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Abstract—We examine the text-free speech representations of
raw audio obtained from a self-supervised learning (SSL) model
by analyzing the synthesized speech using the SSL representations
instead of conventional text representations. Since raw audio does
not have paired speech representations as transcribed texts do, ob-
taining speech representations from unpaired speech is crucial for
augmenting available datasets for speech synthesis. Specifically,
the proposed speech synthesis is conducted using discrete symbol
representations from the SSL model in comparison with text
representations, and analytical examinations of the synthesized
speech have been carried out. The results empirically show
that using text representations is advantageous for preserving
semantic information, while using discrete symbol representations
is superior for preserving acoustic content, including prosodic and
intonational information.

I. INTRODUCTION

Current speech synthesis has significantly advanced through
deep learning models, greatly surpassing the performance of
traditional speech synthesis models [1]. These models gener-
ally obtain speech feature vectors from the input text through
an encoder, then output a Mel-spectrogram using methods such
as Attention or Variational Inference, and finally convert it
into speech through a Vocoder [2]–[4]. At this stage, speech
synthesis models essentially learn the correspondence between
the training speech source and the ’input representation,’ which
describes the speech source and is traditionally represented as
a transcribed text script [5].

However, a constraint of such models is that enhancing
performance necessitates the additional task of pairing input
representations as labels to the training speech source, which
involves human effort and thus incurs significant costs. Further-
more, such text-based input representations vary by language,
requiring even more resources when creating multilingual
speech synthesis. To overcome these constraints, the use of
Self-Supervised Learning (SSL) models, which can extract
usable information from the raw speech source, is being
considered.

This study evaluates the performance of speech synthesis
through several different input expressions, which analyzes
the factors to consider when achieving such as ”zero-resource
synthetic speech”, and evaluates the intelligibility, naturalness,
and quality of the synthesized speech to see how each factor
affects those speech.

II. PRIOR STUDIES

First, traditional speech synthesis models have focused on
converting transcribed natural language text into a format more

Fig. 1. (a) Architecture of GSLM and (b) Application to Japanese Language

suitable for speech synthesis to obtain potential input repre-
sentations. This includes text normalization, tokenization, the
assignment of morphemes and parts of speech, phonemizing,
and assigning accents to natural language texts through pre-
prepared dictionaries and libraries. However, such methods
have limitations in generalizing beyond single-language or
high-resource language domains.

Therefore, methods that can obtain effective intermediate
representations for speech synthesis tasks without text tran-
scription, using audio data as a modality, have recently been
researched. Self-supervised learning models are trained on a
large amount of unlabeled audio data to predict hidden units
or symbols not directly observed in the input audio data.
Consequently, obtaining corresponding input representations
for unlabeled speech has become more accurate, and it has
also become possible to incorporate paralinguistic and non-
verbal information into these input representations.

In a previous study on this approach, the Generative Spoken
Language Modeling (GSLM) [6] provided a methodology
for speech synthesis from raw audio. Figure 1(a) shows a
schematic illustration of the GSLM model architecture. GSLM
processes and resynthesizes speech not through commonly
used natural language texts but through discrete symbols,
which are feature representations extracted from speech us-
ing SSL models. The model consists of an encoder called
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speech2unit, a decoder called unit2speech, and a unit lan-
guage model (uLM). The speech2unit module converts audio
waveforms into discrete symbols in text form through feature
representations via SSL models like CPC [7], wav2vec 2.0 [8],
and HuBERT [9]. It then quantizes the features with a prede-
termined codebook to obtain the discrete symbol sequence.
The codebook is obtained by applying k-means clustering to
the framewise features of the training data.

Conversely, the unit2speech module generates audio wave-
forms from sequences of discrete symbols using traditional
text-to-speech models like Tacotron 2 [5] and neural vocoder
models. In this process, the speech synthesis model is trained
with pairs of training speech and discrete symbols outputted
by the encoder. In the case of speech resynthesis, there is a
pipeline where the speech encoded through the speech2unit
module is transformed back into synthesized speech through
the unit2speech module. However, since unit2speech is basi-
cally trained in a single language, language dependency needs
to be resolved to use it for multiple languages. Figure 1(b)
shows a Japanese application of the GSLM model architecture,
where language dependence was resolved to some extent
by training the speech2unit’s k-means clustering model and
unit2speech module with a Japanese dataset. The uLM module,
positioned between the two modules mentioned above, treats
discrete symbols like character symbols and operates as a
language model using the Transformer [10] network.

Additionally, as a prior study on the evaluation of syn-
thesized speech without labels, the Zero Resource Speech
Challenge (ZRC) can be mentioned. The research sets several
tasks with the goal of constructing language processing models
using only audio data by removing text labels from a ground
truth speech corpus. The objective is to surpass the topline
models, which are trained from transcribed text, in metrics for
each task. Among the tasks, in the ’Discrete Resynthesis’ task,
the input representations obtained through SSL models are re-
synthesized, and clarity and naturalness are evaluated through
Character Error Rate (CER) and Mean Opinion Score (MOS).
The experimental results have shown that models adopting
certain SSL methods achieved better MOS results than the
topline, and it was also confirmed that the more bit-information
the input representations contained, the higher the metrics of
synthesized speech were. [11]–[13]

In addition, through structures such as GSLM, research
on solving audio tasks as end-to-end using untranscribed
audio data has continued to show superior results compared
to previous baselines [14]–[16]. From such prior studies, it
is suggested that by obtaining input representations through
self-supervised learning methods for audio data without pre-
transcribed labels, it is possible that SSL representations may
show superior performance compared to text transcriptions for
speech synthesis in general.

III. COMPARATIVE STUDY ON METHODS BASED ON INPUT
REPRESENTATIONS

In the case of the Zero Resource Speech Challenge, only the
evaluation of intelligibility and naturalness after synthesis was

Fig. 2. Building a speech synthesis system using (a) ground-truth script
labels, (b) speech recognition (ASR) model, and (c) self-supervised learning
(SSL) model

present, while the quality of the acoustics was not evaluated.
Additionally, prior studies have not conducted complete anal-
ysis of multiple languages or multiple encoder-decoder pairs,
and this has not been analyzed with several conditions such as
symbol size and output layer of Transformer.

Therefore, this study evaluates by adding metrics that can
measure acoustic quality, in addition to the experimental results
on clarity and naturalness, along with changes in the models
used. Furthermore, SSL models are often trained in a specific
language, which could show degraded performance in speech
synthesis for multiple languages due to language dependency.
Hence, this research proceeds with experiments not only in
English but also in Japanese, investigates the presence or ab-
sence of language dependency in the representations outputted
through SSL models, and ultimately analyzes the impact of
such factors on the nature of synthesized speech.

A. Experiment Setting
In this experiment, models for three different input represen-

tations were created for two languages: English and Japanese.
The structure is shown in Figure 2.

The first model (2-(a)) is used as a reference, synthesizing
speech using text scripts as input representations, which serve
as the correct (gold) labels.

The second model (2-(b)) serves as a baseline, synthesizing
speech after recognizing the training speech dataset through
an ASR model. The ASR model used is Whisper [24], with
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TABLE I
CORPORA USED FOR TRAINING HYPOTHESIS MODEL

Language S2u(multiple speakers) u2S(single speaker)

English LibriSpeech[17] LJSpeech[18]

Japanese Reazonspeech [19] (HuBERT)
JSUT[20], JVS[21], JKAC[22], JMAC[23] (k-means) JSUT

the base model used for both English and Japanese. For
these above two models, preprocessing includes the use of
the English cleaner provided by Tacotron2 for English, and
morphological analysis through Mecab for Japanese.

The third model (2-(c)) is used as a hypothesis, synthesiz-
ing speech by obtaining input representations in discrete sym-
bol form via the speech2unit module from the self-supervised
learning model presented by GSLM. 1 For this, pipelines for
English and Japanese are presented. The datasets for each
language used in speech2unit and unit2speech are shown in
Table 1; the sampling rate of the audio was unified to 16k for
all pre-trained, training, and test datasets. We use HuBERT-
base for outputting the input representation in the form of a
discrete symbol through a k-means model.

In addition, several differential elements were introduced
in the SSL model and the model was analyzed using the
ablation method. Firstly, in order to analyze the language
dependency of speech2unit, the difference between the two
synthetic speech is analyzed as shown in Figure 3, assuming
that speech2unit is trained in the same language as unit2speech
and in a different language. This creates four combinations of
S2u-u2S pair in total. Secondly, in order to evaluate the effect
of changing the code length of the discrete symbol, synthetic
speech that is synthesized from three different discrete symbols
are compared, by training the k-means model’s clustering
number to 50, 200, and 1000, respectively. For all cases,
processing was performed to remove repeated symbols from
the discrete symbol sequences if length n or more is continuous
for each symbol. For this experiment, n was fixed to 1. Thirdly,
to identify differences in output between Transformer layers
within speech2unit, synthetic speech from the representation
by speech2unit’s different layers is been compared: in this
experiment, 6th and 12th layer. Attempts have been conducted
to find effective features within SSL models, and it has also
been found that the differences between these layers has made
difference in ’linguistic’ and ’acoustic’ factors [25], [26].
These conditions also verify that the prior research is consistent
with the variables of language and code length.

In common with all three models, the Tacotron 2 model was
used for generating synthesized speech through input represen-
tations. The model is designed to train Mel-Spectrograms from
the text of input representations and to output speech using a
Vocoder under the same conditions for each language, except
for the differences in input representations.

For the test datasets, 100 utterances selected from

1As this experiment focuses only on speech resynthesis, which does not
require the uLM, we only analyze the speech2unit and unit2speech equivalent
modules.

HuBERT
(en, LibriSpeech)

Discrete Symbol Sequence

k-means (en) unit2speech
(en, LJSpeech)

(en, LibriSpeech)

unit2speech
(ja, JSUT)

Synthesized Speech (ja)

Synthesized Speech (en)
  English-Japanese

k-means (en) 
HuBERT

English-English

Fig. 3. An example of a SSL system that speech2unit-unit2speech pairs are
language-matched and unmatched

LibriSpeech-dev were used for English, and for Japanese, 100
utterances selected from utterances not used as training data
in the JSSS corpus [27] were used. The test dataset is also
converted into the form of same representations that are used
in the training phase, such as transcribed text (GT), ASR
script (ASR), and discrete symbol sequence (SSL) respectively.
Those input representations are used for inference.

IV. EXPERIMENT RESULTS

The experiment is broadly divided into evaluations of speech
language and acoustic quality. The speech language evaluation
aims to assess changes in the linguistic semantic elements of
synthesized speech based on input representations, while the
acoustic quality evaluation focuses on elements other than the
language contained in the synthesized speech audio.

The data in Table 2 are the result of SSL speech synthesis
comparing with the reference GT and baseline ASR. The
characters in the item represents ’S2u-u2S language matching’,
’symbol size’, and ’Transformer output layer’, respectively. For
example, in the case of match-200-L12, it refers a synthesized
speech that used same S2u with u2S, 200 symbol size and
discrete symbols obtained from the 12th layer.

A. Speech Intelligibility
For the language evaluation, the impact of each input

representation on the intelligibility of speech language was
examined by investigating the error rates for the target lan-
guages. The output from Whisper-base and the correct scripts
of each test dataset were compared, investigating Word Error
Rate (WER) for English and Character Error Rate (CER) for
Japanese. As an initial step in evaluating the performance of
the speech recognition model used in the experiment, the error
rate was investigated against the correct scripts for the GT test
dataset processed by speech recognition. The results showed
a word error rate of 2.41 % for English and a character error
rate of 19.35 % for Japanese.

Also, to perform a more detailed analysis using a language-
independent metric, phonemes were obtained from each piece
of speech information, and their errors were also investigated.
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TABLE II
METRICS COMPARING SYNTHESIZED SPEECH FROM THE INPUT REPRESENTATION OF GROUND TRUTH, ASR MODEL, AND VARIOUS SSL MODELS FOR

ENGLISH AND JAPANESE RESPECTIVELY. ITEM IS EMBOLDENED WHEN IT RECORDED THE MOST SUPERIOR VALUE AMONG SSL MODELS, AND BASELINE
IS UNDERLINED IF THE BASELINE VALUE IS SUPERIOR THAN THE ITEM.

English Japanese
WER(%)↓ PER(%)↓ UTMOS↑ WARP-Q↑ SDR(dB)↑ CER(%)↓ PER(%)↓ UTMOS↑ WARP-Q↑ SDR(dB)↑

GT 4.22 8.14 3.93 ± 0.067 - - 20.68 41.59 2.68 ± 0.045 - -
ASR 5.41 9.92 3.41 ± 0.084 2.71 -18.55 24.62 44.91 2.57 ± 0.049 2.23 -23.53

match-50-L6 8.37 19.09 3.31 ± 0.096 2.62 -19.91 42.88 82.19 2.10 ± 0.064 2.20 -23.95
match-50-L12 7.82 16.06 3.49 ± 0.076 2.78 -19.32 35.73 69.02 2.21 ± 0.055 2.29 -23.81
match-200-L6 6.95 15.24 3.45 ± 0.068 2.86 -17.14 32.95 59.08 2.44 ± 0.041 2.37 -23.56
match-200-L12 6.63 14.53 3.60 ± 0.057 2.89 -17.05 27.04 50.07 2.62 ± 0.053 2.35 -23.41
match-1000-L6 6.25 13.09 3.63 ± 0.060 2.93 -17.74 29.54 53.35 2.45 ± 0.051 2.36 -23.45
match-1000-L12 5.45 10.37 3.72 ± 0.063 2.92 -17.37 26.58 49.40 2.64 ± 0.043 2.35 -23.39
unmatch-50-L6 10.25 25.42 3.29 ± 0.093 2.74 -19.44 43.67 83.75 2.12 ± 0.067 2.18 -23.92
unmatch-50-L12 8.90 20.51 3.41 ± 0.079 2.69 -18.94 38.06 77.29 2.18 ± 0.059 2.21 -23.61
unmatch-200-L6 8.84 20.13 3.37 ± 0.069 2.78 -17.46 33.58 62.76 2.43 ± 0.053 2.33 -23.80
unmatch-200-L12 7.37 15.42 3.47 ± 0.058 2.84 -16.73 28.22 52.32 2.59 ± 0.047 2.37 -23.44
unmatch-1000-L6 6.31 13.96 3.61 ± 0.057 2.80 -17.09 31.83 59.28 2.45 ± 0.054 2.36 -23.07
unmatch-1000-L12 6.29 13.59 3.64 ± 0.065 2.87 -16.69 27.45 50.81 2.57 ± 0.048 2.40 -23.47

The Phoneme Error Rate (PER) was investigated using the
speech of the GT test dataset as a reference, with each speech
is analyzed as hypothesis. We used the phoneme recognizer,
allosaurus [28], to obtain phoneme directly from the speech.

The average error rates obtained for speech synthesized from
ground-truth scripts, ASR model, and SSL model input repre-
sentations are shown in Table 2. For both languages, speech
synthesis using the GT script showed the lowest error rate. On
the other hand, for label-less cases, synthesis through the ASR
model showed lower error rates than synthesis through the SSL
model. Also, it was confirmed that the relationship between
PER and WER or CER showed a proportional relationship
with all data. This shows that the intelligibility consistently
affects the errors from low-level elements like phonemes to
high-level elements like words. These results suggest that
using input representations obtained through ASR, which is
natural text, leads to better conveyance of linguistic elements
like intelligibility. This aligns with the tendency in the ZRC’s
prior study, where the topline using text transcription for both
English and other languages showed superior ABX values in
the ABX task used for phoneme discrimination [13].

Moreover, regarding the intelligibility of synthesized speech
through language matching, the language-matched model’s
results showed slightly lower error rates than the unmatched
model’s, showing that language dependence of SSL model
has non-negligible consequences. For the codec length, per-
formance improved as the codec length of k-means clustering
increased, reaching a level comparable to the ASR result in the
case of English WER. In addition, in all cases, the synthesized
speech through the 12th layer was able to obtain a lower error
rate than the synthesized speech through the 6th layer. This
is consistent with the results of previous studies that the layer
close to the final output has more ’semantic’ information than
the intermediate layer. [25]

B. Speech Naturalness
In the case of ZRC, the subjective metric Mean Opinion

Score (MOS) was used to evaluate naturalness, which can

be considered an indicator that comprehensively evaluates
both linguistic and extra-linguistic information. On the other
hand, this study employed the pre-trained UTMOS model.
UTMOS, trained on multiple languages including English,
predicts automated MOS. UTMOS is evaluated independently
without a comparative subject, allowing for the analysis of
absolute linguistic and paralinguistic information, but making
it impossible to compare voice changes between GT and
synthesized speech.

The average UTMOS values obtained for speech synthe-
sized from correct labels, ASR model, and SSL model input
representations are shown in Table 2. 2 Common across all
languages, speech synthesis using correct scripts showed the
highest values. Meanwhile, under label-less synthesis con-
ditions, the MOS for synthesized speech from SSL models
was slightly higher across all language conditions than for
those from ASR models, with this difference being greater
in English synthesized speech than in Japanese. Additionally,
speech2unit-unit2speech pairs of the same language showed
predominant MOS scores for both languages.3

Moreover, the performance improved as codec length in-
creased; however, while there was an big increase without
exception when the token increasing from 50 to 200, there was
a mild increase or even decrease when the token increasing
from 200 to 1000. Thus, it can be said that naturalness is
correlated to intelligibility, but this correlation decreases as
the number of tokens increases. Also, the output obtained in
the 12th layer obtained better results in terms of naturalness
compared to those obtained in the 6th layer, following the trend
has shown in the intelligibility: while some errors are within
confidence levels.

These results propose a hypothesis that SSL discrete rep-

2Although 95 % confidence level was indicated in the table, as UTMOS is
not a subjective value but an objective value from the model, the value was
calculated from the standard deviation of the sample.

3The difference in absolute UTMOS values between Japanese and English
can be attributed to the UTMOS evaluation model being primarily trained on
English speech data.

4



REFERENCES REFERENCES

resentations containing paralinguistic information like accents
and intonations can enhance the naturalness of synthesized
speech more than input representations from ASR models,
suggesting that this can change depending on the language
dependency of the SSL model and the amount of target
language data it was trained on. It also suggests that increasing
the language dependency of SSL models could incorporate
more language-appropriate paralinguistic information within
discrete representations. This hypothesis aligns with the results
in ZRC, where the synthesized speech results for Indonesian, a
language not trained in ZRC, more frequently failed to surpass
the MOS of top-line models utilizing text transcription for
English, a trained language [13].

C. Audio Quality and Noisiness

Following the evaluation of linguistic and naturalness as-
pects, which are related to speech language, the overall acous-
tic elements of the synthesized speech were assessed through
quality evaluation.

Initially, the quality of digital audio was evaluated based
on codecs, considering input representations as compressed
audio representations, which can be viewed as neural speech
codecs. Therefore, assuming the speech synthesis system as
a single system, the output audio was analyzed as degraded
audio compared to a reference. For such evaluations, PESQ is a
representative metric, but in this case, speaker information and
speech type can influence the results. Thus, to compensate for
temporal mismatches between GT and resynthesized signals
internally and to be resilient against errors commonly occur-
ring in audio codecs, the WARP-Q metric was added to the
evaluation. To address this, synthesized speech using correct
scripts was used as a reference, and synthesized speech using
ASR and SSL was compared as hypotheses.

The average values of WARP-Q [29] obtained for speech
synthesized from ASR model and SSL model input represen-
tations are shown in Table 2. Generally, synthesized speech
generated through the SSL model showed higher metrics com-
pared to that synthesized through the ASR model. However,
although there was a slight tendency due to Transformer layer
and token length, differences due to the SSL model’s encoder
did not show a consistent trend across languages or tasks, with
only minor increases or decreases observed.

The quality of audio in terms of noise inclusion was also
evaluated. Signal Distortion Rate (SDR), although an indicator
used in source separation, can be considered for evaluating the
degree of noise inclusion in the output audio relative to the
input audio, hence indicative of acoustic quality. The average
SDR values obtained for speech synthesized from ASR model
and SSL model input representations are shown in the table.
Overall, although the values were low, synthesized speech
through the SSL model showed slightly better metrics. More-
over, regarding differences due to the SSL model’s encoder,
systems crossing languages for English synthesized speech
showed better results, while for Japanese synthesized speech,
systems not crossing languages did better, indicating no clear

trend. There is little trend for Transformer layer and token
length as well.

Thus, speech synthesis models generated using speech
recognition showed slightly more codec distortion and noise
compared to those using SSL models, and synthesized speech’s
dependency on token language did not bring significant differ-
ences in speech quality.

V. CONCLUSION

This study investigated input representations in speech
synthesis systems and created synthesized speech through
systems constructed using each type of input representation.
These were then compared and analyzed across languages and
representations through newly considered metrics and results
from prior research.

The findings revealed that no input representation demon-
strated higher metrics than correct labels. Natural language in-
put representations through speech recognition models showed
dominance in linguistic vocal aspects, while discrete symbol
input representations through self-supervised learning models
were superior in aspects of naturalness and acoustic qual-
ity. Furthermore, the study highlighted differences in self-
supervised learning model performance based on language
dependency initiated by the language of the data. Also, the
metrics shown overall improvement as the codec length of k-
means clustering increased, more dramatically in the speech
language metrics than the acoustic metrics. Furthermore, re-
gardless of the language using, it is able to be found that
Transformer layers close to the final output in linguistic ele-
ments had more semantic information than those that did not,
and it was possible to demonstrate the tendency of previous
studies.

Future efforts will focus on devising methods to minimize
such language dependency. The goal is to advance the eval-
uation of tasks in more multilingual contexts than currently
possible by transforming text into language-informed discrete
tokens through tokenizers without preprocessing the text ac-
cording to language-specific rules.
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