ

M

(fv − f)d volg

for C > 0. Here we used supp(f) ⊂ M∞ and the asymptotic estimates of the Green’s
function G and its gradient ∇G in Proposition A.1.

�

Then we complete the first step of Schoen-Yau-Lohkamp compactification argument
with a conical singularity in the following proposition.

Proposition A.3. Let (Mn, g, o) be an asymptotically flat manifold with a single conical
singularity at o. Assume the scalar curvature Scg ≥ 0 and ADM mass m(g) < 0. Then
there exists an asymptotically flat metric g̃ on M with a single conical singularity at o

such that g̃ = ũ
4

n−2 gRn outside a compact set, with ũ = 1+ m̃
ρn−2 +O(ρ1−n) for some m̃ < 0.

Moreover, Scg̃ ≥ 0 on M and Scg̃ = 0 outside a large compact set.

Proof. Following the proof of Proposition 4.11 in [3] and Proposition 3.2 in [40], write the
metric g as

(A.10) g = (1 + m1

ρn−2 )
4

n−2gRn + ḡ

outside a large compact set o ∈ K with m1 :=
1

4(n−1)
m(g) < 0, and

lim
ρ→∞

ˆ

Sρ

∑

i,j

(∂iḡij − ∂j ḡii)
xj

ρ
dSρ = 0.(A.11)

Let φ(ρ) be a cut-off function φ(ρ) = 1 for ρ ≤ 2, and φ(ρ) = 0 for ρ ≥ 3, and 0 ≤ φ(ρ) ≤ 1.
Define the metric

(A.12) gσ =

{
g, on K,

(1 + m1

ρn−2 )
4

n−2 gRn + φ( ρ
σ
)ḡ, on M \K.
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Then Scgσ is a smooth function with support in K ∪ B3σ. More precisely,

Scgσ =





Scg, if ρ ≤ 2σ and on K,

O(σ−τ−2), if 2σ ≤ ρ ≤ 3σ,

0, otherwise.

Consider the equation:

(A.13)

{
∆gσu− n−2

4(n−1)
ϕScgσu = 0,

u → 1 as x → ∞,

where ϕ is cut-off function such that ϕ(ρ) = 1 for 2σ ≤ ρ ≤ 3σ, and ϕ(ρ) = 0 for 0 ≤ ρ ≤
σ, 4σ ≤ ρ < ∞, and onK. Choose σ sufficiency large to make (

´

M
|(ϕScgσ)−|n/2d volgσ)2/n =

O(σ−τ ) small. Then by Lemma A.2, the equation (A.13) has a positive solution u with
asymptotic behavior at asymptotically flat infinity as:

u = 1− Aσ

ρn−2 + ω

and

Aσ = C

ˆ

M

ϕScgσud volgσ .

Let g̃ = u
4

n−2 gσ. By the asymptotic behavior of u as in (A.6) and (A.8), g̃ is still an
asymptotically flat metric with a conical singularity at o. Then

Scg̃ =
4(n− 1)

n− 2
u−n+2

n−2 (−∆gσu+ n−2
4(n−1)

Scgσu)

=
4(n− 1)

n− 2
u
−
n+2
n−2 (−∆gσu+ n−2

4(n−1)
ϕScgσu+ n−2

4(n−1)
(1− ϕ)Scgσu)

= u− 4
n−2 (1− ϕ)Scgσ ≥ 0.

Moreover,

m(g̃) = −4(n− 1)Aσ +m(gσ) = −4(n− 1)Aσ +m

and thus

|m(g̃)−m(g)| = 4(n− 1)|Aσ|.(A.14)

Then one can show that |Aσ| can be made arbitrarily small for sufficiently large σ. Note
that for estimating Aσ one only needs to work on AF end, so it is the same as smooth case,
for the detail see e.g., Proof of step 1 in [8]. As a result, |m(g̃)−m(g)| can be arbitrarily
small for sufficiently large σ, so m(g) < 0 implies m(g̃) < 0 by taking σ sufficiently large.

Moreover, note that outside a compact set g̃ = u
4

n−2 (1 + m1

ρn−2 )
4

n−2 gRn =: ũ
4

n−2 gRn , and as
ρ → ∞,

ũ = (1 + m1

ρn−2 )(1− Aσ

ρn−2 +O(ρ1−n)) = 1 + m1−Aσ

ρn−2 +O(ρ1−n).
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Here m̃ := m1 − Aσ < 0 for sufficiently large σ, since |Aσ| can be arbitrary small for
sufficiently large σ. �
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