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CHARACTERIZING THE RANGE OF THE COMPLEX

MONGE–AMPÈRE OPERATOR

SONGCHEN LIU

Abstract. In this article, we solve the complex Monge–Ampère equation for
measures with a pluripolar part in compact Kähler manifolds. This result
generalizes the classical results obtained by Cegrell in bounded hyperconvex
domains. We also discuss the properties of the complex Monge–Ampère oper-
ator in some special cases.
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1. Introduction

Let (X,ω) be a Kähler manifold of complex dimension n. Let [α] ∈ H1,1(X,R) be
another cohomology class. The study of the complex Monge–Ampère type equation

(1.1) (α+ ddcϕ)n = µ

has been one of most important topics in Kähler geometry over the past few decades.
When α is positive and µ is a normalized smooth volume form, Yau [25] proved

that (1.1) admits a unique smooth solution, solving the famous Calabi conjecture.
In this case, the left-hand side of (1.1) is the classic n-th wedge product.

When the cohomology class [α] is allowed to be degenerate and the measure µ is
allowed to be nonsmooth but non-pluripolar, the solutions of (1.1) are closely related
to the singular Kähler–Einstein metric. To solve the corresponding equation, the
concept of a non-pluripolar product plays an important role. Related equations
have been explored in [6, 7, 16, 17, 18, 20, 21, 22]. In this case, the left-hand side
of (1.1) is the non-pluripolar complex Monge–Ampère measure 〈αnϕ〉.
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2 SONGCHEN LIU

For the more general case, when α := ω and µ is allowed to have a pluripolar
part(see Corollary 4.4), we know almost nothing about the related equations. Co-
man, Guedj, and Zeriahi [15] developed theories to consider related problems; an
important concept is the domain of the definition of the complex Monge–Ampère
operator DMA(X,ω) (see Definition 2.8). Characterizing the range of the complex
Monge–Ampère operator on DMA(X,ω) is a major open problem.

A special and interesting problem mentioned in [19, Question 12] is that when
X = BLpP

2, p ∈ P2, 0 < α := ω ∈ −c1(KX) and µ := [D] ∧ ω/V , where D is
a smooth anticanonical divisor, [D] is the (1,1)-current integral along D and V is
the normalized constant, can one find ϕD ∈ DMA(X,ω) as the solution of the
equation?

Motivated by these related problems, we consider the complex Monge–Ampère
equation with a measure that has a pluripolar part in this article. Since we know
little about DMA(X,ω), we consider mainly the Blocki–Cegrell class D(X, θ) ⊂
DMA(X, θ) (see Definition 2.10; see also Table 1 for the relation between these
classes) in this article, where θ is a smooth, closed semi-positive real (1, 1)-form on
X whose cohomology class is big. Note that the Kähler case is a special case in our
setting.

In the Kähler case, α := ω is a Kähler form. In a recent Paper [3], Andersson,
Witt Nyström and Wulcan defined the finite non-pluripolar energy class G(X,ω)
(see Definition 2.15). They proved D(X,ω) ⊂ G(X,ω); i.e., if ϕ ∈ D(X,ω), then

ϕ ∈ L1
(

〈ωiϕ〉 ∧ ωn−i
)

, i = 0, 1, ..., n− 1, see [3, Theorem 1.10].

One benefit of [3, Theorem 1.10] is that we can express the Monge–Ampère op-
erator on D(X,ω) via the non-pluripolar product; see (3.1). Therefore, we present
the corresponding generalized theorem.

Theorem 1.1. (=Theorem 3.2) Let (X,ω) be a compact Kähler manifold of com-

plex dimension n and ϕi ∈ D(X,ω), i = 1, ..., n. Then, ϕ1 ∈ L1
(

〈(ω + ddcϕ2) ∧

... ∧ (ω + ddcϕn)〉 ∧ ω
)

.

In particular, if X is a compact Kähler surface and ϕ, ψ ∈ D(X,ω), then

MAω(ϕ, ψ) =
1

2
[(ω + ddcϕ) ∧ 〈ω + ddcψ〉+ (ω + ddcψ) ∧ 〈ω + ddcϕ〉] .

The definition of MAω( · , ..., · ) can be found in Proposition 2.13.

Now assume that α := θ is a smooth, closed semi-positive real (1, 1)-form on X
whose cohomology class is big, we consider the complex Monge–Ampère equation
with a normalized measure µ. It follows from the Cegrell–Lebesgue decomposition,
Corollary 4.4, that we have the unique decomposition µ = µr +µs, where µr is the
non-pluripolar measure and µs = 1{u=−∞}µ for some u ∈ PSH(X,ω). Considering
the range of the complex Monge–Ampère operator on D(X, θ), a natural idea is
to perform the same decomposition for MAθ(ϕ), ϕ ∈ D(X, θ) and then couple the
regular part and the singular part. To make this idea feasible, we provide a key
theorem as follows:

Theorem 1.2. (=Theorem 4.5) Let (X,ω) be a compact Kähler manifold of com-
plex dimension n. Let ϕ1, ...ϕn ∈ D(X, θ), where θ is a smooth, closed semi-positive
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real (1, 1)-form on X whose cohomology class is big. Then, we have

MAθ(ϕ1, ..., ϕn)r = 〈θϕ1
∧ ... ∧ θϕn

〉
and

MAθ(ϕ1, ..., ϕn)s = 1∪j{ϕj=−∞}MAθ(ϕ1, ..., ϕn).

In particular, if ϕ ∈ D(X, θ), then we have

MAθ(ϕ)r = 〈θnϕ〉 and MAθ(ϕ)s = 1{ϕ=−∞}MAθ(ϕ).

This generalizes the local result by Benelkourchi, Guedj, and Zeriah, [8], and
Åhag, Czyż, and Lu, Rashkovskii, [2, Page 7-8] to the global setting(see also [15,
Corollary 1.8] for the Kähler case). This theorem combined with the recent work
of Darvas, Di Nezza, and Lu, [16, 17, 18], named relative pluripotential theory, we
can solve the complex Monge–Ampère equation in a particular case:

Theorem 1.3. (=Theorem 4.9) Let (X,ω) be a compact Kähler manifold of com-
plex dimension n, and let θ be a normalized, smooth closed semi-positive real
(1, 1)-form on X whose cohomology class is big such that

∫

X
θn = 1. Let µs

be a pluripolar measure on X supported on some pluripolar set. If there exists
ϕ ∈ D(X, θ) such that MAθ(ϕ)s = µs, then for all non-pluripolar measures ν such
that

∫

X
ν = 1 −

∫

X
µs and ν = fωn, for some f ∈ Lp(ωn), p > 1, there exists a

ψ ∈ PSH(X, θ) that is the solution of the equation

MAθ(ψ) = ν + µs, ψ ∈ D(X, θ).

1.0.1. Comparing the classical result in the local setting. Let Ω ⊂ Cn be a bounded
hyperconvex domain. In [1, 2, 9, 10, 12, 13], a powerful theory of the Dirichlet
problem of the complex Monge–Ampère equation on Ω was established by several
authors. In particular, the author was inspired by [12, 13] to consider the corre-
sponding global result.

Setting F(Ω) := {ϕ ∈ PSH−(Ω) : ∃ϕj ∈ E0(Ω), ϕj ց ϕ and supj
∫

Ω
(ddcϕj)

n <
+∞}. Clearly, we have F(Ω) ⊂ D(Ω)(the definition of E0,D can be found in Section
2.2). Let µ be a positive Radon measure. Cegrell proved the following:

Theorem 1.4. ([13, Theorem 6.2]) Let Ω ⊂ Cn be a bounded hyperconvex domain
and µ = f(ddcϕ0)

n + µs, where ϕ0 ∈ E0(Ω) and f ∈ L1 ((ddcϕ0)
n). If there exists

ψ ∈ F(Ω) such that MA(ψ) = µs, then there exists ϕ ∈ F(Ω) such that

MA(ϕ) = µ.

In the global setting, we replace the condition of the pluripolar part of µ with
the condition that there exists ϕ ∈ D(X, θ) such that MAθ(ϕ)s = µs and require
that µr = fωn for some f ∈ Lp(ωn), p > 1.

1.0.2. Notation and Conventions. In this article, unless stated otherwise, we always
assume that

• In the local setting, we consider the domain Ω in Cn. In the global setting,
we consider the compact Kähler manifolds (X,ω).

• In the global setting, let [θ] ∈ H1.1(X,R) be a semi-positive and big coho-
mology class; that is, θ is a smooth closed real (1,1)-form such that θ ≥ 0
and

∫

X
θn > 0. A local potential of θ means that locally, θ := ddcf , with f

being a smooth psh function.

• The operator ddc :=
√
−1
π
∂∂̄ is the normalized

√
−1∂∂̄ operator.
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• In the global setting, let PSH(X, θ) be the set of upper semicontinuous
functions ϕ such that ddcϕ+ θ ≥ 0.

• Plurisubharmonic functions are abbreviated as psh functions. When ϕ ∈
PSH(X, θ), we abbreviate this by saying that ϕ is a θ-psh function.

• In any setting, we always assume that a measure is a positive Borel measure.
• Let X be a manifold and {Ui} be an open covering of X . The partition of

unity of {Ui} is a family of smooth functions {χi} on X such that 0 ≤ χi ≤
1,
∑

i χi ≡ 1 and suppχi ⋐ Ui.

1.0.3. Acknowledgments. I want to thank my advisor, Liyou Zhang, for interesting
discussions and valuable suggestions on an early draft which made the paper more
readable. I would also like to thank Tamás Darvas for his insightful comments that
improved the presentation of the paper. This work is partially supported by NSFC:
12071310, 12471079.

2. Preliminaries

In this section, we assume that (X,ω) is a compact Kähler manifold of complex
dimension n.

In pluripotential theory, the definition of the complex Monge-Ampère operator
is important. In the local setting, let u1, ..., uk be a locally bounded psh function.
Following the construction of Bedford–Taylor [9, 10, 11] (see also [22, Chapter 3]),
where the current ddcu1 ∧ ... ∧ ddcuk is always well defined.

This is also true in the global setting. Let ϕi ∈ PSH(X, θi)∩L∞(X), i = 1, ..., p,
where θi, i = 1, ..., p are smooth, closed semi-positive real (1, 1)-forms on X whose
cohomology classes are big. Then, (θ1 + ddcϕ1) ∧ ... ∧ (θp + ddcϕp) is well-defined
due to Bedford–Taylor.

2.1. Non-pluripolar products. In this section, we consider mainly compact Kähler
manifolds (X,ω). Given the positive (1,1)-currents θ1+ddcϕ1, ..., θ

p+ddcϕp, where
θi, i = 1, ..., p are smooth, closed semi-positive real (1, 1)-forms on X whose coho-
mology classes are big and ϕi ∈ PSH(X, θi). Following the construction of Bedford–
Taylor [11] in the local setting, it was shown in [7] (when θi ≥ 0, Vθi ≡ 0) that the
sequence of currents

1∩p
j=1

{ϕj>−k}
(

(θ1 + ddcmax{ϕ1,−k}) ∧ ... ∧ (θp + ddcmax{ϕp,−k})
)

is non-decreasing in k and converges weakly to the so-called non-pluripolar product

〈θ1ϕ1
∧ ... ∧ θpϕp

〉.

For a θ-psh function ϕ, the non-pluripolar complex Monge–Ampère measure of ϕ is

〈θnϕ〉 := 〈(θϕ)n〉.
Let X be a complex manifold. A set A ⊂ X is said to be pluripolar in X if,

for all z ∈ A, there exist a holomorphic coordinate chart U near z in X and a psh
function ϕ ∈ PSH(U) such that A∩U ⊂ {ϕ = −∞}. A positive measure µ of X is
said to be a non-pluripolar measure if

∫

A
µ = 0 for all pluripolar sets A ⊂ X .

In particular. Let (X,ω) be a compact Kähler manifold. In the above argument,
for all pluripolar sets A ⊂ X and ϕi ∈ PSH(X, θi), i = 1, ..., n, we have

∫

A
〈θ1ϕ1

∧
... ∧ θnϕn

〉 = 0; i.e., 〈θ1ϕ1
∧ ... ∧ θnϕn

〉 is a non-pluripolar measure.
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Proposition 2.1. ([7, Proposition 1.4.c)]) Non-pluripolar products, which are sym-
metric, are also multilinear in the following sense: if θj , j = 0, 1, ..., p are smooth,
closed semi-positive real (1, 1)-forms on X whose cohomology classes are big, where
ϕj ∈ PSH(X, θj), then

〈(θ0ϕ0
+ θ1ϕ1

) ∧ θ2ϕ2
... ∧ θpϕp

〉 = 〈θ0ϕ0
∧ θ2ϕ2

... ∧ θpϕp
〉+ 〈θ1ϕ1

∧ θ2ϕ2
... ∧ θpϕp

〉.

If ϕ and ψ are two θ-psh functions on X , then ψ is said to be less singular than
ϕ, i.e., ϕ � ψ, if they satisfy ϕ ≤ ψ + C for some C ∈ R. We say that ϕ has the
same singularity as ψ, i.e., ϕ ⋍ ψ, if ϕ � ψ and ψ � ϕ. Then, we have

Theorem 2.2. ([16, Theorem 1.1]) Let θj , j ∈ {1, ..., n} be a smooth, closed semi-
positive real (1, 1)-form on X whose cohomology classes are big. Let uj, vj ∈
PSH(X, θj) be such that uj is less singular than vj , j ∈ {1, ..., n}. Then,

∫

X

〈θ1u1
∧ ... ∧ θnun

〉 ≥
∫

X

〈θ1v1 ∧ ... ∧ θ
n
vn
〉

Note that in [24], Witt Nyström proves a special case of Theorem 2.2. Now, we
introduce two important concepts in pluripotential theory.

Envelopes. Let f be a function on X such that f : X → R ∪ {∞}. We de-
fine the envelope of f in the class PSH(X, θ) as

Pθ(f) := ( sup{ϕ ∈ PSH(X, θ) : ϕ ≤ f})∗.
Where h∗(x) := lim supy→x h(y) and h

∗ is automatically an upper semicontinuous
function. Observe that Pθ(f) ∈ PSH(X, θ) iff there exists some ϕ ∈ PSH(X, θ)
lying below f . In the particular case where f := min(ψ, φ), we denote the envelope
as Pθ(ψ, φ) := Pθ(min(ψ, φ)).

In our study of the complex Monge–Ampère equation, the following envelope
construction is essential:

Definition 2.3. Given ψ, ϕ ∈ PSH(X, θ), the envelope with respect to singularity
type Pθ[ψ](ϕ) is defined by

Pθ[ψ](ϕ) :=

(

lim
C→+∞

Pθ(ψ + C,ϕ)

)∗
.

When ϕ = 0, we simply write Pθ[ψ] := Pθ[ψ](0).

We summarize [18, Remark 3.4,Theorem 3.14] as follows.

Proposition 2.4. Let ϕ ∈ PSH(X, θ). Then, we have
(i).

∫

X
〈θnϕ〉 =

∫

X
〈θn
Pθ [ϕ]

〉,
(ii). Set Fϕ := {v ∈ PSH−(X, θ) : ϕ � v ≤ 0 and

∫

X
〈θnv 〉 =

∫

X
〈θnϕ〉}.

Then we have Pθ[ϕ] = supFϕ. In particular, Pθ[ϕ] � ϕ and Pθ[ϕ] = Pθ[Pθ[ϕ]].

A θ-psh function ϕ is said to be a model potential if Pθ[ϕ] = ϕ and
∫

X
〈θnϕ〉 > 0.

From Proposition 2.4, Pθ[ϕ] is a model potential for all ϕ ∈ PSH(X, θ) such that
∫

X
〈θnϕ〉 > 0.

Relative full mass class.
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Definition 2.5. Given a potential φ ∈ PSH(X, θ) such that
∫

X
θnφ > 0, the relative

full mass class is defined by

E(X, θ, φ) := {u ∈ PSH(X, θ) : u � φ,

∫

X

〈θnu〉 =
∫

X

〈θnφ〉}.

For the case in which φ is a model potential, Darvas, Di Nezza, and Lu [18]
achieved a series of significant results on pluripotential theory and the (non-pluripolar
product) complex Monge–Ampère equation in the relative full mass class E(X, θ, φ).
Their results play a key role in our article, see Section 4.2 for details. That is,

Theorem 2.6. ([18, Theorem 5.17]) Let φ ∈ PSH(X, θ) be a model potential and
∫

X
〈θnφ〉 > 0. Assume that µ is a non-pluripolar positive measure such that µ(X) =

∫

X
〈θnφ〉. Then, there exists a unique u ∈ E(X, θ, φ) such that 〈θnu〉 = µ and supX u =

0.

Theorem 2.7. ([18, Theorem 5.20]) Let φ ∈ PSH(X, θ) be a model potential and
∫

X
〈θnφ〉 > 0. Let u ∈ E(X, θ, φ) with supX u = 0. If 〈θnu〉 = µ, where µ is a positive

measure such that µ = fωn, f ∈ Lp(ωn) for some p > 1, then u has the same
singularity type as φ. More precisely:

φ− C

(

f, p, ‖f‖Lp, ω, θ,

∫

X

〈θnφ〉
)

≤ ϕ ≤ φ.

Remark. Note that in the above theory, the condition of semi-positive is not
necessary. But we only need the semi-positive case.

2.2. The complex Monge–Ampère operators on compact Kähler man-

ifolds. In this section, we assume that θ is a smooth, closed semi-positive real
(1, 1)-form on X whose cohomology class is big.

Definition 2.8. Fix ϕ ∈ PSH(X, θ). We say that the complex Monge–Ampère
measure (θ + ddcϕ)n is well defined and write ϕ ∈ DMA(X, θ) if there exists
a Radon measure µ such that for any sequence {ϕj} of bounded θ-psh functions
decreasing to ϕ on X, the Monge–Ampère measures (θ + ddcϕj)

n converge weakly
to µ. We set

MAθ(ϕ) = (θ + ddcϕ)n := µ.

It follows from [22, 3.1-3.5] and [22, Theorem 3.18] that we have PSH(X, θ) ∩
L∞(X) ⊂ DMA(X, θ). Moreover, when ϕ ∈ PSH(X, θ) ∩ L∞(X), we have that
MAθ(ϕ) = (θ + ddcϕ)n.

In the local setting, assume that Ω ⊂ Cn is a bounded domain. We denote
D(Ω) ⊂ PSH−(Ω) as the largest subclass of the class of (negative-)psh functions
in which the complex Monge–Ampère operator can be well defined, named the
Blocki–Cegrell class; i.e., if ϕ ∈ D(Ω), then there exists a measure µ such that for
any sequence {ϕj} ⊂ PSH ∩ L∞

loc(Ω), ϕj ց ϕ, the sequence (ddcϕj)
n converges

weakly to µ. We denote MA(ϕ) = (ddcϕ)n := µ. It follows from [4, Section 2] and
[5, Section 1] that we have

Theorem 2.9. Let Ω ⊂ Cn be a bounded domain and u ∈ PSH−(Ω). Then, the
following conditions are equivalent:
(i). u ∈ D(Ω);
(ii). There exists a measure µ in Ω such that if U ⊂ Ω is open and a sequence
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uj ∈ PSH∩C∞(U) is decreasing to u in U , then MA(uj) converges weakly to µ in
U ;
(iii). For every open U ⊂ Ω and any sequence uj ∈ PSH ∩ C∞(U) decreasing to u
in U , the sequence MA(uj) is locally weakly bounded in U ;
(iv). For every open U ⊂ Ω and any sequence uj ∈ PSH ∩ C∞(U) decreasing to u
in U , the sequence

(2.1) |uj|n−p−2duj ∧ dcuj ∧ (ddcuj)
p ∧ (ddc|z|2)n−p−1, p = 0, 1, ..., n− 2,

is locally weakly bounded in U ;
(v). For every z ∈ Ω, there exists an open neighborhood U of z and a sequence
uj ∈ PSH ∩ C∞(U) decreasing to u in U such that the sequences (2.1) are locally
weakly bounded in U .

The bounded hyperconvex domain Ω ⊂ Cn is a bounded domain such that there
exists a bounded psh function h : Ω → (−∞, 0) that satisfies {h < c} ⋐ Ω for all
c < 0. The unit ball in Cn is clearly a bounded hyperconvex domain.

When Ω is a bounded hyperconvex domain, Blocki [5, Theorem 2.4] showed that
D(Ω) coincides with the class E(Ω) ⊂ PSH−(Ω) defined by Cegrell in [13]. That is,
if 0 ≥ ϕ ∈ E(Ω), then, for ∀U ⋐ Ω, there exists a decreasing sequence ϕj ∈ E0(Ω)
such that ϕj ց ϕ is in U and

sup
j

∫

Ω

(ddcϕj)
n < +∞.

Where E0(Ω) := {ϕ ∈ PSH−∩L∞(Ω) : limz→ζ ϕ(z) = 0, ∀ζ ∈ ∂Ω and
∫

Ω(dd
cϕ)n <

+∞}.
Now, we can consider the Blocki–Cegrell class in the global setting.

Definition 2.10. Let D(X, θ) be the set of functions ϕ ∈ PSH(X, θ) such that
locally, on any small open holomorphic coordinate chart U ⊂ X, the psh function
ϕ|U+ρU ∈ D(U), where ρU is the local potential of θ on U such that ϕ|U+ρU ≤ 0.

It is easy to see that we have D(X, θ) ⊂ DMA(X, θ). Furthermore, when θ := ω
is a Kähler form, Coman, Guedj, and Zeriahi characterized D(X,ω) in [15, Section
3]. They found that D(X,ω) is much smaller than DMA(X,ω). Now we have

Table 1. Relations between several classes

Ω is a bounded domain L∞
loc ∩ PSH−(Ω) ⊂ D(Ω)

Ω is a bounded hyperconvex domain E0(Ω) ⊂ L∞
loc ∩ PSH−(Ω) ⊂ D(Ω) = E(Ω)

X is a compact Kähler manifold L∞(X) ∩ PSH(X, θ) ⊂ D(X, θ) ⊂ DMA(X, θ)

Let ϕ ∈ D(X, θ) and U ⊂ X be a holomorphic coordinate such that θ = ddcg in
U . Let χ ∈ C(X) such that suppχ ⋐ U . Set ϕk := max{ϕ,−k}; then, we have

∫

X

χMAθ(ϕ) = lim
k

∫

X

χ(θ + ddcϕk)
n

= lim
k

∫

U

χ(ddc(g + ϕk))
n =

∫

U

χMA(ϕ+ g)

by the definition of the complex Monge–Ampère operator. Hence,

χMAθ(ϕ) = χ1UMA(ϕ+ g),
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where 1UMA(·) represents the complex Monge–Ampère operator in U . We will
use this concept frequently and will not explain it in detail again. Many properties
of the complex Monge–Ampère operator that are local can be generalized to the
global setting by the partition of unity.

Lemma 2.11. Let ϕ ∈ D(X, θ) and ψ ∈ PSH(X, θ) such that ψ � ϕ. Then,
ψ ∈ D(X, θ).

Proof. Note that if ψ ∈ D(X, θ), then ψ + C ∈ D(X, θ), ∀C ∈ R. Therefore, we
can assume that ψ ≥ ϕ. The proof follows from [5, Theorem 1.2]. �

And the following is derived from [5, 12]:

Lemma 2.12. Let ϕ, ψ ∈ D(X, θ). Then, (1 − t)ϕ+ tψ ∈ D(X, θ) for 0 ≤ t ≤ 1,
which means that D(X, θ) is a convex set.

Proof. This lemma follows from the following: if Ω is a holomorphic coordinate
chart of X , such that Ω is a bounded domain of Cn, then D(Ω) is a convex cone.
Note that D(Ω) is a cone, which is straightforward by Theorem 2.9. Hence, we only
need to prove that it is convex.
1◦. Let Ω′ ⊂ C

n be a bounded hyperconvex domain and u, v ∈ E(Ω′). Let U ⋐ Ω′

and uj, vj ⊂ E0(Ω′) such that uj ց u, vj ց v in U , as in the definition of E(Ω′).
Then, by the argument of [12, Page 188], we have

∫

Ω′

(ddc(uj + vj))
n ≤ 3n

(
∫

Ω′

(ddcuj)
n +

∫

Ω′

(ddcvj)
n

)

.

We thus obtain u+ v ∈ E(Ω′).
2◦. Suppose that u, v ∈ D(Ω) and that t ∈ [0, 1]. It clearly follows from Theorem 2.9
that tu, (1 − t)v ∈ D(Ω). Then, for ∀z ∈ Ω, there exists a bounded hyperconvex
domain Ω′ such that z ∈ Ω′ ⋐ Ω. By [5, Theorem 2.4], we have tu, (1 − t)v ∈
D(Ω′) = E(Ω′). Since the Cegrell class is convex, we have tu + (1 − t)v ∈ D(Ω′).
Hence, tu + (1 − t)v satisfies the condition (v) in Theorem 2.9 near z for ∀z ∈ Ω.
By Theorem 2.9, we obtain tu+ (1− t)v ∈ D(Ω). �

Set MAθ(ϕ1, ..., ϕn) := (θ+ddcϕ1)∧ ...∧ (θ+ddcϕn), ϕi ∈ PSH(X, θ)∩L∞(X).
We then have the following property:

Proposition 2.13. Let ϕ1, ..., ϕn ∈ D(X, θ) and ϕji ∈ PSH(X, θ) ∩ L∞(X) such

that ϕji ց ϕi as j → +∞; then, MAθ(ϕ
j
1, ..., ϕ

j
n) converges weakly to a Radon

measure µ, and the limit measure does not depend on the particular sequence. We
denote µ by MAθ(ϕ1, ..., ϕn).

Proof. 1◦. We first prove that the similar conclusion holds in the bounded hyper-
convex domain Ω. Suppose that u1, ..., un ∈ D(Ω) and uji ∈ PSH−(Ω) ∩ L∞

loc(Ω)

so that uji ց ui as j → +∞. If h ∈ E0(Ω) and mj ց −∞, we can set uji
′
:=

max{uji ,mjh} ∈ E0(Ω) such that uji
′ ց ui as j → +∞. Then, ddcuj1

′ ∧ ... ∧ ddcujn
′

converges weakly to ν, which does not depend on the particular sequence by [13,
Theorem 4.2].

Let {Uj}j be a normal exhaustion of Ω; i.e., Uj open and Uj ⋐ Uj+1 ⋐ Ω so
that

⋃

j Uj = Ω. Set Mj := supUj
h < 0, we can select a suitable mj such that

mjMj ≤ mini{infUj+1
uji}. Then, we have uji

′
= uji in Uj , which means that

ddcuj1
′ ∧ ... ∧ ddcujn

′
= ddcuj1 ∧ ... ∧ ddcujn in Ui.
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Hence, ddcuj1 ∧ ... ∧ ddcujn converges weakly to ν, which does not depend on the
particular sequence.
2◦. Let {Ui, zi}Ni=1 be the holomorphic atlas of X such that zi(Ui) ⊂ Cn is the unit
ball and θ = ddcgi on Ui. Let {χi}Ni=1 be the partition of unity of {Ui}. Then we

have χiMAθ(ϕ
j
1, ..., ϕ

j
n) = χi1Ui

MA(ϕj1 + gi, ..., ϕ
j
n + gi) converges weakly to χiνi

on Ui as j → +∞. Set µ :=
∑

i χiνi. One can see that

MAθ(ϕ
j
1, ..., ϕ

j
n) → µ

in the weak sense as j → +∞, which does not depend on the particular sequence.
�

Let ϕ1, ..., ϕn ∈ D(X, θ), and let µ be a measure defined in Proposition 2.13. We
set MAθ(ϕ1, ..., ϕn) = µ, and

(2.2) MAθ

(

ϕ1
(k1), ..., ϕn

(kn)
)

is defined by MAθ(ψ1, ..., ψn), where ψ1 = ... = ψk1 := ϕ1, ψk1+1 = ... = ψk1+k2 :=
ϕ2,...,ψn = ψn−1 = ... = ψn−kn = ϕn.

Corollary 2.14. Assume that ϕ1, ..., ϕs ∈ D(X, θ). Then, for 0 ≤ t1, ..., ts ≤ 1
such that

∑

i ti = 1, we have
∑

i tiϕi ∈ D(X, θ) and

MAθ

(

∑

i

tiϕi

)

=
∑

ki≥0,k1+...+ks=n

Ck1,...,ks · tk11 · ... · tkss ·MAθ

(

ϕ
(k1)
1 , ..., ϕ(ks)

s

)

,

where Ck1,...,ks := n!
k1!·...·ks! .

Proof. Let ϕji ∈ PSH(X, θ) ∩ L∞(X), i = 1, ..., s, j ∈ Z+ such that ϕji ց ϕi as

j → +∞. Then, we have
∑

i tiϕ
j
i ց

∑

i tiϕi and

MAθ

(

∑

i

tiϕ
j
i

)

=
∑

ki≥0,k1+...+ks=n

Ck1,...,ks · tk11 · ... · tkss ·MAθ

(

ϕj1
(k1)

, ..., ϕjs
(ks)
)

by the multinomial theorem and the symmetry of the complex Monge–Ampère
operator. Moreover, it follows from Proposition 2.13 that we have

MAθ

(

∑

i

tiϕ
j
i

)

→ MAθ

(

∑

i

tiϕi

)

and

MAθ

(

ϕj1
(k1)

, ..., ϕjs
(ks)
)

→ MAθ

(

ϕ1
(k1), ..., ϕs

(ks)
)

in the weak sense as j → +∞. The proof follows from the definition of MAθ(·, ..., ·).
�

Remark. Let Ω ⊂ Cn be a bounded hyperconvex domain and u1, ..., un ∈ D(Ω).
In the proof of Proposition 2.13, the measure MA(u1, ..., un) is well defined as a
limiting measure.
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Then, we can define MA
(

u
(k1)
1 , ..., u

(ks)
s

)

in the local setting, which is similar to

the way it is defined in the global setting described in (2.2). By repeating the above
arguments almost word for word, we can obtain the same conclusion in the local
setting. That is, for u1, ..., us ∈ D(Ω) and 0 ≤ t1, ..., ts, we have

∑

i tiui ∈ D(Ω)
and

MA

(

∑

i

tiui

)

=
∑

ki≥0,k1+...+ks=n

Ck1,...,ks · tk11 · ... · tkss ·MA
(

u
(k1)
1 , ..., u(ks)s

)

,

where Ck1,...,ks := n!
k1!·...·ks! .

2.3. Non-pluripolar energy. In this section, we consider mainly the Kähler form
ω and PSH(X,ω). Let us now introduce the non-pluripolar energies Enpk .

Definition 2.15. For 1 ≤ k ≤ n − 1, we define the non-pluripolar energy of
ϕ ∈ PSH(X,ω) of order k as

Enpk (ϕ) :=
1

k + 1

k
∑

j=0

∫

X

ϕ〈(ddcϕ+ ω)j〉 ∧ ωn−j.

Then, we can define the finite energy class Gk(X,ω) := {ϕ ∈ PSH(X,ω) : Enpk (ϕ) >
−∞}.

In particular, when k = n− 1, we set Enp := Enpn−1, G(X,ω) := Gn−1(X,ω).

Note that ϕ ∈ G(X,ω) iff ϕ ∈ L1
(

〈ωkϕ〉 ∧ ωn−k
)

, k = 0, 1, ..., n − 1 since ϕ is
bounded from above. Hence, we can define the currents

[ω + ddcϕ]p := (ω + ddcϕ) ∧ 〈ωp−1
ϕ 〉 = ddc

(

(h+ ϕ)〈(ddch+ ddcϕ)p−1〉
)

and

Sωp (ϕ) := [ω + ddcϕ]p − 〈ωpϕ〉,
for p = 1, 2, ..., n, where h is the local potential of ω. In [3, Proposition 3.3], they
proved that [ω+ddcϕ]p and Sωp (ϕ) are well-defined globally closed positive currents
on X that only depend on the current ddcϕ + ω and not on the choice of ω as a
Kähler representative in the class [ω].

Two useful results follow from [3]:

Theorem 2.16. ([3, Theorem 6.8]) Assume that ϕ ∈ G(X,ω) and that η is a
Kähler form in [ω] so that η = ω + ddcg, where g is a smooth function on X. Let
ϕl := max{ϕ, g − l}. Then, for 1 ≤ p ≤ n,

(ω + ddcϕl)
p → [ω + ddcϕ]p +

p−1
∑

j=1

Sωj (ϕ) ∧ ηp−j , l → ∞

in the weak sense.

Theorem 2.17. ([3, Theorem 1.11]) Let (X,ω) be a compact Kähler manifold of
dimension n. Then,

D(X,ω) ⊂ G(X,ω).
In particular, D(X,ω) ⊂ DMA(X,ω) ∩ G(X,ω).
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3. The class of DMA(X,ω) ∩ G(X,ω)
In this section, we assume that (X,ω) is a compact Kähler manifold of complex

dimension n. Note that if ϕ ∈ DMA(X,ω) ∩ G(X,ω), by the definition of the
complex Monge–Ampère operator and Theorem 2.16, we have

(3.1) MAω(ϕ) = [ω + ddcϕ]n +

n−1
∑

j=1

Sωj (ϕ) ∧ ωn−j = 〈ωnϕ〉+
n
∑

j=1

Sωj (ϕ) ∧ ωn−j.

It may be helpful to consider the solution of the complex Monge–Ampère equation
MAω(ϕ) = µ when µ is allowed to be a normalized measure with a pluripolar part.
A similar idea was proposed in [3, Remark 11.13], but they did not consider terms
with Sωj (ϕ) ∧ ωn−j, j = 1, ..., n− 1.

In particular, when (X,ω) is a compact Kähler surface, the above argument
becomes more interesting. Let f ∈ C∞(X) and C ∈ R+ so that η := C−1ddcf+ω >
0. Set g := C−1f and ϕ′

l := max{ϕ, g − l}, ϕl := max{ϕ,−l}. Since ϕ′
l, ϕl ∈

PSH(X,ω) ∩ L∞(X) and ϕ′
l, ϕl decrease to ϕ as l → ∞, it follows from Theorem

2.16 and the definition of the complex Monge–Ampère operator that

MAω(ϕ) = [ω + ddcϕ]2 + Sω1 (ϕ) ∧ ω
= [ω + ddcϕ]2 + Sω1 (ϕ) ∧ (ω + ddcg).

(3.2)

Hence, for w ∈ C∞(X), it follows from (3.2) that
∫

X

wddcg ∧ Sω1 (ϕ) =
1

C

∫

X

wddcf ∧ Sω1 = 0.

When w = f , we obtain
∫

X

(√
−1∂f ∧ ∂̄f

)

∧ Sω1 (ϕ) = 0, ∀f ∈ C∞(X). Then, we

can construct a positive (1,1)-form α such that α > ω and
∫

X
α∧Sω1 (ϕ) = 0. Hence

∫

X
Sω1 (ϕ) ∧ ω = 0, then we have Sω1 (ϕ) ∧ ω = 0, which means

(3.3) 〈ω + ddcϕ〉 ∧ ω = (ω + ddcϕ) ∧ ω.
We thus obtain the following result:

Proposition 3.1. Let (X,ω) be a compact Kähler surface and ϕ ∈ DMA(X,ω) ∩
G(X,ω). Then,

MAω(ϕ) = [ω + ddcϕ]2 = 〈ω + ddcϕ〉 ∧ (ω + ddcϕ)

= ddcϕ ∧ 〈ω + ddcϕ〉+ ω ∧ (ω + ddcϕ).

In particular, when ϕ ∈ D(X,ω), the above formula holds.

Furthermore, for the class D(X,ω), we have

Theorem 3.2. Let ϕ1, ..., ϕn ∈ D(X,ω). Then, ϕ1 ∈ L1
(

〈ωϕ2
∧ ... ∧ ωϕn

〉 ∧ ω
)

.

In particular, if X is a compact Kähler surface and ϕ, ψ ∈ D(X,ω), then

MAω(ϕ, ψ) =
1

2
[(ω + ddcϕ) ∧ 〈ω + ddcψ〉+ (ω + ddcψ) ∧ 〈ω + ddcϕ〉] .

The proof needs the following Lemma:

Lemma 3.3. Let ϕ be a quasi-psh function on X, and let T be a positive (n−1, n−
1)-current such that ϕ ∈ L1(ω ∧ T ). Then, for ϕj ∈ C∞(X) such that ϕj ց ϕ, we
have

ddcϕj ∧ T → ddcϕ ∧ T



12 SONGCHEN LIU

in the weak sense.

Proof. Without loss of generality, we can assume that ϕ1 ≤ 0. Set f ∈ C∞(X) and
C ∈ R+ such that −Cω ≤ ddcf ≤ Cω. We have

∫

X

fddcϕ ∧ T =

∫

X

ϕddcf ∧ T

=

∫

X

ϕ(Cω + ddcf) ∧ T −
∫

X

ϕ Cω ∧ T.

By the monotone convergence theorem, we have
∫

X

ϕ(Cω + ddcf) ∧ T −
∫

X

ϕ Cω ∧ T

= lim
j

(
∫

X

ϕj(Cω + ddcf) ∧ T −
∫

X

ϕj Cω ∧ T
)

= lim
j

∫

X

ϕjdd
cf ∧ T = lim

j

∫

X

fddcϕj ∧ T,

where in the last line we used Stokes theorem. �

Proof of Theorem 3.2. 1◦. We first prove that ϕ1 ∈ L1
(

〈ωϕ2
∧ ... ∧ ωϕn

〉 ∧ ω
)

.

Without loss of generality, we can assume that ϕi ≤ 0, i = 1, ..., n.
It follows from Corollary 2.14 and Theorem 2.17 that

1

n

(

∑

i

ϕi

)

∈ L1

(

〈(ω + ddc
1

n
(
∑

i

ϕi))
n−1〉 ∧ ω

)

.

This means that

−
∫

X

ϕ1ω ∧ 〈(nω + ddc(
∑

i

ϕi))
n−1〉 < +∞.

By [22, Proposition 8.16], there exists ϕj1 ∈ PSH(X,ω)∩C∞(X) such that ϕj1 ց ϕ1

as j → +∞. Then, we have

−
∫

X

ϕj1ω ∧ 〈(nω + ddc(
∑

i

ϕi))
n−1〉

≤ −
∫

X

ϕ1ω ∧ 〈(nω + ddc(
∑

i

ϕi))
n−1〉 < +∞.

It thus follows from Proposition 2.1 and the multinomial theorem that

−
∫

X

ϕj1ω ∧ 〈(nω + ddc(
∑

i

ϕi))
n−1〉

=−
∑

k1+...+kn=n−1

Ck1,...,kn ·
∫

X

ϕj1ω ∧ 〈(ω + ddcϕ1)
k1 ∧ ... ∧ (ω + ddcϕn)

kn〉

≤ −
∫

X

ϕ1ω ∧ 〈(nω + ddc(
∑

i

ϕi))
n−1〉 =M < +∞,

where ki ≥ 0 and Ck1,...,kn := (n−1)!
k1!·...·kn! . Hence,

−
∫

X

ϕj1ω ∧ 〈(ω + ddcϕ2) ∧ ... ∧ (ω + ddcϕn)〉 ≤M < +∞.
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Now, again by the monotone convergence theorem, we obtain

0 ≤ −
∫

X

ϕ1ω ∧ 〈(ω + ddcϕ2) ∧ ... ∧ (ω + ddcϕn)〉 < +∞.

2◦. Next, we prove that

MAω(ϕ, ψ) =
1

2
[(ω + ddcϕ) ∧ 〈ω + ddcψ〉+ (ω + ddcψ) ∧ 〈ω + ddcϕ〉] .

By Corollary 2.14 with t1 = t2 = 1
2 and Proposition 3.1, we obtain

MAω(ϕ, ψ) = 2MAω

(

1

2
(ϕ+ ψ)

)

− 1

2
(MAω(ϕ) +MAω(ψ))

=
1

2
(ω ∧ (ω + ddcϕ) + ω ∧ (ω + ddcψ))

− 1

2
(ddcϕ ∧ 〈ω + ddcϕ〉+ ddcψ ∧ 〈ω + ddcψ〉)

+
(

(ddc(ϕ+ ψ)) ∧ 〈ω + 2−1ddc(ϕ+ ψ)〉
)

.

Therefore, we can complete the proof of the theorem if we can show that

ddc(ϕ+ ψ) ∧ 〈ω + 2−1ddc(ϕ+ ψ)〉

=
1

2

(

ddcϕ ∧ 〈ω + ddcϕ〉+ ddcψ ∧ 〈ω + ddcψ〉

+
1

2
ddcϕ ∧ 〈ω + ddcψ〉+ ddcψ ∧ 〈ω + ddcϕ〉

)

.

Indeed, analogous to 1◦, we can find smooth functions ψj and ϕj that decrease
to ψ and ϕ, respectively. Applying Proposition 2.1 and Lemma 3.3, makes it
straightforward to obtain the desired conclusion. Therefore, the proof is complete.

�

4. Solving the complex Monge–Ampère equation

4.1. Cegrell–Lebesgue decomposition. First, let us recall the Cegrell–Lebesgue
decomposition theorem in the local setting. Let Ω ⊂ Cn be a bounded hyperconvex
domain.

Theorem 4.1. ([13, Theorem 5.11]) Let µ be a positive measure on Ω. Then, µ can
be decomposed into a regular positive (non-pluripolar) measure µr, and the singular
positive (pluripolar) measure µs has support on some pluripolar set such that

µ = µr + µs.

We claim that the Cegrell–Lebesgue decomposition of µ is unique. Indeed, sup-
pose that µ′

r and µ′
s are other Cegrell–Lebesgue decompositions, and that

µs = 1{u=−∞}µs = 1{u=−∞}µ, µ
′
s = 1{u′=−∞}µ

′
s = 1{u′=−∞}µ,

where u, u′ ∈ PSH(Ω). Set A := {u = −∞} ∪ {u′ = −∞} = {u+ u′ = −∞}. For
∀f ∈ C0(Ω), since

∫

A
µr =

∫

A
µ′
r = 0, we have

∫

fdµs =

∫

1Afdµs =

∫

A

fdµ =

∫

1Afdµ
′
s =

∫

fdµ′
s.

This means that µs = µ′
s; hence, µr = µ− µs = µ− µ′

s = µ′
r.

When µ := MA(u) for some u ∈ D(Ω), from [8, Theorem 2.1] and [2, Page 7-8],
we have the following property:
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Proposition 4.2. Let µ := MA(u) for some u ∈ D(Ω). Then, we have

µr = 1{u>−∞}µ = lim
k

1{u>−k}(dd
cmax{u,−k})n and µs = 1{u=−∞}µ.

Moreover, we can make the following generalization:

Lemma 4.3. Let u1, ..., un ∈ D(Ω). Then, we have

MA(u1, ..., un)r

= lim
k

1∩i{ui>hi−k} (dd
cmax{u1, h1 − k} ∧ ... ∧ ddcmax{un, hn − k}) ,

for h1, ..., hn ∈ L∞ ∩ PSH(Ω). In particular, we have

MA(u1, ..., un)r = 1∩i{ui>−∞}MA(u1, ..., un)

= 〈ddcu1 ∧ ... ∧ ddcun〉
:= lim

k
1∩i{ui>−k} (dd

cmax{u1,−k} ∧ ... ∧ ddcmax{un,−k})

and
MA(u1, ..., un)s = 1∪i{ui=−∞}MA(u1, ..., un).

Proof. 1◦. We first claim that MA(u1, ..., un)s = 1∪i{ui=−∞}MA(u1, ..., un) and
MA(u1, ..., un)r = 1∩i{ui>−∞}MA(u1, ..., un).

It follows from the Remark of Corollary 2.14 and Proposition 4.2 that we have

MA

(

∑

i

ui

)

r

= 1{∑
i
ui>−∞}MA

(

∑

i

ui

)

= 1∩i{ui>−∞}MA

(

∑

i

ui

)

= 1∩i{ui>−∞}µ+ n! ·1∩i{ui>−∞}MA(u1, ..., un),

where µ is the sum of the complex Monge–Ampère measures. Moreover, note that

Ω = (∩i{ui > −∞})
⋃

(∪i{ui = −∞}) .
We thus obtain 1∩i{ui>−∞}MA(u1, ..., un) is a non-pluripolar measure and

MA(u1, ..., un) = 1∩i{ui>−∞}MA(u1, ..., un) + 1∪i{ui=−∞}MA(u1, ..., un).

By the uniqueness of the Cegrell–Lebesgue decomposition, we have proven the
claim.
2◦. Set uki := max{ui, hi − k}. When l > k, we have {ui > hi − k} = {uli
> hi − k}. Hence,

1∩i{ui>hi−k}MA(uk1 , ..., u
k
n) = 1∩i{ul

i
>hi−k}MA(uk1 , ..., u

k
n).

Applying the maximum principle, [22, Theorem 3.27] for each uki = max{uli, hi−k},
i = 1, ..., n, we have

1∩i{ul
i
>hi−k}MA(uk1 , ..., u

k
n) = 1∩i{ul

i
>hi−k}MA(ul1, u

k
2 , ..., u

k
n)

= ... = 1∩i{ul
i
>hi−k}MA(ul1, ..., u

l
n)

= 1∩i{ui>hi−k}MA(ul1, ..., u
l
n).

Then, by letting l → +∞, we arrive at

1∩i{ui>hi−k}MA(uk1 , ..., u
k
n) = 1∩i{ui>hi−k} lim

l
MA(ul1, ..., u

l
n)

= 1∩i{ui>hi−k}MA(u1, ..., un).
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Where in the second line we used the definition of MA(u1, ..., un). By the claim of
1◦, we obtain

lim
k

1∩i{ui>hi−k}MA(uk1 , ..., u
k
n) = lim

k
1∩i{ui>hi−k}MA(u1, .., un)

= 1∩i{ui>−∞}MA(u1, ..., un) = MA(u1, ..., un)r.

Which completes the proof. �

Let (X,ωX) be a compact complex manifold of complex dimension n equipped
with a Hermitian form, and let µ be a positive measure on X . Let {Ui, zi}Ni=1 be
the holomorphic atlas of X such that zi(Ui) is the unit ball of Cn and {χi}Ni=1 is
the partition of unity of {Ui}i. According to Theorem 4.1, we have χiµ = µir + µis
for each i, where µir is a positive non-pluripolar measure on Ui and µ

i
s is supported

on the set {ui = −∞}, ui ∈ PSH(Ui). Set µr :=
∑

i µ
i
r and µs :=

∑

i µ
i
s, we have

the Cegrell–Lebesgue decomposition µ = µr + µs in the global setting.
By the same method as above, the decomposition is unique in the global setting.

Furthermore, thanks to [23, Theorem 1.1](see also [22, Theorem 12.5] for the Kähler
case), there exists u ∈ PSH(X,ωX) such that µs is supported on the set {u = −∞}.

From the above discussion, we have the following:

Corollary 4.4. Let (X,ωX) be a compact complex manifold of complex dimension
n equipped with a Hermitian form. Let µ be a positive measure on X. Then, µ can
be uniquely decomposed into a regular positive (non-pluripolar) measure µr and a
singular positive (pluripolar) measure µs support on {u = −∞}, u ∈ PSH(X,ωX)
such that

µ = µr + µs.

Now, we return to compact Kähler manifolds. Let θ be a a smooth, closed semi-
positive real (1, 1)-form on X whose cohomology class is big. As in the special
case of [19, Question 12], the main problem of classes DMA(X, θ) and D(X, θ) is
characterizing the range of the complex Monge–Ampère operator on DMA(X, θ)
and D(X, θ).

From Corollary 4.4, for a normalized measure µ, a natural idea is to decompose
µ into regular and singular parts µr and µs and consider

(4.1) MAθ(ϕ)r = µr, MAθ(ϕ)s = µs,

respectively.
For this reason, we provide a key theorem:

Theorem 4.5. Let ϕ1, ...ϕn ∈ D(X, θ). Then, we have

MAθ(ϕ1, ..., ϕn)r = 〈θϕ1
∧ ... ∧ θϕn

〉

and

MAθ(ϕ1, ..., ϕn)s = 1∪j{ϕj=−∞}MAθ(ϕ1, ..., ϕn).

In particular, if ϕ ∈ D(X, θ), then we have

MAθ(ϕ)r = 〈θnϕ〉 and MAθ(ϕ)s = 1{ϕ=−∞}MAθ(ϕ).

Proof. Let {Ui, zi}Ni=1 be the holomorphic atlas of X such that zi(Ui) ⊂ Cn is the
unit ball and θ = ddcgi on Ui, where gi ∈ C∞ ∩L∞ ∩PSH(Ui). Let {χi}Ni=1 be the



16 SONGCHEN LIU

partition of unity of {Ui} and ϕkj := max{ϕj,−k}. Then, we have

1∩j{ϕj>−k}MAθ(ϕ
k
1 , ..., ϕ

k
n) =

∑

i

χi1∩j{ϕj>−k}MAθ(ϕ
k
1 , ..., ϕ

k
n)

=
∑

i

(

χi1Ui
1∩j{ϕj+gi>gi−k}·

MA(max{ϕ1 + gi, gi − k}, ...,max{ϕn + gi, gi − k})
)

.

Note that the currents

χi〈ddc(ϕ1 + gi) ∧ ... ∧ ddc(ϕn + gi)〉, i = 1, ..., N

are the well-defined positive currents on X . Taking k → +∞ and applying Lemma
4.3 with Ω := Ui and uj := ϕj + gi, h1 = ... = hn := gi for each Ui, we have

χi lim
k

1Ui
1∩j{ϕj+gi>gi−k}MA(max{ϕ1 + gi, gi − k}, ...,max{ϕn + gi, gi − k})

= χi1Ui
1∩j{ϕj+gi>−∞}MA(ϕ1 + gi, ..., ϕn + gi)

= χi〈ddc(ϕ1 + gi) ∧ ... ∧ ddc(ϕn + gi)〉.

(4.2)

Therefore, combining the above arguments, we have

〈θϕ1
∧ ... ∧ θϕn

〉 =
∑

i

χi〈θϕ1
∧ ... ∧ θϕn

〉

=
∑

i

χi lim
k

1∩j{ϕj>−k}MAθ(ϕ
k
1 , ..., ϕ

k
n)

=
∑

i

χi lim
k

(

1Ui
1∩j{ϕj+gi>gi−k}·

MA(max{ϕ1 + gi, gi − k}, ...,max{ϕn + gi, gi − k})
)

=
∑

i

χi〈ddc(gi + ϕ1) ∧ ... ∧ ddc(gi + ϕn)〉,

where in the second line we used the definition of 〈θϕ1
∧ ... ∧ θϕn

〉, in the last line
we used (4.2). Now, for each Ui, we have

χiMAθ(ϕ1, ..., ϕn) = χi1Ui
MAθ(ϕ1, ..., ϕn)

= χi1Ui
MA(ϕ1 + gi, ..., ϕn + gi).

By the uniqueness of Cegrell–Lebesgue decomposition and Lemma 4.3, we arrive
at

(χiMAθ(ϕ1, ..., ϕn))r = χi1Ui
MAθ(ϕ1, ..., ϕn)r

= χi1Ui
1∩j{ϕj>−∞}MAθ(ϕ1, ..., ϕn)

= χi〈ddc(ϕ1 + gi) ∧ ... ∧ ddc(ϕn + gi)〉.
Hence,

MAθ(ϕ1, ..., ϕn)r =
∑

i

χiMAθ(ϕ1, ..., ϕn)r = 1∩j{ϕj>−∞}MAθ(ϕ1, ..., ϕn)

=
∑

i

χi〈ddc(ϕ1 + gi) ∧ ... ∧ ddc(ϕn + gi)〉 = 〈θϕ1
∧ ... ∧ θϕn

〉.
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Furthermore, we have

MAθ(ϕ1, ..., ϕn)−MAθ(ϕ1, ..., ϕn)r = 1∪j{ϕj=−∞}MAθ(ϕ1, ..., ϕn).

It follows from Corollary 4.4 that we completed the proof. �

Remark. Theorem 4.5 provides a method for solving the complex Monge–Ampère
equation on D(X, θ). That is, we can consider the equation

〈θnϕ〉 = µr and 1{ϕ=−∞}MAθ(ϕ) = µs, ϕ ∈ D(X, θ),

for some normalized measure µ. This makes the idea of (4.1) feasible.

Corollary 4.6. Let ϕ1, ..., ϕn, ψ1, ..., ψn ∈ D(X, θ) such that ϕj � ψj , j = 1, ..., n.
Then,

MAθ(ϕ1, ..., ϕn)s ≥ MAθ(ψ1, ..., ψn)s.

In particular, if ϕ, ψ ∈ D(X, θ) so that ϕ � ψ, then

MAθ(ϕ)s ≥ MAθ(ψ)s.

Proof. Since ϕj � ψj , without loss of generality, we can assume that ϕj ≤ ψj , j =
1, ..., n. Let {Ui, zi}Ni=1 be the holomorphic atlas of X such that zi(Ui) ⊂ C

n is the
unit ball and θ = ddcgi on Ui, where gi ∈ C∞ ∩L∞ ∩PSH(Ui). Let {χi}Ni=1 be the
partition of unity of {Ui}.

In each Ui, we have ϕ1 + gi ≤ ψ1 + gi. Then, from [1, Lemma 4.1], we have

1Ui
1{ϕ1+gi=−∞}MA(ϕ1 + gi, ϕ2 + gi, ..., ϕn + gi)

≥ 1Ui
1{ψ1+gi=−∞}MA(ψ1 + gi, ϕ2 + gi, ..., ϕn + gi).

By repeating the above method for each ϕk + gi ≤ ψk + gi, where k = 2, ..., n, we
obtain

1Ui
1∪j{ϕj+gi=−∞}MA(ϕ1 + gi, , ..., ϕn + gi)

≥ 1Ui
1∪j{ψj+gi=−∞}MA(ψ1 + gi, , ..., ψn + gi).

(4.3)

Now, we have

MAθ(ϕ1, ..., ϕn)s = 1∪j{ϕj=−∞}MAθ(ϕ1, ..., ϕn)

=
∑

i

χi1Ui
1∪j{ϕj+gi=−∞}MA(ϕ1 + gi, ..., ϕn + gi)

≥
∑

i

χi1Ui
1∪j{ψj+gi=−∞}MA(ψ1 + gi, ..., ψn + gi)

= 1∪j{ψj=−∞}MAθ(ψ1, ..., ψn) = MAθ(ψ1, ..., ψn)s,

where in the third line we used (4.3) for each Ui, in the first and last line we used
Theorem 4.5. This completes the proof. �

When ϕ ∈ D(X,ω), due to the uniqueness of the Cegrell–Lebesgue decomposi-
tion and (3.1), Theorem 4.5, we have the following

Corollary 4.7. Let ϕ ∈ D(X,ω). Then,

MAω(ϕ)r = 〈ωnϕ〉 and MAω(ϕ)s =

n
∑

j=1

Sωj (ϕ) ∧ ωn−j .
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4.2. Solving the complex Monge–Ampère equation in D(X, θ). In this sec-
tion, we consider mainly ϕ ∈ D(X, θ), where θ is a smooth, closed semi-positive
real (1, 1)-form on X whose cohomology class is big such that

∫

X
θn = 1.

We set a normalized measure µ = µr+µs onX such that
∫

X
µ = 1. If there exists

ϕ ∈ D(X, θ) such that MAθ(ϕ) = µ, it follows from Corollary 4.4 and Theorem 4.5
that

∫

X

〈θnϕ〉 =
∫

X

µr and 1{ϕ=−∞}MAθ(ϕ) = µs.

Then we have

Proposition 4.8. Assume that ϕ ∈ D(X, θ) and µs = MAθ(ϕ)s. Then, for ψ ∈
PSH(X, θ) so that ϕ � ψ � Pθ[ϕ], we have MA(ψ)s = µs. Furthermore, if ψ � ϕ
so that MA(ψ)s = µs, then we have ψ � Pθ[ϕ].

Proof. Assume that ψ ∈ PSH(X, θ) such that ϕ � ψ � Pθ[ϕ]. By Proposition 2.2
and Lemma 2.11, we have ψ ∈ E(X, θ, Pθ[ϕ])∩D(X, θ). Applying Corollary 4.6, we
obtain

MAθ(ϕ)s ≥ MAθ(ψ)s.

Note that we have
∫

X

MAθ(ψ)s = 1−
∫

X

MAθ(ψ)r = 1−
∫

X

〈θnψ〉

= 1−
∫

X

〈θnϕ〉 = 1−
∫

X

MAθ(ϕ)r =

∫

X

MAθ(ϕ)s,

where we used the definition of E(X, θ, Pθ[ϕ]) and Theorem 4.5. By comparing the
total mass, we obtain µs = MAθ(ϕ)s = MAθ(Pθ[ϕ])s.

If ψ � ϕ so that MA(ψ)s = MA(ϕ)s, then we have
∫

X
〈θnψ〉 =

∫

X
〈θnϕ〉. It follows

from Proposition 2.4 (ii). that ψ � Pθ[ϕ]. �

Set ν = νr + µs. If νr satisfies
∫

X
νr = 1 −

∫

X
µs and ν = fωn for some

f ∈ Lp(ω), p > 1, it follows from Theorem 2.6 and Theorem 2.7 that there exists
ψ ∈ PSH(X, θ) such that

ψ ≃ Pθ[ϕ] and MAθ(ψ)r = 〈θnψ〉 = νr.

By Lemma 2.11 and Proposition 4.8, we have ψ ∈ D(X, θ) and MAθ(ψ)s =
MAθ(Pθ[ϕ])s = µs. We thus obtain

MAθ(ψ) = MAθ(ψ)r +MAθ(ψ)s

= 〈θnψ〉+ µs = νr + µs.

In summary, we obtain the following Theorem.

Theorem 4.9. Let (X,ω) be a compact Kähler manifold of complex dimension
n, and let θ be a normalized, smooth closed semi-positive real (1, 1)-form on X
whose cohomology class is big such that

∫

X
θn = 1. Let µs be a pluripolar measure

on X supported on some pluripolar set. If there exists ϕ ∈ D(X, θ) such that
MAθ(ϕ)s = µs, then for all non-pluripolar measures νr such that

∫

X
νr = 1−

∫

X
µs

and νr = fωn for some f ∈ Lp(ω), p > 1, there exists ψ ∈ PSH(X, θ) that is the
solution of

(4.4) MAθ(ψ) = νr + µs, ψ ∈ D(X, θ).
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4.2.1. Application. Let (X,ω) be a compact Kähler surface such that
∫

X
ω2 = 1.

Let µ be a measure so that µ = µs. If there exists ϕ ∈ D(X,ω) such that MAω(ϕ) =
µ(e.g. the quasi-psh Green functions, see [14]), then, for ∀s ∈ [0, 1], it follows from
Corollary 2.14, (3.3), and Theorem 3.2 that

MAω(sϕ) = (1− s)2MAω(0) + 2(1− s)sMAω(0, ϕ) + s2MAω(ϕ)

= (1− s)2ω2 + 2(1− s)sω ∧ 〈ω + ddcϕ〉+ s2µs.

This means that

MAω(sϕ)r = (1− s)2ω2 + 2(1− s)sω ∧ 〈ω + ddcϕ〉 and
MAω(sϕ)s = s2µ.

Therefore, for any t ∈ [0, 1] and any positive non-pluripolar measure ν such that
∫

X
ν = 1 and ν = fω2 for some f ∈ Lp(ω2), p > 1, by Theorem 4.9, there exists

ψν,t ∈ D(X,ω) that satisfies

MAω(ψν,t) = (1− t)ν + tµ.

4.2.2. For more general case. Let µ be a positive measure such that there exists
ϕ ∈ D(X, θ), MAθ(ϕ)s = µs. When ψ ∈ E(X, θ, Pθ[ϕ]) ∩ D(X, θ), we have ψ �
Pθ[ϕ]; hence, MAθ(ψ)s ≥ MAθ(Pθ[ϕ])s = µs by Corollary 4.6. Moreover, we have

∫

X

MAθ(ψ)s = 1−
∫

X

〈θnϕ〉 = 1−
∫

X

〈θnPθ [ϕ]
〉 =

∫

X

MAθ(Pθ[ϕ])s

by the definition of E(X, θ, Pθ[ϕ]) and Theorem 4.5. Now, by comparing the total
mass, we obtain MAθ(ψ)s = MAθ(Pθ[ϕ])s = µs. So we want to know

Problem 4.10. In the setting of Theorem 4.9, without the condition that νr =
fωn, f ∈ Lp(ωn), p > 1, given an appropriate condition of νr so that there exsits
ψ ∈ D(X, θ) satisfies MAθ(ψ) = νr + µs.

If νr is arbitrary, by Theorem 2.6, stating the uniqueness and existence of a
solution of

(4.5) 〈θnψ〉 = νr, ψ ∈ E(X, θ, Pθ[ϕ]),

answering this question follows from proving that E(X, θ, Pθ[ϕ]) ⊂ D(X, θ).
Unfortunately, this is incorrect even when Pθ[ϕ] = 0, see [15, Example 3.4]. So

for arbitrary νr, the answer to this question is incorrect, because the case of µs = 0
is a trivial counterexample.

Suppose
∫

X
〈θnϕ〉 > 0 and ψ′ is another solution of (4.4). If ψ′ � Pθ[ϕ], then we

have ψ′ ∈ E(X, θ, Pθ[ϕ]) since
∫

X
ν =

∫

X
〈θnPθ [ϕ]

〉. By the uniqueness of a solution

of (4.5), we have ψ′ − ψ ≡ constant. So a natural question is

Problem 4.11. In the setting of Theorem 4.9, given an appropriate condition
so that ψ is unique up to a constant.
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