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Abstract

Extracting governing physical laws from computational or experimental data is crucial across
various fields such as fluid dynamics and plasma physics. Many of those physical laws are dis-
sipative due to fluid viscosity or plasma collisions. For such a dissipative physical system, we
propose two distinct methods to learn the corresponding laws of the systems based on their
energy-dissipation laws, assuming either continuous data (probability density) or discrete data
(particles) are available. Our methods offer several key advantages, including their robustness
to corrupted observations, their easy extension to more complex physical systems, and the po-
tential to address higher-dimensional systems. We validate our approach through representative
numerical examples and carefully investigate the impacts of data quantity and data property
on the model discovery.

1 Introduction

Constructing surrogate models and discovering physical laws, often represented by nonlinear par-
tial differential equations (PDEs), are two major data-driven approaches that can help us better
understand complex natural phenomena. One of the most widely used methods for discovering
physical laws is the physics-informed neural network (PINN) [48]. The idea of PINN is to train
neural networks using a loss function based on the underlying partial differential equation and noisy
observation data. This approach can be traced back to at least the works in [50, 1, 18]. Another
powerful approach for extracting governing physical laws from data is a sparse identification of non-
linear dynamical systems (SINDy) [5]. SINDy has gained popularity due to its interpretability and
computational efficiency. The SINDy framework is motivated by the pioneer work [4, 53], which uses
symbolic regression to recover physical equations from data. Later, a weak-form version of SINDy
was developed for learning PDEs [39, 38] and extended to cover mean-field equations [40] and Hamil-
tonian systems [41]. Koopman operator theory is also used to establish various data-driven analysis
for complex dynamics [6, 59, 28]. Nonparametric regression techniques for learning interaction ker-
nels [34, 32, 29, 15, 42, 33, 14] are developed for various equations. Flow maps [10, 12, 31] and
kernel flows [60] for learning dynamical systems are introduced. Probabilistic/statistical methods,

∗Corresponding author: lix@iit.edu

1

http://arxiv.org/abs/2412.04480v1


including Bayesian inferences, maximum likelihood methods, and Wasserstein distances, are intro-
duced to learn stochastic dynamical systems [13, 45, 36]. More recently, in order to maintain the
physical properties (e.g., invariant quantities for conserved systems or dissipation rates for dissipa-
tive systems) of the original system while learning the system, various structure-preserving learning
strategies are developed to learn Hamiltonian systems [27, 7, 8, 37, 3, 16, 19, 23, 11, 30], energy
dissipative systems [62, 61, 25], and, more generally, metriplectic systems [20, 21].

However, most of the existing work establish the learning framework based on the corresponding
equations, such as (stochastic) ordinary differential equations (SDE/ODE for short) and PDEs. The
learned models may not preserve the fundamental physical law of dissipation. Recently, there are
growing interesting of learning thermodynamically consistent physical model from variational prin-
ciples, such as General Equation for Non-Equilibrium Reversible-Irreversible Coupling (GENERIC)
formalism [22, 64] and Onsager principle [26, 61]. These variational principles model complex
physical processes by accounting for both energy conservation (in reversible processes) and energy
dissipation (in irreversible processes). The key idea behind these variational principle-based learning
approaches is to parameterize the physical quantities using neural networks while constructing loss
functions based on equations derived from these principles.

The goal of this work is to propose a new learning framework based on the energy-dissipation
laws of the target physical systems, without relying on the governing equations. Our proposed
methods offer several benefits, including robustness to corrupted observations, easy extensions to
more general physical systems, and has the potential to handle higher dimensional systems. In this
work, we focus on learning potential function and noise intensity in one-dimensional generalized
diffusion to illustrate our method and explore its performance under different settings. Extending
the approach to higher-dimensional problems and other physical systems is straightforward. For
much higher dimensional problems, we leave this as future work.

The rest of the paper is organized as follows. Section 2 provides a brief introduction to the
energetic variational approach for generalized diffusions. In Section 3, we propose two methods
for learning the governing laws of the systems based on their energy-dissipation laws, using either
continuous data (probability density) or discrete data (SDE particles). Section 4 presents several
representative examples to validate the performance of our methods. Finally, we conclude with a
brief discussion and propose an alternative approach for learning the system based on another type
of discrete data (ODE particles) in Section 5.

2 Formulation

Before proposing the learning framework, we briefly introduce the energetic variational approach
(EnVarA for short) [17] for generalized diffusions, which plays an important role in our proposed
learning frameworks in the next section.

Motivated by non-equilibrium thermodynamics, particularly the seminal work of Rayleigh [55]
and Onsager [43, 44], a complex system can be described by an energy-dissipation law

d

dt
Etotal = −∆ ≤ 0, (1)

where Etotal is the sum of the kinetic energy K and the Helmholtz free energy F , and ∆ is the rate
of energy dissipation. Based on the energy-dissipation law (1), EnVarA is a unique, well-defined
way to derive the dynamics of the underlying system using the least action principle (LAP) and
the maximum dissipation principle (MDP). To be more specific, for the Hamiltonian part of the

system, one can employ the LAP, taking variation of the action functional A(x) =
∫ T
0 (K − F) dt
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with respect to x (the trajectory in Lagrangian coordinates) [17, 2], to derive the conservative force,

i.e., δA =
∫ T
0

∫

Ω(forceiner − forceconv) · δx dxdt. For the dissipation part, one can apply the MDP,
taking the variation of the Onsager dissipation functional D with respect to the “rate” xt, to derive
the dissipative force, i.e., δD =

∫

Ω forcediss · δxt dx, where the dissipation functional D = 1
2△ in

the linear response regime [44]. Subsequently, the force balance condition connects the conservative
force and the dissipation force providing the evolution equation of the studied system

δD

δxt
=
δA

δx
. (2)

The EnVarA has been successfully applied to build various mathematical models in physics, chemical
engineering, and biology [57, 58].

Generalized Diffusion Let us consider the following random process

dXt = a(Xt)dt+ σ(Xt)dWt, (3)

whereW is a standard n-dimensional Brownian motion, the state variable Xt and the drift coefficient
a are two n-dimensional vectors, the noise intensity σ is a scalar function, and t ∈ R

+ ∪ {0}. If
the stochastic integral of (3) is interpreted as backward Itô integral, one may obtain the following
Fokker-Planck equation (See (c) in Remark 2.1):

ft +∇ · (af) =
1

2
∇ · [σ2∇f ], (4)

where f(x, t) is the probability density function of the state variable Xt.
When following the fluctuation-dissipation theorem, one restricts the convection coefficient

a = −
1

2
σ2∇ψ, (5)

where ψ is the potential function and σ is the noise intensity.
The Fokker-Planck equations (4) with the condition (5) can be obtained from variation of the

following energy dissipative law:

dF [f ]

dt
= −

∫

Ω

f

σ2/2
|u|2dx, (6)

along with the continuity equation of the probability density

ft +∇ · (fu) = 0. (7)

Here, u is a certain average velocity of all stochastic trajectories, and F [f ] is the free energy is
defined by

F [f ] :=

∫

Ω
[f ln f + ψf ] dx, (8)

One can derive the evolution equation (4) by the general framework of EnVarA [17]. Note that

K = 0, F =

∫

Ω
[f ln f + ψf ] dx, D =

1

2

∫

Ω

f

σ2/2
|u|2dx. (9)

To apply the LAP, we need first introduce the concept of flow map x(X, t), defined through
{

d
dtx(X, t) = u(x(X, t), t),

x(X, 0) = X.
(10)
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for a given velocity field u. Here X is the Lagrangian coordinate and x is the Eulerian coordinates.
For fixed X, x(X, t) can be interpreted as the trajectory of the particle that is initially located at
X. Due to the mass conservation, f(x, t) can be viewed as the function of the flow map x(X, t), as

f(x, t) = f0(X)/det(∇Xx(X, t)) (11)

where f0(X) is the initial density. Consequently, one can take the variational of the action functional
with respect to the flow map x(X, t). The final force balance equation is given by

u(x, t) = −

(

σ2

2
∇ ln f +

σ2

2
∇ψ

)

, (12)

which is the velocity derived from the energy-dissipation law (6). Combining with the continuity
equation ft +∇ · (uf) = 0, one can obtain the Fokker-Planck equation (4) with a given by (5). We
refer the interested reader to [17, 24] and the references therein for more details.

Remark 2.1. There are at least three ways to express the energy-dissipation law based on different
interpretations of the stochastic integral of (3). To be more specific, writing a Taylor expansion of
probability distribution function f(x, t), one may obtain the following PDEs [17]:

(a) ft +∇ · (af) = 1
2∆(σ2f) if using Itô integral,

(b) ft +∇ · (af) = 1
2∇ · [σ∇(σf)] if using Stratonovich integral,

(c) ft +∇ · (af) = 1
2∇ · [σ2∇f ] if using backward Itô integral, yielding PDE with self-adjoint

diffusion term.
If the convection coefficient satisfies the fluctuation-dissipation theorem (5), i.e. a = −1

2σ
2∇ψ,

then the above PDEs may be obtained from variation of the following energy laws respectively
(a) d

dt

∫ [

f ln(12σ
2f) + ψf

]

dx = −
∫ f

σ2/2
|u|2dx,

(b) d
dt

∫

[f ln(σf) + ψf ] dx = −
∫ f

σ2/2
|u|2dx,

(c) d
dt

∫

[f ln f + ψf ] dx = −
∫ f

σ2/2 |u|
2dx. along with the mass conservation:

ft +∇ · (uf) = 0. (13)

Remark 2.2. In the current study, we establish the learning framework based on the expression (c)
in Remark 2.1. Therefore, the SDE (3) is interpreted as a backward Itô integral correspondingly.
The reason for choosing (c) is that both sides of the first two expressions, (a) and (b), depend on
the noise intensity σ, which exacerbates the ill-posedness of the problem, as we must balance both
sides during the training process. We need to rewrite it as an Itô SDE

dXt =

[

a(Xt) +∇(
1

2
σ2(Xt))

]

dt+ σ(Xt)dWt

in order to simulate the backward Itô integral in (3) using the Euler-Maruyama scheme. It should be
noted that there is a slight abuse of notation here. The stochastic integral σ(Xt)dWt in this context
is interpreted as an Itô integral, whereas the stochastic integral σ(Xt)dWt in (3) is interpreted as a
backward Itô integral.

3 Learning frameworks

In this section, we will propose two learning frameworks with two types of data [continuous data
(probability density) or discrete data (particle)] aiming to identify (partial) dynamics of the gener-
alized diffusion (3).

4



We assume that the generalized diffusion satisfies the fluctuation-dissipation theorem that tells
us the relation between the noise intensity and the drift term, i.e. a = −1

2σ
2∇ψ in (3). Our goal

is to identify the potential function ψ and/or the noise intensity σ2 of the generalized diffusion (3)
from data. Moreover, we will explore the impact of data property on the learning tasks, and propose
different learning frameworks to accommodate the given data.

We introduce two different ways to learn the potential function ψ and/or the noise intensity σ2

based on different training data: the density evolution generated by the Fokker-Planck equation
(4), or particles generated by the stochastic differential equation (3). Both of the proposed methods
are based on the energy functional (8). Thanks to the fluctuation-dissipation theorem, the system
(3) or (4) satisfies the energy-dissipation law (6). Therefore, we can learn the potential function ψ
and/or the noise intensity σ2 by checking against the energy-dissipation law (6).

We will construct the loss function based on the energy-dissipation law (6). Leveraging the
energy-dissipation law to construct the loss function, rather than using the governing equations,
offers several advantages. First, it relies solely on an energy law, bypassing the need for information
from the governing equations. Second, since the energy law is expressed in an integral (weak) form,
it imposes weaker regularity requirements on the density function, which is likely to be more robust
to corrupted observations compared to loss functions based on governing equations. Third, the
integral form of the loss function has the potential to be extended to handle higher dimensional
problems efficiently, such as through the use of particle methods.

In this section the energy-dissipation law is expressed in terms of the probability density function
f , as the most straightforward way. For simplicity, we illustrate our methods by assuming the noise
intensity σ2 is known and focus on learning the potential function ψ. Alternatively, we could also
learn the noise intensity σ2 while assuming the potential function ψ is known. Here we let the
unknown potential function ψ(x) be approximated by a neural network ψnn(x; θ).

3.1 Density-based Method

Since the free energy E and the velocity u in (8) and the dissipation rate in (6) are expressed in terms
of the probability density function f , it is most straightforward to compute the loss function based
on the density data f . To be specific, our training data are observation dataset (probability density
function), denoted as {(f(xi,j, t1), f(xi,j, t), f(xi,j , t2))}

N,M
i,j=1, where t1 = t − δt and t2 = t + δt for

a given observation time step size δt, {xi,j} ⊂ Ω are the N uniform mesh grid points for each j
with grid size ∆x, and M is the number of data sets which could be generated from multiple initial
distributions.

The free energy (8) at time t can be approximated by the following Riemann sum approximation

EN
j (t, θ) =

N
∑

i=1

[f(xi,j, t) ln f(xi,j, t) + ψnn(xi,j ; θ)f(xi,j, t)]∆x. (14)

Since the density function data is assumed to be available in this case, we construct the loss
function based on the original energy-dissipation law (6)

θ∗ = argmin
θ

M
∑

j=1

λ(j)

∥

∥

∥

∥

∥

EN
j (t2; θ)− EN

j (t1; θ)

t2 − t1
+∆x

N
∑

i=1

f(xi,j, t)

σ2/2

∣

∣

∣

∣

σ2

2
∇ ln f(xi,j, t) +

σ2

2
∇ψnn(xi,j; θ)

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

2

,

(15)
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where t1 = t − δt and t2 = t + δt for a given observation time step size δt and λ is an user-
defined weighting function. We note that, if the training data for f were obtained by solving the
Fokker-Planck equation (4), it would be computationally expensive in high dimensions.

Remark 3.1. The loss function (15) is in an integral/summation form, which has lower regularity
requirements compared to the corresponding PDE (4). This integral form is expected to enhance
the robustness of the proposed density-based method, particularly when the density function is not
smooth enough or the observed density function is affected by polluted observations. We will present
a simple comparison between our EnVarA-based method and a simplified PDE-based method in the
numerical examples in the next section.

Remark 3.2. We can learn the potential function ψ by minimizing the loss function (15) given the
noise intensity σ2. Conversely, we can also learn the noise intensity σ2 if the potential function
ψ is provided. Indeed, these two learning tasks have different data requirements for the training
data {(f(xi,j , t1), f(xi,j, t), f(xi,j , t2))}

N,M
i,j=1 in the proposed density-based method. By noticing

that (15) is a weak-form loss function, the two learning problems are ill-posed in general. When
learning the potential function ψ, if the training data are stationary, the approximation of dE/dt
in the loss function (15) becomes zero. As a result, the originally ill-posed problem transforms into
a well-posed one, meaning that (15) serves as a point-wise loss function in this case. In contrast,
stationary training data are not suitable for learning the noise intensity σ2, since the approximation
of dE/dt remains zero, making zero a minimizer of the loss function. We will further explore this
in the next section through numerical examples.

Remark 3.3. The free energy of the system (3) exponentially over time, particularly in the initial
stage, the derivative (dE/dt) is large. We found first-order schemes lack sufficient accuracy, which
significantly impacts the performance of our method. Therefore, we use a second-order scheme
here instead of the forward Euler scheme to achieve more accurate derivative (dE/dt) estimates.
To do so, we collect training data {(f(xi,j, t1), f(xi,j, t), f(xi,j , t2))}

N,M
i,j=1 at three time instances to

compute the derivative dE/dt using a more accurate finite difference scheme, specifically a second-
order central difference approximation.

3.2 Particle-to-density method

Next, we consider the case where the probability function f corresponding to the state variable
is not readily available. Solving a high-dimensional Fokker-Planck equation using a continuous
representation of f faces the curse of dimensionality, which becomes less practical. Therefore, we
propose an alternative way to establish the learning framework here.

Suppose that we can access particle data that satisfy the SDE (3) instead of the probability den-
sity function f . The observation dataset (particles) is denoted by {(xi,j(t1),xi,j(t),xi,j(t2))}

N,M
i,j=1.

The number N here is the sample size of a distribution function opposed to the numbers of grid
points in the density-based method proposed in the previous subsection. One can approximate the
probability density function f using particle data {(xi,j(t1),xi,j(t),xi,j(t2))}

N,M
i,j=1, denoted by fN ,

so that the loss function (15) can be computed as in the density-based method. In this work, we
consider only 1D cases. We use the kernel density estimation method [51, 47] to approximate the
density function. For higher-dimensional systems, one can employ more efficient methods to approx-
imate the density function such as normalizing flows [49, 46, 35]. Subsequently, the loss function
for the particle-to-density method can be obtained by replacing f with fN in the loss function (15)
of the density-based method

6



θ∗ = argmin
θ

M
∑

j=1

λ(j)

∥

∥

∥

∥

∥

EN
j (t2; θ)− EN

j (t1; θ)

t2 − t1
+∆x

N
∑

i=1

fN(xi,j , t)

σ2/2

∣

∣

∣

∣

σ2

2
∇ ln fN (xi,j, t) +

σ2

2
∇ψnn(xi,j ; θ)

∣

∣

∣

∣

2
∥

∥

∥

∥

∥

2

,

(16)
where the energy is

EN
j (t, θ) =

N
∑

i=1

[fN (xi,j, t) ln fN (xi,j, t) + ψnn(xi,j; θ)fN (xi,j, t)]∆x. (17)

Compared with the density-based method, the particle-to-density method gives a less accurate
learning framework since we need to approximate the density function using particle data. However,
as a reward at the cost of losing accuracy, we can obtain training datasets efficiently, especially in
high dimensions, since we can solve the SDE (3) instead of solving the Fokker-Planck equation (4).

4 Numerical Examples

In this section, we will investigate the performance of the three learning frameworks proposed in
the previous section (i.e., the density-based method and the SDE particle-based method) under
different settings. Furthermore, we will explore the impacts of data quality and quantity on the
learning results.

For all examples, we use a constant weighting function λ ≡ 1 in the loss functions (15) and (16).
For training, we employ a fully-connected neural network with one hidden layer and 32 nodes per
layer. The activation function is Tanh(), and we use Adam as the optimizer with a learning rate
5× 10−4. The neural network is trained for 20000 epochs with the batch size 5 (20 groups data) in
most of the examples, unless otherwise specified. In the particle-to-density case, we generate 5×104

samples as training data when using the particle-to-density method.
In what follows, we consider the SDE (3), i.e. dXt = a(Xt)dt+σ(Xt)dWt, where the drift term

a satisfies the fluctuation-dissipation theorem a = −1
2σ

2∇ψ. Our goal is to identify the potential
function ψ or the noise intensity σ2 and the ground truth potential function ψ and noise intensity
σ2 will be specified in each example. It should be noted that the learned potential function can be
shifted in the y-direction, as adding a constant to the potential function does not affect the system’s
evolution.

4.1 Learning potential function

In this subsection, we study the performance of the density-based and particle-to-density methods
for learning the potential function ψ using two different cases.

Example 4.1. We consider the potential function ψ(x) = 1
2x

4 − x2 and the noise intensity σ(x) =
1

x2+1 . Our goal is to identify the potential function ψ (in what follows, we refer to both σ and σ2

as noise intensity) since we cannot determine the sign of the function σ.
The training data {(f(xi,j , t1), f(xi,j , t), f(xi,j, t2))}

N,M
i,j=1 are obtained by solving the Fokker-

Planck equation (4) in a bounded domain Ω = [−3, 3] with grid size ∆x = 0.01 and time step
size ∆t = 0.001 or estimating the density function f from the SDE (3) particles. We simulate 20
different initial distributions N (µ, 0.22) (the mean values µ are uniformly spaced in domain [−2, 2]
) and choose the snapshots at t1 = 2.495, t = 2.5 and t2 = 2.505 as our training data (so the
observation time step size is δt = 5∆t where ∆t is the time step used in the Fokker-Planck solver),

7



i.e., the hyperparameter M = 20 in the loss function (15). Since the loss function (15) is in an
integral form, it cannot be uniquely determined using a single group of density data (M = 1).
Therefore, we chose to use 20 groups of data (M = 20) here. Figure 1a shows the learned potential
function ψnn together with the target ψ for the given σ(x) = 1

x2+1
. Figure 1b shows the learned

potential function using the particle-to-density method. As expected, the density-based method
outperforms the particle-to-density method, as the latter introduces an additional approximation
error when estimating the density function. Even so, the particle-to-density method still yields good
results and may be advantageous in high-dimensional problems, which we leave for future work.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

ψ(
x)

Target: ψ(x) = 0.5x4 − x2

NN approximation

(a) Density-based method.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

0

1

2

3

4

ψ(
x)

Target: ψ(x) = 0.5x4 − x2

NN approximation

(b) Particle-to-density method.

Figure 1: The learned potential function ψnn (blue lines) verse the ground truth (G.T.: ψ(x) =
1
2x

4−x2) (red lines), using the density-based method (Figures 1a) and the particle-to-density method
(Figures 1b).

Example 4.2. We intend to learn the potential function ψ from training data with different proper-
ties. Let’s revisit the energy-dissipation law (6) as follows

dE

dt
= −

∫

Ω

f

σ2/2
|u|2dx, (18)

where the free energy and the velocity u are defined by

E[f ] =

∫

Ω
[f ln f + ψf ] dx, u = −

(

σ2

2
∇ ln f +

σ2

2
∇ψ

)

. (19)

The unknown function ψ appears on both sides of the energy-dissipation law, leading to an inverse
problem that is generally ill-posed, as one seeks to recover the potential function ψ from the integral.
This is the reason that, in Example 4.1, we select M groups of initial data as Gaussian-type test
functions trying to better determine the gradient of the potential function. However, the ill-posed
problem can be avoided by using steady-state data. In the steady state, the time derivative of the
energy equals zero, i.e., dE

dt = 0. Moreover, the right-hand side of the energy-dissipation law reaches
its unique minimizer when the velocity u = 0. Given that the noise intensity is specified and the
density function f corresponds to the training data, it follows that the gradient of the potential
function is uniquely determined.
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To illustrate this observation, we aim to learn a triple-well potential ψ using the training data
at different time instances, with the noise intensity σ2(x) =

[

1 + 1
2 cos(3x+ 1

2)
]2

provided.
The training data are obtained by solving the Fokker-Planck equation (4) using a similar setting

of the previous example and the observation time step size is still chosen as δt = 5∆t. Figure 2a
shows the evolution of the free energy. Figure 2b shows the learned triple-well potential using data
from 20 groups at time t = 20 (unsteady state in this case), while Figure 2c shows the learned triple-
well potential using data from 1 group at time t = 200 (steady state). For the latter, we trained for
50000 epochs due to the limited data (1 group), compared to the former, which used data from 20
groups. As we can see, both sets of training data are able to learn the triple-well potential, but the
latter is more accurate than the former because it avoids the ill-posedness problem.

0 25 50 75 100 125 150 175 200
t

−4.8

−4.6

−4.4

−4.2

−4.0

−3.8

−3.6

E(
t)

(a) Energy evolution.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−6

−5

−4

−3

−2

−1

0

1

2

ψ(
x)

Target: ψ(x) = (x2 − 1)2 * (x2 − 4) + x
NN approximation

(b) Training data at t = 20.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x

−6

−5

−4

−3

−2

−1

0

1

2

ψ(
x)

Target: ψ(x) = (x2 − 1)2 * (x2 − 4) + x
NN approximation

(c) Training data at t = 200.

Figure 2: (a) The evolution of the energy E(t) for the true density f with ψ(x) = (x2−1)2(x2−4)+x

and σ2(x) =
[

1 + 1
2 cos(3x+ 1

2 )
]2

. The learned potential function ψnn (blue) compared with the
G.T. (red) using the density-based method for training data at (b) t = 20 (unsteady) and (c) t = 200
(steady state).

4.2 Learning noise intensity

In this subsection, we validate the performance of the density-based and particle-to-density methods
for learning the noise intensity σ2 using three different cases.

Example 4.3. We consider the potential function ψ(x) = 1
2x

4 − x2 and the noise intensity σ(x) =
1

x2+1
. The settings of this example are almost the same as in Example 4.1, except that we aim to

learn the noise intensity σ2 instead of the potential function ψ. Figure 3a shows the learned noise
intensity σ2nn for the given potential ψ(x) = 1

2x
4 − x2 along with the target σ2(x) = 1

(x2+1)2
using

the density-based method.
The training data {(f(xi,j , t1), f(xi,j , t), f(xi,j, t2))}

N,M
i,j=1 are obtained by solving the Fokker-

Planck equation (4) in a bounded domain Ω = [−3, 3] with grid size ∆x = 0.01 and time step
size ∆t = 0.001 or estimating the density function f from the SDE (3) particles. We simulate
20 different initial distributions of N (µ, 0.22), where the mean values µ are uniformly spaced in
domain [−2, 2], and choose the snapshots at t1 = 0.495, t = 0.5 and t2 = 0.505 as our training
data (so the observation time step size is δt = 5∆t), i.e., the hyperparameter M = 20 in the loss
function (15). Figure 3b shows the learned noise intensity using the particle-to-density method.
As in Example 4.1, the density-based method outperforms the particle-to-density method. The
particle-to-density method still provides a reasonable profile of the noise intensity. For the particle-
to-density method, it can be observed that the learned potential function ψ in Figure 1 are more
accurate than the learned noise intensity σ2 in Figure 3. This suggests that our method may lack
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robustness in learning the noise intensity σ2. This is not coincidental: the issue stems from the loss
function (15), as we will demonstrate with the following example.
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x
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σ2
(x

)

Target: σ2(x) = 1/(x2 + 1)2

NN approximation

(a) Density-based method.
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Target: σ2(x) = 1/(x2 + 1)2

NN approximation

(b) Particle-to-density method.

Figure 3: The learned noise intensity σ2nn (blue lines) compared with the ground truth (G.T.: σ2(x) =
1

(x2+1)2
) (red lines), using the density-based method (Figures 3a) and the particle-to-density method

(Figures 3b).

Example 4.4. In this example, our goal is to learn a more complicated noise intensity σ2(x) =
[

1 + 1
2 cos(3x+ 1

2 )
]2

using the density-based method, where the potential function ψ(x) = 1
2x

4−x2

is given. The training data are obtained by solving the Fokker-Planck equation (4) using the same
setting of the previous example and the observation time step size is still chosen as δt = 5∆t.

Figure 4a shows for the learned noise intensity compared with the true one. As we can see,
we can only learn a rough profile of the noise intensity. The reason is that the training data
are selected at the initial stage, where the approximation of the derivative dE/dt is less accurate
compared to data near the steady state (see Remark 3.3). Additionally, we cannot use data near the
steady state to learn the noise intensity because when the system reaches steady state, the energy
has already minimized, indicating that diffusion has stopped. Consequently, the energy-dissipation
law no longer provides information about the noise intensity. Balancing the error in the derivative
approximation with the information about the noise intensity is left for future work. Note that one
can build in the periodicity strongly by learning a neural network with input of sin(3x) and cos(3x).
Such an architecture improves the learning result slightly (Figure 4b), but it still does not fully
resolve the challenge of balancing errors in derivative approximation with the information about
noise intensity.

4.3 Corrupted observations

Example 4.5. (Corrupted observations, EnVarA vs PDE-based method). In this example,
we provide a simple comparison between our EnVarA-based learning framework and a PDE-based
learning framework for corrupted observations aiming to show the robustness of our method. To
be more specific, motivated by the PDE-based learning framework [52, 50, 1, 18], we construct the
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NN approximation

(a) NN with input of x.
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Target: σ2(x) = [1 + 0.5cos(3x+ 0.5)]2

NN approximation

(b) NN with input of (cos(3x), sin(3x)).

Figure 4: The learned noise intensity σ2 (blue line) compared with the G.T. (red line) σ2(x) =
[

1 + 1
2 cos(3x+ 1

2 )
]2

using the density-based method. (a) Learning a neural network (NN) with
input of x. (b) Learning a neural network with input of (cos(3x), sin(3x)).

following loss function based on the Fokker-Planck equation (4)

LPDE =
1

NM

N,M
∑

i,j=1

[

f j+1
i − f j−1

i

2δt
+∇ ·

(

aif
j
i

)

−
1

2
∇ ·

(

σ2i∇f
j
i

)

]2

, (20)

where the drift term a = −σ2

2 ∇ψ, f ji = f(xi(tj)), ai = a(xi), and σi = σ(xi). The spatial
derivatives are discretized using the central difference scheme instead of automatic differentiation.
In practice, the potential function ψ or the noise intensity σ should be replaced by a neural network.
We choose a non-symmetric double-well potential function ψ = 1

2x
4 − x2 + x and a constant noise

intensity σ = 1.5 as the ground truths. For the sake of simplicity, we assume the noise intensity is
known and aim to learn the potential function from the steady-state density data (1 group data as
mentioned in Example 4.2, so we use 50000 epochs to train the models in this example).

The training data {(f(xi,j , t1), f(xi,j , t), f(xi,j, t2))}
N,M
i,j=1 are obtained by solving the Fokker-

Planck equation (4) in a bounded domain Ω = [−3, 3] with grid size ∆x = 0.01 and time step
size ∆t = 0.001 or estimating the density function f from the SDE (3) particles. We randomly
select one initial distribution N (µ, 0.22) (the mean value µ follows a uniform distribution in domain
[−2, 2]) and choose the snapshots at t1 = 19.995, t = 20 and t2 = 20.005 as our training data (so the
observation time step size is δt = 5∆t), i.e., the hyperparameter M = 1 in the loss function (15).
We artificially destroy the value of the density data at two grid points x1 and x2. Specifically, the
density data at x1 is perturbed by adding noise αǫ to the raw data (f̃(x1) = f(x1) +αǫ), while the
density data at x2 is perturbed by subtracting the same value, αǫ, (f̃(x2) = f(x2) − αǫ) to ensure
that the integral of the density function remains equal to one. Here, α represents the noise ratio,
and ǫ is the maximum value of the density function over the domain. See Figure 5a for the noiseless
training data and Figure 5d for the corrupted training data. In this example, the ratio is selected as
α = 0.2. The learned potential functions using the PDE-based method with noiseless and corrupted
training data are shown in Figure 5b and Figure 5e respectively. The learned potential functions
using the EnVarA-based method with noiseless and corrupted training data are shown in Figure 5c
and Figure 5f respectively. It is not surprising that our method is more robust than the discrete
version of the PDE-based approach, since our EnVarA-based method does not require computing
the second derivative of the density function and our loss function is in an integral form.
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However, it should be noticed that this is a discrete version of PINN rather than the method
proposed in [9, 63] since we did not use automatic differentiation here. Moreover, we employ
density data as training data instead of particle data used in [9], which provides impressive results
for learning stochastic differential equation with Brownian motion or Lévy motion. It is worth
mentioning that the methods proposed in [9, 63] may mitigate the impact of corrupted observations,
as they defined a more robust loss function. A more comprehensive comparison is left for future
work.
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(a) Noiseless data
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(b) Noiseless data, PDE-based
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(c) Noiseless data, EnVarA
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(d) corrupted data, ratio= 0.2
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(e) corrupted data, PDE-based
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(f) corrupted data, EnVarA

Figure 5: (a) Noiseless training data. (b) The learned potential function ψnn using noiseless training
data and PDE-based method. (c) The learned potential function ψnn using noiseless training data
and EnVarA. (d) corrupted training data. (e) The learned potential function ψnn (blue) and the G.T.
ψ (red) using corrupted training data and PDE-based method. (f) The learned potential function
ψnn (blue) and the G.T. ψ (red) using corrupted training data and EnVarA.

5 Discussions

We have utilized the energy-dissipation law of the underlying physical systems to derive new loss
functions for learning generalized diffusions that accommodate different types of training data (den-
sity or particle data). We validated the performance of the proposed methods through several
representative examples and investigated the impact of data quality and data property on these
methods. Broadly speaking, our approach offers several advantages, including robustness to cor-
rupted observations due to the weak-form of the loss function, easy extension to more general
physical systems through the widely used energetic variational approach, and potential to handle
higher-dimensional challenges.

One important challenge in our proposed method is handling high-dimensional problems, as
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density data are not generally readily available. Instead, the density must first be approximated
by particle sampling. However, estimating a high-dimensional density function is a key problem in
the statistical community. Further investigation is needed to develop a more suitable loss function
based directly on particle data, rather than relying on an estimated density function. These issues
will be investigated in future work.

Additionally, we discuss one more alternative particle method here that is quite different from the
SDE-particle based method (the particle-to-density method in Section 3.2). Instead of generating
particle data with SDE (3) as described above, one can also obtain another kind of particle data
that provides more information about energy dissipation.

Particles generated by both ways follow the same distribution by checking against the Fokker-
Planck equation (4) and the continuity equation ft +∇ · (uf) = 0. A natural question is: what is
the difference between these two groups of particles for our learning objectives?

Indeed, the particles generated by the ODE (10) not only provide distribution information, but
also provide trajectory information that enable us to construct a more robust learning framework.
In contrast, the particles generated by the SDE (3) can provide only distribution information so
that we may construct a ‘weaker’ loss function as discussed in Section 3.2.

5.1 ODE-based particles

The general idea is to discretize the free energy using particle method. Subsequently, a learning
framework can be established based on the discrete version of the energy-dissipation law.

Given particles {xi(t)}
N
i=1 (again, the number N is the sample size of the distribution function)

at time t, one can consider the empirical measure fN (x, t) = 1
N

N
∑

i=1
δ(x−xi(t)), where xi(t) denotes

the position of the i-th particle at time t. To approximate the term ln f , we introduce a kernel
function Kh such that ln f ≈ ln fN ∗Kh, i.e.,

fN ∗Kh(x, t) =

∫

Ω
Kh(x,y)fN (y, t)dy =

1

N

N
∑

k=1

Kh(x,xk(t)). (21)

In this work, we choose the kernel to be the Gaussian kernel, defined byKh(x,y) = C−1
h exp{−‖x−y‖2

2h2 },

where Ch = (2π)
d

2hd is the normalizing constant, h is a parameter which we call it the kernel band-
width, and d is the dimension of the system (3).

Now, the discrete energy functional EN at time t can be written as

EN (t) =
1

N

N
∑

i=1

[ln (fN ∗Kh(xi, t)) + ψ(xi)] , (22)

where we use the notation xi = xi(t) for simplicity.
By checking against the ODE (10), we know that the velocity u involves the term ∇ ln f which

is not well-defined at the particle level. To make sure the particles {xi(t)}
N
i=1 satisfying the energy-

dissipation law at the particle level, one can derive another ODE system that approximates the
original ODE (10) when N → ∞. By applying EnVarA at the particle level, one can obtain the
following ODE system [56]

ẋi = ûi,N , (23)
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where

ûi,N = −
σ2(xi)

2











N
∑

j=1
∇xi

Kh (xi,xj)

N
∑

j=1
Kh (xi,xj)

+
N
∑

k=1

∇xi
Kh(xk,xi)

N
∑

j=1
Kh(xk,xj)

+∇xi
ψnn(xi; θ)











, i = 1, 2, . . . , N.

(24)

Therefore, we assume that the observation data {(xi,j(t1), xi,j(t),xi,j(t2))}
N,M
i,j=1 are generated by

this ODE system (23). Subsequently, we construct the following physics-informed loss

L =

M
∑

j=1

λ(j)

∥

∥

∥

∥

xj(t2)− xj(t1)

t2 − t1
− ûj,N(t)

∥

∥

∥

∥

2

, (25)

where we use the notations xj and ûj,N to denote the vectors xj = [x1,j,x2,j , . . . ,xN,j ] and ûj,N =
[û1,j,N , û2,j,N , . . . , ûN,j,N ]. By minimizing the loss function (25), one can find the best estimation
ψnn.

Remark 5.1. Compared with the particle-to-density method, the loss function of the ODE-based
method is point-wise, allowing us to bypass (at least mitigate) the ill-posed issue of the ‘weak’ form
loss function (15). Our requirement is to be able to obtain particle data with trajectory information
(ODE-based particles), which is not practical in some applications, such as cell evolution data [54].
On the other hand, the required particle information is readily available in applications such as
plasma physics where particle-in-cell methods are the state-of-the-art highest fidelity solvers in high
dimensions.

Example 5.2. (ODE particle-based learning). Finally, we investigate the ODE particle-based
method. The ODE (23) is derived from the discrete energy, which satisfies the energy-dissipation
law in a discrete level (particle). Moreover, the ODE particle-based method is quite different from
the SDE particle-based method since we can access not only the distribution information but also
the trajectory information. In addition to this, the ODE-based loss function (25) is a point-wise loss
function that is stronger than the energy-law based loss function (15) that is in an integral form.
It is worth noting that the ODE particles are primarily generated through numerical simulations in
practice.

Again, we consider the double-well system with multiplicative noise and generate particle data
by solving the ODE system (23), i.e.,

ẋi = −
σ2(xi)

2











N
∑

j=1
∇xi

Kh (xi,xj)

N
∑

j=1
Kh (xi,xj)

+

N
∑

k=1

∇xi
Kh(xk,xi)

N
∑

j=1
Kh(xk,xj)

+∇xi
ψ(xi)











, i = 1, 2, . . . , N. (26)

Similar to the previous examples, we simulate 20 different initial distributions N (µ, 0.22) (the mean
values µ are uniformly spaced in domain [−2, 2]) with time step size ∆t = 0.001 and choose the
snapshots at t1 = 0.195, t = 0.2 and t2 = 0.205 as our training data, where the observation time step
size is chosen as δt = 0.005. Since the loss function is point-wise, we directly apply the loss to learn
the potential function and the noise intensity at once. As shown in Figure 6, we can accurately learn
the potential function and noise intensity. This is not surprising, as the “quality” of ODE particles
is superior to that of SDE particles, allowing us to construct a point-wise loss function (25).
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(a) Potential function. G.T.: ψ(x) = 0.5x4 − x2.
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(b) Noise intensity. G.T.: σ2(x) = 1
(x2+1)2 .

Figure 6: EnVarA (ODE particle-based learning): learning potential function ψ and noise intensity
σ2 at the same time.
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