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RUNGE AND MERGELYAN THEOREMS ON FAMILIES OF

OPEN RIEMANN SURFACES

FRANC FORSTNERIČ

ABSTRACT. In this paper, we develop the Oka theory for maps from families of complex structures

on smooth open surfaces to any Oka manifold. Along the way, we prove Runge and Mergelyan

approximation theorems and Weierstrass interpolation theorem on such families, with continuous or

smooth dependence of the data and the approximating functions on the complex structure. This implies

global solvability of the ∂-equation on such families. We also obtain an Oka principle for complex

line bundles on families of open Riemann surfaces, and we show that the canonical bundles of open

Riemann surfaces are holomorphically trivial in families. We include applications to families of directed

holomorphic immersions and conformal minimal immersions.
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1. INTRODUCTION AND MAIN RESULTS

The Runge approximation theorem is one of the cornerstones of complex analysis. Its basic version,

proved by Runge [74] in 1885, says that for a compact set K in the complex plane C with connected

complement C \ K , every holomorphic function on an open neighbourhood of K is a uniform limit

on K of holomorphic polynomials. Runge’s theorem was extended by Behnke and Stein [16] (1949)

to any compact set K in an open Riemann surface X such that X \ K has no relatively compact

connected components. A set K with this property is said to be Runge in X, a topological condition.

The analogue of Runge’s theorem in Stein manifolds of arbitrary dimension is the Oka–Weil theorem;

see [68, 83] and [33, Theorem 2.8.4]. A major generalization concerns holomorphic maps from Stein

manifolds to Oka manifolds, the subject of modern Oka theory [33].
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In geometric applications, it is often necessary to approximate families of functions or maps

which depend continuously or smoothly on parameters. For maps from a fixed Stein manifold X,

see [33, Theorem 2.8.4] for the parametric Cartan–Oka–Weil theorem and [33, Theorem 5.4.4] for the

parametric Oka principle for maps to any Oka manifold. In those results, the parameter set is a compact

Hausdorff space, the maps depend continuously on the parameter, and they can be left unchanged for

parameter values in a closed subset for which they are already holomorphic on X.

In the present paper, we consider the more general situation where not only the maps, but also the

complex structures on the source manifold depend on a parameter. In this first work on the subject,

we limit ourselves to the case of a smooth open oriented surface endowed with a family of complex

structures. Our main result is an Oka principle, saying that every family of continuous maps from such

a family of Riemann surfaces to an Oka manifold is homotopic to a family of holomorphic maps, with

approximation on a family of compact Runge subsets where the given maps are already holomorphic;

see Theorem 1.4. Our method also applies to products of variable open Riemann surfaces and a fixed

Stein manifold; see Theorem 7.4. We also prove Mergelyan-type theorems for maps to Oka manifolds;

see Theorems 7.5 and 7.7. These results open a new direction in Oka theory. On the way, we prove

special cases which concern approximation of functions (i.e., maps to the complex number field C) on

families of open Riemann surfaces, the Runge Theorem 1.1 and the Mergelyan Theorem 1.2. Their

proofs are simpler since we can use partitions of unity instead of dealing with homotopies, and the

parameter spaces can be more general. Our results, combined with the techniques from Gromov’s

convex integration theory, enable the construction of families of holomorphic curves of prescribed

(variable) conformal types having additional properties such as being immersed, directed by a conical

subvariety of Cn, etc., and the construction of families of minimal surfaces of prescribed conformal

types in Euclidean spaces. In Section 10 we give a sample of such applications and indicate further

problems which can possibly be treated by our methods.

We now introduce the setup. By X we always denote a smooth orientable surface without

boundary, which will be an open surface in most of our results. A complex structure on X is given by

an endomorphism J of its tangent bundle TX satisfying J2 = −Id. Thus, J is a section of the vector

bundle T ∗X ⊗ TX → X whose fibre over any point x ∈ X is the space Hom(TxX,TxX) of linear

maps TxX 7→ TxX. Such an operator J is usually called an almost complex structure on X, but due to

integrability we shall not distinguish between these two notions. A differentiable function f : X → C

is said to be J-holomorphic if the Cauchy–Riemann equation dfx ◦ Jx = i dfx holds for every x ∈ X,

where i =
√
−1. Assuming that J is of Hölder class C (k,α) for some k ∈ Z+ = {0, 1, 2, . . .} and

0 < α < 1, there is an atlas {(Ui, φi)} of open sets Ui ⊂ X with
⋃

i Ui = X and J-holomorphic

charts φi : Ui → φi(Ui) ⊂ C of class C (k+1,α)(Ui) (see Theorem 2.2). Since the transition maps

φi ◦ φ−1
j are biholomorphic in the standard structure Jst on C, J determines on X the structure of a

Riemann surface, denoted (X,J), which is C k+1 compatible with the smooth structure on X, that is,

the identity map on X is of class C k+1 as a map between these two structures.

We shall consider families of complex structures {Jb}b∈B on a smooth surface X which depend

continuously or smoothly on a parameter b in a topological space B as a map B ∋ b 7→ Jb ∈
Γ(k,α)(X,T ∗X ⊗ TX) into the vector space of sections of Hölder class C (k,α) of the smooth vector

bundle T ∗X ⊗TX → X. If B is a manifold of class C l for some l ∈ N = {1, 2, . . .}, or a topological

space if l = 0, we say that {Jb}b∈B is of class C l,(k,α)(B ×X) if the derivatives of Jb up to order l

with respect to b ∈ B are continuous on B ×X and of class C (k,α)(X) for any fixed value of b ∈ B.

The analogous definition applies to mapsB×X → Y to a smooth manifold Y . Such a family {Jb}b∈B
can also be given by a family {µb}b∈B of maps from X to the unit disc D = {ζ ∈ C : |ζ| < 1} of the

same smoothness class C l,(k,α)(B ×X); see Remark 4.5 (C).
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Consider the projection π : B×X → B. We endow the fibre Xb = π−1(b) ∼= X with the structure

of the Riemann surface (X,Jb) determined by Jb. A continuous map f : B ×X → Y to a complex

manifold Y is said to be X-holomorphic if the restriction f(b, · ) : Xb → Y is Jb-holomorphic for

every b ∈ B. Assuming that the family {Jb}b∈B is of class C l,(k,α), the space B × X admits fibre

preserving X-holomorphic charts of class C l,(k+1,α) with values in B × C (see Theorem 4.1).

Recall that a topological space is said to be paracompact if every open cover has an open locally

finite refinement. A Hausdorff space is paracompact if and only if it admits a continuous partition of

unity subordinate to any given open cover.

Our first result extends the classical Runge–Behnke–Stein approximation theorem on open

Riemann surfaces [74, 16], combined with the Weierstrass–Florack interpolation theorem [82, 28],

to families of complex structures on a smooth open surface.

Theorem 1.1. Assume that l ∈ Z+, B is a locally compact and paracompact Hausdorff space if

l = 0 and a manifold of class C l if l > 0, X is a smooth open oriented surface, {Jb}b∈B is a

family of complex structures on X of class C l,(k,α) (k ∈ Z+, l ≤ k + 1, 0 < α < 1), K is a

compact Runge subset of X, A is a closed discrete subset of X, U ⊂ B ×X is an open set containing

B × (K ∪ A), f : U → C is a function of class C l,0(U) such that fb = f(b, · ) is Jb-holomorphic on

Ub = {x ∈ X : (b, x) ∈ U} for every b ∈ B, and r ∈ {0, 1, . . . , k + 1}. Then, f ∈ C l,k+1(U) and

there is a function F ∈ C l,k+1(B ×X) satisfying the following conditions.

(a) The function Fb = F (b, · ) : X → C is Jb-holomorphic for every b ∈ B.

(b) F approximates f as closely as desired in the fine C l,k+1-topology on B ×K .

(c) Fb − fb vanishes to order r at every point a ∈ A for every b ∈ B.

Theorem 1.1 is proved in Section 5. The reason for assuming that l ≤ k + 1 will become evident

in the proof of Lemma 5.4. The complex structures Jb in the theorem are compatible with one another

only to order k + 1, which necessitates the assumption r ≤ k + 1 in condition (c).

A more sophisticated approximation theorem was proved by Mergelyan in 1951. Its original

version [64] says that a continuous function on a compact Runge set K ⊂ C, which is holomorphic

in the interior of K , is a uniform limit on K of holomorphic polynomials. This was generalized to

open Riemann surfaces by Bishop [18], with different proofs and generalizations given by Sakai [75],

Scheinberg [76], Gauthier [41], and others. Results on approximation by rational function on the plane

with poles in C \K were obtained by Vitushkin [80, 81]. See also the surveys [29, 39]. In Section 6

we prove the following Mergelyan theorem for families of complex structures on a smooth surface.

Theorem 1.2. Assume that X is a smooth oriented surface without boundary, B is a locally compact

and paracompact Hausdorff space, {Jb}b∈B is a continuous family of complex structures of some

Hölder class C α (0 < α < 1) on X, K is compact set in X such that, for some c > 0 and a

Riemannian distance function on X, each relatively compact connected component of X \ K has

diameter at least c, A is a finite subset of the interior K̊ of K , and f : B × K → C is a continuous

function such that fb = f(b, · ) : K → C is Jb-holomorphic on K̊ for every b ∈ B. Given a continuous

function ǫ : B → (0,+∞), there is a continuous function F on a neighbourhood U ⊂ B × X of

B × K such that for every b ∈ B the function Fb = F (b, · ) : Ub = {x ∈ X : (b, x) ∈ U} → C is

Jb-holomorphic, supx∈K |Fb(x)−fb(x)| < ǫ(b), and Fb−fb vanishes to order 1 in every point a ∈ A.

If in addition the surface X is open and the setK is Runge inX, then there is a continuous function

F : B ×X → C such that Fb = F (b, · ) : X → C is Jb-holomorphic for every b ∈ B and F satisfies

the above approximation and interpolation conditions.

The last part of the theorem clearly follows from the first part and Theorem 1.1. The condition on

the set K in Theorem 1.2 is not optimal, but it more than suffices for the intended applications. We
3



also obtain Mergelyan approximation for families of manifold-valued maps (see Theorem 7.5), and

Mergelyan approximation in the C l topology on admissible sets (see Theorem 7.7).

We now introduce the parameter spaces that will be used in our main result, Theorem 1.4.

Definition 1.3. In the following, all topological spaces are assumed to be metrizable.

(i) A space B is an absolute neighbourhood retract (ANR) if, whenever B is a closed subset of a

space B′, then B is a retract of a neighbourhood of B in B′ (a neighbourhood retract).

(ii) A space B is a Euclidean neighbourhood retract (ENR) if it admits a topological embedding

ι : B →֒ R
n for some n whose image ι(B) ⊂ R

n is a neighbourhood retract.

(iii) A space B is a local ENR if every point of B has an ENR neighbourhood.

We refer to Mardešić [61] for the theory of ANRs and ENRs, and to Hatcher [51] and May [63]

for CW complexes. Note that CW complexes generalize both manifolds and simplicial complexes, and

they have particular significance for algebraic topology. A CW complex is locally compact if and only

if its collection of closed cells is locally finite, if and only if it is metrizable (see Fritsch and Piccinini

[38, Theorem B]). If a CW complex B can be embedded in a Euclidean space R
m, then B has at most

countably many cells, it is locally compact and has dimension ≤ m; see [38, Theorem D]. Conversely,

every countable locally compact CW-complex B of finite dimension m is an ENR. Indeed, by [38,

Theorem A] such B admits a closed embedding in R
2m+1. Since every metrizable CW-complex is an

ANR (see Dugundji [26]), the image of the embedding is a neighbourhood retract, so B is an ENR. In

particular, every finite CW complex is an ENR (see [51, Corollary A.10]).

Our main result is the following Oka principle with approximation for maps from families of open

Riemann surfaces to an Oka manifold (see [33, Sect. 5.4] for this notion). It is proved in Section 7.

Theorem 1.4. Assume the following:

(a) B is a paracompact Hausdorff space which is a local ENR (see Definition 1.3).

(b) X is a smooth open surface and π : B ×X → B is the projection.

(c) {Jb}b∈B is a continuous family of complex structures on X of Hölder class C α, 0 < α < 1.

(d) K ⊂ B ×X is a closed subset such that π|K : K → B is proper, and for every b ∈ B the fibre

Kb = {x ∈ X : (b, x) ∈ K} is a compact Runge set in X, possibly empty.

(e) Y is an Oka manifold endowed with a distance function distY inducing the manifold topology.

(f) f : B × X → Y is a continuous map, and there is an open set U ⊂ B ×X containing K such

that fb = f(b, · ) : X → Y is Jb-holomorphic on Ub = {x ∈ X : (b, x) ∈ U} for every b ∈ B.

Given a continuous function ǫ : B → (0,+∞), there are a neighbourhood U ′ ⊂ U of K and a

homotopy ft : B ×X → Y (t ∈ I = [0, 1]) satisfying the following conditions.

(i) f0 = f .

(ii) The map ft,b = ft(b, · ) : X → Y is Jb-holomorphic on U ′
b ⊃ Kb for every b ∈ B.

(iii) supx∈Kb
distY (ft(b, x), f(b, x)) < ǫ(b) for every b ∈ B and t ∈ I .

(iv) The map F = f1 is such that Fb = F (b, · ) : X → Y is Jb-holomorphic for every b ∈ B.

(v) If Q is a closed subset of B and Ub = X for all b ∈ Q, then the homotopy ft,b can be chosen to

be fixed for every b ∈ Q, and in particular F = f on Q×X.

If B is a manifold of class C l (l ∈ N), the set Q in (v) is a closed C l submanifold of B, the family

{Jb}b∈B is of class C l,(k,α) where l ≤ k + 1, and the map f : B × X → Y is X-holomorphic on

a neighbourhood U of K and f |U ∈ C l,0(U, Y ), then f |U ∈ C l,k+1(U, Y ) and there is a homotopy

ft : B × X → Y (t ∈ I) which is of class C l,k+1 on a neighbourhood of K , it satisfies conditions

(i)–(v), and every ft approximates f in the fine C l,k+1-topology on K to a desired precision uniformly

in t ∈ I (i.e., condition (iii) is upgraded to fine C l,k+1 approximation on K).
4



Remark 1.5. (A) In analogy to Theorem 1.1, one can also include (jet) interpolation in Theorem 1.4.

Assuming that x1, . . . , xm : B → X are maps of class C l with pairwise disjoint graphs contained in

K and r ∈ {0, 1, . . . , k + 1}, the homotopy {ft}t∈I in the theorem can be chosen such that the r-jet

of the map ft(b, · ) : X → Y in the point xj(b) ∈ Kb agrees with the corresponding r-jet of f(b, · ) for

every b ∈ B, j = 1, . . . ,m and t ∈ I . We invite the reader to supply the details. It is a general fact of

Oka theory that interpolation follows from approximation; see [33, Proposition 5.15.1] and [57].

(B) Condition (v) can be established under the weaker assumption that the map fb : X → Y is

Jb-holomorphic for every b ∈ Q. See [33, Theorem 5.4.4] where a result of this kind is proved for a

family of maps from a fixed Stein manifold.

Oka manifolds are complex manifolds for which the h-principle (also called the Oka principle

in this context) holds for maps from any Stein manifold, and in particular from any open Riemann

surface; see [33, Sect. 5.4]. The appear naturally in many existence results in complex geometry.

Model Oka manifolds are the complex Euclidean spaces Cn, in which case Theorem 1.4 generalizes the

approximation statement in Theorem 1.1 to a variable family of compact Runge sets. Every complex

homogeneous manifold and, more generally, every Gromov elliptic manifold is an Oka manifold (see

Grauert [45] and Gromov [46]). Many further examples can be found in the surveys [33, Chapter 7] and

[31]. In [32] it is shown that in semipositive ample line bundles on certain projective Oka manifolds,

the unit disc bundle is an Oka manifold. Oka theory has recently been developed for maps from open

Riemann surfaces to the bigger class of Oka-1 manifolds which properly contains the class of Oka

manifolds; see [9, 36]. However, it does not seem possible to use this bigger class in Theorem 1.4

since its proof relies on the Oka principle for maps from higher dimensional Stein manifolds.

Theorem 1.4 seems to be the first result of its kind in Oka theory. Its proof in Section 7 also applies

to products X × Z , where X is a smooth open surface endowed with a family {Jb}b∈B of complex

structures as in Theorem 1.4 and Z is a Stein manifold with a fixed complex structure; see Theorem

7.4. Essentially the same proof, combined with Theorem 1.2, yields Mergelyan approximation for

maps from families of open Riemann surfaces to an Oka manifold; see Theorems 7.5 and 7.7.

Our results apply in particular if B is the Teichmüller space T (g, k) of marked complex structures

on the k-punctured surface X = X \ {p1, . . . , pk}, where X is an oriented smooth compact surface of

genus g and k ≥ 1. The spaces T (g, k) and T (g, k) × X carry natural complex structures such that

the projection π : T (g, k) ×X → T (g, k) is a holomorphic submersion and the complex structure on

each fibre Xb = π−1(b) is the one determined by b ∈ T (g, k). See Nag [66, Chapter 3] or Imayoshi

and Taniguchi [54] for a precise description, and also the surveys [27, 62] for infinite dimensional

Teichmüller spaces of hyperbolic complex structures. However, we do not see how to use this theory

in order to obtain or simplify the proofs of our main results for a general parameter space B.

The results and methods developed in the paper can be used in a range of constructions of families

of holomorphic curves with special properties, and of related objects such as conformal minimal

surfaces. To illustrate the point, we give two such applications in Section 10. The first one in Theorem

10.2 gives families of Jb-holomorphic immersionsX → C
n directed by an irreducible conical complex

subvariety A = A ∪ {0} ⊂ C
n such that A = A \ {0} is an Oka manifold. By taking A = C

n
∗ we

obtain families of ordinary immersions X → C
n. For n = 1 this gives an extension of the Gunning–

Narasimhan theorem [47] to families of Jb-holomorphic immersions X → C; see Corollary 10.3.

Another application pertains to the null cone A ⊂ C
n for n ≥ 3, see (10.3). Holomorphic immersions

directed by this cone are the (1, 0)-derivatives of minimal surfaces, and we obtain continuous or smooth

families of conformally immersed minimal surfaces X → R
n (n ≥ 3) for any continuous or smooth

family of complex structures Jb on X (see Corollary 10.6). Several other possible applications are

indicated in Problem 10.7. A common feature of these examples is that their construction combines
5



Oka theory with methods from Gromov’s convex integration theory to ensure the period vanishing

conditions of the derivative maps on a basis of the first homology group H1(X,Z).

The paper is organised as follows. In Section 2 we recall the connection between Riemannian

metrics, conformal structures, and the Beltrami equation. Section 3 contains preparatory results on

the Cauchy and Beurling transforms. In Section 4 we develop results on deformations of complex

structures which are used in the proofs. Theorem 4.1 gives a solution of the Beltrami equation on

any smoothly bounded relatively compact domain Ω in an open Riemann surface X for Beltrami

coefficients µ with small Hölder C (k,α) norm (k ∈ Z+, 0 < α < 1) and with smooth dependence on

µ. Using also a theorem of Gunning and Narasimhan [47], it is shown in Theorem 4.3 that any small

C (k,α) perturbation of the complex structure on Ω can be realised by a small C (k+1,α) perturbation of

Ω in X, with smooth dependence of the map on the complex structure. This extends the Ahlfors–Bers

theory [3] of quasiconformal maps of the plane. With these tools in hand, Theorem 1.1 is proved in

Section 5 and Theorem 1.2 is proved in Section 6. In Section 7 we prove our main result, Theorem 1.4,

and obtain further Runge and Mergelyan type approximation results for families of manifold-valued

maps; see Theorems 7.4, 7.5, and 7.7. In Section 8 we show that for a family of complex structures on

a smooth open surface, the family of their holomorphic cotangent (canonical) bundles admits a family

of holomorphic trivializations (see Theorem 8.1), which can be given by a family of holomorphic

immersions to C (see Corollary 10.3). In Section 9 we obtain a global solution of the ∂-equation on

families of open Riemann surfaces (see Theorem 9.1) and the Oka principle for continuous families

of complex line bundles (see Theorem 9.3). In Section 10 we apply our results to the construction of

families of directed holomorphic immersions and conformal minimal immersions.

Open Riemann surfaces are Stein manifolds of complex dimension one. It would be of interest to

develop the Oka theory for families of integrable Stein structures on manifolds of higher dimension.

To this end, one would need an analogue of Theorem 4.3 for such families on strongly pseudoconvex

domains. A special case of results of Hamilton [49, 50] is that a sufficiently small smooth integrable

deformation of a complex structure on a relatively compact, smoothly bounded, strongly pseudoconvex

domain in a Stein manifold can be realised by a small deformation of the domain. Recently, Gong and

Shi [44] obtained Hamilton’s results under substantially weaker regularity assumptions. However,

smooth dependence of the deformation map on the complex structure is not clear from these results.

Another complication in the higher dimensional case is caused by the behaviour of hulls of compact

sets in families of Stein structures. For these reason, we defer this project to a future work.

Notation and terminology. We denote by C (X) and O(X) the Fréchet algebras of continuous

and holomorphic functions on a complex manifold X, respectively, endowed with the compact-open

topology. Given a compact set K in a complex manifold X, we denote by C (K) the Banach algebra of

continuous complex valued functions on K with the supremum norm, by O(K) the space of functions

that are holomorphic in a neighbourhood of K (depending on the function), and by O(K) the uniform

closure of {f |K : f ∈ O(K)} in C (K). By A (K) we denote the closed subspace of C (K) consisting

of functions K → C which are holomorphic in the interior K̊ of K . For r ∈ Z+ ∪ {∞} we

denote by C r(K) the space of all functions on K which extend to r-times continuously differentiable

functions on X, and A r(K) = {f ∈ C r(K) : f |
K̊

∈ O(K̊)}. The analogous notation is used for

manifold-valued maps. A compact set K in a complex manifold X is said to be O(X)-convex, or

holomorphically convex in X, if K equals its holomorphically convex hull:

K = K̂O(X) =
{
p ∈ X : |f(p)| ≤ max

x∈K
|f(x)| for all f ∈ O(X)

}
.

If X is a Riemann surface then K is O(X)-convex if and only if it is Runge in X. A compact O(Cn)-

convex set K ⊂ C
n is said to be polynomially convex. A compact set K in a complex manifold X is

said to be a Stein compact if it admits a basis of open Stein neighbourhoods in X.
6



2. RIEMANNIAN METRICS, COMPLEX STRUCTURES, AND THE BELTRAMI EQUATION

In this section, we recall the relevant background on the topics mentioned in the title. The details

can be found in standard texts on quasiconformal mappings and Teichmüller spaces; see e.g. Ahlfors

[2], Lehto and Virtanen [58], Nag [66], and Imayoshi and Taniguchi [54].

Let z = x + iy be the complex coordinate on C. Set ∂x = ∂/∂x, ∂y = ∂/∂y, dz = dx + idy,

dz̄ = dx− idy,

∂z =
∂

∂z
=

1

2
(∂x − i∂y) , ∂z̄ =

∂

∂z̄
=

1

2
(∂x + i∂y) .

For a differentiable function f we shall write fz = ∂zf and fz̄ = ∂z̄f . Note that f is holomorphic

if and only if fz̄ = 0. The exterior differential on functions splits in the sum of its C-linear and

C-antilinear parts: d = ∂ + ∂ = ∂zdz + ∂z̄dz̄.

A Riemannian metric on a smooth surface X is given in any local coordinates (x, y) by

(2.1) g = Edx⊗ dx+ F (dx⊗ dy + dy ⊗ dx) +Gdy ⊗ dy = Edx2 + 2Fdxdy +Gdy2,

where E,F,G are real functions satisfying EG − F 2 > 0. The area form determined by the metric

g is
√
EG− F 2 dx ∧ dy. The Euclidean metric and the area form on R

2 ∼= C with the coordinate

z = x + iy are given by gst = dx2 + dy2 = |dz|2 and dx ∧ dy = i

2dz ∧ dz̄. On every tangent space

TpX, a Riemannian metric g defines a scalar product having the matrix
(
E F
F G

)
in the basis ∂x, ∂y.

Hence, g determines a unique conformal structure on X, and two Riemannian metrics g1, g2 determine

the same conformal structure if and only if g2 = λg1 for a positive function λ. A pair of nonzero

tangent vectors ξ, η ∈ TpX is said to be a conformal frame if ξ and η have the same g-length and are

g-orthogonal to each other. If X is oriented, there is a unique endomorphism J : TX → TX on the

tangent bundle of X such that for any tangent vector 0 6= v ∈ TpX, (v, Jv) is a positively oriented

g-conformal frame. Note that J2 = −Id; an endomorphism of TX satisfying this condition is called

an almost complex structure on X. We have the following local expression for the matrix of J (in the

standard oriented basis ∂x, ∂y) in terms of the metric g (2.1):

(2.2) [J ] =
1√

EG− F 2

(
−F −G
E F

)
=

(
−b −c

(b2 + 1)/c b

)

where δ = EG − F 2 > 0, b = F/
√
δ, and c = G/

√
δ > 0. Every almost complex structure J is of

this form for some Riemannian metric g, which is unique up to conformal equivalence. The standard

almost complex structure Jst on C, defined by the Euclidean metric gst, has the matrix
(0 −1
1 0

)
. In

complex notation, Jst amounts to multiplication by i. A differentiable function f : U → C on a

domain U ⊂ X is said to be J-holomorphic (more precisely, (J, Jst)-holomorphic) if it satisfies the

Cauchy–Riemann equation dfp ◦ Jp = Jst ◦ dfp at all points p ∈ U , where Jp denotes the restriction

of J to TpX. At a point where dfp 6= 0, such f is an orientation preserving conformal map from the

conformal structure on X determined by J = Jg to the standard conformal structure on C.

Assume that the metric g is given in local coordinates (x, y) on an open set U ⊂ X by (2.1).

Taking z = x+ iy as a complex coordinate on U , we can write g in the complex form as

(2.3) g = λ|dz + µdz̄|2

for a positive function λ > 0 and the complex function

(2.4) µ =
1− c+ ib

1 + c+ ib
: X → D

with values in the unit disc, where the numbers b and c are as in (2.2); see [11, p. 51]. A diffeomorphism

f : U → f(U) ⊂ C is conformal from the g-structure on X to the standard conformal structure on
7



C if and only if g = h|df |2 for a positive function h > 0. A chart f with this property is said to be

isothermal for g. Assume that f is orientation preserving, which amounts to |fz| > |fz̄|. Then

|df |2 = |fzdz + fz̄dz̄|2 = |fz|2 ·
∣∣∣dz + fz̄

fz
dz̄

∣∣∣
2
,

and comparison with (2.3) shows that f is isothermal if and only if it satisfies the Beltrami equation

(2.5) fz̄ = µfz

with the Beltrami coefficient µ given by (2.4). We shall say that f is µ-conformal if (2.5) holds.

Equivalently, f is a biholomorphic map from (U, J) to (f(U), Jst) where J is the complex structure

on X determined by g (or by µ). The transition map between any pair of µ-conformal charts is a

conformal diffeomorphism between domains in the plane C endowed with the Euclidean metric.

One can also consider quasiconformal maps f : X → Y between a pair of Riemann surfaces.

The quantity µf (z) = fz̄/fz, defined in a local holomorphic coordinate z on X, is independent of

the choice of the local holomorphic coordinates on Y , and µf (z)dz̄/dz is a section of the bundle

K−1
X ⊗KX → X where KX = T ∗X is the canonical bundle of X (see [66, p. 46]).

Remark 2.1. The formulas (2.2)–(2.4) show that the conformal class of a Riemannian metric g, the

associated complex structure J , and the Beltrami coefficient µ are of the same smoothness class.

The situation is especially simple if we fix a reference complex structure on X, so it is an open

Riemann surface. By a theorem of Gunning and Narasimhan [47], such a surface admits a holomorphic

immersion z = u + iv : X → C. Its differential dz = du + idv is a nowhere vanishing holomorphic

1-form on X trivializing the canonical bundle T ∗X = KX , |dz|2 = du2+ dv2 is a Riemannian metric

on X determining the given complex structure, i

2dz ∧ dz̄ = du ∧ dv is the associated area form, and

dσ = du dv is the surface measure on X. The function z is a local holomorphic coordinate on X at

every point. Given a differentiable function f : X → C, its partial derivatives

(2.6) fz = ∂zf = ∂f/dz, fz̄ = ∂z̄f = ∂f/dz̄

are globally defined functions on X. Any Riemannian metric g on X is globally of the form (2.1)

for some real functions E,F,G on X. (However, these coefficients are not functions of z unless z

is injective.) We can write g in the form (2.3) where the function µ : X → D is given by (2.4).

Conversely, any such function µ determines a Riemannian metric by (2.3), and hence a complex

structure Jµ by (2.2). Note that µ = 0 corresponds to the given reference complex structure on X.

This global viewpoint will be important in the sequel.

The existence of isothermal charts on a Riemannian surface is a classical subject going back to

Lagrange and Gauss. For a Hölder continuous µ see Korn [55], Lichtenstein [59], and Chern [21].

The existence of global quasiconformal homeomorphisms C → C follow from the local theorem by

use of the uniformization theorem, and direct proofs were given by Ahlfors [1] and Vekua [79]. For a

measurable function µ satisfying ‖µ‖∞ ≤ k < 1 (where ‖µ‖∞ denotes the essential supremum), see

Morrey [65] and Bojarski [19]. In this case, solutions of (2.5) are k-quasiconformal homeomorphisms

having distributional derivatives in Lp for some p ≥ 1. More precise results in Lp(C) spaces,

with continuous or smooth dependence of solutions of the Beltrami equation (2.5) on the Beltrami

coefficient µ, are due to Ahlfors and Bers [3]; see also Ahlfors [2, Chapter V] and Astala et al. [14].

The result that we use in this paper is the following; see [14, Theorem 5.3.4].

Theorem 2.2. An almost complex structure J of Hölder class C (k,α) (k ∈ Z+, 0 < α < 1) on a

smooth Riemannian surface X admits a J-holomorphic chart of class C (k+1,α) at any point of X.

A semiglobal version of this result with parameters is given by Theorem 4.1.
8



3. THE CAUCHY AND BEURLING TRANSFORMS ON DOMAINS IN OPEN RIEMANN SURFACES

In this section, we consider regularity properties of the Cauchy and Beurling transforms on

smoothly bounded relatively compact domains in open Riemann surfaces. Theorem 3.2 is an important

analytic ingredient for solving the Beltrami equation on such domains; see Theorems 4.1 and 4.3.

Let X be an open Riemann surface. Fix a holomorphic immersion z = u + iv : X → C (see

[47]) and let dσ = du dv denote the associated area measure on X. Given a differentiable function

f : U → C on a domain U ⊂ X, its derivatives fz and fz̄ given by (2.6) are well-defined functions

on U . The pullback of the Cauchy kernel C(ζ, z) = dz
z−ζ

on C by the immersion z : X → C is a

Cauchy-type kernel on X with the correct behaviour near the diagonal DX = {(x, x) : x ∈ X} (see

(3.2)), but with additional poles if z is not injective. Since DX has a basis of Stein neighbourhoods in

X ×X and X ×X \DX is also Stein, one can remove the extra poles by solving a Cousin problem

(see Scheinberg [76, Lemma 2.1]). This gives a meromorphic 1-form on X ×X of the form

(3.1) ω(q, x) = ξ(q, x)dz(x) for q, x ∈ X,

where dz(x) denotes the restriction of dz to TxX, ξ is a meromorphic function on X × X which is

holomorphic on X ×X \DX , and the 1-form ω(q, · ) has a simple pole at q ∈ X with residue 1. In a

neighbourhood U ⊂ X ×X of DX the coefficient ξ of ω is of the form

(3.2) ξ(q, x) =
1

z(x)− z(q)
+ h(q, x),

where h is a holomorphic function on U . Such Cauchy kernels were constructed by Scheinberg [76]

and Gauthier [41], following the work by Behnke and Stein [16, Theorem 3]. (See also Behnke

and Sommer [15, p. 584] and [29, Remark 1, p. 141] for additional references.) Given a relatively

compact smoothly bounded domain Ω ⋐ X, the usual argument using Stokes formula and the residue

calculation gives the following Cauchy–Green formula for any f ∈ C 1(Ω) and q ∈ Ω:

f(q) =
1

2πi

∫

x∈bΩ
f(x)ω(q, x)− 1

2πi

∫

x∈Ω
∂f(x) ∧ ω(q, x)

=
1

2πi

∫

x∈bΩ
f(x) ξ(q, x)dz(x) − 1

π

∫

x∈Ω
fz̄(x)ξ(q, x)dσ(x).

If f is holomorphic in Ω, we obtain the Cauchy representation formula

f(q) =
1

2πi

∫

x∈bΩ
f(x)ω(q, x), q ∈ Ω.

On the other hand, for a function f ∈ C 1
0 (X) with compact support we have

(3.3) f(q) = − 1

π

∫

x∈X
fz̄(x)ξ(q, x)dσ(x), q ∈ X.

To the Cauchy kernel ω we associate two transforms, defined for φ ∈ C0(X) and q ∈ X by

P (φ)(q) = − 1

π

∫

X

φ(x)ξ(q, x)dσ(x),(3.4)

S(φ)(q) = ∂zP (φ)(q) = − 1

π

∫

X

φ(x)∂z(q)ξ(q, x)dσ(x).(3.5)

Here, ∂z(q)ξ(q, x) denotes the ∂z derivative (2.6) of the function ξ(· , x) at the point q ∈ X.

The operator P is called the Cauchy–Green transform, or simply the Cauchy operator associated

to the Cauchy kernel (3.1). The integral converges absolutely, and we have that

∂z̄ ◦ P = Id = P ◦ ∂z̄ on C
1
0 (X).
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The second identity follows from (3.3). The first identity holds in a more precise form: for every

relatively compact domain Ω ⊂ X with piecewise C 1 boundary,

(3.6) ∂z̄P (φ) = φ holds on Ω for every φ ∈ C
1(Ω),

where the integral defining P is applied only over Ω. (Equivalently, we apply (3.4) to the function

which equals φ on Ω and equals 0 on X \ Ω.) The equation (3.6) holds in the distributional sense for

every integrable φ. It is obtained by following the proof in the case when ξ(q, x) = 1
x−q

on X = C,

when P equals the standard Cauchy–Green operator on C:

(3.7) C(φ)(z) = − 1

π

∫

C

φ(ζ)

ζ − z
dσ(ζ), z ∈ C.

The operator S (3.5) is an analogue of the Beurling transform B in the plane [2, 14, 58]:

(3.8) B(φ)(z) = − 1

π
lim
ǫ→0

∫

|z−ζ|>ǫ

φ(ζ)

(z − ζ)2
dσ(ζ), z ∈ C.

This is a singular convolution operator of Calderón–Zygmund type with nonintegrable kernel −1/πz2,

hence one must use the Cauchy principal value. Its main property is that B ◦ ∂z̄ = ∂z on C 1
0 (C), so B

interchanges the operators ∂z̄ and ∂z . Likewise, it follows from (3.3)–(3.5) that

(3.9) S(φz̄) = ∂zP (φz̄) = φz for every φ ∈ C
1
0 (Ω).

In order to understand the local regularity properties of P and S, we look more closely at their

kernel functions ξ(q, x) and ∂z(q)ξ(q, x). We consider the latter one, which is more involved; the

analogous analysis applies to the former. Let U ⊂ X ×X be an open neighbourhood of the diagonal

DX on which (3.2) holds. On U we have

∂z(q)ξ(q, x) = ∂z(q)
1

z(x)− z(q)
+ ∂z(q)h(q, x) =

1

(z(x)− z(q))2
+ ∂z(q)h(q, x),

and the function ∂z(q)h(q, x) is holomorphic on U . Fix a point q0 ∈ X and choose a neighbourhood

V ⊂ X of q0 such that V × V ⊂ U and the immersion z : X → C is injective on V . Pick a smooth

cut-off function χ : X → [0, 1] with suppχ ⊂ V such that χ = 1 on a smaller neighbourhood V ′ ⋐ V

of q0. For q ∈ V we have

S(φ)(q) = − 1

π

∫

X

χ(x)φ(x)∂z(q)ξ(q, x)dσ(x) +
1

π

∫

X

(χ(x)− 1)φ(x)∂z(q)ξ(q, x)dσ(x)

= S1(φ)(q) + S2(φ)(q),

where the operators S1 and S2 are given by

S1(φ)(q) = − 1

π

∫

X

χ(x)φ(x)

(z(x)− z(q))2
dσ(x),

S2(φ)(q) = − 1

π

∫

X

χ(x)φ(x)∂z(q)h(q, x)dσ(x)

+
1

π

∫

X

(χ(x)− 1)φ(x)∂z(q)ξ(q, x)dσ(x).

In the complex coordinate z on V , S1(φ) = B(χφ) is the Beurling operator applied to χφ, while S2
has smooth kernel. The same construction can be carried out with the operator P .

The conclusion is that the operators P and S have the same local regularity properties as their

classical models C (3.7) and B (3.8), respectively.

Let Ω be a relatively compact, smoothly bounded domain in X. One may consider the truncated

operators P and S, defined by integration over Ω (that is, extending the function φ under the integral

to X by setting φ = 0 on X \Ω). While P has the expected regularity on Hölder spaces, the regularity
10



of S fails at the boundary points of Ω since the effect of averaging in (3.7) is lost. To circumvent this

problem, we shall use a bounded linear extension operator, which we now describe.

Let dist denote the distance function on a surface X induced by a smooth Riemannian metric. We

recall the basics concerning Hölder spaces; see [42, Sect. 4.1] for more information. Let Ω be a domain

in X. For α ∈ (0, 1), the Hölder C α(Ω) norm of a function f : Ω → C is given by

(3.10) ‖f‖α = sup
x∈Ω

|f(x)|+ sup{|f(x)− f(y)|/dist(x, y)α : x, y ∈ Ω, x 6= y},

and the associated Hölder space is C α(Ω) = {f : Ω → C : ‖f‖α < ∞}. Similarly we define the

norm ‖f‖k,α for k > 0, and the corresponding Hölder space C (k,α)(Ω), by adding to ‖f‖α in (3.10)

the C α(Ω) norms of the partial derivatives of f of highest order k. In particular, C α(Ω) = C (0,α)(Ω).

These spaces are Banach algebras with the pointwise product of functions. Every function in C (k,α)(Ω)

has a unique extension to a function in C (k,α)(Ω). We shall need the following lemma.

Lemma 3.1. Given a smoothly bounded relatively compact domain Ω ⋐ X in a smooth open

Riemannian surface X and a domain Ω′ ⊂ X containing Ω, there is for every k ∈ Z+ and 0 < α < 1

a continuous linear extension operator E : C (k,α)(Ω) → C
(k,α)
0 (Ω′) with range in the space of

compactly supported functions in C (k,α)(Ω′).

Proof. For domains in Euclidean spaces and k ≥ 1, this is [42, Lemma 6.37]; it is clear from the

construction that one obtains a linear extension operator. (The cited lemma is stated for any relatively

compact domain Ω ⊂ R
n with C (k,α) boundary, but we believe that a smoothness of class at least

C k+1 is needed since the composition of a C (k,α) function and a C (k,α) diffeomorphism, which is

used in the proof to locally straighten the boundary bΩ, is only of class C (k,α2).) We can reduce to this

case by noting that every component S of bΩ has a neighbourhood U ⊂ Ω′ smoothly diffeomorphic

to an annulus in R
2, with S corresponding to the unit circle. (See Bellettini [17, Theorem 1.18, p.

14].) Assume now that k = 0. Using the above notation, let τ : U → S denote the (smooth) radial

projection of the annulus onto the circle S. Set U+ = U \ Ω, and let χ : Ω ∪ U → [0, 1] be a smooth

function which equals 1 on Ω and the restriction χ|U+
has compact support. Given f ∈ C α(Ω), we

let E(f) : Ω ∪ U → C be defined by E(f)(x) = f(x) for x ∈ Ω and E(f)(x) = χ(x)f(τ(x)) for

x ∈ U+. We perform the same construction on each of the finitely many boundary components of Ω.

It is easily verified that this extension has the required properties. �

With the notation of Lemma 3.1, define the operators PΩ and SΩ on φ ∈ C (k,α)(Ω) and q ∈ Ω by

PΩ(φ)(q) = − 1

π

∫

x∈Ω′

E(φ)(x)ξ(q, x)dσ(x),(3.11)

SΩ(φ)(q) = − 1

π

∫

x∈Ω′

E(φ)(x)∂z(q)ξ(q, x)dσ(x).(3.12)

Theorem 3.2. Let X be an open Riemann surface with a Cauchy kernel (3.1), (3.2).

(a) PΩ : C (k,α)(Ω) → C (k+1,α)(Ω) is a bounded linear operator for every 0 < α < 1 and k ∈ Z+,

and it satisfies ∂z̄PΩ(φ) = φ on Ω for every φ ∈ C α(Ω).

(b) SΩ : C (k,α)(Ω) → C (k,α)(Ω) is a bounded linear operator for every k ∈ Z+ and 0 < α < 1, and

it satisfies SΩ(φ) = ∂zPΩ(φ) for every φ ∈ C (k,α)(Ω).

Proof. We have seen above that the operators P and S have the same local regularity properties as

their classical models C (3.7) and B (3.8), respectively. Part (a) then follows from [14, Theorem 4.7.2]

and (3.3), and part (b) follows from [14, Theorem 4.7.1] and (3.12). (The analogous properties hold on

Sobolev spaces, but we shall not need them.) �
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4. QUASICONFORMAL DEFORMATIONS OF THE IDENTITY MAP

In this section, z : X → C denotes a holomorphic immersion from an open Riemann surface X

(see [47]). We shall call the pair (X, z) a Riemann domain over C. Let Ω be a domain in X. Recall

that for any C 1 function f : Ω → C, the derivatives fz = ∂f/dz and fz̄ = ∂f/dz̄ (2.6) are well-

defined functions on Ω. The following result gives a solution of the Beltrami equation on any smoothly

bounded relatively compact domain for Beltrami coefficients with sufficiently small Hölder norm.

Theorem 4.1. Let Ω be a smoothly bounded relatively compact domain in a Riemann domain (X, z).

For any k ∈ Z+ and 0 < α < 1 there is a constant c = c(k, α) > 0 such that for every

µ ∈ C (k,α)(Ω,D) with ‖µ‖k,α < c there is function f = f(µ) ∈ C (k+1,α)(Ω) solving the Beltrami

equation fz̄ = µfz, with f(µ) depending smoothly on µ and satisfying f(0) = z|Ω.

Interpreting the function µ ∈ C (k,α)(Ω,D) as a complex structure Jµ on Ω (see (2.2)–(2.4)), with

J0 coinciding with the initial complex structure, the function f(µ) : Ω → C is Jµ-holomorphic, and

it is an immersion for µ close to 0 since f(µ) is then close to f(0) = z|Ω in C (k+1,α)(Ω). Thus,

(Ω, Jµ, f(µ)) is a family of Riemann domains over C depending smoothly on µ.

Proof of Theorem 4.1. The idea is inspired by the proof of the corresponding result for µ ∈ Lp(C)

(p > 2), due to Ahlfors and Bers [3, Theorem 4]. For simplicity of exposition we shall consider the

case k = 0, noting that the same arguments apply for any k ∈ Z+.

Recall that the algebra Lin(E) of all bounded linear operators on a Banach spaceE, with functional

composition as multiplication and the operator norm, is a unital Banach algebra (see Conway [23]). In

our case, E will be the Banach space C α(Ω).

We look for a solution of the Beltrami equation fz̄ = µfz on Ω in the form

(4.1) f = f(µ) = z|Ω + P (φ), φ ∈ C
α(Ω).

Here, P = PΩ : C α(Ω) → C 1,α(Ω) is the Cauchy–Green operator (3.11). Thus, φ = 0 corresponds

to f = z|Ω. By Theorem 3.2 (a), P is a continuous linear operator. We have

fz̄ = ∂z̄P (φ) = φ, fz = 1 + ∂zP (φ) = 1 + S(φ),

where S = SΩ ∈ Lin(C α(Ω)) is the (continuous, linear) Beltrami operator (3.12). The first identity

follows from Theorem 3.2 (a) and the second one from the definition (3.12) of S. Inserting the above

expressions in the Beltrami equation fz̄ = µfz gives the following equation for φ:

φ = µ(S(φ) + 1) = µS(φ) + µ.

Let c0 = ‖S‖α > 0 denote the operator norm of S on C α(Ω) (see Theorem 3.2 (b)), so

(4.2) ‖S(φ)‖α ≤ c0‖φ‖α for all φ ∈ C
α(Ω).

Note that the multiplication by µ ∈ C α(Ω) on the space C α(Ω) is a linear operator of norm ‖µ‖α. Let

us rewrite the above equation for φ in the form

(4.3) (I − µS)φ = µ,

where I denotes the identity map on C α(Ω). We now assume that

(4.4) ‖µ‖α < c := 1/c0 = 1/‖S‖α.
Then, ‖µS‖α ≤ ‖µ‖αc0 < 1, so the operator I − µS is invertible with the bounded inverse

(4.5) Θ(µ) = (I − µS)−1 =
∞∑

j=0

(µS)j ∈ Lin(C α(Ω)).
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The equation (4.3) then has a unique solution φ = φ(µ) given by

φ = Θ(µ)µ =

∞∑

j=0

(µS)jµ.

Inserting into (4.1) gives a solution to the Beltrami equation fz̄ = µfz on Ω:

f(µ) = z|Ω + P (Θ(µ)µ) = z|Ω + P ((I − µS)−1µ) ∈ C
(1,α)(Ω).

We claim that the map µ 7→ f(µ) is smooth on {µ ∈ C α(Ω) : ‖µ‖α < c}. Since the map

P : C α(Ω) → C (1,α)(Ω) is continuous linear and the evaluation map Lin(C α(Ω)) × C α(Ω) ∋
(A,µ) 7→ Aµ ∈ C α(Ω) is continuous bilinear, it suffices to see that the map µ 7→ Θ(µ) =

(I − µS)−1 ∈ Lin(C α(Ω)) is smooth on {µ ∈ C α(Ω) : ‖µ‖α < c}. This follows from the fact

that the inversion A 7→ A−1 is an analytic map on a neighbourhood of the identity on Lin(C α(Ω)), as

is seen from the expansion (4.5). Let us give a more explicit argument. For ν ∈ C α(Ω) we have

I − (µ + ν)S = (I − µS)− νS = (I − µS)(I −Θ(µ)νS).

If ‖ν‖α is small enough then ‖Θ(µ)νS‖α < 1, and taking inverses gives

(4.6) Θ(µ+ ν) = (I −Θ(µ)νS)−1Θ(µ).

As ‖ν‖α → 0, the operator Θ(µ)νS converges to zero in the operator norm, and hence the first term

on the right hand side converges to the identity. This establishes continuity. Next, we show that Θ(µ)

is continuously differentiable with respect to µ on ‖µ‖α < c. Fix a constant c1 ∈ (0, c). Assume for a

moment that ‖µ‖α ≤ c1, and hence ‖µS‖α ≤ c1c0 < cc0 = 1; see (4.4). From (4.5) we obtain

(4.7) ‖Θ(µ)‖α ≤
∞∑

j=0

(c0c1)
j =

1

1− c0c1
=: C.

Pick a constant c2 ∈ (0, 1) and consider ν ∈ C α(Ω) such that ‖ν‖α ≤ c2/(Cc0). Then,

(4.8) ‖Θ(µ)νS‖α ≤ ‖Θ(µ)‖α‖ν‖α‖S‖α ≤ C ‖ν‖αc0 ≤ c2 < 1.

For such ν we consider the series expansion

(I −Θ(µ)νS)−1 = I +Θ(µ)νS +

∞∑

j=2

(Θ(µ)νS)j .

Note that ν 7→ Θ(µ)νS is a linear map C α(Ω) 7→ Lin(C α(Ω)). In view of (4.8) we have

∥∥∥
∞∑

j=2

(Θ(µ)νS)j
∥∥∥
α

≤
∞∑

j=2

‖Θ(µ)‖jα ‖ν‖jα ‖S‖jα

≤ ‖ν‖2α
∞∑

j=2

Cj
( c2
c0C

)j−2
cj0 =

c20C
2

1− c2
‖ν‖2α.

This shows that ν 7→ (I − Θ(µ)νS)−1 is differentiable at ν = 0 and its differential equals

ν 7→ Θ(µ)νS. From this and (4.6) it follows that µ 7→ Θ(µ) is differentiable at every µ with

‖µ‖α < c = 1/‖S‖α, and its differential equals

(4.9) DµΘ(µ)(ν) = Θ(µ) νSΘ(µ), ν ∈ C
α(Ω).

Since Θ(µ) is continuous in µ, we see that DµΘ(µ) is continuous, so Θ(µ) is continuously

differentiable. In particular, Θ(µ) is strongly differentiable in the sense of Nijenhuis [67]. Since

the composition of continuously differentiable families of bounded linear operators is continuously

differentiable, we see from (4.9) that the operator DµΘ(µ) is continuously differentiable on µ, so

Θ(µ) is of class C 2 in µ. We can continue inductively to conclude that Θ(µ) is smooth in µ. �
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Remark 4.2. The fact that µ → f(µ) is smooth for ‖µ‖k,α < c implies that if µ(t) is a C l function

of parameters t = (t1, . . . , tm) ∈ U ⊂ R
m with ‖µ(t)‖k,α < c for all t ∈ U , then the map

U ∋ t 7→ f(µ(t)) ∈ C k+1,α(Ω) is also of class C l(U). The analogous statement was proved by

Ahlfors and Bers [3, Theorem 2] for solutions of the Beltrami equation with µ ∈ Lp(C) for p > 2.

They also showed that if µ(t) is a holomorphic function of t ∈ U ⊂ C
m then the solution f(µ(t))

is holomorphic in t as well. Holomorphic dependence of f(µ(t)) on t also holds in the context of

Theorem 4.1 if the map t 7→ µ(t) is holomorphic.

Given an open Riemann surface (X,J) and a domain Ω ⊂ X, a family of smooth diffeomorphisms

Φb : Ω → Φb(Ω) ⊂ X (b ∈ B) induces a family of complex structures Jb = Φ∗
bJ on Ω. The following

result shows that a converse also holds on any smoothly bounded domain Ω ⋐ X for sufficiently small

variations of the complex structure. This provides an essential tool used in the proofs of our main

results. Recall that D denotes the unit disc in C.

Theorem 4.3. Assume that (X, z) is a Riemann domain over C, Ω is a relatively compact smoothly

bounded domain in X, and a1, . . . , am ∈ Ω are distinct points. For any k ∈ Z+ and 0 < α < 1 there

is a constant c = c(k, α) > 0 such that for every function µ ∈ C (k,α)(Ω,D) with ‖µ‖k,α < c there is

a µ-conformal diffeomorphism Φµ : Ω → Φµ(Ω) ⊂ X of class C (k+1,α), depending smoothly on µ,

such that Φ0 = IdΩ and Φµ(aj) = aj for all such µ and j = 1, . . . ,m.

Denoting by Jµ the complex structure on Ω determined by the function µ ∈ C (k,α)(Ω,D) (see

Section 2), Theorem 4.3 gives a family Φµ : Ω → Φµ(Ω) ⊂ X of (Jµ, J0)-biholomorphic maps onto

their images in X with its given complex structure J0 = J , with Φµ depending smoothly on µ in a

neighbourhood of µ0 = 0 in C (k,α)(Ω).

Remark 4.4. Note that every diffeomorphism Φµ : Ω → Φµ(Ω) ⊂ X in Theorem 4.3 is homotopic to

the identity map on Ω by the homotopy [0, 1] ∋ t 7→ Φtµ. In particular, if the domain Ω is Runge in X

then so is Φµ(Ω). In fact, a domain Ω in a Riemann surface X is Runge if and only if the inclusion-

induced homomorphism H1(Ω,Z) → H1(X,Z) of the first homology groups is injective, and this

condition is clearly invariant under homotopies.

Proof of Theorem 4.3. If c > 0 is small enough then for every µ ∈ C (k,α)(Ω) with ‖µ‖k,α < c

the function f(µ) : Ω → C, furnished by Theorem 4.1, is so close to the holomorphic immersion

f(0) = z|Ω : Ω → C in the C (k+1,α)(Ω) norm that it is an immersion. In the course of the proof, we

shall decrease the constant c > 0 whenever needed.

If f(µ) is sufficiently close to f(0) = z|Ω, we can lift it with respect to the holomorphic immersion

z : X → C to a unique diffeomorphism Φµ : Ω → Φµ(Ω) ⊂ X of class C (k+1,α)(Ω), close to

Φ0 = IdΩ, such that

(4.10) z ◦Φµ = f(µ) holds on Ω.

To see this, pick r > 0 such that for any q ∈ Ω the immersion z : X → C is injective on the disc

Ur(q) ⊂ X of radius r around q in the metric |dz|2. If f(µ)(q) ∈ C is close enough to z(q) ∈ C,

which holds if µ is close to 0, there is a unique point p ∈ Ur(q) such that z(p) = f(µ)(q), and we

set Φµ(q) = p. Thus, Φµ(q) is the unique closest point to q among the points in the closed discrete

set z−1(f(µ)(q))∩ ⊂ X, so Φµ is well-defined on Ω. This implies z(Φµ(q)) = z(p) = f(µ)(q), so

(4.10) holds. Since Φµ is locally obtained by postcomposing the immersion f(µ) : Ω → C with a local

inverse of the J-holomorphic immersion z : X → C, Φµ is an immersion, its Beltrami coefficient is

the same as that of f(µ) (which is µ), and the regularity properties remain unchanged. It is easily seen

that Φµ is injective if f(µ) is close enough to z, which holds if c > 0 is small enough.
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This shows that Φµ : Ω → Φµ(Ω) ⊂ X is a family of µ-conformal diffeomorphisms with the stated

properties depending smoothly on µ, except that they need not satisfy the interpolation conditions

Φµ(aj) = aj for j = 1, . . . ,m. These are achieved as follows. For every j = 1, . . . ,m we choose

a holomorphic vector field vj on X which is nonzero at the point aj and it vanishes at all points ai
for i ∈ {1, . . . ,m} \ {j}. Let t → ψj,t denote the (local) flow of vj for complex time t. If c > 0 is

small enough, there is an open relatively compact domain Ω′ ⋐ X such that Φµ(Ω) ⊂ Ω′ holds for

all µ ∈ C (k,α)(Ω) with ‖µ‖k,α < c. Choose a bigger domain Ω′′ ⋐ X such that Ω′ ⊂ Ω′′. Since Ω′′

is compact, there is a t0 > 0 such that the holomorphic map Ψt := ψ1,t1 ◦ · · · ◦ ψm,tm : Ω′′ → X

is well-defined for all t = (t1, . . . , tm) ∈ C
m in the polydisc ∆m

t0
= {|tj | < t0, j = 1, . . . ,m}.

Note that for every t ∈ ∆m
t0

the map Ψt, being a composition of flows of holomorphic vector fields, is

biholomorphic onto its image Ψt(Ω
′′) ⊂ X. The choice of the vector fields vj ensures, by the inverse

function theorem, that for every m-tuple of points a′ = {a′1, . . . , a′m} ⊂ Ω such that a′j is close enough

to aj for j = 1, . . . ,m there is a unique t = t(a′) ∈ ∆m
t0

close to the origin such that Ψt(aj) = a′j
for j = 1, . . . ,m, and the map a′ 7→ t(a′) is holomorphic. Let a′(µ) = (Φµ(a1), . . . ,Φµ(am)). Then,

for all µ ∈ C (k,α)(Ω) with ‖µ‖k,α < c for a small enough c > 0, the injective holomorphic map

Ψ−1
t(a′(µ)) : Ω′ → X sends the point Φµ(aj) back to aj for j = 1, . . . ,m. Hence, replacing Φµ by

Ψ−1
t(a′(µ)) ◦ Φµ we also satisfy the interpolation condition at the points a1, . . . , am. �

Remark 4.5. (A) If ω is a Cauchy kernel on an open Riemann surface X (see Section 3) and

Φ : Y → X is an injective holomorphic map from another open Riemann surface Y , then the

pullback Φ∗ω is a Cauchy kernel on Y . Applying this observation to the smooth family of conformal

diffeomorphisms Φµ : Ω → Φµ(Ω) ⊂ X, furnished by Theorem 4.3, gives a family of Cauchy kernels

ωµ = Φ∗
µω on (Ω, Jµ) of the form (3.1), (3.2), with ω0 = ω, whose entry functions zµ = z ◦ Φµ and

hµ depend smoothly on µ ∈ C (k,α)(Ω,D) in a neighbourhood of µ = 0. In turn, we obtain a family of

Cauchy–Green operators Pµ (3.4) on (Ω, Jµ) solving the ∂-equation

∂µPµ(φ) = φ · dz̄µ for φ ∈ C
1(Ω).

For a fixed µ, the operator Pµ has the regularity properties given by Theorem 3.2. However, the joint

regularity of the map (µ, φ) → Pµ(φ) seems less well understood. See Theorem 9.1 for a partial results

in this direction, and [43, Theorem 4.5] due to Gong and Kim for regularity of the Cauchy operators

on a 1-parameter family of domains in C.

(B) Given µ ∈ C (k,α)(Ω,D) close to 0, the induced complex structures Jµ on Ω are C k+1-

compatible with one another according to Theorem 2.2. It follows that for any smoothly bounded

relatively compact domain D in Ω, the spaces C (s,α)(D,Jµ) are independent of µ for s + α ≤ k + 1

and the norms are comparable. However, this no longer holds if s+ α > k + 1.

(C) Assume that B is a connected parameter space and {Jb}b∈B is a family of complex structures

on X of class C l,(k,α) as in Theorem 1.1 or 1.4. Fix b0 ∈ B and let z : X → C be a Jb0-holomorphic

immersion [47]. We obtain a family of Beltrami multipliers µb : X → D (b ∈ B) of the same class

C l,(k,α), with µb0 = 0, such that µb represents Jb as explained in Section 2. In particular, solutions

of the Beltrami equation fz̄ = µfz on a domain Ω ⊂ X are Jb-holomorphic functions on Ω. Here is

a direct way to see this correspondence. Pick a smooth nowhere vanishing vector field v on X; such

exists since the tangent bundle TX is trivial. Then, Vb = v − iJbv for b ∈ B is a family of nowhere

vanishing (1, 0)-vector fields on the Riemann surfaces (X,Jb), of class C l,(k,α)(B ×X). By duality,

the family of complex (1, 0)-forms θb on (X,Jb), determined by θb(Vb) = 1, provides a simultaneous

trivialization of the canonical bundles (T ∗X,Jb). Then, gb = |θb|2 is a Riemannian metric on X

determining the complex structure Jb, and µb is the associated family of Beltrami multipliers of class

C l,(k,α) given by (2.3) and (2.4). Theorems 4.1 and 4.3 will often be used in this way.
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5. RUNGE THEOREM ON FAMILIES OF OPEN RIEMANN SURFACES

In this section we prove Theorem 1.1. We first consider the basic case l = k = 0. Given a

continuous function ǫ : B → (0,+∞), it suffices to prove that for any compact Runge set L ⊂ X

containing K in its interior there exist an open set Ω ⊂ X containing L and a continuous function

F ∈ C (B × Ω) satisfying the following conditions for every b ∈ B.

(a) The function Fb = F (b, · ) : Ω → C is Jb-holomorphic.

(b) supx∈K |Fb(x)− fb(x)| < ǫ(b).

(c) Fb − fb vanishes in the points of the finite set A′ = A ∩ L = {a1, . . . , am}.

By slightly increasing K and adding to it small pairwise disjoint discs around the finitely many points

in A ∩ (L \K), we may assume that A ∩ L is contained in the interior of K . A function B ×X → C

satisfying Theorem 1.1 for l = k = 0 is then obtained by an obvious induction with respect to an

exhaustion of X by an increasing family of compact Runge sets.

Secondly, it suffices to prove the result locally in the parameter. More precisely, given a point

b0 ∈ B, it suffices to find an open neighbourhood B0 ⊂ B of b0 and a function F : B0 × Ω → C

satisfying conditions (a)–(c) above for all b ∈ B0. This gives a locally finite cover of B by open sets

Bj and functions Fj : Bj × Ω → C satisfying conditions (a)–(c) for b ∈ Bj . Choose a partition of

unity 1 =
∑

j χj with suppχj ⊂ Bj for every j. The function F : B × Ω → C defined by

(5.1) F (b, x) =
∑

j

χj(b)Fj(b, x) for b ∈ B and x ∈ Ω

then clearly satisfies conditions (a)–(c).

With these reductions in mind, we now consider the problem near a parameter value b0 ∈ B. In

the following exposition, we assume that {Jb}b∈B is of class C 0,(k+1,α) for an arbitrary k ∈ Z+.

We endow X with the Riemann surface structure determined by Jb0 . By Theorem 2.2, this structure

is C k+1-compatible with the given smooth structure on X. Choose a Jb0-holomorphic immersion

z : X → C (see [47]). Let µb denote the Beltrami coefficient corresponding to the complex structure

Jb (see (2.2) and (2.4)), with µb0 = 0. Choose a relatively compact, smoothly bounded domain Ω ⊂ X

with L ⊂ Ω. Note that µb ∈ C (k,α)(Ω,D) depends continuously on b ∈ B (see Remark 2.1). Let

c > 0 be chosen such that Theorem 4.3 applies to all µ ∈ C (k,α)(Ω) with ‖µ‖k,α < c. By continuity

of the map b 7→ µb there is a neighbourhood B′
0 ⊂ B of b0 such that ‖µb‖k,α < c for all b ∈ B′

0.

Let Φb : Ω → Φb(Ω) ⊂ X for b ∈ B′
0 be a continuous family of µb-conformal diffeomorphisms,

furnished by Theorem 4.3. Thus, Φb is a biholomorphic map from the domain (Ω, Jb) onto its image

Φb(Ω) ⊂ (X,Jb0) such that Φb(a) = a for all a ∈ A and b ∈ B′
0, and Φb0 = IdΩ. Choose a compact

Runge set K ′ in X containing K in its interior such that fb0 is holomorphic on a neighbourhood of

K ′, and then pick a neighbourhood B0 ⊂ B′
0 of b0 such that Φb(K) ⊂ K̊ ′ holds for all b ∈ B0.

By Runge theorem in open Riemann surfaces (see Behnke and Stein [16]), we can approximate fb0
as closely as desired uniformly on K ′ by a Jb0 -holomorphic function Fb0 : X → C. The function

Fb = Fb0 ◦ Φb : Ω → C for b ∈ B0 is then Jb-holomorphic, it depends continuously on b ∈ B0, and

Fb is as close as desired to fb uniformly on K provided that b is close enough to b0 and Fb0 is close

enough to fb0 on K ′. Indeed, for x ∈ K we have

|Fb(x)− fb(x)| ≤ |Fb0 ◦ Φb(x)− fb0 ◦ Φb(x)|
+ |fb0 ◦ Φb(x)− fb0(x)|+ |fb0(x)− fb(x)|,

and each term on the right hand side is as small as desired if b is close enough to b0 and Fb0 is close

enough to fb0 on K ′. Hence, shrinking the neighbourhood B0 around b0 if necessary, the family

{Fb}b∈B0
satisfies conditions (a) and (b). The interpolation condition (c) will be dealt with later.
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Next, we consider fine approximation in the C l,k+1-topology for any pair of integers 0 ≤ l ≤ k+1.

As before, locally in the parameter we can use Theorem 4.3 in order to reduce the approximation

problem for a variable family of complex structures to the case of a moving family of compact Runge

sets in a fixed complex structure. With future applications in mind, we consider a more general situation

for a family of compact holomorphically convex sets in a Stein manifold of arbitrary dimension.

Lemma 5.1. Assume that B is a locally compact and paracompact Hausdorff space if l = 0, and a

manifold of class C l if l > 0. Let X be a Stein manifold, π : B ×X → B be the projection, and K

be a closed subset of B ×X such that the restricted projection π|K : K → B is proper and for every

b ∈ B the fibre Kb = {x ∈ X : (b, x) ∈ K} is O(X)-convex. Assume that U ⊂ B × X is an open

set containing K and f : U → C is a function of class C l,0(U) such that for every b ∈ B the function

fb = f(b, · ) : Ub = {x ∈ X : (b, x) ∈ U} → C is holomorphic. Then, f ∈ C l,∞(U) and for any

s ∈ Z+, f can be approximated in the fine C l,s topology on K by C l,∞ functions F : B × X → C

such that Fb = F (b, · ) ∈ O(X) for every b ∈ B. If B is a topologically closed C l submanifold of

R
n ⊂ C

n (possibly with boundary), or a closed subset of Rn when l = 0, then f can be approximated

in the fine C l,s topology on K by holomorphic functions F : Cn ×X → C.

Remark 5.2. (a) Given K as in the lemma, for every b0 ∈ B and neighbourhood W ⊃ Kb0 we have

(5.2) Kb ⊂W for all b ∈ B sufficiently close to b0.

Otherwise, since π : K → B is proper, there would exist a sequence (bj , xj) ∈ K with limj→∞ bj =

b0 such that the sequence xj has an accumulation point in X \Kb0 , a contradiction since K is closed.

Given an open neighbourhood U ⊂ B × X of K , it follows that there are a compact neighbourhood

B0 ⊂ B of b0 and an open set U0 ⊂ X such that K ∩ (B0 ×X) ⊂ B0 × U0 ⊂ U.

(b) If B is a subset of Rn, then a compact set K ⊂ B×X with O(X)-convex fibres Kb is O(Cn×X)-

convex (see Remark 1.3 and Proposition 1.4 in [37]).

Proof of Lemma 5.1. The assumptions on the function f in the theorem clearly imply that it is of class

C l,∞(U), so we may talk of C l,s approximation for any s ∈ Z+.

We first consider the special case when B is compact and U = B × U ′, where U ′ ⊂ X is an

open set. Pick a compact O(X)-convex set K ′ ⊂ X such that K ′ ⊂ U ′ and K ⊂ B × K̊ ′. Choose

a smoothly bounded strongly pseudoconvex domain D in X with K ′ ⊂ D ⋐ U ′. On D, there is a

Henkin–Ramirez type kernel ω(x, ζ), which is holomorphic in x ∈ D for every ζ ∈ bD, such that

every f ∈ O(D) can be represented on D by the integral f(x) =
∫
ζ∈bD f(ζ)ω(x, ζ), x ∈ D. (See

Henkin and Leiterer [52] or Lieb and Michel [60]. When X is an open Riemann surface, we can use

a Cauchy kernel (3.1) on X.) In the case at hand, we have that f(b, x) =
∫
ζ∈bD f(b, ζ)ω(x, ζ) for all

x ∈ D and b ∈ B. Approximating the integral by Riemann sums gives a uniform approximation of f

on B ×K ′ by finite sums
∑

i f(b, ζi)gi(x) (b ∈ B, x ∈ D) for suitably chosen points ζi ∈ bD and

functions gi ∈ O(D) which come from the kernel ω(x, ζi). If l > 0 then for any linear differential

operator L of order ≤ l in the variable b ∈ B we have that Lf(b, x) =
∫
ζ∈bD Lf(b, ζ)ω(x, ζ). By

adding more points ζi ∈ bD to the Riemann sum if necessary, we approximate Lf(b, x) uniformly on

B×K ′ by functions
∑

i Lf(b, ζi)gi(x) = L
∑

i f(b, ζi)gi(x). This shows that f can be approximated

in C l,0(B × K ′) by finite sums
∑

i f(b, ζi)gi(x). By the Oka–Weil theorem, we can approximate gi
uniformly on K ′ by entire functions gi : X → C. This gives approximation of f in C l,0(B ×K ′) by

functions F : B × X → C which are holomorphic on the fibres {b} × X and of class C l in b ∈ B.

Since K ⊂ B × K̊ ′, it follows that F − f can be arbitrarily small in C l,s(K).

In the general case, Remark 5.2 (a) shows that we can find a locally finite cover of K by open sets

of the form Bj × Uj ⊂ B ×X such that, for every j, the set Bj is compact and

(5.3) Kj := K ∩ (Bj ×X) ⊂ Bj × Uj ⊂ U.
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Fix a C l partition of unity {χj}j on a neighbourhood of π(K) in B, subordinate to the cover {Bj}j .

The argument given in the special case shows that for every j we can approximate f |Kj
as closely as

desired in C l,s(Kj) by functions Fj : Bj ×X → C of the form

Fj(b, x) =
∑

i

hj,i(b)gj,i(x), b ∈ Bj , x ∈ X,

where hj,i ∈ C l(Bj) and gj,i ∈ O(X). (The partition of unity χj is kept fixed while performing the

approximation on Kj .) We define the function F : B ×X → C by

(5.4) F (b, x) =
∑

j

χj(b)Fj(b, x) =
∑

j,i

χj(b)hj,i(b)gj,i(x) for b ∈ B and x ∈ X.

Clearly, F approximates f to a given precision in the fine C l,s topology on K provided that Fj |Kj
is

sufficiently close to f |Kj
in C l,s(Kj) for every j.

Finally, if B is a closed submanifold of Rn ⊂ C
n of class C l, possibly with boundary, we can

apply [72, Theorem 1] by Range and Siu to approximate each function χjhj,i ∈ C l(B) in (5.4) (which

has compact support contained in Bj) in the fine C l(B) topology by an entire function h̃j,i ∈ O(Cn).

(Another argument is to extend χjhj,i from the submanifold B ⊂ R
n to a C l function on R

n and then

approximate it in the fine C l(Rn) topology by entire functions using Carleman approximation theorem

[20].) The function F̃ =
∑

j,i h̃j,igj,i is then holomorphic on C
n × X and it approximates f in the

fine C l,s topology on K . For l = 0, the same holds if B is any closed subset of Rn, which is seen by

combining Tietze’s extension theorem with Carleman approximation theorem. �

We now prove Theorem 1.1 for arbitrary integers k ≥ 0 and 0 ≤ l ≤ k + 1. Let K ⊂ X be as in

the theorem, and pick a compact Runge set L ⊂ X containing K in its interior. By the argument in the

beginning of the proof, we may assume that K contains the finite set A ∩ L in its interior. Choose a

smoothly bounded Runge domain Ω ⋐ X such that L ⊂ Ω. Fix a point b0 ∈ B. By Theorem 4.3 and

Remark 4.5 (C) there are a compact neighbourhood B0 ⊂ B of b0 and a diffeomorphism

(5.5) Φ : B0 × Ω
∼=→ Φ(B0 × Ω) ⊂ B0 ×X, Φ(b, x) = (b, φ(b, x)) = (b, φb(x))

of class C l,(k+1,α) (hence, of class C l jointly in both variables (b, x)) such that for every b ∈ B0, the

map φb : Ω → φb(Ω) ⊂ X is a biholomorphism from (Ω, Jb) onto (φb(Ω), Jb0) satisfying

(5.6) φb(a) = a for all a ∈ A ∩ L, and φb0 = IdΩ.

Clearly, Φ has a continuous inverse Φ−1(b, z) = (b, ψ(b, z)), and if l > 0 then Φ−1 and hence ψ

are of class C l by the inverse function theorem. Furthermore, the following observations are simple

consequences of the chain rule, and we leave the proof to the reader.

Lemma 5.3. (a) If Φ as above is of class C l,k+1 and l ≤ k + 1, then Φ−1 is of class C l,k+1−l.

(b) If f(b, x) is of class C l,k and g(b, z) is of class C l,l+k, then g(b, f(b, x)) is of class C l,k.

Lemma 5.4. Assume that 0 ≤ l ≤ k + 1, f ∈ C l,0(B0 × Ω), and f(b, · ) : Ω → C is Jb-holomorphic

for every b ∈ B0. Then, the function F = f ◦ Φ−1 : Φ(B0 × Ω) → C is of class C l,∞(B0 × X)

when X is endowed with the complex structure Jb0 , F (b, · ) : φb(Ω) → C is Jb0-holomorphic for every

b ∈ B0, and f ∈ C l,(k+1,α)(B0 × Ω) in the complex structure Jb0 . (Hence, f ∈ C l,k+1(B0 × Ω) in

the original smooth structure on Ω.) The analogous result holds for maps to any complex manifold.

Proof. Clearly, F is continuous. Since F (b, · ) = f(b, ψ(b, · )) is a composition of the (Jb0 , Jb)-

holomorphic map ψ(b, · ) and the Jb-holomorphic function f(b, · ), F (b, · ) is Jb0-holomorphic for

every b ∈ B0. It follows that F ∈ C 0,∞ in the complex structure Jb0 on X. Since f = F ◦ Φ and Φ

is of class C l,(k+1,α), we infer that f is of class C 0,(k+1,α) in the Jb0 structure. This proves the lemma
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for l = 0. Suppose now that l > 0. Then, ψ is of class C l. We shall prove that F is of class C l in the

variable b ∈ B0, and hence of class C l,∞ (since it is Jb0-holomorphic in the space variable). We make

the calculation in a local coordinate b of class C l on B0, and we assume for simplicity of exposition

that B0 = [0, 1] ⊂ R. On X, we use a Jb0-holomorphic coordinate z. Differentiating the equation

F (b, z) = f(b, ψ(b, z)) on b and denoting the partial derivatives by the lower case indices gives

(5.7) Fb(b, z) = fb(b, ψ(b, z)) + fx(b, ψ(b, z))ψb(b, z).

Here, fx denotes the total derivative of f with respect to a smooth local coordinate x = (u, v) on X.

This shows that Fb(b, z) exists and is continuous in (b, z). Since F is also holomorphic in z, it follows

that F ∈ C 1,∞ and therefore f = F ◦ Φ ∈ C 1,(k+1,α) in the complex structure Jb0 on X. (Hence,

f ∈ C 1,k+1 in the original smooth structure on X.) Suppose now that l ≥ 2, so k + 1 ≥ l ≥ 2,

ψ ∈ C 2, and f ∈ C 2,0 ∩ C 1,2. Differentiating the equation (5.7) on b gives

Fbb = fbb + 2fbxψb + fxx(ψb)
2 + fxψbb,

and Fbb is continuous in (b, z). Since it is holomorphic in z, it follows that F ∈ C 2,∞ and therefore

f ∈ C 2,(k+1,α). This process can be continued up to l = k + 1 but not beyond. �

We continue with the proof of Theorem 1.1. The compact set K̃ = Φ(B0 ×K) ⊂ B0 ×X clearly

satisfies the conditions of Lemma 5.1. In particular, its fibre K̃b = Φb(K) is Runge in Φb(Ω) for every

b ∈ B0, and since Φb(Ω) is Runge in X (see Remark 4.4), K̃b is Runge in X as well. Recall that U is

an open neighbourhood of B×K and f : U → C is an X-holomorphic function of class C l,0. Pick an

open set V ⊂ B0 ×X such that V ⊂ U ∩ (B0 × Ω). Let Ṽ = Φ(V ) ⊂ B0 ×X. We have f = f̃ ◦Φ
where by Lemma 5.4 the function f̃ = f ◦ Φ−1 : Ṽ → C is X-holomorphic and of class C l,∞ with

respect to the complex structure Jb0 on X. By Lemma 5.1, for any given s ∈ Z+ we can approximate

f̃ in C l,s(K̃) by anX-holomorphic function F̃ : B0×X → C of class C l,∞. If s is chosen big enough

and the approximation is close enough, then the function F = F̃ ◦Φ : B0 ×Ω → C is of class C l,k+1,

it is X-holomorphic, and it approximates f in the C l,k+1 topology on B0 ×K .

This gives a locally finite open coverBj of B such that f can be approximated as closely as desired

in the C l,k+1 topology on Bj × K by X-holomorphic functions Fj : Bj × Ω → C of class C l,k+1.

Choose a C l partition of unity 1 =
∑

j χj on B with suppχj ⊂ Bj for every j. Assuming that each

Fj is close enough to f in C l,k+1(Bj ×K) for every j, the X-holomorphic function F : B ×Ω → C

defined by (5.1) is of class C l,k+1 and it satisfies the required approximation condition.

It remains to obtain the interpolation conditions (c) at the points of A′ = A∩L = {a1, . . . , am} ⊂
K̊ . It suffices to explain this in the local situation given by Lemma 5.1; the subsequent steps in

the proof preserve this condition up to order k + 1 (the degree of smoothness of F (b, x) in x). In

view of (5.5) and (5.6), the points of A′ are fixed under the maps φ(b, · ). Choose r ∈ Z+ and set

n = m(r + 1); this is the complex dimension of the space of complex r-jets (including the values)

of holomorphic functions on X at the points of A′. By the classical function theory on open Riemann

surfaces, we can find a family of Jb0 -holomorphic functions ξt : X → C, depending holomorphically

on t = (t1, . . . , tn) ∈ C
n, such that ξ0 = 0 and for every collection of r-jets at the points of A′ there

is precisely one member ξt of this family which assumes these r-jets at the given points. Let F be a

function in (5.4) which approximates f to a given precision in the fine C l,k+1 topology on B × K .

Hence, the r-jets of the function Fb = F (b, · ) at the points of A′ are close to the respective r-jets of

fb = f(b, · ) for any b ∈ B. We subtract from each Fb the appropriate uniquely determined member

of the family ξt so that the r-jets of the new function at the points of A′ agree with those of fb (i.e.,

the interpolation condition (c) holds.) This does not affect the approximation condition (b) very much

since the jets of ξt in question are close to those of the zero function, and hence ξt is uniformly close

to zero on K . This completes the proof of Theorem 1.1.
19



6. MERGELYAN THEOREM ON FAMILIES OF OPEN RIEMANN SURFACES

In this section, we prove Theorem 1.2. See also Theorems 7.5 and 7.7 for manifold-valued maps.

We begin with the basic case when K is a compact Runge set in X = C. Thus, let {Jb}b∈B be

a continuous family of complex structures of class C α on C and f : B × K → C be a continuous

function such that fb = f(b, · ) is Jb-holomorphic in K̊ for every b ∈ B. Choose an open disc D ⊂ C

with K ⊂ D. Given a point b0 ∈ B and a number ǫ > 0, we shall find an open neighbourhood

B0 ⊂ B of b0 and a continuous function F : B0 × D → C such that for every b ∈ B0, the

function Fb = F (b, · ) : D → C is Jb-holomorphic and satisfies supz∈K |Fb(z) − fb(z)| < ǫ and

the interpolation conditions in the points of the finite set A ⊂ K̊. The proof is then concluded by using

a partition of unity on B together with Theorem 1.1.

By the Riemann mapping theorem, Jb0 is either the standard complex structure Jst on C or the

standard complex structure on a disc containing D. The proof is the same in both cases, so let us

assume the former case. Choose a pair of discs D′ ⋐ Ω ⋐ C such that D ⊂ D′. By Theorem 4.1 and

Remark 4.5 (C) there are a compact neighbourhood B1 ⊂ B of b0 and a family of diffeomorphisms

Φb : Ω → Φb(Ω) =: Ωb ⊂ C of class C 1,α(Ω), depending continuously on b ∈ B1, such that

Φb0 = IdΩ and Φb is biholomorphic from (Ω, Jb) onto (Ωb, Jst). For every b ∈ B1 set

(6.1) Kb = Φb(K), Db = Φb(D), f̃b = fb ◦ Φ−1
b : Kb → C.

The function f̃b is continuous on Kb, Jst-holomorphic in the interior K̊b, and it depends continuously

on b ∈ B1. After shrinking B1 around b0 if necessary, we may assume that

(6.2) Kb ⊂ Db ⊂ D′ ⊂ Ωb for all b ∈ B1.

It now suffices to find a neighbourhood B0 ⊂ B1 of b0 and a continuous function F̃ : B0 ×D′ → C

such that for every b ∈ B0, the function F̃b = F̃ (b, · ) : D′ → C is holomorphic in the standard

structure Jst on C and it satisfies supz∈Kb
|F̃b(z) − f̃b(z)| < ǫ. Indeed, the function Fb = F̃b ◦ Φb is

then Jb-holomorphic on D and satisfies supz∈K |Fb(z) − fb(z)| < ǫ for every b ∈ B0. In summary,

locally in the parameter we changed the Mergelyan approximation problem with respect to a family of

complex structures to a similar problem on a moving family of compact sets in C with respect to the

standard complex structure. We now show that this task can be realised by inspecting the proof of the

classical Mergelyan’s theorem [64]; see also Gaier [39, p. 97], Gamelin [40], and Rudin [73].

To simplify the notation, we drop the tildes and consider fb : Kb → C as a family of continuous

functions that are holomorphic on K̊b and depend continuously on b ∈ B1. Since the compact sets

Kb in (6.1) vary continuously with b, the set
⋃

b∈B1
Kb is compact, and by (6.2) it is contained in D′.

By Tietze’s extension theorem, there is a continuous function f : B1 × C → C with compact support

contained in B1 ×D′ such that f(b, · ) agrees with the given function fb on Kb for every b ∈ B1. For

δ > 0 we denote by ω(δ) the modulus of continuity of f with respect to the second variable:

ω(δ) = max{|f(b, z) − f(b, w)| : b ∈ B1, z, w ∈ C, |z − w| ≤ δ}.

Note that limδ→0 ω(δ) = 0, and we choose δ small enough such that

(6.3) 6000ω(δ) < ǫ.

Define the function Aδ : C → R+ by setting Aδ(z) = 0 for |z| > δ and

Aδ(z) =
3

πδ2

(
1− |z|2

δ2

)2

, 0 ≤ |z| ≤ δ.

The convolution of f and Aδ with respect to the z variable is a continuous function f δ on B1 ×C with

compact support whose differential with respect to the z-variable exists and is also continuous in both
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variables. Furthermore, for every b ∈ B1 and z ∈ C we have that

|f(b, z)− f δ(b, z)| < ω(δ) and

∣∣∣∂f
δ

∂z̄
(b, z)

∣∣∣ < 2ω(δ)

δ
,

and

f δb := f δ(b, · ) = fb on Kδ
b := {z ∈ Kb : dist(z,C \Kb) > δ}.

These properties follow directly from the case for a single b, which is proved in the cited papers.

Decreasing δ > 0 if necessary, we may assume that suppf δb ⊂ D′ for all b ∈ B1. Note that Kδ
b is an

open set contained in K̊b. Since f δb = fb on Kδ
b , it follows that f δb is holomorphic on Kδ

b and hence

(6.4) supp(∂f δb ) ⊂ Lb := D
′ \Kδ

b for all b ∈ B1.

Recall that Kb0 = K . We cover the compact set Lb0 = D
′ \ Kδ

b0
by finitely many open discs

∆j = D(zj, 2δ) (j = 1, . . . , n) of radius 2δ with centres zj ∈ C \ K . Since C \ K is connected,

each disc ∆j contains a compact Jordan arc Ej connecting its centre zj to a boundary point of ∆j such

that Ej ∩K = ∅. Set E =
⋃n

j=1Ej . Since the compact sets Kb in (6.1) depend continuously on b,

there is a neighbourhood B0 ⊂ B1 of b0 such that for all b ∈ B0 and j = 1, . . . , n we have

Lb ⊂
n⋃

i=1

∆i and E ∩Kb = ∅.

In particular, the open set C \ E contains
⋃

b∈B0
Kb. For b ∈ B0 consider the sets

Lb,1 = Lb ∩∆1, Lb,j = Lb ∩∆j \ (Lb,1 ∪ . . . ∪ Lb,j−1) for j = 2, . . . , n.

These sets depend continuously on b. Write ζ = u+ iv. By the Cauchy–Green formula (3.3) we have

(6.5) f δb (z) =
1

π

∫

C

∂f δb (ζ)

∂ζ̄

du dv

z − ζ
=

n∑

j=1

1

π

∫

Lb,j

∂f δb (ζ)

∂ζ̄

du dv

z − ζ
for z ∈ C and b ∈ B1.

The main point now is to approximate the Cauchy kernel 1
z−ζ

for z ∈ C \ Ej and ζ ∈ ∆j sufficiently

well by a function of the form

Pj(z, ζ) = gj(z) + (ζ − cj)gj(z)
2,

where gj ∈ O(C \Ej) and cj ∈ C. This is accomplished by Mergelyan’s lemma [64], which says that

gj and cj can be chosen such that for all z ∈ C \ Ej and ζ ∈ ∆j we have

(6.6) |Pj(z, ζ)| <
50

δ
and

∣∣∣∣Pj(z, ζ)−
1

z − ζ

∣∣∣∣ <
4000 δ2

|z − ζ|3 .

(See [39, p. 101] or [73, Lemma 20.2].) The function

(6.7) F δ
b (z) =

n∑

j=1

1

π

∫

Lb,j

∂f δb (ζ)

∂ζ̄
Pj(z, ζ) du dv

depends continuously on b ∈ B0, for every b it is holomorphic in the open set C \ E ⊃ Kb (since

Pj(· , ζ) is holomorphic on C \ Ej for every j), and it follows from (6.3) and (6.5)–(6.7) that

|F δ
b (z)− f δb (z)| < 6000ω(δ) < ǫ for all z ∈ C \E and b ∈ B0.

The proof of the first estimate can be found in the cited works. Finally, the interpolation in finitely

many interior points of K can be handled as in the proof of Theorem 1.1.

This proves Theorem 1.2 when K is a compact Runge set in X = C. Let us now consider the

general case when X is an arbitrary open Riemann surface. We shall adjust Bishop’s localization

theorem [18] to the variable complex structure setting, using solutions of the ∂-equation as in Sakai’s

paper [75]. See also the exposition in [29, pp. 142–143].
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Assume that K ⊂ X and f : B ×K → C are as in the statement of Theorem 1.2. In particular,

there is a number c > 0 such that each relatively compact connected component of X \K has diameter

at least c in some fixed Riemannian metric on X. By deleting a point from X if necessary, we may

assume thatX is an open surface. Let K̂ denote the smallest compact Runge set inX containing K . (In

any complex structure on X, K̂ is the holomorphically convex hull ofK .) Choose a smoothly bounded

relatively compact Runge domain Ω ⋐ X with K̂ ⊂ Ω. Let B0 ⊂ B be a compact neighbourhood of

b0 such that Theorem 4.1 applies on Ω for all b ∈ B0. In particular, we have continuous families of

Jb-holomorphic immersions zb : Ω → C, Cauchy kernels ωb = Φ∗
bω where Φb are given by Theorem

4.3, and Cauchy operators Pb on (Ω, Jb) for b ∈ B0 (see Remark 4.5 (A)). We cover K by finitely

many open coordinate discs U1, . . . , Um ⊂ Ω of diameter at most c. Choose closed discs Dj ⊂ Uj for

j = 1, . . . ,m whose interiors still cover K . Note that Uj \ (K ∩Dj) is connected for every j. (Indeed,

a relatively compact component of Uj \ (K ∩Dj) is also a connected component of X \K which is

contained in D̊j , so it has diameter < c, contradicting the assumption.) Let χj be a smooth partition

of unity on a neighbourhood of K with respect to the cover {Uj}. Since every Uj is a planar domain,

the special case of the theorem proved above shows that for any ǫ > 0 there are continuous functions

fj : B0 × Uj → C such that fj(b, · ) : Uj → C is Jb-holomorphic for every b ∈ B0 and satisfies

max
x∈K∩Dj

|fj(b, x)− f(b, x)| < ǫ for every b ∈ B0 and j = 1, . . . ,m.

Set g =
∑m

j=1 χjfj and gb = g(b, · ) for b ∈ B0. Let ∂Jb denote the (0, 1)-derivative with respect to

the complex structure Jb and the immersion zb : Ω → C (see (2.6)). On some open neighbourhood

U = Uǫ ⊂ Ω of K we then have ‖g − f‖C (B0×U) = O(ǫ) and

∂b g =

m∑

j=1

∂bχj · fj =
m∑

j=1

∂bχj · (fj − f), ‖∂b g‖C (U) = O(ǫ),

where the bound in O(ǫ) is uniform for b ∈ B0. (In the second equality we used that
∑m

j=1 ∂bχj = 0

near K .) Let χ ∈ C∞
0 (U) be a cut-off function with 0 ≤ χ ≤ 1 and χ ≡ 1 near K . Then we have

‖χ · ∂bg‖C (U) = O(ǫ), and hence ‖Pb(χ · ∂g)‖C (U) = O(ǫ). For every b ∈ B0 the function

F (b, · ) = gb − Pb(χ· ∂b gb)

is then Jb-holomorphic on a neighbourhood of K , which can be chosen independent of b ∈ B0, it

depends continuously on b ∈ B0 and satisfies ‖F − f‖C (B0×K) = O(ǫ). Continuity in b is seen by

noting that the (0, 1)-forms ξb = χ· ∂b gb have compact support contained in the interior of Ω, and

solving ∂ub = ξb reduces to solving the same problems for the family of (0, 1)-forms (Φ−1
b )∗(ξb) in

the fixed complex structure J0 on X. (See Theorem 9.1 for the case l = 0.)

This proves the approximation result for b ∈ B0. Interpolation in finitely many points of K̊ can

be obtained by the same argument as in the proof of Theorem 1.1. The proof is concluded by finding

a locally finite cover {Bj}j of B by sets on which the above conditions hold and combining the

approximants Fj by a partition of unity on B subordinate to this cover; see (5.1).

7. THE OKA PRINCIPLE FOR MAPS FROM FAMILIES OF OPEN RIEMANN SURFACES TO OKA

MANIFOLDS

In this section we prove Theorem 1.4. The same proof also gives the generalization stated in

Theorem 7.4. We then prove a couple of Mergelyan-type approximation theorems for manifold-valued

maps from families of open Riemann surfaces; see Theorems 7.5 and 7.7. With future applications in

mind, the technical results in Lemmas 7.2 and 7.3 are obtained in the bigger generality when X is a

Stein manifold of arbitrary dimension.
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Recall that a compact set K in a complex manifold X is said to be a Stein compact if it admits a

basis of open Stein neighbourhoods. Every compact O(X)-convex set in a Stein manifold X is a Stein

compact (see [53, Theorem 5.1.6]). Given a complex manifold Y , we denote by

O(K,Y )

the space of continuous maps K → Y which are uniform limits of holomorphic maps on open

neighbourhoods of K in X. Furthermore, we denote by

O loc(K,Y )

the space of continuous maps f : K → Y with the property that every point x ∈ K has an open

neighbourhood U ⊂ X such that f |K∩U ∈ O(K ∩ U). Clearly, we have the inclusions

{f |K : f ∈ O(K,Y )} ⊂ O(K,Y ) ⊂ O loc(K,Y ) ⊂ A (K,Y ).

The importance of the space O loc(K,Y ) lies in the following result of Poletsky [71, Theorem 3.1].

Theorem 7.1 (Poletsky [71]). If K is a Stein compact in a complex manifold X, Y is a complex

manifold and f ∈ O loc(K,Y ), then the graph of f on K is a Stein compact in X × Y .

We consider Rn as the standard real subspace of Cn. By using Theorem 7.1 we prove the following.

Lemma 7.2. Let X be a Stein manifold and π : C
n × X → C

n be the projection. Assume that

K ⊂ C
n × X is a compact set such that B := π(K) ⊂ R

n and Kb = {x ∈ X : (b, x) ∈ K}
is O(X)-convex for every b ∈ B. Let U be an open neighbourhood of K in B × X, Y be a

complex manifold, and f : U → Y be a continuous map such that for every b ∈ B the map

fb = f(b, · ) : Ub = {x ∈ X : (b, x) ∈ U} → Y is holomorphic. Then, the graph

(7.1) Gf = {(b, x, f(b, x)) : (b, x) ∈ K} ⊂ C
n ×X × Y

of f on K is a Stein compact in C
n ×X × Y , and f ∈ O(K,Y ). Furthermore, given ǫ > 0 there are

a neighbourhood V of K in C
n ×X, a neighbourhood Ũ ⊂ U ∩ V of K in B ×X, a holomorphic

map f̃ : V → Y , and a homotopy gt : Ũ → Y (t ∈ I = [0, 1]) satisfying the following conditions.

(a) g0 = f |
Ũ

and g1 = f̃ |
Ũ

.

(b) gt(b, · ) : Ũb → Y is holomorphic for every b ∈ B and t ∈ I .

(c) supK distY (gt, f) < ǫ for all t ∈ I .

If in addition B is a C l submanifold of R
n (possibly with boundary) for some l ∈ N and f ∈

C l,0(U, Y ), then for any s ∈ Z+ and after shrinking U ⊃ K , the homotopy ft can be chosen such that,

in addition to the above, ft ∈ C l,s(U, Y ) for all t ∈ I and the approximation in (c) holds in C l,s(K).

Proof. By Remark 5.2 (b), the set K is O(Cn × X)-convex, whence a Stein compact. We shall now

verify that the map f satisfies the conditions in Theorem 7.1, and hence Gf (7.1) is a Stein compact.

Fix a point b0 ∈ B. Since the map fb0 : Ub0 → Y is holomorphic and Kb0 is a Stein compact,

the graph Gb0 = {(b0, x, fb0(x)) : x ∈ Kb0} has an open Stein neighbourhood Γ ⊂ C
n × X × Y

by Siu’s theorem [77] (see also Colţoiu [22], Demailly [24, Theorem 1], and [33, Theorem 3.1.1]).

Choose a holomorphic embedding Θ : Γ →֒ C
N . By a theorem of Docquier and Grauert [25] (see

also [33, Theorem 3.3.3]) there are a neighbourhood O ⊂ C
N of Θ(Γ) and a holomorphic retraction

ρ : O → Θ(Γ). By continuity of f(b, · ) with respect to b ∈ B and in view of (5.2) there is a compact

neighbourhood B0 ⊂ B of b0 such that, setting

S := {(b, x) : b ∈ B0, x ∈ Kb} ⊂ U,

we have that S̃ := {(b, x, f(b, x)) : (b, x) ∈ S} ⊂ Γ. Hence, the map

(7.2) h(b, x) := Θ(b, x, f(b, x)) ∈ O ⊂ C
N
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is well-defined on a neighbourhood of S in B × X, and h(b, · ) is holomorphic on a neighbourhood

of Kb in X for every b ∈ B0. By Lemma 5.1 we can approximate h as closely as desired uniformly

on S by a holomorphic map h̃ : W → C
N from a neighbourhood W ⊂ C

n × X of S. Assuming

that the approximation is close enough and the neighbourhood W ⊃ S is small enough, we have that

h̃(W ) ⊂ O. Let τ : Cn ×X × Y → Y denote the projection. The map

(7.3) f̃ := τ ◦Θ−1 ◦ ρ ◦ h̃ : W → Y

is then well defined and holomorphic, and it approximates f uniformly on S. Since this holds for every

b0 ∈ B, we see that f ∈ O loc(K,Y ). Hence, Theorem 7.1 implies that Gf (7.1) is a Stein compact.

To prove that f ∈ O(K,Y ) and the last statement in the lemma, we apply the same argument

with the entire parameter space B. Choose a Stein neighbourhood Γ ⊂ C
n × X × Y of Gf (7.1),

a holomorphic embedding Θ : Γ →֒ C
N , and a holomorphic retraction ρ : O → Θ(Γ) from a

neighbourhood O ⊂ C
N of Θ(Γ). The map h given by (7.2) is now defined on a neighbourhood

Ũ ⊂ (B × X) ∩ U of K , and the map h(b, · ) is holomorphic on Ũb for every b ∈ B. By Lemma

5.1 we can approximate h as closely as desired uniformly on K by a holomorphic map h̃ : V → C
N

from a neighbourhood V ⊂ C
n × X of K . As before, we may assume that h̃(V ) ⊂ O. The map

f̃ : V → Y given by the formula (7.3) is then holomorphic and it approximates f on K as closely as

desired. Furthermore, if h̃ is close enough to h on K and after shrinking the neighbourhood Ũ ⊃ K if

necessary, the family of convex combinations

(7.4) ht = (1− t)h+ th̃ : Ũ → C
N , t ∈ I

assumes values in O. The family of maps

(7.5) gt = τ ◦Θ−1 ◦ ρ ◦ ht : Ũ → Y, t ∈ I

is then a homotopy from g0 = f |
Ũ

to g1 = f̃ |
Ũ

with the stated properties.

The last statement of the lemma follows by the same argument, using Lemma 5.1 with

approximation in C l,s(K). �

The next result is a version of Lemma 5.1 for maps with values in an Oka manifold and with

homotopies added to the picture. This is the main technical ingredient in the proof of Theorem 1.4.

Lemma 7.3. Assume that B′′ ⊂ R
n is a neighbourhood retract and B0 ⊂ B1 ⊂ B ⊂ B′ are compact

subsets of B′′, each of them contained in the interior of the next one. Let X be a Stein manifold,

π : Cn × X → C
n be the projection, and K ⊂ C

n × X be a compact subset such that π(K) ⊂ B

and the fibre Kb = {x ∈ X : (b, x) ∈ K} is O(X)-convex for every b ∈ B. Assume that U is an open

neighbourhood of K in B′×X, Y is an Oka manifold, and f : B′×X → Y is a continuous map such

that for every b ∈ B the map fb = f(b, · ) : X → Y is holomorphic on Ub = {x ∈ X : (b, x) ∈ U}.

Fix ǫ > 0 and s ∈ Z+. After shrinking the open set U ⊃ K , there is a homotopy ft : B × X → Y

(t ∈ I = [0, 1]) with the following properties.

(a) f0 = f |B×X .

(b) ft(b, · ) : X → Y is holomorphic on Ub for every b ∈ B and t ∈ I .

(c) ft approximates f in C 0,s(K) to precision ǫ.

(d) ft(b, · ) = f(b, · ) for all b ∈ B \B1 and t ∈ I .

(e) The map f1(b, · ) : X → Y is holomorphic for every b in a neighbourhood of B0.

If in addition B is a C l submanifold of R
n (possibly with boundary) for some l ∈ N and f ∈

C l,0(B × X,Y ), then for any s ∈ Z+ the homotopy ft can be chosen such that, in addition to the

above, ft ∈ C l,s(B ×X,Y ) for all t ∈ I and the approximation in (c) holds in C l,s(K).
24



Proof. We focus on the case l = 0, s = 0. It will be clear that the same proof gives the corresponding

results in the general case by using the corresponding versions of Lemmas 5.1 and 7.2.

By the assumption, there are a neighbourhood V ′′ ⊂ C
n of B′′ and a retraction ρ : V ′′ → B′′

onto B′′. The conditions imply that B′ is a neighbourhood of B in B′′. Since ρ|B′ is the identity map,

it follows that there is an open neighbourhood V ⊂ C
n of B such that V ⊂ V ′′ and ρ(V ) ⊂ B′.

Replacing f(b, x) by f(ρ(b), x) extends f to a continuous map V × X → Y , still denoted f . Since

every compact subset B of Rn is polynomially convex in C
n [78, p. 3], V may be chosen Stein. If B

is a C l submanifold of Rn then the retraction ρ as above always exists and can be chosen of class C l.

We claim that there are an open neighbourhood W ⊂ V × X of K in C
n × X and a homotopy

gt :W → Y (t ∈ I = [0, 1]) connecting g0 = f to a holomorphic map g1 : W → Y such that

sup
(b,x)∈K

distY (gt(b, x), f(b, x)) < ǫ/2 holds for all t ∈ I

and the map gt(b, · ) : Wb → Y is holomorphic for every b ∈ B and t ∈ I . Note that Lemma 7.2

furnishes a homotopy gt with the desired properties on a neighbourhood ofK inB×X; see (7.2), (7.4),

and (7.5). In the present situation, all maps in the construction of gt are defined on a neighbourhood

of K in C
n ×X. Hence, the same argument, using convex combinations as in (7.4) and defining gt by

(7.5), yields a desired homotopy on a neighbourhood W ⊂ V ×X of K in C
n ×X.

Pick a smooth function χ : Cn × X → [0, 1] with support in W such that χ = 1 on a smaller

neighbourhood W ′ ⋐W of K . Consider the map h0 : V ×X → Y given by

(7.6) h0(z, x) = gχ(z,x)(z, x) for z ∈ V and x ∈ X.

For (z, x) ∈ W ′ we have χ = 1 and hence h0|W ′ = g1|W ′ , which is a holomorphic map. On

(V × X) \W we have χ = 0 and hence h0 = g0 = f . Furthermore, h0 is homotopic to f by the

homotopy I ∋ t 7→ gtχ, and every map in this homotopy has the same properties as f .

Since V is Stein, the set K ⊂ V × X is O(Cn × X)-convex (see Remark 5.2 (b)), and Y is

an Oka manifold, the main result of Oka theory (see [33, Theorem 5.4.4]) furnishes a homotopy

ht : V × X → Y (t ∈ I) from h0 to a holomorphic map h1 : V × X → Y such that the homotopy

ft : V ×X → Y (t ∈ I) given by

ft =

{
g2tχ, 0 ≤ t ≤ 1/2,

h2t−1, 1/2 ≤ t ≤ 1

satisfies conditions (a)–(c) (where we take s = 0 in (c)), and it satisfies condition (e) for all b ∈ B since

f1 = h1. To obtain (d), choose a smooth function ξ : Rn → [0, 1] which equals 1 on a neighbourhood

of B0 and vanishes on B \B1, and replace ft(b, · ) by ftξ(b)(b, · ) for b ∈ B and t ∈ I .

This proves the lemma for l = s = 0. The same arguments apply when s > 0, and also for

l > 0 when B is a C l submanifold of Rn, noting that the approximation by holomorphic functions in

C l,s(K) is furnished by Lemma 5.1 and the existence of a homotopy {gt}t∈I with approximation in

C l,s(K) is given by Lemma 7.2. �

Proof of Theorem 1.4. We consider the case l = k = 0. The arguments in the general case are similar

by using the corresponding version of Lemma 7.3.

Let {Jb}b∈B be a family of complex structures on X as in the theorem. We shall say that a closed

subset K ⊂ B × X is Runge in B × X if it satisfies the assumptions of the theorem, that is, the

projection π|K : K → B is proper and every fibre Kb = {x ∈ X : (b, x) ∈ K} (b ∈ B) is Runge in

X or empty. Recall that a continuous map f : B ×X → Y is said to be X-holomorphic on an open

set U ⊂ B ×X if fb = f(b, · ) is Jb-holomorphic on Ub = {x ∈ X : (b, x) ∈ U} for every b ∈ B.
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We first explain the proof in the case when the parameter space B is compact. Let K0 = K ⊂
B ×X and f0 = f : B ×X → Y be as in the theorem, so f0 is X-holomorphic on a neighbourhood

of K0. Choose an increasing sequence of compact Runge sets K ′
1 ⊂ K ′

2 ⊂ · · · ⊂ ⋃∞
j=1K

′
j = X

such that every set is contained in the interior of the next one, and let Kj = B × K ′
j ⊂ B × X for

j = 1, 2, . . .. We choose K ′
1 big enough such that K0 ⊂ K1. Given a decreasing sequence ǫj > 0, we

shall find a sequence of maps f j : B × X → Y and homotopies f jt : B × X → Y (t ∈ I = [0, 1])

satisfying the following conditions for every j = 1, 2, . . ..

(i) f j is X-holomorphic on a neighbourhood of Kj . (By the assumption, this also holds for j = 0.)

(ii) f j0 = f j−1 and f j1 = f j .

(iii) f jt is X-holomorphic on a neighbourhood of Kj−1 for all t ∈ I .

(iv) maxKj−1 distY (f
j−1, f jt ) < ǫj for all t ∈ I .

(v) The homotopy f jt (b, · ) is fixed for all b in a neighbourhood of Q in B.

Assuming that the sequence ǫj > 0 is chosen to converge to 0 sufficiently fast, the limit map

F = limj→∞ f j : B × X → Y exists and is X-holomorphic, it approximates f as closely as

desired uniformly on K , and F (b, · ) = f(b, · ) holds for all b ∈ Q. Furthermore, the homotopies

f jt (j ∈ N, t ∈ I) can be assembled into a single homotopy ft : B ×X → Y (t ∈ I) from f0 = f

to f1 = F such that ft is X-holomorphic on a neighbourhood of K , it approximates f on K for every

t ∈ I , and it is fixed for all b ∈ Q.

Every step in the induction is of the same kind, so it suffices to explain the initial step, that is, the

construction of a homotopy f1t : B ×X → Y (t ∈ I) which is X-holomorphic on a neighbourhood

of K0, it approximates f = f0 on K0, it is fixed for b in a neighbourhood of the subset Q ⊂ B (see

condition (v) in the theorem), and such that the map f11 = f1 isX-holomorphic on a neighbourhood of

K1. This is accomplished by a finite induction with respect to an increasing family of compact subsets

of the parameter space B, which we now explain.

Recall that K0 ⊂ K1 = B × L, where L is a compact Runge set in X. If the subset Q ⊂ B in

condition (v) is nonempty, it has a compact neighbourhood Q̃ ⊂ B such that the map f0b is holomorphic

on a neighbourhood of L for every b ∈ Q̃. Let K̃0 ⊂ B ×X denote the compact set with fibres

(7.7) K̃0
b =

{
L, b ∈ Q̃;

K0
b , b ∈ B \ Q̃.

Clearly, K0 ⊂ K̃0 ⊂ K1 and K̃0 is Runge in B×X. If Q = ∅, we take Q̃ = ∅ and hence K0 = K̃0.

Pick a smoothly bounded domain Ω ⋐ X and domains V, V ′ ⊂ X such that

(7.8) L ⊂ V ⊂ V ′ ⊂ Ω

and the closure of each of these sets is contained in the interior of the next one. Fix a point b0 ∈ B. The

conditions on B imply that there is a neighbourhood P ′′ ⊂ B of b0 which is an ENR (see Definition

1.3). We may therefore consider P ′′ as a neighbourhood retract in some R
n ⊂ C

n. By Theorem 4.3

and Remark 4.5 (C), there are a compact neighbourhood P ′ of b0, contained in the interior of P ′′, and

a continuous family of biholomorphic maps Φb : (Ω, Jb) → (Φb(Ω), Jb0) (b ∈ P ′) such that

(7.9) Φb(V ) ⊂ V ′ ⊂ Φb(Ω) holds for every b ∈ P ′.

Pick a compact neighbourhood P ⊂ B of b0 contained in the interior of P ′. Let K ′ ⊂ L′ be compact

subsets of P ×X whose fibres over any point b ∈ P are given by

K ′
b = Φb(K̃

0
b ), L′

b = Φb(L).

By (7.7)–(7.9) we have that

K ′
b ⊂ L′

b ⊂ Φb(V ) ⊂ V ′ for all b ∈ P .
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Consider the maps

f ′b = fb ◦ Φ−1
b : Φb(Ω) → Y, b ∈ P.

Since fb is Jb-holomorphic on a neighbourhood of K̃0
b and the map Φb : (Ω, Jb) → (Φb(Ω), Jb0)

is biholomorphic, f ′b is Jb0-holomorphic on a neighbourhood of K ′
b for every b ∈ P . Pick a pair of

smaller neighbourhoods P0 ⊂ P1 ⊂ P of b0, each of them contained in the interior of the next one.

Lemma 7.3, applied with X replaced by V ′ ⊂ X, furnishes a homotopy of maps

f ′t,b : V
′ → Y for b ∈ P and t ∈ I

satisfying conditions (a)–(e) in the lemma with the sets B0 ⊂ B1 ⊂ B replaced by P0 ⊂ P1 ⊂ P . In

particular, f ′t,b = f ′0,b = f ′b holds for b ∈ P \ P1, f ′t,b approximates f ′b on K ′
b for b ∈ P , and the map

f ′1,b is Jb0 -holomorphic on V ′ for b in a neighbourhood of P0. By (7.9) we have Φb(V ) ⊂ V ′. Hence,

(7.10) ft,b := f ′t,b ◦ Φb : V → Y for b ∈ P and t ∈ I

is a homotopy of maps which are Jb-holomorphic on a neighbourhood of K̃0
b , they approximate fb

uniformly on K̃0
b , they agree with f0,b = fb for b ∈ P \ P1 (so we can extend the family to all b ∈ B),

and the map f1b := f1,b : V → Y is Jb-holomorphic for all b in a neighbourhood of P0. By using a

cut-off function in the parameter of the homotopy, we can extend the maps ft,b to X without changing

their values on a neighbourhood of L (compare with (7.6)).

If the sets Q ⊂ Q̃ are nonempty, we make another modification to the above homotopy to ensure

condition (v) in the theorem. Choose a function χ : B → [0, 1] such that χ = 1 on B \ Q̃ and χ = 0

on a neighbourhood of Q. With ft,b as in (7.10), we set

f̃t,b = ftχ(b),b for b ∈ B and t ∈ I.

For b ∈ B in a neighbourhood of Q we then have f̃t,b = f0,b = fb as desired, and the other required

properties still hold.

What was just explained serves as a step in a finite induction which we now describe.

The assumptions imply that there is a finite family of triples P j
0 ⊂ P j

1 ⊂ P j (j = 1, 2, . . . ,m) of

compact sets in B such that
⋃m

j=1 P
j
0 = B and the above construction can be performed on each of

these triples with the same sets in (7.8). The induction proceeds as follows.

In the first step, we perform the procedure explained above on the first triple (P 1
0 , P

1
1 , P

1) with

the set K0 and the map g0 := f0 = f . The resulting map g1 : B ×X → Y is X-holomorphic on a

neighbourhood of the compact set

(7.11) S1 :=
[
(P 1

0 ×X) ∩K1
]
∪
[
((B \ P 1

0 )×X) ∩K0
]
⊂ B ×X,

and g1b = f0b holds for all b in a neighbourhood of Q. Note that the fibre S1
b of S1 over any point b ∈ B

is Runge in X. Indeed, we have S1
b = L for b ∈ P 1

0 and S1
b = K0

b for b ∈ B \ P 1
0 . Since K0

b ⊂ L for

every b ∈ B, the set S1 is compact and Runge in B × X. Furthermore, we obtain a homotopy from

f0 = g0 to g1 such that every map in the homotopy is X-holomorphic on a neighbourhood of K0 and

it approximates f0 there, and the homotopy is fixed for b in a neighbourhood of (B \ P 1
1 ) ∪Q.

In the second step, the same argument is applied to the map g1 on the triple (P 2
0 , P

2
1 , P

2) with

respect to the set S1 in (7.11). The resulting map g2 : B × X → Y is X-holomorphic on a

neighbourhood of the compact Runge set

(7.12) S2 =
[
((P 1

0 ∪ P 2
0 )×X) ∩K1

]
∪
[
((B \ (P 1

0 ∪ P 2
0 )×X) ∩K0

]
⊂ B ×X.

Note that S2
b = L for b ∈ P 1

0 ∪ P 2
0 and S2

b = S1
b = K0

b for b ∈ B \ (P 1
0 ∪ P 2

0 ). We also obtain a

homotopy from g1 to g2 consisting of maps which are X-holomorphic on a neighbourhood of S1, they

approximate g1 there, and the homotopy is fixed for b in a neighbourhood of (B \ P 2
1 ) ∪Q.
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Proceeding inductively, we obtain after m steps a map gm : B×X → Y which is X-holomorphic

on a neighbourhood of Sm = K1 = B × L. We define f1 := gm. Furthermore, the individual

homotopies between the subsequent maps gj and gj+1 for j = 0, 1, . . . ,m − 1 can be assembled into

a homotopy f1t (t ∈ I) from f10 = f0 = g0 to f11 = f1 = gm such that f1t is X-holomorphic on a

neighbourhood of K0 for all t ∈ I and the homotopy is fixed for b ∈ B in a neighbourhood of Q. This

completes the proof of the theorem if the parameter space B is compact.

In the general case when B is paracompact and locally compact, we choose a normal exhaustion

B1 ⊂ B2 ⊂ · · · ⊂
⋃∞

j=1Bj = B by compact sets and a normal exhaustion L1 ⊂ L2 ⊂ · · · ⊂⋃∞
j=1 Lj = X by compact Runge subsets of X such that

(Bj ×X) ∩K ⊂ Bj × Lj holds for all j = 1, 2, . . ..

Define the increasing sequence of subsets K = K0 ⊂ K1 ⊂ · · · ⊂ ⋃∞
j=0K

j = B ×X by

Kj = (Bj × Lj) ∪
[
((B \Bj)×X) ∩K

]
, j = 1, 2, . . . .

Note that Kj is closed, the projection π : Kj → B is proper, and Kj is Runge in B × X. (Indeed,

Kj
b = Lj if b ∈ Bj and Kj

b = Kb if b ∈ B \ Bj .) Applying the special case proved above gives a

sequence of maps f j : B ×X → Y (j = 0, 1, . . .) with f0 = f such that for every j = 1, 2, . . . the

map f j is X-holomorphic on a neighbourhood of Kj , it approximates f j−1 in the fine topology on

Kj−1, it is homotopic to f j−1 by a homotopy of maps which are X-holomorphic on a neighbourhood

of Kj−1 and approximate f j−1 on Kj−1, and the homotopy is fixed for b in a neighbourhood of Q.

(Indeed, by the construction the map f j approximates f j−1 on Kj−1 ∩ (Bj−1 ×X) and it agrees with

f j−1 outside a small neighbourhood of Bj−1 ×X.) Assuming that the approximation is close enough

at every step, we obtain a limit map F = limj→∞ f j : B × X → Y which is X-holomorphic, it

approximates the initial map f as closely as desired in the fine topology on K , it agrees with f on

Q×X, and it is homotopic to f by maps having the same properties. �

The following result generalizes Theorem 1.4. The proof is essentially the same and is omitted.

Theorem 7.4. Let B, X, {Jb}b∈B , K ⊂ B × X, and Y be as in Theorem 1.4. Assume that Z

is a Stein manifold and L is a compact O(Z)-convex set in Z . For every b ∈ B let J̃b be the

almost complex structure on X × Z which equals Jb on TX and equals the given almost complex

structure on TZ . Assume that f : B × X × Z → Y is a continuous map, and there is an open set

U ⊂ B × X × Z containing K × L such that fb = f(b, · , · ) : X × Z → Y is J̃b-holomorphic

on Ub = {(x, z) ∈ X × Z : (b, x, z) ∈ U} for every b ∈ B. Given a continuous function

ǫ : B → (0,+∞), there is a homotopy ft : B × X × Z → Y (t ∈ I = [0, 1]) satisfying the

following conditions:

(i) f0 = f .

(ii) The map ft,b = ft(b, · , · ) : X × Z → Y is J̃b-holomorphic near Kb × L for every b ∈ B.

(iii) sup(x,z)∈Kb×L distY (ft,b(x, z), fb(x, z)) < ǫ(b) for every b ∈ B and t ∈ I .

(iv) The map F = f1 is such that Fb = F (b, · , · ) : X × Z → Y is J̃b-holomorphic for every b ∈ B.

If in addition 0 ≤ l ≤ k+1, B is a C l manifold if l > 0, the family {Jb}b∈B is of class C l,(k,α)(B×X)

(0 < α < 1), and f is of class C l,0(U), then f ∈ C l,k+1(U) and the homotopy {ft}t∈I can be chosen

to be of class C l,k+1(B ×X × Z) and to approximate f in the fine C l,k+1-topology on K × L.

By using the techniques in the proof of Theorem 1.4, we can also extend Mergelyan approximation

in Theorem 1.2 to manifold-valued maps as in the following theorem. For a similar result in the

nonparametric case, see [29, Corollary 5, p. 176].
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Theorem 7.5. Let X be a smooth open surface, B be a paracompact Hausdorff space which is a local

ENR (see Definition 1.3), {Jb}b∈B be a family of complex structures on X of class C α (0 < α < 1),

K ⊂ X be a compact Runge set, and A ⊂ K̊ be a finite set. Assume that Y is a complex manifold

and f : B ×K → Y is a continuous map such that for every b ∈ B the map fb = f(b, · ) : K → Y

is Jb-holomorphic on K̊. Given a continuous function ǫ : B → (0,+∞), there are a neighbourhood

U ⊂ B × X of B × K and a continuous map F : U → Y such that for every b ∈ B the map

Fb : Ub → Y is Jb-holomorphic, supx∈K distY (Fb(x), fb(x)) < ǫ(b), and Fb agrees with fb to order

1 in every point a ∈ A.

Proof. We have seen in the proof of Theorem 1.2 that there are arbitrarily small open coordinate discs

U1, . . . , UN ⊂ X and compact discs Dj ⊂ Uj for j = 1, . . . , N such that K ⊂ ⋃N
j=1 D̊j and

Uj \ (K ∩ Dj) is connected for every j. Fix a parameter value b0 ∈ B. We may assume that the

discs Uj are chosen small enough so that fb0(K ∩Dj) ⊂ Y is contained in a coordinate chart of Y for

each j. Hence, by Theorem 1.2 we can approximate fb0 as closely as desired uniformly on K ∩ Dj

by holomorphic maps from open neighbourhoods of K ∩Dj to Y for j = 1, . . . , N . This shows that

the hypotheses of Theorem 7.1 hold, so the graph of f on K is a Stein compact in X × Y . By the

argument in the proof of Lemma 7.2 (choosing a Stein neighbourhood Γ ⊂ X × Y of the graph of

f on K , embedding it in a Euclidean space, and using a holomorphic retraction onto the embedded

submanifold), we reduce the Mergelyan approximation problem for maps fb = f(b, · ) : K → Y ,

with b ∈ B close enough to b0, to the scalar-valued case furnished by Theorem 1.2. The local Jb-

holomorphic approximants of fb can be glued together by finding homotopies as in the proof of Lemma

7.2 (see (7.4) and (7.5)) and using cut-off functions in the parameter of the homotopy. The inductive

procedure is similar to the one in the proof of Theorem 1.4 and will not be repeated. �

Before stating our next result, we recall the following notion; see [11, p. 69].

Definition 7.6. Let X be a smooth surface. An admissible set in X is a compact set of the form

S = K ∪ E, where K is a (possibly empty) finite union of pairwise disjoint compact domains with

smooth boundaries in X and E = S \ K̊ is a union of finitely many pairwise disjoint Jordan arcs and

closed smooth Jordan curves meeting K only at their endpoints (if at all) such that their intersections

with the boundary bK of K are transverse.

Admissible sets arise in handlebody decompositions of surfaces; see [11, Sect. 1.4]. For this reason,

approximation on such sets plays a major role in constructions of directed holomorphic maps, minimal

surfaces and related objects, as is evident from the results in [11]. The basic case for continuous

functions follows from Theorem 1.2. In Section 10 we shall also use the following version.

Theorem 7.7. Assume that X is a smooth open surface, 1 ≤ l ≤ k + 1 are integers, B is a manifold

of class C l, {Jb}b∈B is a family of complex structures on X of class C l,(k,α)(B × X) for some

0 < α < 1, S = K ∪ E is a Runge admissible set in X, U ⊂ X is an open set containing K ,

and f : B× (U ∪E) → C is a function of class C l such that for every b ∈ B, the function fb = f(b, · )
is Jb-holomorphic on U . Then, f can be approximated in the fine C l topology on B × S by functions

F : B ×X → C of class C l,k+1 such that Fb = F (b, · ) : X → C is Jb-holomorphic for every b ∈ B.

The analogous result holds for maps to any complex manifold Y , where the approximating maps F are

defined on small open neighbourhoods of B × S in B × X. If Y is an Oka manifold then there are

maps F : B ×X → Y satisfying the same conclusion.

Proof. It suffices to prove the result locally in the parameter. Thus, fix a point b0 ∈ B, a smoothly

bounded domain Ω ⋐ X containing S, and a compact neighbourhood B0 ⊂ B of b0 for which

Theorem 4.3 applies and gives a family of (Jb, Jb0)-biholomorphic maps Φb : Ω → Φb(Ω) ⊂ X
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(b ∈ B0) of class C l,k+1. We may assume that B0 is a C l submanifold of Rn ⊂ C
n for some n ∈ N.

Recall that the function fb in the theorem is Jb-holomorphic on a neighbourhood U ⊂ X of K for

every b ∈ B0. (Since B0 is compact, we may choose U independent of b ∈ B0.) As in the proof

of Theorem 1.4, this reduces the approximation problem for b ∈ B0 to the situation in Lemma 7.3

where the compact sets K̃, Ẽ, S̃ in B0 × X ⊂ C
n ×X have fibres Kb = Φb(K), Eb = Φb(E), and

Sb = Φb(S) = Kb ∪Eb, respectively. Note that K̃ and S̃ are holomorphically convex in C
n ×X (see

Remark 5.2 (b)). Let Ũ ⊂ B0×X be the set with fibres Ub = Φb(U). The function f̃b : Ub∪Eb → C,

defined by f̃b ◦ Φb = fb on U ∪ E (b ∈ B0), is Jb0 -holomorphic on Ub for every b ∈ B0. Let

f̃ : Ũ ∪ Ẽ → C be given by f̃(b, · ) = f̃b for b ∈ B0. Note that f̃ is of class C l. Choose a compact

O(Cn×X)-convex set L ⊂ Ũ containing K̃ in its relative interior. By Lemma 5.1 we can approximate

f̃ as closely as desired in C l(L) by a function h : V → C on an open neighbourhood V ⊂ C
n × X

of L which is holomorphic with respect to the standard complex structure on C
n and the complex

structure Jb0 on X. By smoothly gluing h with f̃ : Ẽ → C on the set L \ K̃ , we may assume that h

is unchanged (and hence holomorphic) in a neighbourhood Ṽ ⊂ V of K̃ in C
n ×X, it is of class C l

on Ẽ, it agrees with f̃ on Ẽ \ L, and it approximates f̃ to a desired precision in C l(Ẽ). Note that Ẽ

is a totally real submanifold of class C l in C
n ×X, and the set S̃ = K̃ ∪ Ẽ is admissible in the sense

of [29, Definition 5 (a), p. 156]. Hence, by [29, Theorem 20, p. 161] we can approximate h in C l(S̃)

by entire functions on C
n × X. By the argument in the proof of Lemma 5.1 this gives functions F ,

defined on open neighbourhoods of B0 ×S in B0 ×X, which approximate f in C l(B0 ×S) and such

that F (b, · ) is holomorphic for every b ∈ B0. The proof is completed by using C l partitions of unity

on B and Theorem 1.1. For maps to manifolds, we follow the argument in the proof Lemma 7.3, and

the statement for maps to an Oka manifold Y follows from Theorem 1.4. �

8. TRIVIALIZATION OF CANONICAL BUNDLES OF FAMILIES OF OPEN RIEMANN SURFACES

Every open Riemann surface X has trivial holomorphic cotangent bundle KX = T ∗X, trivialized

by a nowhere vanishing holomorphic 1-form θ on X. (In fact, every holomorphic vector bundle

on an open Riemann surface is holomorphically trivial by the Oka–Grauert principle; see Oka [69],

Grauert [45], and [33, Theorem 5.3.1].) We prove the following generalization to families of complex

structures. See also Corollary 10.3, which extends the theorem of Gunning and Narasimhan [47].

Theorem 8.1. Given a smooth open surface X and a family {Jb}b∈B of complex structures of class

C l,(k,α)(B ×X) on X as in Theorem 1.4 (with l ≤ k + 1), there exists a family {θb}b∈B of nowhere

vanishing holomorphic 1-forms on (X,Jb) of class C l,k+1(B ×X).

Note that a family of holomorphic 1-forms {θb}b∈B as in the theorem, which is of class C l in

b ∈ B, is necessarily of class C l,k+1(B ×X) by Lemma 5.4. Theorem 8.1 is used in Section 10.

Proof. Write Xb = (X,Jb) for b ∈ B. By Remark 4.5 (C), there is a family of nowhere vanishing

complex (1, 0)-forms θb onXb of class C l,(k,α). We will show that the family {θb}b∈B can be deformed

to a family of nowhere vanishing Jb-holomorphic 1-forms {θ̃b}b∈B of class C l in the parameter b ∈ B.

Note that θ = {θb}b∈B is a section of the complex line bundle E → B×X whose restriction to the

fibre Xb over b ∈ B equals T ∗Xb. We shall inductively deform θ so as to make it X-holomorphic (that

is, holomorphic on fibres of the projection π : B×X → B) on larger and larger subsets of B×X. We

follow the scheme in the proof of Theorem 1.4. Assuming that K ⊂ L are compact Runge sets in X

and θ is X-holomorphic on a neighbourhood of B ×K , we find a multiplier f : B ×X → C
∗ which

is homotopic to the constant function 1, and is X-holomorphic and close to 1 on a neighbourhood of

B × K (thereby ensuring that fθ is X-holomorphic and close to θ on B × K), such that fθ is X-

holomorphic on a neighbourhood of B × L. We then conclude the proof by an induction on a normal

exhaustion of X by an increasing family of compact Runge sets.
30



It remains to explain the basic case described above. As in the proof of Theorem 1.4, we proceed by

induction with respect to a normal exhaustion of B by compact subsets. To explain the inductive step,

assume that L is a compact Runge set in X and K0 ⊂ B × L is a closed subset whose compact fibres

K0
b , b ∈ B, are Runge inX. We allow for the possibility that some fibres are empty. (At every inductive

step, the fibre K0
b will equal the given Runge set K for some parameter values and will equal L for the

other values.) Assume that θ as above is X-holomorphic on a neighbourhood U ⊂ B ×X of K0, that

is, θb is Jb-holomorphic on the neighbourhood Ub of K0
b for every b ∈ B. Pick a smoothly bounded

domain Ω ⋐ X with L ⊂ Ω. Fix a point b0 ∈ B. Theorem 4.3 furnishes a compact neighbourhood

P ⊂ B of b0 and a family of biholomorphic maps Φb : (Ω, Jb) → (Φb(Ω), Jb0) (b ∈ P ) of class

C l,k+1. By the Oka–Grauert principle there is a function g : X → C
∗, homotopic to the constant

X → 1 through functions X → C
∗, such that the 1-form gθb0 is Jb0 -holomorphic on X. Hence,

φb := Φ∗
b(gθb0) = fbθb, b ∈ P

is a family of nowhere vanishing Jb-holomorphic 1-forms on Ω. Since gθb0 is independent of

b ∈ P , the family {φb}b∈P is of class C l(P ). Hence, the same holds for the family of functions

fb = φb/θb : Ω → C
∗. By shrinking U ⊃ K0 if necessary we may assume that U ⊂ B × Ω. Since

θb is Jb-holomorphic on Ub ⊃ K0
b for every b ∈ P , the function fb = φb/θb is also Jb-holomorphic on

Ub for every b ∈ P . Theorem 1.4, applied with the Oka manifold Y = C
∗, furnishes a homotopy of

functions ft,b : Ω → C
∗ (b ∈ P, t ∈ I) of class C l,k satisfying the following conditions:

(i) f0,b = fb for all b ∈ P ,

(ii) f1,b is Jb-holomorphic on Ω for all b ∈ P and of class C l in b, and

(iii) ft,b is Jb-holomorphic on a neighbourhood of K0
b and it approximates fb on Kb as closely as

desired for all b ∈ P and t ∈ I . (In fact, the approximation is in the C l,k topology.)

The homotopy of 1-forms θ′t,b = φb/ft,b (b ∈ P, t ∈ I) on Ω is of class C l,k and satisfies

(i’) θ′0,b = φb/f0,b = φb/fb = θb for all b ∈ P ,

(ii’) θ′1,b = φb/f1,b is Jb-holomorphic on Ω for every b ∈ P , and

(iii’) θ′t,b is Jb-holomorphic on a neighbourhood of K0
b and it approximates θb on K0

b for all b ∈ P .

(The approximation is in the C l,k topology.)

Pick a pair of neighbourhoods P0 ⊂ P1 ⊂ P of b0, each contained in the interior of the next one, and a

function ξ : B → [0, 1] of class C l which equals 1 on a neighbourhood of P0 and vanishes on B \ P1.

We define a new homotopy of 1-forms on Ω of class C l,k(B × Ω) by

θt,b = θ′tξ(b),b for every b ∈ B and t ∈ I .

Then, θt,b = θ′t,b holds for b in a neighbourhood of P0 (where ξ = 1), and θt,b = θ0,b = θb holds for

all b ∈ B \ P1 (where ξ = 0) and t ∈ I . It follows that

(i”) θ0,b = θ′0,b = θb for all b ∈ B,

(ii”) θt,b is Jb-holomorphic on a neighbourhood of K0
b and it approximates θb on K0

b for all b ∈ B

and t ∈ I (the approximation is in the fine C l,k topology), and

(iii”) θ1,b = θ′1,b is Jb-holomorphic on Ω for all b ∈ P0.

By using another cut-off function in the parameter of the homotopy, we can extend θt,b for p ∈ P to

all of Xb withouth changing its values on a neighbourhood of (P̊ × L) ∪ ((B \ P̊ )×X).

Using this device inductively with respect to an exhaustion of B as in the proof of Theorem 1.4, we

can approximate θ in the fine C l,k topology on K0 by a family of nowhere vanishing 1-forms {θ̃b}b∈X
of class C l,k(B × X) which are X-holomorphic on a neighbourhood of B × L. Theorem 8.1 then

follows by an obvious induction with respect to a normal exhaustion of X by compact Runge sets. �

31



9. THE ∂-EQUATION AND THE OKA PRINCIPLE FOR LINE BUNDLES

A standard application of Runge’s theorem on open Riemann surfaces (and, more generally, of the

Oka–Weil theorem on Stein manifolds) is the global solvability of the ∂-equation. By using Theorems

1.1, 3.2, and 4.3 we will now show that the same holds on families of open Riemann surfaces.

Assume that X is a smooth open oriented surface, B is a parameter space as in Theorem 1.4

(its precise type depending on the value of the integer l ∈ Z+), and {Jb}b∈B is a family of complex

structures of Hölder class C l,(k,α) with k ≥ 1, 0 ≤ l ≤ k+1, and 0 < α < 1. Let τ : Z = B×X → B

denote the projection onto the parameter space, and endow the fibre Zb = τ−1(b) ∼= X (b ∈ B) with

the complex structure Jb. For a fixed b ∈ B we denote by ∂Jb the (0, 1)-differential in the complex

structure Jb in X. By Theorem 8.1 there exists a family {θb}b∈B of nowhere vanishing holomorphic

1-forms on (X,Jb) of class C l,k+1. Given an integer s ∈ {0, . . . , k − 1}, a number 0 < a < 1, and a

function f : Z → C of class C l,(s+1,a), we have that

(9.1) ∂Jbfb = βb = gbθ̄b, b ∈ B,

where the function g : Z → C determined by gb = g(b, · ) (b ∈ B) is of class C l,(s,a). Note that the

family of (0, 1)-forms βb = gbθ̄b is of class C l,(s,a) if and only if g is such. The following result gives

a global solution of the equation (9.1) for suitable values of the integers k, l, and s.

Theorem 9.1. Let k, l, s be integers satisfying 0 ≤ 2l ≤ s < k, and let 0 < a,α < 1. Assume

that X is a smooth open surface, {Jb}b∈B is a family of complex structures of class C l,(k,α) on X

as in Theorem 1.4, and {θb}b∈B is a family of Jb-holomorphic 1-forms of class C l,k+1 furnished by

Theorem 8.1. Given a family of (0, 1)-forms βb = gbθ̄b on X (b ∈ B) of class C l,(s,a), there is a

function f : Z = B ×X → C of class C l,(s+1−2l,a) such that fb = f(b, · ) : X → C satisfies (9.1).

Compared with the standard result in a fixed complex structure, where the solution of the ∂ equation

gains one derivative on Hölder spaces, we have a loss of 2l derivatives in Theorem 9.1. This may be

due to the method of proof and is caused by the fact that compositions and inverses of C l,k maps need

not be of the same class; see Lemma 5.3. Note however that there is no loss when l = 0, i.e., for

continuous dependence of the data βb and the solutions fb on the parameter b ∈ B.

Proof. It suffices to show that for every point b0 ∈ B and smoothly bounded relatively compact domain

Ω ⋐ X there is a neighbourhood B0 ⊂ B of b0 such that the equation (9.1) is solvable on B0 × Ω.

By using partitions of unity on B we then obtain solvability on B × Ω. The proof is completed by

an exhaustion of X by an increasing family of compact Runge sets, using Theorem 1.1 at every step

of the induction to ensure convergence of solutions. One follows the standard scheme in the proof of

Cartan’s Theorem B, see e.g. [48, Section VIII.14]. Furthermore, it suffices to consider the case when

the forms βb have compact support contained in slightly smaller domain Ω′ ⋐ Ω for every b ∈ B0.

Fix a point b0 ∈ B and an open relatively compact neighbourhood B0 ⊂ B of b0 such that

Theorem 4.3 furnishes a family of (Jb, Jb0)-biholomorphic maps Φb : Ω → Φb(Ω) ⊂ X (b ∈ B0) of

class C l,k+1. Let h : X → C be a Jb0-holomorphic immersion (see [47]). Then,

hb = h ◦ Φb : Ω → C, b ∈ B0

is a family of Jb-holomorphic immersions of class C l,k+1, and we may take θ̄b = dh̄b as the family

of (0, 1)-forms in (9.1). Note that θ̄b is antiholomorphic for every b ∈ B0. Thus, βb = gb dh̄b where

the function g : B0 × Ω → C with gb = g(b, · ) is of class C l,(s,a). Since the family of inverse maps

Ψb = Φ−1
b is of class C l,k+1−l by Lemma 5.3, the family of composition g̃b = gb ◦ Ψb is of class

C l,(s−l,a). To see this, note that by the chain rule each partial derivative of g̃b of biorder (l, s − l) (in

any system of local coordinates on B ×X) is a sum of terms obtained by precomposing a derivative

of biorder (l, s) of g with a derivative of biorder (l, s− l) of Ψb. (This is the argument behind Lemma
32



5.3 (b).) Since 0 ≤ s − l < k + 1 − l (where the latter number is the order of smoothness of Ψb in

the space variable) and each derivative of biorder (l, s) of g is of Hölder class C a in the space variable,

the derivatives of g̃b of biorder (l, s − l) are also of class C a in the space variable, so g̃b is of class

C l,(s−l,a) as claimed. Note that hb ◦ Ψb = h and hence Ψ∗
bdh̄b = dh̄ holds for all b ∈ B0. Thus, the

family of (0, 1)-forms with compact supports in the complex structure Jb0 on X, given by

Ψ∗
bβb = (gb ◦Ψb)Ψ

∗
bdh̄b = g̃b dh̄, b ∈ B0,

is of class C l,(s−l,a). Let ω be a Cauchy kernel on (X,Jb0) associated to the holomorphic immersion

h : X → C (see Sect. 3), and let P be the associated Cauchy operator (3.4). Our assumption implies

that the union of supports of the functions g̃b (b ∈ B0) lies in a compact subset of X. Hence, by

Theorem 3.2 (a) the family of functions f̃b = P (g̃b) (b ∈ B0) is of class C l,(s−l+1,a) and

∂Jb0 f̃b = g̃b dh̄ holds for every b ∈ B0.

Regularity in the parameter b follows from the fact that P is a linear operator independent of b.

Set fb = f̃b ◦Φb : Ω → C for b ∈ B0. Recall that g̃b ◦Φb = gb and h ◦Φb = hb for b ∈ B0. Since

Φb is (Jb, Jb0)-holomorphic, it follows that

∂Jbfb = ∂Jb(Φ
∗
b f̃b) = Φ∗

b(∂Jb0 f̃b) = Φ∗
b(g̃b dh̄) = gb dh̄b

for every b ∈ B0, so (9.1) holds. As {f̃b}b∈B0
is of class C l,(s+1−l,a), {Φb}b∈B0

is of class C l,k+1, and

s < k, the family fb := f̃b ◦ Φb (b ∈ B0) is of class C l,(s+1−2l,a) by the same argument as above. �

We now consider the Cousin-I problem on a family of open Riemann surfaces. Let B, X, and

{Jb}b∈B be as in Theorem 1.4, where the family Jb is of class C 0,(k,α) for some k ≥ 1 and 0 < α < 1

(so l = 0 and Jb is continuous in b ∈ B). Let O denote the sheaf of germs of continuous functions f

on Z = B ×X such that fb = f(b, · ) is Jb-holomorphic for each b. By Lemma 5.4, O is a subsheaf

C 0,k+1, the sheaf of germs of continuous functions on Z which are of class C k+1 in the space variable.

Theorem 9.2. (Assumptions as above.) We have that Hq(Z,O) = 0 for all q = 1, 2, . . ..

Proof. Pick an integer s with 0 ≤ s < k and a number 0 < a < 1. Then, C 0,k+1 is a subsheaf of the

sheaf C 0,(s+1,a), and we have the following sequence of sheaf homomorphisms

(9.2) 0 −→ O −֒→ C
0,(s+1,a) ∂−→ C

0,(s,a)
(0,1) −→ 0,

where C
l,(s,a)
(0,1) is the sheaf of germs of (0, 1)-forms of class C 0,(s,a) on the fibres Zb = (X,Jb) and ∂

is the operator which equals ∂Jb on Zb for every b ∈ B. These are sheaves of unital abelian rings. By

Theorem 9.1 applied with l = 0, the resolution (9.2) is exact. Since the second and the third sheaf in

(9.2) are fine sheaves (as they admit partitions of unity), they are acyclic and we conclude that

H1(Z,O) = Γ(Z,C
0,(s,a)
(0,1) )/∂(C 0,(s+1,a)(Z))

and Hq(Z,O) = 0 for q ≥ 2 (see [48, Chapter VI]). Here, Γ denotes the space of global sections. The

quotient group on the right hand side above vanishes by Theorem 9.1. �

Recall that every holomorphic vector bundle on an open Riemann surface is holomorphically

trivial by the Oka–Grauert principle; see Oka [69], Grauert [45], and [33, Theorem 5.3.1]. We can

use Theorem 9.2 to obtain an Oka principle for isomorphism classes of families of holomorphic line

bundles on families of open Riemann surfaces. Using the above notation, let O∗ ⊂ O and C ∗ ⊂ C

denote the subsheaves of the respective sheaves consisting of functions with nonzero values; these are

sheaves of abelian groups. A topological complex line bundle E → Z is said to be X-holomorphic if

it admits a transition cocycle consisting of sections of the sheaf O . The restriction of such a line bundle

to any fibre Zb = (X,Jb) is a holomorphic line bundle on the Riemann surface (X,Jb). We denote by
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Pic(Z) the set of isomorphism classes of topological X-holomorphic line bundles on Z = B×X. By

the standard argument, Pic(Z) ∼= H1(Z,O∗). We have the following Oka principle.

Theorem 9.3. (Assumptions as above and k ≥ 1.) Every topological complex line bundle on

Z = B × X is isomorphic to an X-holomorphic topological line bundle, and any two X-

holomorphic topological line bundles on Z which are topologically isomorphic are also isomorphic

as X-holomorphic topological line bundles. Furthermore, Pic(Z) ∼= H2(Z,Z). In particular, if B is

contractible then every X-holomorphic line bundle on B ×X is trivial.

Proof. The proof follows the standard argument for complex line bundles on a complex manifold; see

[33, Theorem 5.2.2]. Let σ(f) = e2πif . Consider the following commutative diagram whose rows are

exponential sheaf sequences and the vertical arrows are the natural inclusions:

(9.3)

0 −→ Z −֒→ O
σ−→ O∗ −→ 1y y y

0 −→ Z −֒→ C
σ−→ C ∗ −→ 1

Note that C is a fine sheaf, and hence Hq(Z,C ) = 0 for all q ∈ N. By Theorem 9.2 we also have

Hq(Z,O) = 0 for all q ∈ N. Hence, the relevant part of the long exact sequence of cohomology

groups associated to the diagram (9.3) gives

0 −→ H1(Z,O∗) −→ H2(Z;Z) −→ 0y ∥∥
0 −→ H1(Z,C ∗) −→ H2(Z;Z) −→ 0

Thus, all arrows in the central square are isomorphisms. Since Pic(Z) ∼= H1(Z,O∗) and H1(Z,C ∗)

is the set of isomorphisms classes of topological line bundles on Z , the theorem follows. �

Remark 9.4. The following observation was communicated to me by Finnur Lárusson. Theorem

1.4 allows us to extend Theorem 9.3 to vector bundles of arbitrary rank by using an approach from

the classical Oka–Grauert theory. A topological vector bundle on B × X is the pullback f∗U by a

continuous map f from B ×X to a suitable Grassmannian G of the universal bundle U → G. Since

G is complex homogeneous and hence an Oka manifold, Theorem 1.4 allows us to deform f to a map

F : B ×X → G such that F (b, · ) : X → G is Jb-holomorphic for every b ∈ B. The pullback F ∗
U is

then an X-holomorphic vector bundle isomorphic to f∗U. The second part of Theorem 9.3 is obtained

similarly with the pair of parameter spaces B×{0, 1} ⊂ B× [0, 1]. This argument generalizes to other

types of bundles for which we have an Oka classifying space with a universal bundle. We postpone a

more complete treatment of this subject to a subsequent publication.

10. FAMILIES OF DIRECTED HOLOMORPHIC IMMERSIONS AND OF CONFORMAL MINIMAL

IMMERSIONS

In this section, we illustrate how the results of this paper can be used to construct families of

directed holomorphic immersions and conformal minimal immersions from a family of open Riemann

surfaces. There are many further problems of this kind which may possibly or even likely be treated

by these new methods, and we indicate a few of them in Problem 10.7.

A connected compact complex submanifold Y of the complex projective space CP
n−1, n ∈ N,

determines the punctured complex cone

(10.1) A = {(z1, . . . , zn) ∈ C
n
∗ : [z1 : · · · : zn] ∈ Y }.

Note that A is smooth and connected, and its closure A = A ∪ {0} ⊂ C
n is an algebraic subvariety

of C
n by Chow’s theorem. By [33, Theorem 5.6.5], A is an Oka manifold if and only if Y is an

34



Oka manifold. By [11, Lemma 3.5.1], the convex hull of A is the smallest complex subspace of Cn

containing A, and we shall assume without loss of generality that this hull is all of Cn.

Let X be a connected open Riemann surface and θ be a nowhere vanishing holomorphic 1-form

on X. A holomorphic immersion h : X → C
n is said to be directed by A, or an A-immersion, if

its complex derivative with respect to any local holomorphic coordinate on X takes its values in A.

Clearly, this holds if and only if the holomorphic map f = dh/θ : X → C
n assume values in A.

Conversely, a holomorphic map f : X → A satisfying the period vanishing conditions

(10.2)

∫

C

fθ = 0 for all closed curves C ⊂ X

integrates to a holomorphic A-immersion h : X → C
n by setting

h(x) = v +

∫ x

x0

fθ, x ∈ X

for any x0 ∈ X and v ∈ C
n. Since fθ is a holomorphic 1-form, it suffices to verify conditions (10.2)

on a basis of the homology group H1(X,Z) ∼= Z
r, a free abelian group of some rank r ∈ Z+ ∪ {∞}.

Note that a map directed by the cone A = C
n
∗ is simply an immersion. Another case of major

interest is the null quadric

(10.3) A =
{
(z1, . . . , zn) ∈ C

n
∗ = C

n \ {0} : z21 + z22 + · · ·+ z2n = 0
}
, n ≥ 3.

Holomorphic immersions directed by A are called holomorphic null curves in C
n. The real and

the imaginary part of a holomorphic null immersion X → C
n are conformal harmonic immersions

X → R
n. Such immersions parameterize minimal surfaces, hence are called conformal minimal

immersions. Conversely, every conformal minimal immersion X → R
n is locally (on any simply

connected domain) the real part of a holomorphic null curve. See [11, 70] for more information.

Directed holomorphic immersions were studied by Alarcón and Forstnerič in [8]. Under the

assumption that A is an Oka manifold, they proved an Oka principle with Runge and Mergelyan

approximation for holomorphic A-immersions [8, Theorems 2.6 and 7.2]. They also showed that every

holomorphic A-immersion can be approximated by holomorphic A-embeddings when n ≥ 3, and

by proper holomorphic A-embeddings under an additional assumption on the cone [8, Theorem 8.1].

Alarcón and Castro-Infantes [6] added interpolation to the picture. A parametric Oka principle for A-

immersions was proved in [35, Theorem 5.3]. Algebraic A-immersions from affine Riemann surfaces

were studied in [12] under the assumption that A is algebraically elliptic in the sense of Gromov [46]

(see also [33, Definition 5.6.13]). Several cones arising in geometric applications, in particular the

null quadric A (10.3), are algebraically elliptic. More recently, Alarcón et al. [7] obtained h-principles

for algebraic immersions directed by cones which are flexible in the sense of Arzhantsev et al. [13].

Minor variations of these results for the null cone (10.3) yield similar results for conformal minimal

immersions of open Riemann surfaces in Euclidean spaces; see the monograph [11].

The main advantage of the techniques in the mentioned papers, when compared to the previously

known results, is that they allow a complete control of the conformal structure of the resulting directed

curves or minimal surfaces. By using the approximation results developed in the present paper, one can

go substantially further and construct families of such objects with a control of the conformal structure

of every member of the family, which may depend continuously or smoothly on a parameter. We now

present a few specific results in this direction, which are only the tip of an iceberg of possibilities.

In the following, X is a connected, smooth, open oriented surface, {Jb}b∈B is a family of complex

structures on X as in Theorem 1.4, and {θb}b∈B is a family of nowhere vanishing Jb-holomorphic

1-forms on X, furnished by Theorem 8.1. Recall that a continuous map f : B ×X → Y is said to be
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X-holomorphic if the map f(b, · ) : X → Y is Jb-holomorphic for every b ∈ B. The first two items in

the following definition come from [8, Definition 2.2].

Definition 10.1. Let A ⊂ C
n
∗ be a punctured complex cone of the form (10.1).

(i) A holomorphic map f : X → A is nondegenerate if the tangent spaces Tf(x)A ⊂ Tf(x)C
n ∼= C

n

over all points x ∈ X span C
n.

(ii) A holomorphic A-immersion h : X → C
n is nondegenerate if the map f = dh/θ : X → A is

such, where θ is any nowhere vanishing holomorphic 1-form on X.

(iii) An X-holomorphic map f : B × X → A is nondegenerate if fb = f(b, · ) : X → A is

nondegenerate for every b ∈ B.

(iv) A map h : B × X → C
n is an A-immersion if hb = h(b, · ) : X → C

n is a Jb-holomorphic

A-immersion for every b ∈ B, and is nondegenerate if dhb/θb : X → A is such for every b ∈ B.

If X is disconnected, the maps f and h as above are called nondegenerate if the respective conditions

hold on each connected component of X.

By [11, Lemma 3.1.1], an immersion h : X → C
n directed by the null cone (10.3) is nondegenerate

if and only if it is nonflat, meaning that its image h(X) is not contained in an affine complex line of

C
n. Equivalently, the range of the map f = dh/θ : X → A is not contained in a ray of A.

We shall prove the following h-principle for families of directed holomorphic immersions from

a family of open Riemann surfaces. Compare with the h-principles for maps a single open Riemann

surface in [8, Theorem 2.6] and [35, Theorem 5.3].

Theorem 10.2. Assume that A ⊂ C
n is a smooth Oka cone (10.1) which is not contained in any

hyperplane, X is a smooth open surface, B is a manifold of class C l if l ∈ N or a paracompact

Hausdorff space which is a local ENR (see Definition 1.3) if l = 0, {Jb}b∈B is a family of complex

structures on X of class C l,(k,α) (k ≥ 1, l ≤ k + 1, 0 < α < 1), and {θb}b∈B is a family of

nowhere vanishing Jb-holomorphic 1-forms on X furnished by Theorem 8.1. Given a continuous map

f0 : B ×X → A, there is a nondegenerate A-immersion h : B ×X → C
n of class C l,k+1(B ×X)

such that the map f : B ×X → A defined by f(b, · ) = dhb/θb for all b ∈ B is homotopic to f0.

One can also add approximation and interpolation conditions as in Theorem 1.4 and Remark 1.5.

By taking A = C
∗ = C \ {0} we obtain the following corollary to Theorem 10.2, which extends

the Gunning–Narasimhan theorem [47] to families of complex structures on a smooth open surface.

Corollary 10.3. Given a smooth open surface X and a family {Jb}b∈B of complex structures on X as

in Theorem 10.2, there is a function h : B ×X → C of class C l,k+1 such that h(b, · ) : X → C is a

Jb-holomorphic immersion for every b ∈ B.

If h is as in the corollary then |h(b, · )|2 is a smooth strongly subharmonic function on the Riemann

surface (X,Jb) for every b ∈ B. By using Theorem 1.1 it is easy to find a function ρ : B ×X → R+

of the form ρ =
∑

i |fi|2, where each fi : B ×X → C is X-holomorphic, satisfying following.

Corollary 10.4. Given a smooth open oriented surface X and a family {Jb}b∈B of complex structures

on X as in Theorem 10.2, there is a function ρ : B × X → R+ of class C l,k+1 such that

ρ(b, · ) : X → R+ is a smooth strongly subharmonic exhaustion function on (X,Jb) for every b ∈ B.

Proof of Theorem 10.2. We shall adapt the proof of the parametric h-principle for directed holomorphic

immersions from an open Riemann surface in [35, Section 5]. For the nonparametric case, see [8,

Theorem 2.6] and [11, Theorem 3.6.1] where the reader can find further details.
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For simplicity of exposition, we shall assume that the parameter space B is compact. The general

case requires an additional induction with respect to a normal exhaustion of B, which proceeds as in

the proof of Theorem 1.4 and will not be repeated.

By Theorem 1.4 we can deform f0 to an X-holomorphic map f1 : B ×X → A of class C l,k+1.

The following lemma shows that we can choose f1 to be nondegenerate in the sense of Definition 10.1.

Lemma 10.5. (Assumptions as in Theorem 10.2.) Every X-holomorphic map f : B×X → A of class

C l,k+1 can be approximated in the C l,k+1 topology on compacts by nondegenerate X-holomorphic

maps of class C l,k+1 homotopic to f .

Proof. Since the cone A is not contained in any hyperplane of Cn, there is an integer q ∈ N such that

for a generic q-tuple of points z1, . . . , zq in A we have
∑q

i=1 TziA = C
n. (We consider the tangent

space TzA as a subspace of Cn.) Hence, to deform a map f : X → A to a nondegenerate one, it

suffices to push a set of q points of f(X) to such a generic position. An explicit procedure for a single

map is given in [8, Theorem 3.2 (a)]. For a family of maps from a single Riemann surface, see [35,

Theorem 5.4]. We adapt the argument in the latter proof to our situation.

Recall that if V is a holomorphic vector field on a domain D ⊂ C
n then its flow φζ(z) in complex

time ζ is holomorphic in (ζ, z) on its fundamental domain in C ×D. If U is a domain in B ×X and

f : U → D and h : U → C are maps of class C l,k+1, then the map (ζ, b, x) 7→ φζh(b,x)(f(b, x)) ∈ D

is defined in a neighbourhood of {0} × U in C×B ×X, it is holomorphic in ζ , Jb-holomorphic in x

for a fixed b and ζ , and of class C l,k+1 for every fixed ζ .

Consider first the case when A is flexible, in the sense that there exist finitely many C-complete

holomorphic vector fields V1, . . . , Vm tangent to A which span the tangent space of A at every point.

(This holds in particular if A is the null quadric A, cf. [8, Example 4.4]. A partial list of references

to examples of flexible varieties can be found in [31, p. 394] preceding Example 6.3 ibid.) Consider a

map Ψ : CN ×B ×X → A of the form

(10.4) Ψ(ζ, b, x) = φ1ζ1h1(b,x)
◦ · · · ◦ φNζNhN (b,x)(f(b, x))

where ζ = (ζ1, . . . , ζN ) ∈ C
N , (b, x) ∈ B × X, every φj is the flow of one of the vector fields

V1, . . . , Vm (possibly with repetitions), and the functions hj ∈ C l,k+1(B × X) are X-holomorphic.

By what was said above, the map Ψ is holomorphic in ζ , of class C l,k+1 in (b, x), and Jb-holomorphic

in x for every fixed b ∈ B and ζ . A suitable choice of the functions hj ensures that for a generic

choice of ζ ∈ C
N the homotopy f t := Ψ(tζ, · , · ) : B × X → A (t ∈ [0, 1]) satisfies the lemma.

Approximation is achieved by choosing ζ close to 0.

IfA is not necessarily flexible, we can still find finitely many holomorphic vector fields V1, . . . , Vm
tangent toA and spanning the tangent space of A at every point (see the extension of Cartan’s Theorem

A due to Forster [30, Corollary 4.4] and Kripke [56]). Pick a compact Runge set K ⊂ X with

nonempty interior. Let BN denote the unit ball of C
N . The map Ψ in (10.4) is now defined on

rBN × B ×K for some r > 0 and satisfies Ψ(0, · , · ) = f . Pick a number r0 ∈ (0, r). By Theorem

7.4 we can approximate Ψ on r0B
N × B × K by a map Ψ̃ : r0B

N × B × X → A of the same

smoothness class such that Ψ̃(· , b, · ) : rBN ×X → A is holomorphic in the complex structure Jb on

X and the standard structure on C
N , and Ψ̃(ζ, · , · ) is homotopic to f for every ζ . For a generic choice

of ζ ∈ r0B
N close to 0 this map satisfies the lemma. �

Fix a complex structure J on X and a strongly J-subharmonic Morse exhaustion function

ρ : X → R+. There is an exhaustion ∅ = K0 ⊂ K1 ⊂ · · · ⊂ ⋃∞
i=0Ki = X by smoothly bounded

compact Runge sets Ki = {x ∈ X : ρ(x) ≤ ci} for a sequence of regular values 0 < c1 < c2 · · · of ρ,

with limi ci = +∞, such that K1 6= ∅ and for every i ∈ Z+ the domain Di = K̊i+1 \Ki contains at
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most one critical point of ρ. (See [11, Sect. 1.4].) Recall that {θb}b∈B is a family of nowhere vanishing

Jb-holomorphic 1-forms on X furnished by Theorem 8.1. We shall inductively construct a sequence

of open neighbourhoods Ui ⊂ B × X of B × Ki, maps fi : Ui → A of class C l,k+1, and numbers

ǫi > 0 such that the following conditions hold for every i = 1, 2, . . ..

(a) The map fi,b : Ui,b → A is Jb-holomorphic and nondegenerate for every b ∈ B.

(b)
∫
C
fi,bθb = 0 for every closed curve C ⊂ Ki.

(c) fi is homotopic to f1|Ui
through maps Ui → A.

(d) ‖fi+1 − fi‖C l(B×Ki) < ǫi.

(e) 0 < ǫi+1 < ǫi/2, and if f : B ×X → A ∪ {0} is an X-holomorphic map of class C l such that

‖f − fi‖C l(B×Ki) < 2ǫi then f is nondegenerate and f(B ×Ki−1) ⊂ A.

Under these conditions, the limit map f = limi→∞ fi : B×X → A exists and is of class C l(B×X),

it is X-holomorphic (hence of class C l,k+1(B ×X) by Lemma 5.4), nondegenerate, homotopic to f0,

and
∫
C
fbθb = 0 holds for every closed curve C ⊂ X and b ∈ B. Fixing a point x0 ∈ X, the map

h : B ×X → C
n given by

h(b, x) =

∫ x

x0

f(b, · )θb, b ∈ B, x ∈ X

is a well-defined nondegenerate A-immersion, and fb = dhb/θb holds for every b ∈ B.

We now explain the induction. The assumptions imply that K1 is a smoothly bounded compact

disc. Let U1 be an open disc containing K1, and let f1 be the restriction to B × U1 of the initial

nondegenerate map f1 : B×X → A. Assume inductively that i ∈ N and we have already found maps

fj with the required properties for j = 1, . . . , i, and let us explain how to obtain the next map fi+1.

We distinguish two cases.

The noncritical case: The domain Di = K̊i+1 \Ki does not contain any critical point of ρ.

The critical case: Di contains a unique (Morse) critical point of ρ.

We begin with the noncritical case. Then, Ki is a strong deformation retract of Ki+1 and Di is

a finite union of annuli. In particular, the inclusion Ki →֒ Ki+1 induces an isomorphism of their

homology groups H1(Ki,Z) ∼= H1(Ki+1,Z). Assume that Ki is connected; the procedure that we

shall explain can be performed independently on every connected component. Fix a point x0 ∈ K̊i.

There are finitely many smooth Jordan curves C1, . . . , Cm ⊂ Ki such that any two of them only

intersect at x0, they form a basis of the homology group H1(Ki,Z), and their union C =
⋃m

j=1Cj

is Runge in X. The same curves then form a basis of H1(Ki+1,Z). Consider the period map

P : B × C (B ×C,A) → (Cn)m given for any b ∈ B and f ∈ C (B × C,A) by

(10.5) P(b, f) =

(∮

Cj

f(b, · )θb
)

j=1,...,m

∈ (Cn)m.

By condition (b) we have that P(b, fi) = 0 for all b ∈ B. Since the map fi : B × Ki → A is

nondegenerate, we can apply [8, Lemma 5.1] (see also [11, Lemma 3.2.1]) to find a period dominating

spray of Jb-holomorphic maps

Fi(ζ, b, · ) : Ki → A for b ∈ B,

of class C l(B × Ki), depending holomorphically on ζ = (ζ1, . . . , ζN ) in a ball B ⊂ C
N , such that

Fi(0, · , · ) = fi. (Recall that a map is called holomorphic on a compact set if it is holomorphic in an

open neighbourhood of the said set.) The period domination property means that the map

(10.6) B ∋ ζ 7−→ P(b, Fi(ζ, b, · )) =
(∮

Cj

Fi(ζ, b, · )θb
)

j=1,...,m

∈ (Cn)m
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is submersive at ζ = 0, i.e., its differential at ζ = 0 is surjective for every b ∈ B. Such a map

Fi can be chosen of the same form as Ψ in (10.4), and it has the same regularity properties as that

map. We begin by choosing functions hj : B × C → C of class C l as in (10.4) to ensure that the

map Ψ is period dominating on the curves in C; see [11, proof of Lemma 3.2.1] for the details. By

the parametric Mergelyan theorem (see Theorem 1.2 when l = 0 and Theorem 7.7 when l > 0) we

can approximate the functions hj in C l(B × C) by X-holomorphic functions of class C l(B × Ki)

depending holomorphically on ζ . By Lemma 5.4 these approximants are then of class C l,k+1(B×Ki).

If the approximation is close enough then the resulting map Fi has the stated properties.

For each b ∈ B let Vb ⊂ C
N denote the kernel of the differential of the period map (10.6) at

ζ = 0. This is a complex vector subspace of C
N with dimVb = N − mn which is of class C l

in b ∈ B. Let Wb ⊂ C
N denote the orthogonal complement of Vb. Fix a number 0 < r < 1.

Since A is an Oka manifold and Ki is a strong deformation retract of Ki+1, Theorem 7.4 allows

us to approximate Fi in the C l topology on rB × B × Ki by a family of Jb-holomorphic maps

g(ζ, b, · ) : Ki+1 → A (ζ ∈ rB, b ∈ B) which are holomorphic in ζ and of the same regularity class

as Fi. If the approximation is sufficiently close, the implicit function theorem gives a map ζ : B → B

of class C l(B), close to the zero map, such that ζ(b) ∈Wb for all b ∈ B and the Jb-holomorphic map

fi+1(b, · ) := g(ζ(b), b, · ) : Ki+1 → A

satisfies the period vanishing conditions P(b, fi+1) = 0 (10.6) for every b ∈ B. If the approximations

were close enough then the map fi+1 is nondegenerate. To complete the induction step, we choose a

number ǫi+1 satisfying condition (e).

Next, we consider the critical case. Let xi ∈ Di be the unique critical point of ρ in Di. Since

ρ is strongly subharmonic, its Morse index is either 0 or 1. If the Morse index is 0, the point xi is a

local minimum of ρ, and hence a new connected component of the sublevel set {ρ ≤ t} appears when

t passes the value ρ(xi). On this new component of Ki+1 we can take fi+1 to be any nondegenerate

X-holomorphic map to A. On the remaining connected components of Ki+1 we proceed as in the

noncritical case explained above.

If the critical point xi ∈ Di of ρ has Morse index 1, there is a smooth embedded arc xi ∈
Ei ⊂ Di ∪ bKi, which is transversely attached with both endpoints to bKi and is otherwise disjoint

from Ki, such that Si = Ki ∪ Ei is a Runge admissible set in X (see Definition 7.6), and Si is a

strong deformation retract of Ki+1. (See [11, pp. 21–22] for the details.) We assume that the Runge

admissible set Si = Ki ∪Ei is connected, since on the remaining components of Ki we are faced with

the noncritical case described above. We extend fi from a small open neighbourhood Ui of B × Ki

to a map Ui ∪ (B × Si) → A of class C l such that the extended map is homotopic to f1 through a

homotopy that is fixed on Ui, and for every b ∈ B the map fi(b, · ) : Ei → A is nondegenerate (see

Definition 10.1). Nondegeneracy of fi on Ei can be ensured as in the proof of Lemma 10.5.

If the arc Ei connects two different connected components of Ki then the homology basis of

H1(Si,Z) is the union of homology bases of these two components, and there is no further condition

on the extended map fi on B × Ei. If on the other hand the endpoints of Ei are attached to the

same connected component of Ki, then the arc Ei closes in Ki to a Jordan curve C , which is an

additional element of the homology basis of Si. In this case, we choose the extension of fi to Ei so

that
∫
C
fi(b, · )θb = 0 holds for all b ∈ B. This can be done by [35, Lemma 3.1 and Claim, p. 26].

We can now proceed as in the noncritical case. Let C = {C1, . . . , Cm} be a homology basis of

Si such that C =
⋃m

j=1Cj is a Runge set (see [11, Lemma 1.12.10]). As in the noncritical case, we

find a period dominating spray Fi : B × B × Si → A of the form (10.4), where B ⊂ C
N is a ball,

such that Fi(0, · , · ) = fi and the map Fi(· , b, · ) is holomorphic in the complex structure Jst × Jb on

B×Ki for every b ∈ B. By Theorem 7.5 (if l = 0) or Theorem 7.7 (if l > 0) we can approximate fi in
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C l(B×Si) byX-holomorphic maps f ′i : B×Vi → A, where Vi is a neighbourhood of Si. Likewise, we

can approximate the X-holomorphic functions hj in the expression (10.4) in C l(B × Si) by functions

h′j which are X-holomorphic on B × Vi. Pick a number 0 < r < 1. Inserting these approximants in

the expression (10.4) for Fi and shrinking the neighbourhood Vi around Si if necessary gives a map

gi : rB × B × Vi → A approximating Fi in C l(rB × B × Si) such that gi(· , b, · ) is holomorphic in

the complex structure Jst × Jb on rB×X for every b ∈ B.

The final step is exactly as in the noncritical case, and we obtain a nondegenerate X-holomorphic

map fi+1 : B×Vi → A approximating fi in C l(B×Ki) such that for every b ∈ B, the Jb-holomorphic

map fi+1(b, · ) : Vi → A satisfies the period vanishing conditions P(b, fi+1) = 0 (see (10.5)) for the

curves in the homology basis of H1(Si,Z). Next, we extend fi+1 by approximation in C l(B × Si)

to an X-holomorphic map fi+1 : B × Ki+1 → A, keeping the period vanishing conditions. This

is accomplished by the noncritical case since Si has a compact neighbourhood S′
i ⊂ Vi such that

Ki+1 \S′
i is an annulus. We conclude the induction step by choosing ǫi+1 satisfying condition (e). �

The following h-principle for families of conformal minimal immersions is an immediate corollary

to Theorem 10.2 applied with the null quadric A (10.3).

Corollary 10.6. Let X, {Jb}b∈B , and {θb}b∈B be as in Theorem 10.2. Given a continuous map

f0 : B × X → A to the punctured null quadric A ⊂ C
n (10.3) for some n ≥ 3, there is a map

u : B × X → R
n of class C l,k+1 such that ub = u(b, · ) : (X,Jb) → R

n is a nonflat conformal

minimal immersion for every b ∈ B, and the X-holomorphic map f : B × X → A, defined by

f(b, · ) = ∂Jbub/θb for all b ∈ B, is homotopic to f0.

This result can also be improved by adding approximation and interpolation. We invite the reader

to supply the precise statement and proof of this generalization.

By adding various global conditions on the maps in Theorem 10.2 and Corollary 10.6 such as

properness, embeddedness, or completeness, the construction methods become more intricate, and we

do not know whether they can be made in families. We pose the following problems.

Problem 10.7. Let {(X,Jb)}b∈B be a family of open Riemann surfaces as in Theorem 1.4.

(a) Is there a continuous or a smooth family of proper Jb-holomorphic immersions X → C
2 and

embeddings X →֒ C
3? (The basic case is classical, see [33, Theorem 2.4.1] and the references

therein. Without the properness condition, the affirmative result is given by Theorem 10.2.)

(b) Assuming that A ⊂ C
n is an Oka cone (10.1), is there a continuous or a smooth family of proper

Jb-holomorphic A-immersions or A-embeddings X → C
n? (For the basic case, see [8]. Without

the properness or embeddednes condition, the affirmative answer is given by Theorem 10.2.)

(c) Is there a continuous or a smooth family of proper conformal harmonic immersions (X,Jb) → R
n

for n ≥ 3? (For the basic case, see [11, Theorem 3.6.1] and the references therein.)

(d) Assume that X is a bordered Riemann surface. Is there a family of complete conformal minimal

immersions (X,Jb) → R
n (n ≥ 3) with bounded images, i.e., does the Calabi–Yau phenomenon

for minimal surfaces hold in families? (For the nonparametric case, see [11, Chapter 7] and [4].)

The analogous question can be asked for holomorphic (directed) immersions (X,Jb) → C
n, n ≥ 2

in the context of the problem asked by Paul Yang [84]; see the survey by Alarcón [5].

(e) Let η = dz +
∑n

j=1 xjdyj be the standard complex contact form on C
2n+1, n ≥ 1. Is there a

continuous or a smooth family of proper Jb-holomorphic Legendrian immersions fb : X → C
2n+1,

that is, such that f∗b η = 0 holds for all b ∈ B? (For the basic case, see [10]. For the parametric

case for maps from a single Riemann surface and without the properness condition, see [34].)
40



Acknowledgements. The author is supported by the European Union (ERC Advanced grant HPDR,

101053085) and grants P1-0291 and N1-0237 from ARIS, Republic of Slovenia. I wish to thank
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1949.

[17] G. Bellettini. Lecture notes on mean curvature flow, barriers and singular perturbations, volume 12 of Appunti. Scuola

Normale Superiore di Pisa (Nuova Serie) [Lecture Notes. Scuola Normale Superiore di Pisa (New Series)]. Edizioni

della Normale, Pisa, 2013.

[18] E. Bishop. Subalgebras of functions on a Riemann surface. Pacific J. Math., 8:29–50, 1958.
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[80] A. G. Vituškin. Conditions on a set which are necessary and sufficient in order that any continuous function, analytic at

its interior points, admit uniform approximation by rational fractions. Dokl. Akad. Nauk SSSR, 171:1255–1258, 1966.
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