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Laser-driven electron transport across a sample has garnered enormous attentions over several
decades, as it provides a much faster way to control electron dynamics. Light is an electromagnetic
wave, so how and why an electron can acquire a longitudinal velocity remains unanswered. Here
we show that it is the magnetic field that steers the electron to the light propagation direction.
But, quantitatively, our free-electron model is still unable to reproduce the experimental velocities.
Going beyond the free electron mode and assuming the system absorbs all the photon energy, the
theoretical velocity matches the experimental observation. We introduce a concept of the resistive
transport, where electrons deaccelerate under a constant resistance after laser excitation. This
theory finally explains why the experimental distance-versus-time forms a down-concave curve, and
unifies ballistic and superdiffusive transports into a single resistive transport. We expect that our
finding will motivate further investigations.

I. INTRODUCTION

Electron transport is a common phenomenon that oc-
curs in various forms. An electron can diffuse under a
temperature or concentration gradient, often described

by the diffusion equation [1], ∂n
∂t = D ∂2n

∂z2 − n
T , where n

is the electron density, D is the diffusion constant and T
is the relaxation time. If an electric field is applied, one
can describe it through the Boltzmann equation [2, 3],
∂f
∂t + v · ∂f

∂r + eE
me

· ∂f
∂v = − f−f0

T , where f is the electron
distribution function, v is the electron velocity, r is its
position, me is the electron mass, and E is the electric
field. When one applies a voltage bias along the x axis
across a device, the electron inside the device moves along
the x axis. This is how classical physics explains electron
transport. When the device becomes shorter, one has a
ballistic transport, where the electron travels like a bul-
let without resistance inside the device [4]. Now, consider
a linearly-polarized laser pulse, propagating along the z
axis and with its electric field E along the x axis and the
magnetic field B along the y axis, is applied on to the
same device (Fig. 1). It is obvious that the electron will
move along the x axis, since E is along the x. But there
is no electric field along the z axis. So does the electron
travel along the longitudinal direction?

The answer is affirmative. In 1987, Brorson et al. [5]
employed a 96-fs laser pump pulse of wavelength 630 nm
and of fluence 1 mJ/cm2 to excite a group of thin gold
films of thickness from 200 to 3000 Å from the front,
and then detected the reflected probe beam from the
back of the sample. They found that the electron can
travel at 108 cm/s, very close to the Fermi velocity of
electrons in Au. In 2011, Melnikov et al. [6] employed

the same experimental setup, but with a magnetic film
Au/Fe/MgO(001), where the thickness of Fe is 15 nm and
that of Au is 50 and 100 nm. They sent in a p-polarized
35-fs pump pulse of 800 nm on to the Fe layer through the
MgO substrate, and then detected the magnetic second-
harmonic (MSH) signal reflected from the back of the
Au layer. They found the MSH hysteresis loop after 30
fs delay between the pump and probe, even with fluence
1 mJ/cm2 and energy 40 nJ per pulse. These results at-
tracted a broad interest [7–14]. Besides MSH, Beyazit
et al. [15, 16] employed the time-resolved two-photon
photoemission and found that the electron lifetimes are
shorter when the thickness of their Au layer increases.
They concluded the excited electrons propagate through
Au in a superdiffusive regime [17], but ballistically across
the interfaces. The transition from a superdiffusive to a
diffusive transport occurs around 20-30 nm of the Au
layer [18]. Using the same technique, Bühlmann et al.

[19] detected 4% spin polarization change in the Au film,
consistent with that of Hofherr et al. [11]. Recently,
Karna et al. [20] reported that the ballistic length of hot
electrons in gold films exceeds 150 nm, 50% larger than
100 nm from prior studies. But their experimental ge-
ometry is different. They measured the lateral motion
(along the traverse direction), not along the longitudinal
direction [5, 21].

Theoretically, several models are proposed. Salvatella
et al. [22] proposed the analytical model of the demag-
netization amplitude, where they linked the absorbed en-
ergy to the temperature change and then to the demag-
netization. Another one is the superdiffusion model [17],
where one assumes a time-dependent diffusion exponent
and then solves the diffusion equation for the electron.
These theories build in a gradient from the beginning,
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but how such a gradient is established is not addressed.
This boils down to the fundamental question: why and
how the electron could gain the longitudinal velocity [23–
25]. In atoms and plasma physics, a similar problem has
been studied before [26, 27], but with the laser fluence
over 2 × 105 J/cm2, which has little relevance to laser-
induced electron transport in a real device.
Given the complexity of the problem [28], we have

two moderate objectives. First, we limit ourselves to
a simpler question: Is it possible to understand laser-
induced electron transport qualitatively using a free-
electron model? We employ Varga and Török’s method,
which is based on the Hertz vector. We carry out a se-
ries of simulations by solving the Newtonian equation of
motion of the electron. We find that the longitudinal ve-
locity is a joint effect of the electric and magnetic fields
of the laser pulse. However, using the same experimental
laser parameters [29], we are still unable to quantitatively
reproduce the experimental results. Going beyond the
free electron model and assuming all the photon energy
absorbed into the system, we find that the electron ve-
locity then matches the experimental ones. Second, after
laser excitation, we introduce a new concept of the resis-
tive transport, where hot electrons deaccelerate under a
constant resistance from other electrons and ions. This
does not only explain why experimentally [30, 31] the de-
pendence of the electron time on the electron distance is
a down concave, but also unifies the ballistic transport
[32, 33] and the superdiffusive transport [17] as a single
resistive transport. Our finding will have an important

impact on the future investigation of ultrafast electron
and spin transport [5, 6, 34–36].
The rest of the paper is arranged as follows. Section

II is devoted to our theoretical formalism. Numerical re-
sults during the laser excitation are given in Sec. III,
where we compare our results with the Compton scatter-
ing and the experimental results. In Sec. IV, we compare
and contrast four models with the latest experimental
data. Section V introduces the resistive transport theory
after the initial excitation. We conclude this paper in
Sec. VI.

II. FORMALISM

We consider a free electron placed inside a laser field,
with its electric-field E along the x axis and the mag-
netic field B along the y axis. Figure 1(a) schemati-
cally illustrates a typical experimental geometry, where
the laser pulse propagates toward the sample along the z
axis. The Hamiltonian of the electron inside an electro-
magnetic field is

H =
1

2m
(p− qA(r, t))2 + qφ, (1)

where A(r, t) is the vector potential, φ is the scalar po-
tential, m and q are the electron mass and charge, re-
spectively. The equation of motion is given in terms of
the generalized Lorentz force as [37],

m
d2r

dt2
= qE(r, t) +

q

2m
(p×B(r, t)−B(r, t) × p)− q2

m
(A(r, t)×B(r, t)). (2)

If we set B(r, t) to zero, then every term, except the first
term, on the right side, is zero, so the electron only moves
along E(r, t). This demonstrates that it is indispensable
to include B(r, t).
We follow Varga and Török [38], and start from the

Hertz vector, which satisfies the vectorial Helmholtz
equation, so the resultant electric and magnetic fields
automatically satisfy the Maxwell equation, given in an
integral form. Within the paraxial approximation, we get
the reduced Ẽ and B̃,

Ẽx =
[

1 +
4x2−2w2

0

w4
0
k2

]

, Ẽy = 4xy
w4

0
k2 , Ẽz = − 2ikzx

w2
0
k2 .

B̃x = 0, B̃y = − ikz
√
ǫµ

k , B̃z = − 2y
√
ǫµ

kw2
0

.

(3)
The final electric and magnetic fields are

E = A0Ẽe
ikzz−iωt−

(

x2+y2

w2
0

)

,B = A0B̃e
ikzz−iωt−

(

x2+y2

w2
0

)

,
(4)

where A0 is the field amplitude and w0 is the pulse spatial
width chosen as 10λ. λ is the wavelength of the pulse.

When the light enters a sample, both fields are reduced
by e−z/(2λpen), where λpen is the penetration depth and 2
comes from the fact that penetration depth is defined at
1/e the incident fluence and the fluence is proportional
to the square of the electric field. λpen is chosen to be 14
nm, typically values in fcc Ni.

In our study, we choose a linearly x-polarized pulse
that is propagating along the z axis. The pulse is a
Gaussian of duration τ , amplitude A0 and photon en-
ergy hν. A0e

−iωt in E and B in Eq. 4 is replaced by

A0e
−t2/τ2

cos(ωt), so our electric and magnetic fields are

E(r, t) = A0e
−t2/τ2

cos(ωt)Ẽe
ikzz− z

2λpen
−
(

x2+y2

w2
0

)

,(5)

B(r, t) = A0e
−t2/τ2

cos(ωt)B̃e
ikzz− z

2λpen
−
(

x2+y2

w2
0

)

.(6)

These analytic forms of E and B, which contain both
the spatial and temporal dependences, greatly ease our
calculation. As a first step toward a complete transport
theory, we treat the electron classically, and solve the
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Newtonian equation of motion numerically,

dv

dt
=

q

m
[E(r, t) + v ×B(r, t)] , (7)

where v is the electron velocity. Although our method is
classical, it fully embraces the real space approach that
is more suitable for transport, a key feature that is often
missing from prior first-principles and model simulations.
This will answer the most critical question why the elec-
tron can move along the axial direction.

III. DURING LASER EXCITATION

We start with the experimental laser parameters from
Razdolski et al. [29], where their laser fluence is F = 10
mJ/cm2, duration τ = 14 fs, and photon energy of
hν = 1.55 eV. These parameters are typically used in ex-
periments [39]. We use [40] F = 1

2 cnǫ0|A0|2
√

π
2 τ to find

the electric field amplitude to be A0 = 0.207 V/Å. Our
electric field is shown in Fig. 2(a). The initial position
and velocity of the electron are set to zero. Figure 2(b)
shows the velocity vx and position x oscillate strongly
with time. The maximum velocity reaches 1.5 Å/fs,
1.5 × 105 m/s, on the same order of magnitude of the
velocity in ch1 Co/Pt multilayers [41] and also that of
the experiment in Co/Cu(001) films [42]. Because the
kinetic energy is proportional to the velocity, the elec-
tron must heat up. If we include the band structure of
a solid, it will stimulate both intraband and interband
transitions [43], leading to demagnetization and magnon
generation [44]. We see that the final x is close to zero,
so the electron heating is local, the local heating. For
clarity, in Fig. 2(b) we shift x by one unit down.
The velocity along the z axis, vz, is very different. Fig-

ure 2(c) shows vz is always positive, and increases with
time, without oscillation. It reaches 1.65 × 10−2 Å/fs.
The positivity of vz, regardless of the type of charge, is
crucial to the electron transport, and can be understood
from the directions of E and B. Suppose at one instant
of time, E is along the +x axis and B along the +y
axis. The electron experiences a negative force along the
−x axis and gains the velocity along the −x axis, so the
Lorentz force due to B is along the +z direction. Now
suppose at another instance, E changes to −x and B to
−y, so the electron velocity is along +x, but the Lorentz
force is still along the +z axis. If we have a positive
charge, the situation is the same. The fundamental rea-
son why we always have a positive force is because the
light propagates along the +z axis and the Poynting vec-
tor is always along +z and v × B points along the +z
axis. We test it with various laser parameters and do
not find a negative vz, in agreement with Gao [45]. Un-
der cw approximation, Rothman and Boughn [46] gave
a simple but approximate expression for the dimension-

less vz = 1
2

(

ωc

ω

)2
[cos(ωt)− 1]2, and Hagenbuch [47] gave

pz = e2A2(τ ′)/2mc, both of which are positive. There-
fore, both their theories and our numerical results agree

that the axial motion of the electron is delivered by both
E and B. This is also consistent with the radiation pres-
sure from a laser beam can accelerate and trap particles
[48, 49]. Figure 2(d) shows that z reaches 1.66 Å at 100
fs. Naturally, the electron can move further as time goes
by until it collides with other electrons and ions.
Keeping the rest of laser parameters unchanged, i.e.,

hν = 1.55 eV and τ = 14 fs, we increase the laser field
amplitude A0 from 0.02 to 0.30 V/Å. Figure 3(a) shows
the final velocity as a function of A0. We notice that
vz change is highly nonlinear. We fit it to a quadratic
function, vz = αA2

0, where α is a constant of 0.383898
Å/(fsV/Å)2, and find that the fit is almost perfect. Be-
cause |A0|2 is directly proportional to the fluence, this
demonstrates vz is linearly proportional to the laser flu-
ence, which is exactly expected from the Poynting vector
S = E×B/c. Thus, both qualitatively and quantitatively
our results can be understood. Since the displacement z
follows the velocity, it also increases with A0 quadrati-
cally (see Fig. 3(b)).
With growing interest in THz pulses, we investigate

the photon energy dependence of vz and z. We increase
hν from 0.2 up to 1.6 eV, while keeping both the du-
ration τ = 14 fs and amplitude A0 = 0.207 V/Å fixed.
Figure 3(c) shows an astonishing result: both vz and z
are inversely proportional to hν. At the lower end of hν,
vz reaches 0.136 Å/fs and z reaches 13.34 Å (see Fig.
3(d)). Note that at such a low amplitude, a pulse of 1.6
eV only drives the electron by 1.60 Å. This explains why
THz pulses become a new frontier for ultrafast demagne-
tization [50–52]. Polley et al. [53] employed a THz pulse
to demagnetize CoPt films with a goal toward ultrafast
ballistic switching. Shalaby et al. [54] showed that ex-
treme THz fields with fluence above 100 mJ/cm2 can in-
duce a significant magnetization dynamics in Co, where
the magnetic field becomes more important. ch4 Very
recently, using multicycle 2.5-THz pulses, Riepp et al.

[55] reported incoherent and coherent magnetization dy-
namics in labyrinth-type Co/Pt multilayers. ch4end Our
result uncovers an important picture. When the pulse
oscillates more slowly, the electron gains more grounds.
Of course, a DC current can move electrons even further,
but then it does not have enough field intensity. This
result can be tested experimentally.

A. Comparison with prior theories

To the best of our knowledge, there has been no inves-
tigation using the experimental laser parameters [29] as
we did, so we decide to compare our results with that of
Compton scattering. This comparison is possible because
we use a free-electron model.
Assume that the initial kinetic energy of the electron

is zero. The kinetic energy gained from the photon must
be equal to the loss in the photon energy as

1

2
mev

2
e = Nh∆ν,→ ve =

√

2Nh∆ν

me
(8)
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where ve is the electron velocity, N is the number of
photons that interact with the electron and ∆ν is the
frequency change computed from the wavelength change
∆λ as ∆ν = − c

λ2∆λ. The wavelength change is ∆λ =
h

mec
(1−cosθ), where θ is the outgoing angle of the photon

with respect to the incident direction (see Fig. 1(b)). We
directly compute the velocity of the electron as

ve =

√

2Nh∆ν

me
=

h

meλ

√

2N(1− cos θ). (9)

If we use Brorson’s experimental wavelength, we find
ve = 1.1544 × 103

√

2N(1− cos θ) m/s. Except that
we have an enormously large N , the electron velocity
is around 103 m/s. Figure 2(c) shows the final velocity
is 1.65 × 10−2 Å/fs or 1.65 ×103 m/s. Therefore, both
approaches agree with each other very well.

B. Comparison with experiments

Although Razdolski et al. [29] estimated the axial dis-
placement on the order of 2 nm, it is harder to compare
because it depends on the relaxation time of the electron
in a particular material. Instead, majority of experiments
measured the velocity. Brorson [5] gave ve = 1×106 m/s
for Au. Melnikov [6] found that a delay of 40 fs for a 50
nm of Au, so the velocity is 1.25× 106 m/s.
These velocities are three orders of magnitude larger

than our theoretical value above. This shows that al-
though our model does yield the correct direction of the
electron motion, the free electron model, which is suffi-
cient for atomic and plasma physics, is not adequate for
metals, at least for the transport property induced by
laser. In the following, we discuss several possible solu-
tions for future research.

IV. BEYOND THE FREE-ELECTRON MODEL

Given the above finding, it is very appropriate to dis-
cuss a few alternative theories, as they are crucial to ex-
periments [25].

A. Drude model

We recall first that in metals, the Drude model is of-
ten used for the electric transport, where a voltage bias
is applied along the longitudinal direction. If an electric
field E (constant) is along the x direction, the electron

momentum change is given as
Pf−Pi

∆t = −eE, which will
grow with time infinitely. Drude realized that the elec-
tron must experience collisions from other electrons and
ions, so the electron will lose its momentum, whose value
is given by mevd/τ . At equilibrium, these two must be
equal, so the drift velocity is vd = − eEτ

me
, where τ is the

relaxation time, not to be confused with the above laser
pulse duration. vd in metals is around 0.1 m/s [56].
In laser excitation, there is no such field. It is possible

to include the magnetic field into the Drude model, but
as seen above, this will lead to the same conclusion as
our free electron model.

B. Diffusion transport

Diffusion transport has been proposed to understand
the electron transport. However, there is a shortcoming
in these theories. They do not specify how these ini-
tial gradients are established. For instance, Choi et al.

[7, 57] and Fognini et al. [58] replaced the particle den-

sity n by the chemical potential as ∂µs

∂t = D ∂2µs

∂z2 − µs

τs
,

where µs = µ↑ − µ↓ is the spin chemical potential and
D is the spin diffusion constant, and τs is the spin re-

laxation time. How a nonzero ∂2µs

∂z2 appears is not given.
This is also true for the superdiffusion model [17], where
the initial velocity of the electron is considered as an in-
put parameter and is not possible to compare with the
experimental velocity.

C. Boltzmann equation

The third possibility is to use the Boltzmann equation.
The distribution function, f(r,v, t), under the influence
of the laser field, changes as [59–61]

∂f

∂t
= lim

dt→0

f(r,v, t) − f(r,v, t− dt)

dt
= −v·∇rf−k̇·∇kf,

(10)

where k̇ = − e
~
(E+ v×B). We are only interested in kz

because this is along the axial direction, k̇z = −evxBy/~.
Since we already know vx and By, we can compute it eas-
ily. Figure 4(a) shows how kz changes with time. We see
that ∆kz is very small, whose largest value is around
1.5 × 10−3Å−1. However, it is sufficient to move elec-
trons in solids. We take fcc Ni as an example. Figure
4(b) shows the band structure of fcc Ni along the Γ-Z
direction. There are five bands across the Fermi energy.
Regardless of how small ∆kz is, the laser field is able to
lift electrons from an occupied band to an unoccupied
band, i.e., the intraband transition [43]. Now the ques-
tions is whether we have enough photons.
We can estimate the number of photons on the surface

of a unit cell from the experiments. We take bcc Fe as
an example. Its lattice constant is a = 2.861Å, so its
cross section is a2. The experimental fluence [6] is F = 1
mJ/cm2 and the photon energy is hν = 1.55 eV, so the
number of photons per unit cell is 3.296. One bcc cell
has two Fe atoms, so each Fe atom receives n = 1.65
photons. If we assume that these photons are absorbed,
nhν = 1

2mev
2
e , we find ve = 1.044× 106 m/s. For fcc Au,

using Brorson’s experimental data, we find the number of
photons per unit cell to be 5.2746. Each Au atom receives
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1.32 photons. We find ve = 0.956×106 m/s, which agrees
with the experimental value of 108 cm/s almost perfectly.
Therefore, we believe that it is very likely that a quantum
theory, which includes the magnetic field and the band
structure, will be able to explain experimental results
quantitatively.

V. AFTER INITIAL EXCITATION: RESISTIVE
TRANSPORT THEORY

Once electrons have enough velocity, they will travel
through the materials [5]. There are three different the-
ories for transport. Ballistic and diffusive transports are
two traditional ones [62, 63]. But their separation has
not been very clear. In 1998, Bron et al. [64] con-
cluded that “the transport of quasi-electrons arriving at
the peaks is neither purely ballistic nor purely diffusive”.
This unclear region is termed the superdiffusive trans-
port [17], but its physics remains unclear. The reason
is that for a long time, there have been very few thick-
ness dependence experiments, besides those earlier ones
[5, 6, 31, 65]. Heckschen et al. [30] carried out a sys-
tematic time-resolved two-photon photoemission (2PPE)
measurement as a function of the thickness d of Au films
from 5 to 105 nm in the Au/Fe/MgO structure. The
thickness of Fe is fixed at 7 nm. 2PPE employs two laser
pulses. The pump pulse hits on the back of the iron film
through the MgO substrate and pushes electrons toward
the interface between Fe and Au layers. These hot elec-
trons pass through the interface and enter the Au layer.
Once they reach the surface of Au, a probe pulse of 4
eV knocks them out. Experimentally, Heckschen et al.

collected the electrons as a function of kinetic energy af-
ter each time delay between the pump and probe. At
E − EF = 0.6 eV, where E is the electron energy and
EF is the Fermi energy, they obtained an accurate de-
pendence of the reduced time delay t∗ (see their paper
for detail) as a function of d. We use Webdigitizer [66]
to read off their experimental data from their Fig. 4 and
reproduce them in Fig. 4(c), without error bars. Accord-
ing to their analysis, they found that the dependence of
time t on d is sublinear, and concluded that the velocity
follows a linear behavior.
However, this concave curve looks strangely familiar

to us. In particular, it is not linear, in contrast to the
wavelike heat transport [67]. Instead it is more like a
function as

t = c0 +
√

c20 + c1d, (11)

where we use t instead of their t∗ for simplicity, c0 and
c1 are two fitting parameters. A quick test indeed con-
firms our guess, where c0 = −4.14678 fs and c1 = 136.398
fs2/nm. The fitted data is the solid red line in Fig. 4(c).
The match is excellent, given that we only have two fit-
ting parameters and have the experimental errors. The
reader must wonder why we only need two fitting param-
eters, instead of three, which would appear more natural.

This is because we do not have a prior bias toward bal-
listic, superdiffusive or diffusive transport. We just want
to see where the experiment leads us to. We can rewrite
Eq. 11 as

d = −2c0
c1

t+
1

c1
t2, (12)

which is a parabola.
This reminds us the motion with a constant accelera-

tion. Consider a one-dimensional motion. The displace-
ment is

∆x = vit+
1

2
at2, (13)

where a is the acceleration, ∆x is the same as d above,
vi is the initial velocity. t is the time which may differ
from the experimental one (see above and also below).
However, in the photoemission, electrons are collected at
a fixed kinetic energy, so its final velocity vf remains the
same. We need to replace vi by vf as

∆x = (vf − at)t+
1

2
at2 = vf t−

1

2
at2, (14)

which is a crucial step as will be seen below. Comparing
Eqs. 12 and 14, we find a = −2 1

c1
= −0.00733nm/fs2 <

0. This suggests that electrons inside the Au film deac-
celerate under a uniform drag from the ions and other
electrons. So it is neither ballistic, nor superdiffusive, nor
diffusive. We call it electron resistive transport. The final
velocity, vf = − 2c0

c1
= 0.0608 nm/fs, appears too small if

we take 0.6 eV as the electron kinetic energy, probably
because their time t∗ is not an absolute time, as they
called it the propagation time [30]. A single agreement is
not enough to establish that the uniform drag is indeed
the underlying mechanism for electron transports under
laser excitation. We move on to the Brorson’s data [5],
but unfortunately there is not enough data within 150
nm (they only have two points).
Fortunately, Suarez et al. [31] have three data points

below and above 150 nm. We obtain the data using Web-
digitizer [66] from the inset of their Fig. 1 and reproduce
their data in 4(d) (see three empty circles and boxes).
In their original paper, they linked all six data points to-
gether and used a straight line to fit their data to suggest
a possible ballistic transport, because they noticed that
the time “does not vary as the second power of the film
thickness as one would expect from random-walk ther-
mal diffusion”. The red short-dashed line is our fitted
curve t = c0 +

√

c20 + c1d, where c0 = −239.382 fs and
c1 = 585.481 fs2/nm. The fitting is quite good as well,
given that they only have three data points. What is
more important that it has the same trend as Heckschen’s
data (the thin solid line from Fig. 4(c) is reproduced in
Fig. 4(d)). Caution must be taken to make a quantitative
comparison. Suarez’s time is the traversal time which is
defined as the transient reflectivity reaches 15%. From c0
and c1, we find a = −0.0034 nm/fs2 and vf = 0.82 nm/fs.
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We see both accelerations have the same magnitude, but
their velocities differ. Suarez’s velocity is closer to the
Fermi velocity. More experimental data are necessary.
To investigate whether our theory can reproduce the

ballistic limit, we rewrite Eq. 14 as

1

2
at2 − vf t+∆x = 0, (15)

so the time t is given by

t(∆x) =
vf ±

√

v2f − 2a∆x

a
, (16)

which reveals immediately why we must only have two
fitting parameters for a ∆x. Since vf and ∆x are both
positive, we only choose a root for a positive t, which
avoids the complex math if we used vi. In our resistive
transport, a < 0, so the numerator must be negative as
well. Therefore we choose a negative sign in the numer-
ator,

t(∆x) =
vf −

√

v2f − 2a∆x

a
. (17)

To reproduce the ballistic limit, we expand the square
root in Eq. 17 by using

√
1± x = 1 ± 1

2x − 1
2
1
4x

2 + · · ·
to find,

t(∆x) =
∆x

vf
+

a(∆x)2

2v3f
+ · · · . (18)

If we drop the second and other higher order terms,
we get the ballistic limit t(∆x) = ∆x

vf
. According to

the anomalous multiphoton photoelectric measurement
[68], the photoelectron current has a dramatic enhance-
ment when the gold overlayer thickness is nearly 43 nm,
i.e., right in the middle of the resistive transport. This
anomalous effect is likely due to the resistive transport
(see Fig. 4(d)). Interestingly, Kupersztych and Raynaud
[68] already stated that “electromagnetic energy is trans-
ferred ... to conduction electrons in a duration less than
the electron energy damping time”. This damping now
shows up in our negative acceleration.
We can estimate how much the electron velocity is re-

duced. Using a = −0.0034 nm/fs2, every additional 100
fs, the velocity is reduced by 0.34 nm/fs. As the electrons
slow down, they start to accumulate spatially, ready for
a normal diffusion. The resistive transport transitions to
the regular diffusion (see Fig. 4(d)). We fit Suarez’s data
(last three points) to t(d) = g0+g1d

2, where g0 = 88.2088
fs and g1 = 0.00238099 fs/nm2. A spatial separation
between the resistive and diffusive transports in Au is
around 200 nm as seen from Fig. 4(d). The reason why
our simple resistive picture works well is because the in-
terband state in Au is roughly 3 eV above EF [31, 69] and
the transport is strictly due to intraband transition [43].
This may be different for different materials [70]. We are
also aware of a similar concave down in the size depen-
dence of the electron thermalization time for nanoparti-
cles [71, 72], but the dependence is unlikely related to the
electron velocity, since its value is too small.

VI. CONCLUSION

This study centers on two key themes. First we have
shown that the electron axial transport is the joint ef-
fect of the electric and magnetic fields of the laser pulse.
Each field alone cannot lead to the transport along the
axial direction. The electric field provides a strong trans-
verse velocity, while the magnetic field steers the electron
moving along the light propagation direction. This wel-
coming result requires a nonzero B, but a nonzero B sub-
sequently requires a spatially dependent vector potential
A(r, t), owing to B = ∇×A(r, t). The dipole approxima-
tion is frequently employed in model and first-principles
theories [73–76], but in order to describe electron trans-
ports in thin films, one has to adopt A(r, t), not A(t).
However, quantitatively, our free-electron model is still
unable to reproduce the experimental velocity. Going
beyond the free electron model, if all the photon energies
are absorbed, we can quantitatively reproduce the ex-
perimental velocity. Second, by carefully analyzing the
experimental data, we propose a concept of the resistive
transport, which unifies the ballistic and superdiffusive
transports. Here electrons, after initial acceleration by
the laser pulse, deaccelerate under a uniform resistance
from other electrons and ions. Earlier part of the resistive
transport is the ballistic transport, while the later part
covers superdiffusive transport. As electrons slow down,
they enter a normal diffusion regime. Our study pro-
vides a much simpler picture on the ultrafast time scale,
and reveals a big deficiency with the existing theories
[23, 24, 35, 36, 77]. ch3A new experiment is now available
in copper. Jechumtal et al. [78] unknowingly reported a
similar square-root dependence. They thought that be-
cause of the limitation of their model, the model does not
capture the slightly nonlinear trend in their Figs. 3(a)
and 3(b) for the thickness d < 3 nm. They even put a
shaded triangle over the nonlinear portion of the curve.
Now, this is in fact the result of the resistive transport,
another proof of our theory.
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ory prediction, which has a concave down. (d) Experimen-
tal data (empty circles and boxes) from Suarez et al. [31].
The short dashed line is our resistive transport fit, a typical
concave down. The long-dashed line is a fit to the diffusive
equation. The thin solid line is from (c) to see how similar
both experimental data are.


