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ABSTRACT

This paper introduces a novel methodology leveraging differ-
entiable programming to design efficient, constrained adap-
tive non-uniform Linear Differential Microphone Arrays
(LDMAs) with reduced implementation costs. Utilizing an
automatic differentiation framework, we propose a differen-
tiable convex approach that enables the adaptive design of
a filter with a distortionless constraint in the desired sound
direction, while also imposing constraints on microphone
positioning to ensure consistent performance. This approach
achieves the desired Directivity Factor (DF) over a wide fre-
quency range and facilitates effective recovery of wide-band
speech signals at lower implementation costs.

Index Terms— Differentiable programming, LDMA, Di-
rectivity factor.

1. INTRODUCTION

Derivatives play a vital role in machine learning, especially
in optimization processes. Automatic Differentiation (AD)
has revolutionized the computation of these derivatives, and
its incorporation into machine learning frameworks as differ-
entiable programming has opened new avenues for optimiz-
ing complex functions with greater efficiency and accuracy
[1, 2, 3].

In the domain of acoustics and sound processing, differ-
entiable programming has shown great promise. For instance,
paper [4] introduced a differentiable DSP module-based syn-
thesizer, significantly improving spectral similarity in sound-
matching tasks. Extending this work, [5] utilized neural net-
works to optimize synthesis parameters for real-world sounds,
while [6] developed the Differentiable DX7 model, enhancing
both spectral optimization and audio quality. Lastly, [7] ex-
plores using differentiable methods to optimize room design
for achieving desired acoustic outcomes.

Building on these advancements, we propose a novel
method for designing constrained adaptive non-uniform LD-
MAs using differentiable programming. Differential Micro-
phone Array (DMA) design often involves a cumbersome
multistage process. Our approach streamlines this by directly

optimizing array parameters under specific constraints, result-
ing in a more efficient and adaptive design process, validated
through performance metrics.

Several studies have laid the groundwork for LDMA
design. For example, [8] tackled the white noise ampli-
fication in wideband signals, improving performance with
frequency-invariant beampatterns via Maclaurin’s series ex-
pansion. Building on this, [9] provides a theoretical com-
parison, introduces a two-stage robust DMA beamforming
approach to maximize white noise gain (WNG), addresses
extra-null issues at high frequencies, and offers a solution
for frequency-independent beampatterns. Similarly, con-
sidering key performance metrics like DF and WNG, [10]
optimized LDMA geometry by dividing the frequency band
into subbands and using particle swarm optimization, and
expanding on this, [11] explored nonuniform LDMAs by
using spatial difference operators and a two-stage design pro-
cess. Taking steering limitations into account, [12] addressed
these challenges in the differential beamformers with linear
microphone arrays, proposing new strategies for designing
steerable beamformer. Similarly, [13] proposed a fully steer-
able design using both omnidirectional and bidirectional
microphones, validated through simulations.

Our key contribution is introducing a method for design-
ing optimal and fully steerable nonuniform LDMAs using
differentiable programming. Unlike previous approaches to
LDMA design, we achieve the adaptive LDMA configuration
by directly optimizing the cost function under specific con-
straints: 1) ensuring distortion-free signal reception, and 2)
limiting the distance between microphones. This approach
achieves the desired DF across different frequencies and out-
performs existing methods in terms of cost and implementa-
tion time.

This paper is structured as follows: Section 2 defines the
problem and presents our methodology. Section 3 discusses
the simulation results, demonstrating the effectiveness of our
approach. We conclude with a summary of our findings and
their implications for future research.
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2. SYSTEM MODEL AND PROBLEM DEFINITION

2.1. System Model of the Nonuniform LDMAs

We consider a plane wave coming from a far-field sound
source with the speed of c = 340 m/s encountering an
adaptive nonuniform LDMA with M omnidirectional micro-
phones. The distances between microphones are not uniform,
with the distance between the mth microphone and m + 1th
microphone denoted δm for m = 1, ...,M − 1. The position
of each microphone can be adjusted to achieve the desired
beampattern. Assuming the desired sound signal coming
from the direction which is defined by the relative azimuthal
angle θd where the main lobe is oriented towards that angle.
In this context, the steering vector is as follows

d(w, θd) = [e−jwτ1 cos θd e−jw
∑2

i=1 τi cos θd ...

e−jw
∑M−1

i=1 τi cos θd ]T
(1)

where the superscriptT denotes the transpose operator and
j represents the imaginary unit., w = 2πf is the angular
frequency, and τi = δi/c for i = 1, ...,M − 1 is the de-
lay between microphone i and microphone i + 1. Fig. 1
shows a non-uniform linear differentiable microphone array.
As it can be seen, the delay between mth microphone and
the first microphone is

∑m−1
i=1 τi which is the sum of the de-

lays from the first microphone to the mth microphone and
the respective phase difference would be

∑m−1
i=1 w δi

c cos θd =∑m−1
i=1 wτi cos θd.

Fig. 1. An adaptive non-uniform linear microphone array.

2.2. Beampatterns

we adopt an adaptive filter design where the filter coefficients
H∗

m(w) (Note that the superscript ∗ represents the complex
conjugate), interelement spacing δm, are programmatically
determined. Our approach focuses on optimizing these two

variables to design adaptive non-uniform LDMAs of vary-
ing orders using automatic differentiation to ensure that the
beampattern of the proposed method aligns with the desired
beampattern of the same order LDMAs.

The weight H∗
m(w) is applied to the output of the micro-

phone m; the complete set of these weights is represented in
the form of a vector containing all individual weights, thereby
defining the overall response of the microphone array to in-
coming sound waves in a vector as follows

h(w) = [H1(w) H2(w) ... HM (w)]T (2)

Beampattern or directional sensitivity, which represents
the sensitivity of microphone arrays to the direction of the
incoming sound, is an essential aspect of the array signal pro-
cessing. It indicates how well the microphone array can cap-
ture or reject sound from various directions. Beampattern of
the proposed nonuniform LDMA is mathematically defined
as follows

BM [h(w), θ] = dH(w, θ)h(w)

=

M∑
m=1

Hm(w)e
∑m−1

i=1 wτi cos θ
(3)

where dH(w, θ) is the steering vector and defined in Eq. 1.
LDMAs are known for their frequency-independent charac-
teristics and the desired beampattern of the Nth-order DMA
is as follows:

Bd,N [θ] =

N∑
n=0

an cos
n (θ − θd), where

N∑
n=0

an = 1. (4)

where an for n = 0, ..., N are real numbers and θd is the
steering direction of the LDMA.

2.3. Optimization Problem

The objective is to find the optimum weights and positions of
the microphones in our beamforming system to minimize the
mean squared error (MSE) between the desired beampattern
and the proposed one. This optimization is subject to two con-
straints: 1) ensuring that the distance δm is within the range
of δmin and δmax, and 2) ensuring that the desired sound signal
from the direction θd is received without distortion. The MSE
optimization problem is formulated as follows:

min
δm,Hm(w)

E
[∣∣Bd,N [h(w), θ]− BM [h(w), θ]

∣∣2]
s.t. d(w, θd)

Hh(w) = 1

δmin ≤ δm ≤ δmax

(5)

where d(w, θd) is a steering vector (the source signal comes
from the direction θd) defined in Eq.1, then the distortionless
constraint at θd is as

d(w, θd)
Hh(w) =

M∑
m=1

Hm(w)e
∑m−1

i=1 wτi cos θd = 1.



Note: In LDMAs, spatial processing is critical. To avoid spa-
tial aliasing, it is essential that the interelement spacing, δm,
is less than half the wavelength (λ/2). This constraint en-
sures that the system can uniquely determine the direction of
incoming sound waves without ambiguity [8]. Accordingly,
we constrain the maximum interelement spacing δmax to be
less than λ/2. In our computational model, we have the flex-
ibility to set δmin = 0, allowing for enhanced adaptability in
our system’s configuration.

Considering the directivity factor as a way to evaluate the
performance of the proposed method showing how well an
LDMA directs a sound signal to a specific direction, it is com-
puted as follows

DF =
|BM [h(w), θd]|2

1
2π

∫ 2π

0
|BM [h(w), θ]|2dθ

. (6)

The Mean Square Error (MSE) between two beampatterns is
another way of evaluating the performance of our system and
it is defined as:

ϵBM [h(w),θ] =
1

2π

∫ 2π

0

|BM [h(w), θ]− Bd,N [θ]|2dθ. (7)

It shows how well the beampattern of the proposed method is
close to the desired beampattern of an LDMA.

3. NUMERICAL RESULTS

Considering the simulation setup as the order of LDMA is
N = 2, the number of microphones is M = 5, sound speed
is c = 340m/s, f = 1kHz, ω = 2πf = 2π × 1000 ≈ 6, 283,
δmin = 0, and δmax = 15 cm. The optimization problem has
been solved in Python using JAX and scipy.optimize. The nu-
merical optimization technique used for this constraint prob-
lem is the Sequential Least Squares Programming (SLSQP)
algorithm which is part of the minimization function in the
scipy.optimize module of the SciPy library in Python. We
did the simulation for the cases when the desired sound sig-
nal coming from θd equal to 0, π/3, and π, and the results
have been shown in Fig. 2, Fig. 3, and Fig. 4, respectively.
These figures demonstrate that, in each case, the beampat-
tern produced by the proposed method aligns with the desired
beampattern. Although there are a few misfits between the
proposed beampattern and the desired one in some frequen-
cies, since it is highly dependent on the initial guess for the
optimization parameters, Hm(w) and τm, by adjusting them
properly, we can achieve the desired performance with the
proposed method. Fig. 5 and Fig. 6 show the MSE and the
DF for the second order LDMA versus frequency from 0 to
4kHz, respectively. We can see from them that the DF for the
proposed method is close to the DF of the desired beampat-
tern with the error rate around 0.01 and the MSE is less than
0.005. Fig. 7, Fig. 8 and Fig. 9 show that the beampattern of

the proposed method compared with the desired one for the
third order LDMA when θd is equal to 0, π/3 and π, respec-
tively. Setting N = 3 and M = 4, we can see even when M
takes its smallest value which is equal to N + 1, we have the
desired performance; therefore, considering the cost of imple-
mentation, it is suggested to use M = N + 1 and doing the
optimization for that.

Fig. 2. Desired beam-pattern and the beam-pattern of the
proposed method for the second order LDMA is compared
versus incident angle when the angle of arrival is θd = 0.

Fig. 3. Desired beam-pattern and the beam-pattern of the
proposed method for the second order LDMA is compared
versus the incident angle when the angle of arrival is θd =
π/3.

4. CONCLUSION

This paper proposes a novel approach based on differentiable
programming for designing constrained adaptive non-uniform
LDMAs of any desired order. The optimization problem is
solved by considering two variables: filter coefficients and
microphone positions. This approach is significantly more
efficient in terms of time and effort required for implementa-
tion. Using DF and MSE as the performance evaluation met-
rics, we demonstrate that the beampatterns of the second-and



Fig. 4. Desired beam-pattern and the beam-pattern of the
proposed method for the second order LDMA is compared
versus the incident angle when the angle of arrival is θd = π.

Fig. 5. Minimum mean square error of the proposed method
for the second order LDMA versus frequency when the angle
of arrival is θd = π.

Fig. 6. Directivity Factor of the proposed method is compared
with the desired one for the second order LDMA versus fre-
quency when the angle of arrival is θd = π.

third-order LDMAs produced by the proposed method closely
match the desired beam patterns with the respective orders.

Fig. 7. Desired beam-pattern and the beam-pattern of the
proposed method for third order LDMA is compared versus
the incident angle when the angle of arrival is θd = 0.

Fig. 8. Desired beam-pattern and the beam-pattern of the
proposed method for the third order LDMA is compared ver-
sus the incident angle when the angle of arrival is θd = π/3.

Fig. 9. Desired beam-pattern and the beam-pattern of the pro-
posed method for the third order LDMA is compared versus
the incident angle when the angle of arrival is θd = π.



5. REFERENCES

[1] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M.
Siskind, ”Automatic differentiation in machine learning:
A survey,” Journal of Machine Learning Research, vol.
18, pp. 1–43, 2018.

[2] M. Innes, A. Edelman, K. Fischer, C. Rackauckas, E.
Saba, V. B. Shah, and W. Tebbutt, ”A differentiable pro-
gramming system to bridge machine learning and scien-
tific computing,” arXiv e-prints, arXiv:1907, 2019.

[3] M. Blondel and V. Roulet, ”The elements of differen-
tiable programming,” arXiv preprint, arXiv:2403.14606,
2024.

[4] N. Masuda and D. Saito, ”Synthesizer sound matching
with differentiable DSP,” in Proc. ISMIR, pp. 428-434,
2021.

[5] N. Masuda and D. Saito, ”Improving semi-supervised
differentiable synthesizer sound matching for practical
applications,” IEEE/ACM Trans. Audio, Speech, Lang.
Process., vol. 31, pp. 863-875, 2023.

[6] F. Caspe, A. McPherson, and M. Sandler, ”DDX7: Dif-
ferentiable FM synthesis of musical instrument sounds,”
arXiv preprint, arXiv:2208.06169, 2022.

[7] B. Zhi, A. Sharma, D. N. Zotkin, and R. Duraiswami,
”A differentiable image source model for room acous-
tics optimization,” in Proc. IEEE Workshop Appl. Sig-
nal Process. Audio Acoust. (WASPAA), pp. 1-5, 2023.

[8] L. Zhao, J. Benesty, and J. Chen, ”Design of robust dif-
ferential microphone arrays,” IEEE/ACM Trans. Audio,
Speech, Lang. Process., vol. 22, no. 10, pp. 1455-1466,
Oct. 2014.

[9] C. Pan, J. Chen, and J. Benesty, ”Theoretical analysis
of differential microphone array beamforming and an
improved solution,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol. 23, no. 11, pp. 2093-2105, Nov.
2015.

[10] J. Jin, G. Huang, J. Chen, and J. Benesty, ”Design of
optimal linear differential microphone arrays based on
array geometry optimization,” in Proc. IEEE Int. Conf.
Acoust., Speech, Signal Process. (ICASSP), pp. 5741-
5745, 2019.

[11] J. Jin, J. Benesty, G. Huang, and J. Chen, ”On differ-
ential beamforming with nonuniform linear microphone
arrays,” IEEE/ACM Trans. Audio, Speech, Lang. Pro-
cess., vol. 30, pp. 1840-1852, 2022.

[12] J. Jin, G. Huang, X. Wang, J. Chen, J. Benesty, and I.
Cohen, ”Steering study of linear differential microphone

arrays,” IEEE/ACM Trans. Audio, Speech, Lang. Pro-
cess., vol. 29, pp. 158-170, 2021.

[13] X. Luo, J. Jin, G. Huang, J. Chen, and J. Benesty, ”De-
sign of steerable linear differential microphone arrays
with omnidirectional and bidirectional sensors,” IEEE
Signal Process. Lett., vol. 30, pp. 463-467, 2023.

http://arxiv.org/abs/2403.14606
http://arxiv.org/abs/2208.06169

	 Introduction
	 System model and Problem Definition
	 System Model of the Nonuniform LDMAs
	 Beampatterns
	 Optimization Problem

	 Numerical Results
	 Conclusion
	 References

