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Abstract

While many classical algorithms rely on Laplace transforms, it has remained an open question
whether these operations could be implemented efficiently on quantum computers. In this work,
we introduce the Quantum Laplace Transform (QLT), which enables the implementation of N ×
N discrete Laplace transforms on quantum states encoded in ⌈log2(N)⌉-qubits. In many cases,
the associated quantum circuits have a depth that scales with N as O(log(log(N))) and a size
that scales as O(log(N)), requiring exponentially fewer operations and double-exponentially less
computational time than their classical counterparts. These efficient scalings open the possibility
of developing a new class of quantum algorithms based on Laplace transforms, with potential
applications in physics, engineering, chemistry, machine learning, and finance.

1 Introduction

The Laplace transform is attributed to the French mathematician Pierre-Simon, Marquis de Laplace,
for his work on the theory of probability published in 1812 [1]. Laplace introduced a discrete version
of the transform, related to what is called today the Z-transform, to study generating functions.
After more than two centuries, the Laplace transform and its variations are widely used across all
domains of science, particularly in physics [2, 3, 4, 5], engineering [3, 4, 6], chemistry [7, 8, 9, 10],
biology [11, 12], environmental science [13], cryptography [14, 15], signal processing [16, 17], machine
learning [18, 19, 20] and economics [21, 22, 23]. One notable example is its use in the resolution of
integro-differential equations where derivatives and integrals are transformed into multiplication and
division. Additionally, convolutions are simplified into products, reducing integro-differential equations
to simpler polynomial equations.

With the emergence of digital computers in the twentieth century, numerical computations were
largely developed and many algorithms were introduced to evaluate Laplace transforms and their
inverses [24, 25, 26, 27]. Brute force algorithms transform a vector of N components into one of M
components through a discrete Laplace transform with complexity O(NM). This scaling was improved
to O(N+M) using various approximation techniques, maintaining logarithmic complexity with respect
to the inverse of the error 1/ϵ [28, 29, 30].

Nowadays, new computers are being developed leveraging the quantum properties of matter to
perform computations differently. Due to superposition and entanglement, quantum computers have
the potential to solve some problems with exponential or polynomial speedup compared to classical
computers. For instance, factoring, computing discrete logarithms, and simulating dynamical systems
can exhibit exponential speedups [31, 32, 33]. One common point of these algorithms is the Quantum
Fourier Transform (QFT) which enables the implementation of the discrete Fourier transform of a
vector of size N with only O(log(N)2) primitive quantum gates [34]. This requires a superpolynomially
smaller number of operations compared to the classical Fast Fourier Transform which has complexity
O(N log(N)) [35]. The implementation of other fundamental transforms has remained an open problem
for more than ten years [36].

In this work, we introduce the Quantum Laplace Transform (QLT), which enables the implemen-
tation of N × N discrete Laplace transforms on gate-based quantum computers. The main idea is
to expand each term of the discrete Laplace transform as a Taylor series or a Chebyshev series that
converges exponentially fast with the truncation order. Each operator of the series is composed of a
uniform matrix and two diagonal operators that encode the coefficients of the Laplace transform. These
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operations are non-unitary, whereas quantum computers are limited to performing unitary quantum
gates. One way to overcome this issue is to block-encode the desired operation into a larger unitary
operator using ancilla qubits. Each term of the series can be block-encoded, and the summation can
be executed using a standard linear combination of unitaries. A second key idea of the protocol is the
introduction of an element-wise product of unitaries that makes possible the implementation of the
uniform matrix using only a few layers of quantum gates.

Truncating the series introduces an error ϵ > 0 that can be chosen arbitrarily as an input parameter
of the problem. The more terms one adds, the larger the quantum circuit becomes, creating a trade-off
between accuracy and depth. The depth of a quantum circuit refers to the number of layers of primitive
quantum gates. While depth scaling can indicate the possibility for achieving effective runtime with
similar scalings, in practice, it also depends on hardware constraints such as qubit connectivity, the set
of implementable primitive quantum gates, the ability to perform quantum gates in parallel and the
error correction employed. In this work, we do not account for these constraints, assuming instead that
the qubits have full connectivity, are fault-tolerant and that the synthesis of operations is expressed in
terms of single- and two-qubit gates without further specification regarding the gate set.

The presented construction of the QLT requires O(log(1/ϵ)) controlled diagonal operators and
an additional quantum circuit of depth Õ(log(log(N)) log(1/ϵ))1 and size2 Õ(log(N) log(1/ϵ)) using
O(log(N)+log(log(1/ϵ))) ancilla qubits3. In some cases, the circuit depth associated with the diagonal
operators scales independently of N as O(log(1/ϵ)) or as O(1/ϵ) (see Appendix B or [37, 38]). In these
cases, the circuit depth of the QLT scales with N as O(log log(N)). This is doubly-exponentially
smaller than the number of arithmetic operations O(N) required by a classical computer to perform
the same discrete Laplace transform4.

In Section 2, the constructions and approximations required to efficiently block-encode the Quantum
Laplace transform are presented, and a precise statement of the circuit complexities is provided in
Theorem 2.5. Section 3 extends the results to the case of discrete Laplace transforms with complex
coefficients. Then, the results, along with their applicability, are discussed in Section 4. Additionnally,
Appendix B provides an example of diagonal operators that are implementable with O(log(1/ϵ)) depth,
independent of N , and Appendix C describes how the continuous Laplace transform and its inverse
can be approximated using the quantum Laplace transform.

2 Quantum Laplace Transform

Considering n qubits and two sets of real numbers (x1, . . . , xN ) ∈ RN , (y1, . . . , yN ) ∈ RN with N = 2n,
we define the Quantum Laplace Transform as the n-qubit operation:

Q̂LT =
1

N

e
x1y1 . . . ex1yN

...
. . .

...
exNy1 . . . exNyN

 . (1)

The factor 1/N naturally appears in the construction of the operation using primitive quantum gates
and as the integration step in the discretization of the continuous Laplace transform (see Appendix
C).

The Q̂LT is a non-unitary operation and cannot be directly implemented on digital quantum

computers. To circumvent this issue, one can block-encode the Q̂LT operation as part of a larger
unitary operation by introducing additional qubits, called ancilla qubits.

Definition 1. Block-encoding.
Let Â be a n-qubit operation, α, ϵ ∈ R+ and a ∈ N. The (n + a)-qubit unitary Û is called a

(α, a, ϵ)-block-encoding of Â, if:

∥Â− α(⟨0|⊗a ⊗ În)Û(|0⟩⊗a ⊗ În)∥ ≤ ϵ (2)

1The Õ scaling is defined as a O scaling up to a poly(log log(1/ϵ)) term which is described in the proof of Theorem
2.5 in equation 17.

2The size is the total number of primitive quantum gates.
3Ancilla qubits are additional qubits that facilitates circuit synthesis.
4This does not constitute an algorithmic speedup since we are not solving a decision problem. The computational

advantage is closer to a ”routine speedup”, similar to that of the quantum Fourier transform over the classical fast
Fourier transform.
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The previous definition should be understood as Û =

(
Ã/α ∗
∗ ∗

)
with ∥Â−Ã∥ ≤ ϵ where the other

blocks ’∗’ are constructed such that Û is unitary. This unitary can now be decomposed into a product
of primitive quantum gates.

The first idea to construct a block-encoding of the QLT is to approximate each term exiyj using
a series expansion of the exponential function. In the following, we consider two types of series, the
Taylor series and the Chebyshev series (related to the Jacobi-Anger expansion):

exiyj =

∞∑
k=0

(xiyj)
k/k!

exiyj = ex̃iỹj =

∞∑
k=0

(2 − δk)Ik(x̃i)Tk(ỹj)

(3)

where δk = 1 if k = 0, δk = 0 if k ≥ 1 and the coefficients yj are normalized as ỹj = yj/ymax ∈ [−1, 1]
to ensure the existence of the expansion and x̃i = ymaxxi, where ymax = maxj∈[N ] |yj |. Tk is the
k-th Chebyshev polynomial Tk(ỹ) = cos(k arccos(ỹ)) and Ik is the modified Bessel function of the first
kind of order k. Two expansions are considered instead of one because the Taylor series is known
to be sometimes numerically unstable before reaching its asymptotic regime, even for scalar-valued
exponential [39]. In order to implement the series, one needs to truncate it, which induces an error
that is exponentially small with the truncation order:

Lemma 2.1. (Approximation of the exponential function with truncated series)
Let xi, yj ∈ R, xmax, ymax ∈ R+ with |xi| ≤ xmax, |yj | ≤ ymax and K ∈ N∗. The Taylor series of

order K and the Chebyshev series of order K approximate the exponential function as:

|exiyj −
K∑

k=0

(xiyj)
k

k!
| ≤ exmaxymax

(xmaxymax)K+1

(K + 1)!

|exiyj −
K∑

k=0

(2 − δk)Ik(x̃i)Tk(ỹj)| ≤
4exmaxymax

(K + 1)!
(
xmaxymax

2
)K+1

(4)

with x̃i = ymaxxi and ỹj = yj/ymax ∈ [−1, 1]. For the Chebyshev series, the condition K+1 ≥ xmaxymax

is also required.

The proof of this lemma is presented in Appendix A.1.
To reach a given accuracy ϵ ∈]0, 1[, one can study the function K(x, ϵ) defined implicitly by

(x/K)K = ϵ with x ∈ R+. Lemma 59 of [40] provides bounds on K(x, ϵ), implying that it is suf-
ficient for the truncation order K of both series to scale as

K = Θ(xmaxymax +
ln(1/ϵ)

ln(e+ ln(1/ϵ)/xmaxymax)
) (5)

If xmaxymax is large compared to ln(1/ϵ), the scaling is K = Θ(xmaxymax). In the second case,
when xmaxymax is small compared to ln(1/ϵ), one gets K = Θ(ln(1/ϵ)/ ln(ln(1/ϵ))) which provides
a more precise expression for K than Θ(xmaxymax + ln(1/ϵ)). The parameter xmaxymax is crucial
because approximating exponential functions of large arguments is more difficult, especially since
block-encodings require normalization. Therefore, we keep track of the parameter xmaxymax in the
computations.

After truncation, one can rewrite the QLT operation as a sum of K matrices:

Q̂LT ≃ 1

N

K∑
k=0

1

k!

 (x1y1)k . . . (x1yN )k

...
. . .

...
(xNy1)k . . . (xNyN )k

 =

K∑
k=0

λkÂk.

or

Q̂LT ≃ 1

N

K∑
k=0

(2 − δk)

 Ik(x̃1)Tk(ỹ1) . . . Ik(x̃1)Tk(ỹN )
...

. . .
...

Ik(x̃N )Tk(ỹ1) . . . Ik(x̃N )Tk(ỹN )

 =

K∑
k=0

λ′kÂ
′
k

(6)
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with λk = (xmaxymax)k/k!, (Âk)i,j = (xiyj/(xmaxymax))k/N , λ′k = (2 − δk)Ik,max, (Â′
k)i,j =

Ik(x̃i)Tk(ỹj)/(Ik,maxN) and Ik,max = exmaxymax(xmaxymax/2)k/k! choosen in order to get |Ik(x̃i)Tk(ỹj)/Ik,max| ≤
1 (see Appendix A.1).

The sum of K matrices (Âk)k∈[K] multiplied by coefficients λk ≥ 0 can be implemented using a

linear combination of unitaries, where each unitary is a block-encoding of the matrix Âk. We extend
the linear combination of block-encodings introduced in Lemma 52 [40] to the case where the block-
encodings have different normalizations αk > 0 and errors ϵk > 0.

Lemma 2.2. (Linear combination of block-encodings)

Let n,K ∈ N∗, λk, αk, ϵk ∈ R+ for all k = 0, . . . ,K, a ∈ N, b = ⌈log2(K+ 1)⌉ and Â =
∑K

k=0 λkÂk

be an n-qubit operator. Suppose each Âk can be (αk, a, ϵk)-block-encoded in a (n + a)-qubit unitary

Ûk, and we have access to the (n + a + b)-qubits SELECT operation Ŝ =
∑K

k=0 |k⟩ ⟨k| ⊗ Ûk + (Îb −∑K
k=0 |k⟩ ⟨k|)⊗ Îa⊗In and to the PREPARE operation P̂ acting on b qubits as P̂ |0⟩⊗b

=
∑2b−1

k=0 µk |k⟩
with µk =

√
λkαk/λ for k ≤ K, µk = 0 for k > K and λ =

∑K
k=0 λkαk.

Then, Ŵ = (P̂ † ⊗ Îa ⊗ În)Ŝ(P̂ ⊗ Îa ⊗ În) is a (λ, a+ b,
∑K

k=0 λkϵk)-block-encoding of Â.

Proof.

∥Â− λ(⟨0|⊗b ⊗ ⟨0|⊗a ⊗ În)Ŵ (|0⟩⊗b ⊗ |0⟩⊗a ⊗ În)∥ = ∥Â− λ

K∑
k=0

µ2
k(⟨0|⊗a ⊗ În)Ûk(|0⟩⊗a ⊗ În)∥

= ∥
K∑

k=0

λk(Âk − αk(⟨0|⊗a ⊗ În)Ûk(|0⟩⊗a ⊗ În))∥ ≤
K∑

k=0

λkϵk

(7)

To construct the block-encodings of the Âk and Â′
k, one can decompose the matrixes as a product

of two non-unitary diagonal operations with the uniform matrix Â, where the entries of Â are given
by (Â)i,j = 1/N .

Âk =

( x1

xmax
)k

. . .

( xN

xmax
)k


1/N . . . 1/N

...
. . .

...
1/N . . . 1/N


( y1

ymax
)k

. . .

( yN

ymax
)k



Â′
k =


Ik(x̃1)
Ik,max

. . .
Ik(x̃N )
Ik,max


1/N . . . 1/N

...
. . .

...
1/N . . . 1/N


Tk(ỹ1)

. . .

Tk(ỹN )


(8)

In turn, each of these operations can be block-encoded before being multiplied by each other.
First, we explain how to block-encode the uniform matrix before discussing the block-encodings of the
diagonal operators.

To block-encode the uniform matrix (Â)i,j = 1/N , we define the element-wise product of two n-

qubit unitaries Û and V̂ as the matrix Û ⊙ V̂ , whose entries are given by (Û ⊙ V̂ )i,j = (Û)i,j(V̂ )i,j .
The following lemma introduces an efficient method for implementing the element-wise product of
unitaries:

Lemma 2.3. (Element-wise product of unitaries)
Let n ∈ N∗, Û , V̂ be two unitaries acting on an n-qubit register {qi}i∈[n]. Consider an additional

register of n ancilla qubits {ai}i∈[n] and the operation Ĉ =
⊗n

i=1(CNOTqi→ai) which is a layer of
parallel CNOT gates. The CNOTqi→ai denotes the CNOT gate controlled by the i-th qubit qi and
applied to the i−th ancilla qubit ai.

The unitary Ŵ = Ĉ(Û ⊗ V̂ )Ĉ is a (1, n, 0)−block-encoding of Û ⊙ V̂ .

Proof. Remark that for |x⟩ =
⊗n

i=0 |xi⟩ with xi ∈ {0, 1}, Ĉ |x⟩ ⊗ |0⟩⊗n
= |x⟩ ⊗ |x⟩, then:
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(⟨0|⊗n ⊗ ⟨x|)Ŵ (|0⟩⊗n ⊗ |x′⟩) = (⟨0|⊗n ⊗ ⟨x|)Ĉ(Û ⊗ V̂ )Ĉ(|0⟩⊗n ⊗ |x′⟩)
= (⟨x| ⊗ ⟨x|)(Û ⊗ V̂ )(|x′⟩ ⊗ |x′⟩)
= ⟨x| Û |x′⟩ ⟨x| V̂ |x′⟩ = Ûx,x′ V̂x,x′ = (Û ⊙ V̂ )x,x′

(9)

This lemma provides a direct way to implement the uniform matrix by noting that (Â)i,j = 1/N is

the element-wise product of two Hadamard towers (Ĥ⊗n ⊙ Ĥ⊗n)i,j = (Ĥ⊗n)i,j(Ĥ
⊗n)i,j = 1/N , with

Ĥ = 1√
2

(
1 1
1 −1

)
. Therefore, one can implement a (1, n, 0)-block-encoding of (Â)i,j = 1/N with 2n

CNOT gates, 2n Hadamard gates, and a quantum circuit depth equal to 3.
As discussed in the following section 4, block-encoding a non-unitary diagonal operator can be done

by many different methods, with complexities depending directly on the properties of the eigenvalues
(sparsity, smoothness,...) [38]. In some cases, the depth is independent of the number of qubits
and scales only with the implementation error ϵ, or logarithmically with the number of qubits n (see
Appendix B or [38]). To keep the results general enough, we assume that we have access to the
block-encodings ÛX,k, ÛY,k, ÛI,k, ÛT,k of the non-unitary diagonal operators:

X̂k =

N−1∑
i=0

(
xi
xmax

)k |i⟩ ⟨i|

Ŷk =

N−1∑
j=0

(
yj
xmax

)k |j⟩ ⟨j|

Îk =

N−1∑
i=0

Ik(x̃i)

Ik,max
|i⟩ ⟨i| ,

T̂k =

N−1∑
j=0

Tk(ỹj) |j⟩ ⟨j|

(10)

These diagonal operators have eigenvalues bounded by 1, implying that no additional normalization
constant is necessary to block-encode them. Consequently, we suppose that the unitaries ÛX,k, ÛI,k

are (1, abe, ϵk,1)-block-encodings of X̂k, Îk and ÛY,k, ÛT,k are (1, abe, ϵk,2)-block encodings of Ŷk and T̂k,
where ϵk,1, ϵk,2 ∈ R+ and abe ∈ N∗. For the implementation of an arbitrary discrete Laplace transform,
we estimate the complexity in terms of the number of times these operators needs to be implemented.

Now, using the product of the block-encodings of the non-unitary diagonal operators with the
uniform matrix and the following lemma, one can construct (1, n+ 2abe, ϵk,1 + ϵk,2)-block-encoding of

Âk and Â′
k. We recall Lemma 53 of [40]:

Lemma 2.4. (Product of block-encoded matrices) If Û is a (α, a, ϵ1)-block-encoding of an n-qubit
operator Â and V̂ is a (β, b, ϵ2)-block-encoding of a n-qubits operator B̂ then (Îa ⊗ Û)(Îb ⊗ V̂ ) is a
(αβ, a+ b, αϵ2 + βϵ1)-block-encoding of ÂB̂.

Finally, the linear combination of the block-encodings enables us to approximate the QLT. The
following theorem summarizes this result and the computational resources required, while Figure 1
provides a schematic view of the quantum circuit implementing the QLT.

Theorem 2.5. Quantum Laplace Transform
Let n ∈ N∗, abe ∈ N, ϵ ∈ R+, (x1, . . . , xN ) ∈ RN , (y1, . . . , yN ) ∈ RN where N = 2n, xmax =

maxi∈[N ] |xi|, ymax = maxi∈[N ] |yi|, abe = O(n)

• Taylor expansion: the n-qubit Q̂LT defined by Eq.(1) can be (exmaxymax , 2n + 2abe + ⌈log2(K +
1)⌉, ϵ)-block-encoded using O(K) one-controlled operators C(ÛX,k) and C(ÛY,k), where ÛX,k,

ÛY,k are the (1, abe, ϵ/(6e
xmaxymax))-block-encodings of X̂k and Ŷk defined by Eq.10, and an

additional quantum circuit of size Õ(nK) and depth Õ(log(n)K) with K = Θ(xmaxymax +
ln(1/ϵ)

ln(e+
ln(1/ϵ)

xmaxymax
)
).
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Figure 1: Scheme of the quantum circuit associated with the block-encoding of the Quantum Laplace
Transform. The target state, denoted by |ψ⟩, to which the QLT is applied is an n-qubit state. The other
qubit registers are zeroed ancilla register that enable the block-encoding of the QLT. The operator
ÛXk

and ÛYk
represent the (1, abe, ϵk,1,2)-block-encodings of the diagonal operators X̂k and Ŷk defined

in Eq.10. They can be replaced by ÛIk and ÛTk
for the Chebyshev expansion case. ÛA is the (1, n, 0)-

block-encoding of the uniform matrix Â with entries Âi,j = 1/2n. The parallelized controls maintain
the depth scaling of the block-encodings: n−1-zeroed ancilla, which are ”copies” of the control ancilla,
enables to control several gates in parallel (see Appendix A.3). The COPY operator consists of n− 1
CNOT gates arranged in O(log(n)) layers (see the operator Ĉ in lemma A.1). The operator σk

X is
a tensor product of X-Pauli gates that transforms the anti-control of the SELECT operation into a

control: σk
X =

⊗⌈log2(K+1)⌉−1
i=0 σ̂1−ki

X , where k =
∑⌈log2(K+1)⌉−1

i=0 ki2
i, ki ∈ {0, 1}. The PREP operator

is a quantum state preparation that allows performing the weighted sum of the block-encodings, as
defined in the Linear Combination of block-encodings lemma 2.2.

• Chebytshev expansion: the n-qubit Q̂LT defined by Eq.(1) can be (exmaxymax(2exmaxymax/2−1), 2n+
2abe +⌈log2(K+1)⌉, ϵ)-block-encoded using O(K) one-controlled operators C(ÛI,k) and C(ÛT,k),

where ÛI,k, ÛT,k are the (1, abe, ϵ/(6e
xmaxymax(2exmaxymax/2 − 1)))-block-encodings of Îk and T̂k

defined by Eq.10, and an additional quantum circuit of size Õ(nK) and depth Õ(log(n)K) with

K = Θ(xmaxymax + ln(1/ϵ)

ln(e+
ln(1/ϵ)

xmaxymax
)
).

The notation Õ corresponds to a O scaling up to a factor polylogarithmic in K.

Proof. Consider the approximation of the QLT by a truncated Taylor series (the computations are
similar for the truncated Chebytshev series). As explained in the previous paragraphs, the uniform
matrix can be (1, n, 0)-block-encoded. We assume that each diagonal operator X̂k can be (1, abe, ϵk,1)-

block-encoded and each Ŷk can be (1, abe, ϵk,2)-block-encoded where ϵk,1, ϵk,2 ∈ R+ are controllable
error parameters for all k = 0, ..., N . The product of block-encodings (lemma 2.4) implies that each
Âk can be (1, n+ 2abe, ϵk,1 + ϵk,2)-block-encoded. The linear combination of block-encodings (lemma

2.2) produces Ŵ a (λ, n + 2abe + ⌈log2(K + 1)⌉,
∑K

k=0 λk(ϵk,1 + ϵk,2))-block-encoding of the opera-

tor
∑K

k=0 λkAk with λk = (xmaxymax)k/k!, λ =
∑K

k=0 λk. In the following, we prove that Ŵ is a
(exmaxymax , b, ϵ)-block-encoding of the QLT operation with b = n+ 2abe + ⌈log2(K + 1)⌉.

6



First, notice that the QLT operation is approximated by a truncated Taylor series
∑K

k=0 λkÂk

which is, in turn, approximately block-encoded via Ŵ . We use the triangle inequality to express the
two differences as follows:

∥Q̂LT − λ(⟨0|⊗b ⊗ În)Ŵ (|0⟩⊗b ⊗ În)∥

≤ ∥Q̂LT −
K∑

k=0

λkÂk∥ + ∥
K∑

k=0

λkÂk − λ(⟨0|⊗b ⊗ În)Ŵ (|0⟩⊗b ⊗ În)∥
(11)

The first term of this inequality can be bounded using the norm inequality ∥M̂∥ ≤ ∥M̂∥F ≤ N maxi,j=0,...,N−1 |mi,j |
where ∥.∥ is the spectral norm and ∥.∥F is the Frobenius norm.

∥Q̂LT −
K∑

k=0

λkÂk∥ ≤ max
i,j=1,...,N

|exiyj −
K∑

k=0

(xiyj)
k

k!
| ≤ exmaxymax

(xmaxymax)K+1

(K + 1)!
≤ ϵ/3 (12)

for K = Θ(xmaxymax + ln(1/ϵ)

ln(e+
ln(1/ϵ)

xmaxymax
)
)5[40]. By definition of the block-encoding, the second term of

inequality 11 is bounded by:

K∑
k=0

λk(ϵk,1 + ϵk,2) ≤ 2exmaxymax max
k∈[K]

(ϵk,1, ϵk,2) ≤ ϵ/3 (13)

where ϵk,1, ϵk,2 = ϵ/(6exmaxymax) for all k ∈ [K]. It follows that Ŵ is a (λ, b, 2ϵ/3)-block-encoding of

the QLT operation. Next, observe the following property of block-encodings: If Û is a (α, a, ϵ1)-block-
encoding of a matrix Â and |α′ − α| ≤ ϵ2 with α′ > ∥A∥, then Û is a (α′, a, ϵ1 + ϵ2)-block encoding of
Â:

∥Â− α′(⟨0|⊗a ⊗ În)Û(|0⟩⊗a ⊗ În)∥
≤ ∥Â− α(⟨0|⊗a ⊗ În)Û(|0⟩⊗a ⊗ În)∥ + |α− α′|∥(⟨0|⊗a ⊗ În)Û(|0⟩⊗a ⊗ În)∥
≤ ϵ1 + ϵ2

(14)

where ∥(⟨0|⊗a ⊗ În)Û(|0⟩⊗a ⊗ În)∥ ≤ 1 since Û is unitary.
Thus, from Eq.12, |λ− exmaxymax | ≤ ϵ/3 implies that Ŵ is a (exmaxymax , b, ϵ)-block-encoding of the

QLT operation.
We shift our focus to the circuit complexity associated with the various operations required for the

block-encoding Ŵ . Specifically, we demonstrate how the introduction of n additional ancilla qubits
enables the implementation of the block-encoding Ŵ using O(K) controlled-block-encodings of X̂k and
Ŷk and a quantum circuit of size Õ(Kn) and depth Õ(K log(n)), where Õ correspond to a O scaling
up to a polylogarithmic factor in K, which is explicitely determined in the following.

The block-encoding Ŵ of the QLT is constructed from the linear combination of the K + 1 block-
encodings Ûk of the operators Âk. The linear combination of block-encodings consists of two PRE-
PARE routines acting on ⌈log2(K + 1)⌉ qubits and a SELECT(Û0, . . . , ÛK) routine. The PREPARE
routines can be implemented exactly with a circuit size O(K) and circuit depth O(K) without re-
quiring additional ancilla qubits [41]. The SELECT routine requires implementing a number K of

5the factor 3 in the expression log(3/ϵ) is asymptotically negligible.
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⌈log2(K + 1)⌉-controlled-Ûk operations [42]:

SELECT =

K∑
k=0

|k⟩ ⟨k| ⊗ Ûk =

K∏
k=0

(
|k⟩ ⟨k| ⊗ Ûk + (Î − |k⟩ ⟨k|) ⊗ Î

)

=

1∏
q1=0

1∏
q2=0

. . .

1∏
q⌈log2(K+1)⌉=0

(
(

⌈log2(K+1)⌉⊗
i=1

|qi⟩ ⟨qi|) ⊗ Ûk + (Î −
⌈log2(K+1)⌉⊗

i=1

|qi⟩ ⟨qi|) ⊗ Î

)

=

1∏
q1=0

1∏
q2=0

. . .

1∏
q⌈log2(K+1)⌉=0

(⌈log2(K+1)⌉⊗
i=1

σ̂1−qi
X ⊗ Î

)(
(

⌈log2(K+1)⌉⊗
i=1

|qi = 1⟩ ⟨qi = 1|) ⊗ Ûk

+ (Î − (

⌈log2(K+1)⌉⊗
i=1

|qi = 1⟩ ⟨qi = 1|)) ⊗ Î

)(⌈log2(K+1)⌉⊗
i=1

σ̂1−qi
X ⊗ Î

)

=

K∏
k=0

(σ̂k
X ⊗ Î)Cq1...q⌈log2(K+1)⌉(Ûk)(σ̂k

X ⊗ Î)

(15)

where σ̂k
X =

⊗⌈log2(K+1)⌉
i=1 σ̂1−qi

X is a one layer operator, k =
∑⌈log2(K+1)⌉

i=1 qi2
i−1 and Cq1...q⌈log2(K+1)⌉(Ûk)

is the control Ûk operation that applies Ûk only if all the qubits qi are in state |1⟩.
The multi-controlled-Ûk operation can be transformed into two multi-controlled NOT gates and a

single-controlled-Ûk using one ancilla qubit qA (Lemma 7.11 in [43]).

Cq1...q⌈log2(K+1)⌉(Ûk) ⊗ ÎqA

=

(
Cq1...q⌈log2(K+1)⌉(σ̂X,qA) ⊗ În

)(
Î⌈log2(K+1)⌉ ⊗ CqA(Ûk)

)(
Cq1...q⌈log2(K+1)⌉(σ̂X,qA) ⊗ În

)
(16)

where σ̂X,qA is a X-Pauli gates and ÎqA is the identity operator, both acting on the ancilla qubit qA.

Thus, the K multi-controlled Ûk are decomposed into 2K multi-controlled NOT gates and K
single-controlled Ûk. Depending on the number of available ancilla, the multi-controlled NOT gates
Cq1...q⌈log2(K+1)⌉(σ̂X) can be implemented with different methods. For a ⌈log2(K)⌉-controlled NOT gate,
most of the quantum circuits have a size inO(log(K)polylog(log(K))) and a depth inO(polylog(log(K)))
using no additional ancilla qubits [44, 45], one additional ancilla qubits [44, 45], two additional ancilla
qubits [46] or n additional ancilla qubits [47]. Therefore, the 2K ⌈log2(K)⌉-controlled NOT gates
require O(K log(K)polylog(log(K))) quantum gates and a circuit depth O(Kpolylog(log(K))). The
zeroed ancilla qubits used for the implementation of the multi-controlled-NOT operations can be taken
directly from the one that are introduced to parallelize the control as explained in the next paragraph
and as shown in Figure 1.

Since Ûk is equal to the product of three block-encodings, the implementation of the one-controlled-
Ûk is directly obtained by multiplying the single-controlled-ÛX,k, the single-controlled block-encoding

of the uniform matrix ÛA and the single-controlled-ÛY,k. Note that a single qubit cannot control mul-
tiple gates simultaneously. To overcome this issue, we introduce ancilla qubits that help to parallelize
the control operation. This procedure is standard and detailed in Appendix A.3. To summarize, if Û
is a n-qubit unitary implementable with a quantum circuit of size O(s(n)) and depth O(d(n)) then,
the one-control-Û operation Ca1

(U) = În ⊗ |a1 = 0⟩ ⟨a1 = 0| + Û ⊗ |a1 = 1⟩ ⟨a1 = 1| is implementable
with a quantum circuit of size O(s(n)+n) and depth O(d(n)+log(n)) by using n−1 additional ancilla
qubit. This protocol uses two COPY operators, noted Ĉ in Appendix A.3, which are composed of 2n
CNOT gates implemented in logarithmic depth O(log(n)).

As explained above, the block-encoding of Â can be constructed using n ancilla qubit and the
element-wise product of two Hadamard tower ÛA = ĈĤ⊗2nĈ, where Ĉ =

⊗n
i=1(CNOTqi→ai).

This block-encoding is made of 4n primitive quantum gates arranged in three layers. Therefore,
the parallelization-of-control procedures implies that the one-controlled ÛA operator is implementable
with a size scaling as O(n) and a depth as O(log(n)).

Then, we need to implement the two one-controlled-(1, abe, ϵ/(6e
xmaxymax))-block-encodings ÛX,k

and ÛY,k. We note that a similar parallelization of controls can be employed to implement C(ÛX,k)

and C(ÛY,k). The condition abe = O(n) implies that the n − 1 qubits already introduced for C(ÛA)
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are sufficient to preserve the depth scaling of ÛX,k and ÛY,k, up to a constant factor ⌈na/n⌉ = O(1)
(see Lemma A.3).

Summarizing, the overall circuit is made of two PREPARE operations, 2K ⌈log2(K + 1)⌉−-
controlled NOT gates, 2K copy operations, 2K single-control diagonal operations and K single-control
block-encoding to the uniform matrice. Thus, one needs O(K) single-control diagonal operations and
a quantum circuit of size and depth:

s(n, ϵ) = O

(
K +K log(K)polylog(log(K)) +Kn+Kn

)

= O

(
K(n+ log(K)polylog(log(K)))

)
= Õ(Kn)

d(n, ϵ) = O

(
K +Kpolylog(log(K)) +K log(n) +K

)

= O

(
K(log(n) + polylog(log(K)))

)
= Õ(K log(n))

(17)

If we note sU (n, ϵ) and dU (n, ϵ), the maximum size and depth of the block-encodings ÛX,k,ÛY,k then,
the overall quantum circuit size is O(s(n, ϵ) + KsU (n, ϵ/(6exmaxymax))) and the depth is O(d(n, ϵ) +
KdU (n, ϵ/(6exmaxymax))).

The proof is similar for the Chebytchev expansion.

Remark. As explained in the previous proof, the condition on the ancilla abe = O(n) enables the
implementation of the C(ÛX,k) and C(ÛY,k) (resp. C(ÛI,k) and C(ÛT,k)) with the same depth scalings

as ÛX,k and ÛY,k (resp. ÛI,k and ÛT,k) up to an O(log(n)) term by using the parallelization of control
techniques presented in Appendix A.3.

Consequently, when the block-encodings of the non-unitary diagonal operators are implementable
with a polylogarithmic depth in n and 1/ϵ, the QLT is also implementable in polylog(n, 1/ϵ) depth
on a quantum computer. In some cases, the diagonal operators can be implemented with a circuit
depth independent of N (see Appendix B or [37, 38]). This implies that the QLT is implementable
with a depth scaling with N as O(log(log(N))). The scheme of the quantum circuit associated to the
block-encoded of the QLT is presented in Figure 1. In the following section 4, we generalize these
results to QLT with complex coefficients.

3 Quantum Laplace Transform with complex coefficients

For the Taylor expansion, the implementation of the QLT with complex coefficients is almost identical
as in the real case. The only difference appears in the non-unitary diagonal operators defined in
Eq.(10), which have complex eigenvalues instead of real ones. To adapt the Chebytshev expansion
of the exponential for the complex case, the coefficients need to be redefined, because the Chebyshev
polynomials Tk are defined on [−1, 1]. Hence, the real and imaginary parts of yj = ℜ(yj) + iℑ(yj),
with i2 = −1, must be introduced:

exiyj = exiℜ(yj)eixiℑ(yj) = ex̃iỹjex̃i
′ỹj

′
(18)

with the new variables:

x̃i = xi max
j∈[N ]

|ℜ(yj)| ∈ C

ỹj = ℜ(yj)/ max
j∈[N ]

|ℜ(yj)| ∈ [−1, 1]

x̃′i = ixi max
j∈[N ]

|ℑ(yj)| ∈ C

ỹ′j = ℑ(yj)/ max
j∈[N ]

|ℑ(yj)| ∈ [−1, 1]

(19)
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Thanks to this change of variable, each of the two exponential can be expanded in a Chebytshev series
ex̃iỹj =

∑∞
k=0(2−δk)Ik(x̃i)Tk(ỹj) and ex̃i

′ỹj
′

=
∑∞

k′=0(2−δk′)Ik′(x̃′i)Tk′(ỹj)
′. The error introduced by

truncating these series can be bounded by using the relationship between the modified Bessel function
of the first kind Ik and the Bessel function of first kind Jk: for all k ∈ N and z ∈ C Ik(z) = (−i)kJk(iz)
(Eq. 9.3.6 in [48]). Then, the Bessel function is bounded as |Jk(z)| ≤ |z/2|ke|ℑ(z)|/k! for all k ∈ N∗

and z ∈ C (Eq. 9.1.62 in [48]). Using these results, one can show for all 1 ≤ i, j ≤ N :

|exiyj −
K∑

k=0

K∑
k′=0

(2 − δk)(2 − δk′)Ik(x̃i)Ik′(x̃′i)Tk(ỹj)Tk′(ỹ′j) ≤
8e

5
2xmaxymax

(K + 1)!
|xmaxymax

2
|K+1 (20)

which is asymptotically ϵ-small for K = Θ(xmaxymax + ln(1/ϵ)

ln(e+
ln(1/ϵ)

xmaxymax
)
) (see Appendix A.2 for the proof

of this inequality). The double sum induces a quadratic overhead in the number of diagonal operators
compared to the QLT with real coefficients. These results are summarized in the following theorem:

Theorem 3.1. Quantum Laplace Transform with complex coefficients
Let n ∈ N, abe ∈ N, ϵ ∈ R+, (x1, . . . , xN ) ∈ CN , (y1, . . . , yN ) ∈ CN with N = 2n, xmax =

maxi∈[N ] |xi|, ymax = maxi∈[N ] |yi|, abe = O(n).

• Taylor expansion: the n-qubit Q̂LT with complex coefficients {xi}i∈[N ], {yj}j∈[N ] can be (exmaxymax , 2n+

2abe+⌈log2(K+1)⌉, ϵ)-block-encoded using O(K) one-controlled operators C(ÛX,k) and C(ÛY,k),

where ÛX,k, ÛY,k are the (1, abe, ϵ/(6e
xmaxymax))-block-encodings of X̂k =

∑N
i=1(xi/xmax)k |i⟩ ⟨i|

and Ŷk =
∑N

j=1(yj/ymax)k |j⟩ ⟨j|, and an additional quantum circuit of size Õ(nK) and depth

Õ(log(n)K) with K = Θ(xmaxymax + ln(1/ϵ)

ln(e+
ln(1/ϵ)

xmaxymax
)
).

• Chebytchev expansion: the n-qubit Q̂LT with complex coefficients {xi}i∈[N ], {yj}j∈[N ] can be

(α, 2n+ 2abe + ⌈2 log2(K + 1)⌉, ϵ)-block-encoded using O(K2) one-controlled operators C(ÛI,k,k′)

and C(ÛT,k,k′), where ÛI,k,k′ , ÛT,k,k′ are the (1, abe, ϵ/(6α))-block-encodings of Îk,k′ and T̂k,k′ and

an additional quantum circuit of size Õ(nK2) and depth Õ(log(n)K2) with K = Θ(xmaxymax +
ln(1/ϵ)

ln(e+
ln(1/ϵ)

xmaxymax
)
).

Where α = e2xmaxymax(2exmaxymax/2 − 1)2, Îk,k′ =
∑N

i=1 Ik(x̃i)Ik′(x̃′i)/(Ik,maxI
′
k′,max) |i⟩ ⟨i|, T̂k,k′ =∑N

j=1 Tk(ỹj)Tk′(ỹ′j) |j⟩ ⟨j|, and Õ corresponds to a O scaling up to a factor polylogarithmic in K.

The proof is similar to the proof presented in the real case.
The QLT with complex coefficients can be used to approximate the continuous Laplace transform

as shown in Appendix C.

4 Discussion

Non-unitary diagonal operators. The efficiency of the QLT relies on the quantum circuits asso-
ciated with the non-unitary diagonal operators that encode the input data {xi}1≤i≤N and {yj}1≤j≤N .
Their implementation is not straightforward and depends directly on the structure of their diagonal
coefficients. For an arbitrary n-qubit diagonal operator, exact implementations require an amount of
resources that scales exponentially with n in terms of either depth or ancilla qubits [49, 50, 38]. Four
cases with efficient implementations are referenced. The first one concerns sparse diagonal operators
for which only s of eigenvalues are non-vanishing. In this case, the block-encoding can be constructed
with two s-sparse diagonal unitaries each controlled by the same ancilla qubit (see section 5 in [38]).
The diagonal unitaries are themselves composed of s-multicontrolled phase gates which implement
the eigenvalues one by one (see sequential decomposition in [38]). The second case of interest deals
with diagonal operators that depend on functions f with some smoothness properties. In this case,
the eigenvalues of the diagonal operator are directly given by the values of the function at different
positions f̂ =

∑
x f(x) |x⟩ ⟨x|. When the function f can be expanded in a series, such as Fourier or

Walsh-Hadamard: one can implement the associated series at a cost proportional to the number of
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terms implemented. If f is continuously differentiable, a Walsh-Hadamard expansion of f provides
an ϵ-approximation of the associated diagonal operator with complexity O(||f ′||∞/ϵ) [37, 51]. If the
eigenvalues depend on a periodic and analytic function that is Fourier expandable with an exponential
convergence rate, the number of terms required to reach an accuracy ϵ > 0 is logarithmic in 1/ϵ, as
is the circuit depth. To implement the Fourier series, one can use the generalized quantum signal
processing protocol (GQSP) [52]. The GQSP protocol implements polynomials of unitary operators.
In this case, the Fourier series of the n-qubit diagonal operator corresponds directly to a polynomial of
a tensor product of n phase gates. This polynomial can be (1, n, ϵ)-block-encoded with a circuit depth
O(log(1/ϵ)) implying that the QLT has a polylogarithmic depth (this case is detailed in Appendix B).
The last method consists of expressing the eigenvalues as a closed-form operation. By using arithmetic
routines, one can implement the associated diagonal operation with primitive quantum gates [53, 54].
The synthesis of efficient quantum circuits for unitary and non-unitary diagonal operators is an active
area of research [50, 52, 38] and it is likely that more efficient methods will be developed in the coming
years.

Applications. The QLT introduced in this work is not a quantum algorithm on its own but it can
be used as a routine for different quantum algorithms targeting applications that leverage Laplace
transforms. For instance, the Z-transform is a particular case of the discrete Laplace transform which
is used in digital signal processing [55, 56] and solving difference equations [57, 58]. The Z-transform of

a sequence {s(i)}0≤i≤N−1 is defined by Z{s(i)}(z) =
∑N−1

i=0 s(i)z−i =
∑N−1

i=0 s(i)e−i ln(z). Computing

Z{s(i)} from a sequence encoded in a qubit state |s⟩ ∝
∑N−1

i=0 s(i) |i⟩ at N different {zj}0≤j≤N−1 ∈ RN

is obtained using the QLT associated with the coefficients xi = i and yj = ln(zj): |Z{s(i)}⟩ ∝
Q̂LT |s⟩ up to normalization. Additionally, the Z-transform enables the creation of generating function
associated with finite probability distributions encoded in a qubit state. Other examples directly
involving a discrete Laplace transform arise in physics with the decay of a radioactive sample containing
N isotope species, in quantum Monte Carlo methods to compute a spectral function A(ω) from the
imaginary-time Green function G(τ) or in statistical mechanics to compute the partition function Z(β)
at different inverse temperatures βj for systems with varying energy levels and multiplicities [30].

The continuous Laplace transform is studied more extensively than the discrete Laplace transform,
and the QLT can approximate the continuous Laplace transform. When it is well-defined, the contin-
uous Laplace of a function f is L{f}(z) =

∫ +∞
0

f(t)e−ztdt. A way to approximate L{f} is to truncate

and discretize the integral as L{f}(z) ≃
∑N−1

i=0 eztif(ti)tmax/N . In particular, if the values f(ti) are

encoded in a qubit state |f⟩ ∝
∑N−1

i=0 f(ti) |i⟩, one can use the QLT to approximate the qubit state that

encodes the continuous Laplace transform at various zj ∈ C: |L{f}⟩ ∝
∑N−1

j=0 L{f}(zj) |j⟩ ≃ Q̂LT |f⟩.
Similarly, the inverse Laplace transform can be approximated using a QLT, especially when the inte-
gration is given by a closed curve in C. More details are given in Appendix C.

Probability of success. One drawback of using a non-unitary operation Â on quantum comput-
ers is that the block ÛÂ applied on a qubit |f⟩ |0⟩⊗b

produces a state Â |f⟩ |0⟩⊗b
+ |ϕ⊥⟩ with |ϕ⊥⟩

being orthogonal to the state Â |f⟩ |0⟩⊗b
. The amplitude of the target state is therefore smaller

than 1. Performing many non-unitary operations can lead to a prohibitively small probability of
success. To circumvent this issue, one can performed amplitude amplification techniques [59, 60].
Another interesting case is when the probability of success converges toward a constant indepen-
dent of N and ϵ. For instance, when the coefficients of the QLT and the qubit state depends on
continuously differentiable functions f, g, h defined on [0, 1] as xi = f(i/N), yj = g(j/N) for all

i, j = 0, . . . , N − 1 and |h⟩ = (1/∥h∥2,N )
∑N−1

i=0 h(i/N) |i⟩, then the probability of success converges

toward e−∥f∥∞∥g∥∞
∫ 1

0
|
∫ 1

0
ef(x)g(y)h(y)dy|2dx/

∫ 1

0
|h(y)|2dy = Θ(1).

Potential quantum advantage. The performance of the QLT is presented in terms of size, depth
and number of ancilla qubits but other metrics may be more relevant depending on hardware specifica-
tions. The depth is related to the circuit runtime but, in some cases, its scaling could be significantly
affected by hardware constaints. For instance, a linear connectivity of the qubits prevents any double-
logarithmic scaling of the quantum circuit since one qubit can ”communicate” with another only after
traversing all the qubits between them. Another constraint is the basis of universal primitive quantum
gates permitted by a given quantum processor. In this work, we synthesized the quantum circuit in
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terms of single- and two-qubit gates without further specifications on the gate set. In practice, some
specific quantum gates might be more difficult to implement than others. For example, T gates can
be a limiting factor to achieve parallelization of quantum gates since the production of parallel T
gates is limited by the number of parallel magic-state factories that produce them. These issues are
common across quantum algorithms and routines and the full potential of quantum computers will
only be realized with fault-tolerant digital quantum processors offering high connectivity and paral-
lelized quantum gate implementation. In this case, the presented quantum circuits of the QLT can
offer a super-exponential or a double-exponential speedup in time compared to performing this same
operation on a classical computer. However, this routine speedup is not an algorithmic speedup, as
we are not solving any decision problem in this work.

Additionally, we note that this research was developed independently of the very recent work [61].
In that paper, the authors introduce a quantum eigenvalue transformation based on a specific type of
matrix Laplace transformation, enabling the implementation of certain classes of non-unitary operators
up to some approximations. This approach is complementary to the one presented here, where we
consider the Laplace transform as an operation on qubit states.

5 Conclusion

This work introduces the quantum Laplace transform (QLT) operation, defined as (Q̂LT )i,j = exiyj/N
with xi, yj ∈ C. This operation corresponds to an N × N discrete Laplace transform. We demon-
statre that the QLT can be approximated with an error of at most ϵ > 0 with O(log(1/ϵ)) diagonal
operators and a quantum circuit of depth Õ(log(log(N)) log(1/ϵ)), size Õ(log(N) log(1/ϵ)), and us-
ing O(log(N) + log(1/ϵ)) ancilla qubits. In many cases, the diagonal operators are implementable
with shallow-depth quantum circuits. This leads to the result that discrete Laplace transforms can
be executed with exponentially fewer primitive operations on quantum computers than on classical
computers, potentially achieving a double-exponential reduction in computational time. These con-
structions are the first in the literature to enable the implementation of the discrete Laplace transform
on quantum computers. Notably, the QLT can also approximate both the continuous Laplace trans-
form and its inverse on quantum computers.

Similar to the fast quantum Fourier transform [62], the QLT offers a routine speedup that could be
leveraged in future research. Potential directions include developing quantum algorithms for problems
whose classical solutions rely on Laplace transforms, exploring opportunities for algorithmic quantum
advantage, and creating entirely new quantum algorithms based on the QLT. Futhermore, various
classical methods for the inverse Laplace transform could be adapted to the quantum computing
framework using the ideas presented here [63].
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A Additional lemmas and proofs

A.1 Proof of Lemma 2.1

The first inequality is a direct consequence of Taylor’s theorem: For any (K + 1)-continuously differ-
entiable function f defined on an interval [a, b], one has:

f(b) =

K∑
k=0

f (k)(a)

k!
(b− a)k +

∫ b

a

f (K+1)(s)

K!
(b− s)Kds. (21)

The second inequality is inspired from equation (85) in [64] and equation (56) in [40]. The proof
uses the fact that |Tk(y)| ≤ 1 for all k ∈ N, y ∈ [−1, 1], the equality Ik(z) = (−i)kJk(iz),∀z ∈ C, k ∈ N,
where Jk is the Bessel function of order k, i2 = −1, and the bound |Jk(z)| ≤ |z/2|ke|ℑ(z)|/k! valid for
all k ∈ N∗ and z ∈ C, where ℑ(z) is the imaginary part of z (Equation 9.1.62 in [48]).

|2
∞∑

k=K+1

Ik(x̃i)Tk(ỹj)| ≤ 2exmaxymax

∞∑
k=K+1

1

k!
| x̃i

2
|k

≤ 2exmaxymax

(K + 1)!
| x̃i

2
|K+1

∞∑
k=0

(K + 1)!

(K + 1 + k)!
| x̃i

2
|k

≤ 2exmaxymax

(K + 1)!
| x̃i

2
|K+1

∞∑
k=0

(
1

2
)k

(22)

Last inequality is valid under the condition K + 1 > |x̃i| or K + 1 > xmaxymax.
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A.2 Proof of inequality 20

The QLT with complex coefficients can be approximated with a double Chebyshev series as:

|exiyj −
K∑

k=0

K∑
k′=0

(2 − δk)(2 − δk′)Ik(x̃i)Ik′(x̃′i)Tk(ỹj)Tk′(ỹ′j)|

≤ |ex̃iỹj (ex̃
′
iỹ

′
j −

K∑
k′=0

Ik′(x̃′i)Tk′(ỹ′j))| + |(
K∑

k′=0

Ik′(x̃′i)Tk′(ỹ′j))(e
x̃iỹj −

K∑
k=0

Ik(x̃i)Tk(ỹj))|

≤ exmaxymax(
4exmaxymax

(K + 1)!
| x̃

′
i

2
|K+1) + exmaxymax(2exmaxymax/2 − 1)(

4exmaxymax

(K + 1)!
| x̃i

2
|K+1)

≤ e
5
2xmaxymax

8

(K + 1)!
|xmaxymax

2
|K+1

(23)

which is valid for K + 1 ≥ xmaxymax.

A.3 Lemmas for parallelizing controls

We recall the lemma II.I of [38]. Consider a qubit in an arbitrary state |ψ⟩ = α |0⟩+β |1⟩ and a register

of na − 1 zeroed ancilla qubit in state |0⟩⊗(na−1)
. The copy unitary Ĉ copies acts as:

Ĉ(α |0⟩ + β |1⟩) ⊗ |0⟩⊗(na−1)
= α |0⟩⊗na + β |1⟩⊗na . (24)

Lemma A.1. Let na ∈ N∗, the “copy” unitary Ĉ acting on na qubits can be implemented using na−1
CNOT gates with a depth ⌈log2(na)⌉.

Proof. Note first that a set of q CNOT gates applied to different qubits can be implemented in parallel
with a circuit depth 1. Define k = ⌈log2(na)⌉. A direct recursion on k′ = 1, ..., k−1 proves that parallel
CNOT gates can double the number of “copied” qubit at each step, so each newly copied qubit can
be used to copy another one at the next step as

(α |0⟩ + β |1⟩) ⊗ |0⟩⊗(na−1) ĈNOT 0→1−−−−−−−→ (α |0⟩⊗2
+ β |1⟩⊗2

) ⊗ |0⟩⊗(na−2)

ĈNOT 0→2⊗ĈNOT 1→3−−−−−−−−−−−−−−−→ (α |0⟩⊗4
+ β |1⟩⊗4

) ⊗ |0⟩⊗(na−4)

...

⊗2k
′
−1

j=0 ĈNOT
j→(j+2k

′
)−−−−−−−−−−−−−−−→ α |0⟩⊗2k

′+1

+ β |1⟩⊗2k
′+1

⊗ |0⟩(na−2k
′+1)

,

(25)

where ĈNOT j→(j+2k′ ) is the CNOT gate controlled by the j-th qubit and applied on (j + 2k
′
)-th

zeroed qubit. After k − 1 steps, the qubit state is (α |0⟩⊗2k−1

+ β |1⟩⊗2k−1

) ⊗ |0⟩⊗(na−2k−1)
. A last

layer of CNOT gates suffices to produce the state α |0⟩⊗na + β |1⟩⊗na .

Lemma A.2. (Parallel control of one layer of quantum gates) Let n ∈ N∗, na ∈ N∗, 1 ≤ na ≤ n,
{qi}1≤i≤n and {ai}1≤i≤na two sets of n and na qubits, Ĝi ∈ U(4) for i = 1, . . . , na such that each Ĝi

can be implemented on a distinct subset of the {qi}1≤i≤n qubits in parallel of the others, Îq denotes the

identity operator acting on the {qi}1≤i≤n qubits and Cai
(Û) = Î⊗|ai = 0⟩ ⟨ai = 0|+Û⊗|ai = 1⟩ ⟨ai = 1|

the operator Û controlled by the ai qubit, the operator Ca1
(
⊗na

i=1 Ĝi) = Îq⊗|a1 = 0⟩ ⟨a1 = 0|+
⊗na

i=1 Ĝi⊗
|a1 = 1⟩ ⟨a1 = 1| verifies

Ca1(

na⊗
i=1

Ĝi) = ⟨0|⊗(na−1)
(Ĉ(

na⊗
i=1

Cai(Ĝi))Ĉ) |0⟩⊗(na−1)
(26)

with Ĉ the copy unitary defined Eq 24 and therefore can be (1, na − 1, 0)-block-encoded with a circuit
of depth O(log(na)) and size O(na).
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Proof. We consider the 2n-qubit operation Ĉ(
⊗na

i=1 Cai(Ĝi))Ĉ.

Ĉ(

na⊗
i=1

Cai
(Ĝi))Ĉ |q⟩ ⊗ (α |0⟩ + β |1⟩) ⊗ |0⟩⊗(na−1)

= Ĉ(

na⊗
i=1

Cai
(Ĝi)) |q⟩ ⊗ (α |0⟩⊗na + β |1⟩⊗na)

= Ĉ(α |q⟩ ⊗ |0⟩⊗na + β(

na⊗
i=1

Ĝi) |q⟩ ⊗ |1⟩⊗na) = (α |q⟩ ⊗ |0⟩ + β(

na⊗
i=1

Ĝi) |q⟩ ⊗ |1⟩) ⊗ |0⟩⊗(na−1)

= Ca1
(

na⊗
i=1

Ĝi) |q⟩ ⊗ (α |0⟩ + β |1⟩) ⊗ |0⟩⊗(na−1)

(27)

Each Ĉ is equal to na CNOT gates arranged in ⌈log(na)⌉ layers (see lemma A.1) and the (
⊗na

i=1 Cai
(Ĝi))

operations is composed of one layer of na two-qubit and three-qubit gates. The three qubit gates are de-
composable into O(1) one and two-qubit quantum gates using a set of universal quantum gates. There-
fore, the operation Ca1

(
⊗na

i=1 Ĝi) can be (1, na, 0)-block-encoded with a circuit of depth O(log(na))
and size O(na)

Lemma A.3. (Control-unitary with same depth scaling) Let n ∈ N∗, na ∈ N∗ and Û be a n-qubit
unitary implementable with a quantum circuit of size O(s(n)) and depth O(d(n)). Then, the one-
control-Û operation Ca1(U) = În ⊗ |a1 = 0⟩ ⟨a1 = 0|+ Û ⊗ |a1 = 1⟩ ⟨a1 = 1| can be (1, na − 1, 0)-block-
encoded with a quantum circuit of size O(s(n) + na) and depth O(⌈n/na⌉d(n) + log(na)).

Proof. The n-qubit unitary Û with depth d can be represented as a product of d layers of primitive
quantum gates Û =

∏d
i=1(

⊗ni

j=1 Ûi,j) where ni is the number of primitive quantum gates in the i−th

layer ni ≤ n and the Ûi,j ∈ U(4) are single- or two-qubit unitaries. Each layer can be decomposed into

⌈ni/na⌉ layers of at most na gates:
⊗ni

j=1 Ûi,j =
∏⌈ni/na⌉−1

k=0 (
⊗ni,k

j=1 Ûi,j,k) with
∑⌈ni/na⌉−1

k=0 ni,k = ni,

ni,k ≤ na for all k = 0, . . . , ⌈ni/na⌉ − 1 and Ûi,j,k = Ûi,j+
∑k

k′=0
ni,k′ . Then, using the Lemma A.2 on

parallel controls for one layer of quantum gates, one has:

Ca1(Û) = Ca1(

d∏
i=1

⌈ni/na⌉−1∏
k=0

(

ni,k⊗
j=1

Ûi,j,k)) =

d∏
i=1

⌈ni/na⌉−1∏
k=0

Ca1(

ni,k⊗
j=1

Ûi,j,k))

=

d∏
i=1

⌈ni/na⌉−1∏
k=0

Ĉ

ni,k⊗
j=1

Caj
(Ûi,j,k)Ĉ = Ĉ(

d∏
i=1

⌈ni/na⌉−1∏
k=0

ni,k⊗
j=1

Caj
(Ûi,j,k))Ĉ

(28)

where Ĉ is the copy unitary defined Eq24 acting on na qubits. The Ĉaj
(Ûi,j,k) are two-qubit or

three-qubits gates. For the three qubit gates, canonical methods exist to decompose them into O(1)
one-qubit and two-qubit gates. Therefore, the operation Ca1

(Û) can be (1, na, 0)-block-encoded with
a quantum circuit of size O(na + s(n)) and depth O(⌈n/na⌉d(n) + log(na)).

In particular, when na = n, the control-Û operation can be (1, n−1, 0)-block-encoded with a circuit
of depth O(d(n) + log(n)).

B Logarithmic-depth circuit for non-unitary diagonal opera-
tor

In the past few years, different methods of quantum signal processing have been developed to implement
polynomials of unitary operators [65, 40, 52]. It has been highlighted that Fourier series associated to
diagonal operators can be block-encoded using these protocols [52].

Consider a real-valued function g defined on [0, 1] and the following non-unitary diagonal operator:

D̂ =

N−1∑
j=0

g(j/N) |j⟩ ⟨j| (29)
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When the function g can be represented exactly by a Fourier series, one can approximate g using
a truncated Fourier series:

g̃M (x) =

M∑
k=−M

agke
2iπkx (30)

with agk =
∫ 1

0
g(x)e−2iπkxdx the k-th Fourier coefficient of g. In particular, if g is analytic and periodic,

and there exist two constants C > 0 and R > 1 such that ∀M ∈ N, ∥∂(M)
x g∥∞ ≤ CM !/RM , the Fourier

series g̃M converges exponentially to g as M increases.
The associated diagonal operator D̂M =

∑N−1
j=0 g̃M (j/N) |j⟩ ⟨j| can be recast as a polynomial of

the simple operator Ûω =
∑N−1

j=0 e2iπj/N |j⟩ ⟨j| [52]:

D̂M =

M∑
k=−M

agk(e2iπx̂)k = e−2iπMx̂
2M∑
k=0

agk−M (e2iπx̂)k = e−2iπMx̂P (Ûω) (31)

with x̂ =
∑N−1

j=0 (j/N) |j⟩ ⟨j|, P (X) =
∑2M

k=0 a
g
k−MX

k.
The generalized quantum signal processing (GQSP) protocol enables the block-encoding of polyno-

mial of unitaries with a cost proportional to the degree d of the polynomial. The associated quantum
circuit is composed of d single qubit rotations and d one-controlled Ûω. The angles of the one-qubit
rotations that produce the polynomial P require to be computed with a specific classical optimization
[52], or Fourier-based classical integration [66]. The GQSP method associated with the parallelization
of controls lemmas provided in Appendix A.3, and the exponential convergence of the Fourier series,
provides an efficient logarithmic-depth method to block-encode non-unitary diagonal operators. This
result is summarized in the following lemma.

Lemma B.1. Logarithmic-depth quantum circuits for Fourier series approximation of diagonal oper-
ators

Let n ∈ N∗, N = 2n, C > 0, R > 1, D̂ =
∑N−1

j=0 g(j/N) |j⟩ ⟨j| with g : [0, 1] → R a periodic and

analytic function satisfying ∀M ∈ N, ∥∂(M)
x g∥∞ ≤ CM !/RM with ∥g∥∞ = maxx∈[0,1] |g(x)|. Then,

the diagonal operator D̂ can be (∥g∥∞, n, ϵ)-block-encoded using a quantum circuit of depth O(log(1/ϵ))
and size O(n log(1/ϵ)).

Proof. First, one can show, using similar computations as those presented in the Appendix of [67],
that for all M ∈ N,:

∥g − g̃M∥∞ ≤ 2
∥∂(M)

x g∥∞
(2π)M (M − 1)M (M−1)

(32)

Then, there exist two constants C > 0 and R > 1 such that for all M ∈ N, ∥∂(M)
x g∥∞ ≤ CM !/RM :

∥g − g̃M∥∞ ≤ 2C
M !

(2πR)M (M − 1)M (M−1)
≤ 2C

√
2πM3

(2πeR)M (M − 1)
e

1
12M = ϵM (33)

using Stirling’s inequality M ! ≤
√

2πM(M/e)Me
1

12M . It suffices to choose M scaling as Θ(log(1/ϵ)) to
get an asymptotic ϵ-approximation of g using its truncated Fourier series g̃M .

Then, the generalized quantum signal processing protocol [52] allows the implementation of poly-
nomial of operators without additional restrictions on the polynomial other than |P (eiθ)| ≤ 1 for

θ ∈ [0, 2π[. We refer to Corollary 14 of [52]: Let f(x) =
∑d

k=0 αke
2iπkx/N be a function such that

∥f∥∞ ≤ 1, it is possible to (1, 1, 0)-block encode the n-qubit operator
∑d

k=0 f(x) |x⟩ ⟨x| with O(dn)

single- and two-qubit gates. In our case, consider the normalized function ˜̃gM = g̃M/(∥g∥∞ + ϵM ) such
that ∥˜̃gM∥∞ ≤ 1, and:

∥ g

∥g∥∞
− ˜̃gM∥∞ ≤ 2ϵM

∥g∥∞
(34)

The GQSP protocol, using the polynomial PM (X) =
∑2M

k=0(αk−M/(∥g∥∞ + ϵM ))Xk and the unitary

Ûω =
∑N−1

j=0 e2iπj/N |j⟩ ⟨j|, produces a (1, 1, 0)-block encoding Ŵ of D̃M =
∑d

k=0
˜̃gM (x) |x⟩ ⟨x|. This

operator Ŵ is a (∥g∥∞, 1, 2ϵM )-block-encoding of D̂:

∥D̂ − ∥g∥∞(⟨0| ⊗ În)Ŵ (|0⟩ ⊗ În)∥2 ≤ ∥g∥∞∥ g

∥g∥∞
− ˜̃gM∥∞ ≤ 2ϵM (35)

19



The associated quantum circuit has a size and depth of O(Mn), using one ancilla qubit. The factor
n in the depth arises from the one-controlled Ûω. The operator Ûω corresponds to n one-qubit phase
gates. To control the n one-qubit gates with a depth of O(log(n)), one can use n−1 ancilla qubits and
Lemma A.2 to parallelize the controls. The diagonal operation can, therefore, be (∥g∥∞, n, ϵ)-block-
encoded with a circuit depth of O(log(n) log(1/ϵ)) and a size of O(n log(1/ϵ)).

C Relation between the quantum Laplace transform, the con-
tinuous Laplace Transform and its inverse

The continuous Laplace and its inverse are more commonly used in the literature than the discrete
Laplace transform. Their implementation on classical and quantum computers requires some ap-
proximations. In the following, we consider the problem of preparing a qubit state that encodes the
continuous Laplace transform of a function f from a qubit state encoding the values of f . The ap-
proach is straightforward and consists of truncating and discretizing the integral of the continuous
Laplace transform. The associated operation is directly given by the quantum Laplace transform and
we estimate the associated complexity. Consider the continuous Laplace transform of a real-valued
function f : R+ → R, defined as:

L{f}(σ, ω) =

∫ +∞

0

e−(σ+iω)tf(t)dt (36)

with σ, ω ∈ R and i2 = −1. The integral exists for σ > a if [68].:

• (i) f is locally integrable,

• (ii) there exist a t0 ≥ 0 and k, a ∈ R such that

|f(t)| ≤ keat, ∀t ≥ t0, (37)

• (iii) for all t ∈ R+, there is a neighborhood in which f is of bounded variation.

Consider the n-qubit vector whose components are directly given by f :

|f⟩ =
1

∥f∥2,N

N−1∑
j=0

f(tj) |j⟩ (38)

with ∥f∥2,N =
√∑N−1

j=0 |f(tj)|2 ensuring normalization.

We show, starting from |f⟩, how to implement an ϵ-approximation in vector 2-norm of the qubit
state encoding the Laplace transform of f at different {σj}0≤j≤N−1 ∈ RN and {ωj}0≤j≤N−1 ∈ RN :

|L{f}⟩ =
1

∥L{f}∥2,N

N−1∑
j=0

L{f}(σj , ωj) |j⟩ (39)

with ∥L{f}∥2,N =
√∑N−1

j=0 |L{f}(σj , ωj)|2

Two approximations are performed to approximate the values of the Laplace transform L{f}(σj , ωj),
the first one is the truncation of the integral and the second one is its discretization. When f is of
exponential order (condition (ii)), the integral can be ϵ-approximated with a truncation parameter
scaling with ϵ as O(log(1/ϵ)):

Lemma C.1. (Truncation error of the integral)
Let ϵ ∈ R+, f be a real-valued function satisfying conditions (i),(ii),(iii) stated above, with param-

eters t0 ∈ R+, k, a ∈ R and ω ∈ R, σ ∈ [σmin, σmax] where σmin > a. Then, the Laplace transform
L{f}(σ, ω) of f can be ϵ-approximated by:∫ M

0

e−(σ+iω)f(t)dt (40)
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with

M = max(t0,
1

σmin − a
log(

k

ϵ(σmin − a)
)) (41)

Proof.

|
∫ +∞

0

e−(σ+iω)tf(t)dt−
∫ M

0

e−(σ+iω)tf(t)dt| = |
∫ +∞

M

e−(σ+iω)tf(t)dt|

≤ k

∫ +∞

M

e−(σ−a)tdt ≤ ϵ

(42)

The integral
∫M

0
e−(σ+iω)tf(t)dt can be numerically estimated by using brute force quadrature

based on step functions. When the integrand is well-behaved (continuously differentiable with bounded
variations), the integral can be ϵ-approximatedl by a Riemann sum, with the number of interval scaling
as O(M2/ϵ):

Lemma C.2. (Discretization error of the integral)
Let M ∈ R∗

+, N ∈ N∗, σ, ω ∈ R and f : [0,M ] → R be a continuously-differentiable function. Then,

∥
∫ M

0

e−(σ+iω)tf(t)dt−M

N

N∑
i=1

e−(σ+iω)tif(ti)∥ ≤ M2

2N
(
√
σ2 + ω2 max

t∈[0,M ]
|e−σtf(t)|+ max

t∈[0,M ]
|e−σtf ′(t)|)

(43)
with ti = (i− 1)/N for all i = 0, . . . , N .

The following theorem summarizes the application of the previous lemmas for approximating the
qubit state |L{f}⟩.

Theorem C.3. (Continuous Laplace transform)
Let ϵ > 0, n ∈ N∗, N = 2n, f : R+ → R a continuously differentiable function satisfying conditions

(i), (ii), (iii) and f ′ being also of exponential type, i.e., f(t) ≤ keat and f ′(t) ≤ k′ea
′t for t ≥ t0

and k, k′, a, a′ ∈ R+. We assume that the Laplace transform L{f} of f is continuously differentiable
with bounded variations on a smooth curve C = {z(s) ∈ C, s ∈ [0, 1]} of bounded length. We define
σj = ℜ(z(j/N)) > max(a, a′) and ωj = ℑ(z(j/N)) for j = 0, . . . , N − 1. Additionally, we also assume
N ≥M2/ϵ with M defined in Equation 41.

Then, the n-qubit state |L{f}⟩, which encodes the Laplace transform of f on the curve C at the

{σj}1≤j≤N and {ωj}1≤j≤N , can be prepared from |f⟩ = 1
∥f∥2,N

∑N−1
i=0 f(i∆t) |i⟩, where ∆t = M/N ,

with an error bounded as O(ϵ) using the QLT associated to the xi = i∆t and yj = σj + iωj coefficients
once. The probability of success is lower bounded as Ω(ϵL), where L = (a+2 maxs∈[0,1] |z(s)|)/(mins∈[0,1] ℜ(z(s))−
a) ≥ 2.

Proof. First, note that, if the error in the implementation of the QLT is ϵ/2, then the QLT can be

(exmaxymax , b, ϵ/2)-block-encoded by a unitary ÛQLT such that ÛQLT |f⟩ |0⟩⊗b
= e−xmaxymaxQ̂LT |f⟩ |0⟩⊗b

+
|ϕ⟩⊥. Here, xmax = M(N − 1)/N , ymax = max0≤j≤N−1 |σj + iωj | and |ϕ⟩⊥ is a vector orthogonal to

Q̂LT |f⟩ |0⟩⊗b
. The probability of measuring the ancilla qubits in state |0⟩⊗b

is given by:

P = ∥e−xmaxymaxQ̂LT |f⟩ ∥22 =
e−2xmaxymax

M2∥f∥22,N

N−1∑
j=0

|M
N

N−1∑
i=0

e−(σj+iωj)tif(ti)|2 (44)

with ti = iM/N .
The smooth curve C on which the Laplace transform of f is computed is determined by a bounded

differentiable function z : [0, 1] → C, implying that the coefficients σj = ℜ(z(j/N)) and ωj =
ℑ(z(j/N)) are bounded by a constant independent of N . Then, in the large N limit, the sum over j
and i converges to a constant integral as:

1

N

N−1∑
j=0

|M
N

N−1∑
i=0

e−(σj+iωj)tif(ti)|2 = Θ(

∫ 1

0

|
∫ M

0

e−z(s)tf(t)dt|2ds) (45)
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and similarly, one can proove that, for a non-zero function f ,:

N

M∥f∥22,N
= Θ(

1∫M

0
|f(t)|2dt

) (46)

Therefore:

P = Θ(e−2M maxs∈[0,1] |z(s)|
∫ 1

0
|
∫M

0
e−z(s)tf(t)dt|2ds

M
∫M

0
|f(t)|2dt

) (47)

The term
∫ 1

0
|
∫M

0
e−z(s)tf(t)dt|2ds converges to

∫ 1

0
|
∫ +∞
0

e−z(s)tf(t)dt|2ds in the large M limit while

the term
∫M

0
|f(t)|2dt = Ω(e−aM ) since f is of exponentially type. Thus, P = Ω(e−(a+2maxs∈[0,1] |z(s)|)M/M).

In the case of measuring the ancilla in the right state |0⟩⊗b
, the n-qubit state becomes Q̂LT |f⟩ /∥Q̂LT |f⟩ ∥2,N .

In the following, we show that this state is close to the target state |L{f}⟩. First, we define:

|f1⟩ =

∑N−1
j=0

∫M

0
e−(σj+iωj)tf(t)dt |j⟩

∥
∑N−1

j=0

∫M

0
e−(σj+iωj)tf(t)dt |j⟩ ∥2,N

(48)

such that

∥ Q̂LT |f⟩
∥Q̂LT |f⟩ ∥2,N

− |L{f}⟩ ∥2,N ≤ ∥ Q̂LT |f⟩
∥Q̂LT |f⟩ ∥2,N

− |f1⟩ ∥2,N + ∥ |f1⟩ − |L{f}⟩ ∥2,N (49)

The first term can be bounded as:

∥ Q̂LT |f⟩
∥Q̂LT |f⟩ ∥2,N

− |f1⟩ ∥2,N ≤ 2
∥
∑N−1

j=0 (M
N

∑N−1
i=0 e−(σj+iωj)tif(ti) −

∫M

0
e−(σj+iωj)tf(t)dt) |j⟩ ∥2,N

∥
∑N−1

j=0

∫M

0
e−(σj+iωj)tf(t)dt |j⟩ ∥2,N

(50)

with
√
σ2
j + ω2

j ≤ maxs∈[0,1] |z(s)|, and f , f ′ being of exponential type, there exist t0 ∈ R such that

f(t) ≤ keat and f ′(t) ≤ k′ea
′t for t ≥ t0, where k, k′, a, a′ ∈ R+, implying there exist two constants

K,K ′ ∈ R+ independent of N,M, j such that maxt∈R |e−σjtf(t)| ≤ K and maxt∈R |e−σjtf ′(t)| ≤
K ′. Thus, using lemma C.2, the numerator is bounded by K ′′M2/

√
N with K ′′ ∈ R+ a constant

independent of N and M . Additionally, thanks to the fact that L{f} is continuously differentiable

with bounded variations on C, we have ∥
∑N−1

j=0

∫M

0
e−(σj+iωj)tf(t)dt |j⟩ ∥2,N = Θ(

√
N). Therefore,

∥ Q̂LT |f⟩
∥Q̂LT |f⟩∥2,N

− |f1⟩ ∥2,N = O(M2/N)

Then, for the second term of the inequality, one has:

∥ |f1⟩ − |L{f}⟩ ∥2,N ≤ 2
∥
∑N−1

j=0 (
∫ +∞
0

e−(σj+iωj)tf(t)dt−
∫M

0
e−(σj+iωj)tf(t)dt) |j⟩ ∥2,N

∥
∑N−1

j=0

∫M

0
e−(σj+iωj)tf(t)dt |j⟩ ∥2,N

(51)

which, using Lemma C.1, can be bounded independently of N as:

∥ |f1⟩ − |F ⟩ ∥2,N = O( max
s∈[0,1]

e−(ℜ(z(s))−a)M ) (52)

Finally, for M = O(log(1/ϵ)), one has:

∥ Q̂LT |f⟩
∥Q̂LT |f⟩ ∥2,N

− |L{f}⟩ ∥2,N = O(ϵ) (53)

and P = Ω(ϵK) with K = (a+ 2 maxs∈[0,1] |z(s)|)/(mins∈[0,1] ℜ(z(s)) − a) ≥ 2.

This result enables the approximation of the continuous Laplace transform. The main drawback
arises from the truncation parameter M = O(log(1/ϵ)) which grows asymptotically towards +∞, and
from the normalization factor of the QLT e∥z∥∞M , which scales as O(1/ϵL

′
), where L′ > 0. Amplitude
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amplification techniques may be employed to improve the probability of success to Θ(1) [59, 60]. Other
discretization and truncation techniques may be explored to improve these scalings [69].

In the case of the inverse Laplace transform, f(t) = (eσt/(2π))
∫ +∞
−∞ L{f}(σ, ω)eiωtdω, we note

that similar truncation and discretization enable the approximation of the inverse Laplace transform
using a QLT. If one has prepared a qubit state |L{f}⟩ encoding the values of the Laplace transform
L{f} on a specific curve C of the complex plane, it is possible to approximate the qubit state |f⟩ ∝∑2n−1

j=0

∫
C e

ztjL{f}(z)dz |j⟩ using the QLT in a way similar to the method introduced for Theorem
C.3.
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