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Abstract. Speech emotion recognition (SER) remains a challenging yet
crucial task due to the inherent complexity and diversity of human emo-
tions. To address this problem, researchers attempt to fuse information
from other modalities via multimodal learning. However, existing multi-
modal fusion techniques often overlook the intricacies of cross-modal in-
teractions, resulting in suboptimal feature representations. In this paper,
we propose WavFusion, a multimodal speech emotion recognition frame-
work that addresses critical research problems in effective multimodal
fusion, heterogeneity among modalities, and discriminative representa-
tion learning. By leveraging a gated cross-modal attention mechanism
and multimodal homogeneous feature discrepancy learning, WavFusion
demonstrates improved performance over existing state-of-the-art meth-
ods on benchmark datasets. Our work highlights the importance of cap-
turing nuanced cross-modal interactions and learning discriminative rep-
resentations for accurate multimodal SER. Experimental results on two
benchmark datasets (IEMOCAP and MELD) demonstrate that WavFu-
sion succeeds over the state-of-the-art strategies on emotion recognition.

Keywords: Speech emotion recognition · multimodal · wav2vec 2.0 ·
A-GRU · A-GRU-LVC.

1 Introduction

Recently, speech emotion recognition (SER) is a fascinating field that utilizes
technology to analyze and identify different emotions present in human speech
[1]. This technology has various applications, including in customer service and
market research [2], learning and education [3], mental health [4], and social me-
dia analytics [5]. In real-life scenarios, humans express emotions not only through
speech but also through alternative modalities, such as text and visuals [6,7].
Previous studies on SER typically rely on speech information. However, differ-
ent modalities provide complementary information for emotion recognition, and
emotion recognition of the single modality is not inadequate to meet real-world
demands. To address this problem, researchers utilize multimodal information
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to identify emotional states [8]. In the domain of Multimodal Emotion Recogni-
tion (MER), the information of diverse modalities is complementary, providing
additional cues to mitigate semantic and emotional ambiguities.

In addition to multimodality, another challenge of SER is achieving better in-
teraction during the fusion of different modalities. Firstly, multimodal data often
exhibit asynchrony [9]. For instance, visual signals typically precede audio signals
by approximately 120 ms in emotional expressions [10]. This asynchronicity poses
a challenge to feature fusion and model design, necessitating methods to address
temporal alignment and matching issues. To address this issue, Tsai et al. [11]
have proposed specific asynchronous models and cross-modal attention mech-
anisms. Zheng et al. [12] solved heterogeneity among different encoder output
features by employing unsupervised training of a multi-channel weight-sharing
autoencoder. This approach minimizes the differences among features extracted
from different modalities. Additionally, the interactions are simulated by su-
pervised training of cascaded multi-head attention mechanisms. However, most
methods with cross-modal attention mechanisms ignore redundant information
during the fusion process, thus restricting the performance of MER. Addition-
ally, samples with the same emotion in multimodal data may exhibit differences
across modalities, referred to as homogeneous feature differences. For instance,
some features in speech and text may exhibit formal similarity but convey dif-
ferent emotional states [13]. Hazarika et al.[14] projected each modality into two
different subspaces capturing modality-invariant and modality-specific features.
However, they only considered the differences between the different emotion of
same modalities and ignored the differences between different modalities with
the same emotion. DialogueTRM explores intra- and inter-modal emotional be-
haviors in conversations, using Transformers to model the context [15]. MMGCN
proposes a multimodal fusion approach via a deep graph convolution network,
modeling the interactions between different modalities using a graph [16]. MM-
DFN introduces a dynamic fusion network that leverages intra- and inter-modal
information at different levels of representation [17]. M2FNet proposes a multi-
modal fusion network that learns and fuses complementary information from
audio, visual, and textual modalities [18].

Therefore, in this paper, we propose a novel arhitecture called WavFusion
for emotion recognition. Unlike DialogueTRM, WavFusion specifically focuses
on incorporating wav2vec2.0 [19] with a gated cross-modal attention mechanism
to dynamically fuse multimodal features. Additionally, WavFusion introduces
multimodal homogeneous feature discrepancy learning to distinguish between
same-emotion but different-modality representations. WavFusion does not rely
on graph-based modeling but instead uses a transformer architecture with a
modified cross-modal attention mechanism. WavFusion also emphasizes captur-
ing both global and local visual information through the A-GRU-LVC mod-
ule. While MM-DFN focuses on dynamic fusion strategies, WavFusion empha-
sizes the use of wav2vec2.0 pre-trained representations and a gated cross-modal
attention mechanism to mitigate redundant information during fusion. Addi-
tionally, WavFusion incorporates multimodal homogeneous feature discrepancy
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learning to distinguish between representations of the same emotion across dif-
ferent modalities.

The main contributions of this paper can be summarized as follows:

– We propose a multimodal speech emotion recognition model (WavFusion)
that leverages the power of wav2vec 2.0 and incorporates textual and visual
modalities to enhance the performance of audio-based emotion recognition.

– We integrate the designed gated cross-modal attention mechanism into the
wav2vec 2.0 model to mitigate redundant information during the fusion pro-
cess. Meanwhile, we employ multimodal homogeneous feature discrepancy
learning to enhance the discriminative capability of the model.

– Experimental results on two benchmark datasets demonstrate the effective-
ness of the proposed method. Our WavFusion succeeds over existing state-
of-the-art methods.

2 Proposed Method

2.1 Problem Statement

Given a multimodal signal Sj =
{
Sa
j , S

t
j , S

v
j

}
, we can represent the unimodal

raw sequence extracted from the video fragment j as Sm
j ,m ∈ {a, t, v}. Here,

the modalities are denoted by {a, t, v}, which refer to audio, text, and visual
modalities.

In WavFusion, we aim to predict the emotion category for each utterance. It
focuses on categorizing the emotion conveyed in each utterance, assigning it to a
specific emotion class or category, yj ∈ Rc. c is the number of emotion categories.
Figure 1 illustrates the overall structure of WavFusion, including an auxiliary
modal encoder, a primary modal encoder, and multimodal homogeneous feature
discrepancy learning. The orange color represents positive emotions and the
green color represents negative emotions.

2.2 Auxiliary Modality Encoder

Video Representation For the visual modality, we use the EfficientNet pre-
trained model as a feature extractor to obtain visual features evj . This model is
a self-supervised framework for visual representation learning. In this paper, we
attempt to extend EfficientNet to emotion recognition. evj can be formulated as:

evj = Φvisual

(
Sv
j

)
(1)

where Φvisual denotes the function of EfficientNet model.
On the other hand, we consider the context and situation conveyed by the

global information in the visual modality, along with the specific details of ac-
tions and expressions from local information. The visual feature is fed into the
proposed A-GRU-LVC module, which aims to extract both global and local fea-
tures.

Xv1
j = FSA

(
FGRU

(
evj

))
(2)
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Fig. 1. The overview of WavFusion.

where FSA and FGRU denote the learning functions of GRU and self-attentive
mechanism, respectively.

Simultaneously, to preserve local corner point regions and extract local in-
formation, a learnable visual center (LVC) is implemented on the visual features
[20]. This LVC aggregates features from local areas, ensuring that important local
information is retained. In contrast to the approach, we utilize one-dimensional
convolution instead of two-dimensional convolution.

Xv2
j = FLV C

(
evj
)

(3)

where FLV C denotes the learning functions of the LVC block.
Finally, the output of the A-GRU-LVC block is obtained by connecting the

output of the self-attention module Xv1
j and the output of the LVC block Xv2

j

along the last dimension.
Xv

j = Xv1
j ⊕Xv2

j (4)

Contextualized Word Representation To capture rich contextual informa-
tion from textual data, we utilize the RoBERTa-base model, which belongs to
the transformer family, as a contextual encoder. The architecture of RoBERTa
consists of multiple Transformer layers, including a stack of encoders. Each en-
coder layer contains a multi-head self-attention mechanism and a feed-forward
neural network. RoBERTa is designed to capture contextualized representations
of words in a sentence, allowing it to understand the meaning and relationships
between different words. etj can be formulated as:

etj = Φtext

(
St
j

)
(5)
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where Φtext denotes the function of the RoBERTa pre-train model.
To further consider context-sensitive dependence for text features, we feed it

into the GRU and the self-attention mechanism to obtain global features of the
text information. Due to the strong temporal continuity present in textual in-
formation, we opted not to employ the LVC mechanism to capture local feature.

Xt
j = FSA

(
FGRU

(
eij
))

(6)

where FSA and FGRU denote the learming functions of GRU and self-attentive
mechanism, respectively.

Major Modality Encoder In WavFusion, we encode low-level audio features
through the shallow transformer layer, followed by combining text and visual fea-
tures through the deep transformer layer to form a comprehensive multimodal
representation. We define the original transformer layer as a shallow transformer
layer and the modified transformer layer as a deep transformer. The incorpora-
tion of text and vision into wav2vec 2.0 detects relevant information within the
extensive pre-trained audio knowledge, thereby enhancing emotional information
within the multimodal fusion representation. The low-level acoustic features Xa

j

extracted by the shallow transformer block are calculated as follows:

Xa
j = FST

(
Sa
j

)
(7)

where FST is the learning function of shallow transformer layers.

XF1
j = CMA−T

(
Xa

j , X
t
j

)
(8)

XF2
j = CMA−V

(
Xa

j , X
v
j

)
(9)

Finally, the augmented features XF1
j and XF2

j are processed through the
following gated filtering mechanism. The ratio of each channel can be dynami-
cally defined by a learnable parameter that filters out misinformation generated
during cross-modal interactions.

P∗ = sigmoid
(
FC

(
XF1

j ⊕XF1
j

))
(10)

XF
j = P∗ ⊙XF1

j + (1− P∗)⊙XF2
j (11)

Multimodal Homogeneous Feature Discrepancy Learning Multimodal
homogeneous feature discrepancy learning has made significant progress in mul-
timodal emotion recognition. It can optimize the modal representation ability
and extract richer and more accurate emotional information by learning the
relationships and differences between homogeneous features. First, we feed un-
fused audio features Xa

j , text features Xt
j and visual features Xv

j into a shared
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encoder to obtain homogeneous features. It minimizes the feature gap from dif-
ferent modalities and contributes to multimodal alignment.

Xm[i]
com = SD

(
Xm

j

)
,m ∈ (a, t, v) (12)

where SD is the shared encoder learning function that consists of a simple linear
layer.

In this study, we perform multimodal homogeneous feature discrepancy learn-
ing to enhance the interactions between the same emotions but different modali-
ties, and amplify the differences between the same modalities but different emo-
tions. We define this loss function as margin loss.

Lmar =
1

M

∑
(i,j,k)∈M

max(0, α− cos(Xm[i],c[i]
com , Xm[j],c[j]

com ))

+cos(Xm[i],c[i]
com , Xm[k],c[k]

com )) (13)

where

M = {(i, j, k) | m[i] ̸= m[j],m[i] = m[k], c[i] = c[j], c[i] ̸= c[k]}

is the modality of the sample i, and the c[i] is the label of sample i. cos denotes the
cosine similarity between two feature vectors. By applying a distance margin α,
we ensure that the distance between positive samples is smaller than the distance
between negative samples. Here, positive samples refer to the same emotion but
different emotions, and negative samples refer to the same modality but different
emotions.

Similarly, cross-entropy serves as a commonly employed loss function for opti-
mizing model parameters and enhancing classification accuracy during training.

Lemotion
task = − 1

ND

ND∑
j=0

yj · log ŷj (14)

where yj is the true label of the sample, ŷj is the prediction of the sample, and
ND is the number of samples in the dataset D.

Lemotion
total = Lemotion

task + λLmar (15)

where λ is the balance factor.

3 Evaluation

3.1 Dataset

We evaluate our proposed method on two prevalent benchmark datasets for ERC,
including IEMOCAP [21] and MELD [22], respectively. The IEMOCAP dataset
consists of 12 hours of improvised and scripted audio-visual data from 10 UC
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theatre actors (five males and five females). The dataset is divided into five binary
sessions, and each conversation is annotated with emotional information in four
modalities: video, audio, transcription, and motion capture of facial movements.
We evaluate our model using audio, transcribed, and video data. The dataset
contains a total of 7380 data samples. E.g., happy, neutral, angry, excited, sad,
and frustrated. For evaluation, we employ a five-fold cross-validation approach.
The first four sessions are utilized as the training set and the validation set, and
the last session is utilized as the testing set.

The MELD dataset is derived from over 1,400 dialogues and 13,000 utter-
ances extracted from the TV series Friends. Each utterance in the dataset is
annotated with one of seven emotion labels: neutral, surprise, fear, sadness, joy,
disgust, and anger. The dataset includes multimodal scenes, making it suitable
for studying multimodal emotion recognition tasks. For our experiments, we uti-
lize the predefined training/validation splits provided with the MELD dataset.
This ensures consistency with existing approaches and allows for a fair compar-
ison with other models.

3.2 Setting

For text and visual modalities, we freeze the parameters in the RoBERTa and
EfficientNet pre-trained models and treat them as a feature extractor. The last
dimension of the text and visual features is 768 and 64. For speech modalities,
we unfreeze the parameters of the deep transformer layer in the wav2vec 2.0
pre-train model. These parameters are updated during model training, while
the parameters of the other layers are freezing. The last dimension of the speech
features are 768 and 64.

Table 1. The results of different methods on the IEMOCAP database.

Method ACC(%) WF1(%) Year

DialogueTRM [15] 68.92 69.23 2020
HiTrans [23] - 64.5 2020

DialogXL [24] - 65.94 2021
MMGCN [16] - 66.22 2021
COGMEN [25] 68.2 67.63 2022
MM-DFN [17] 68.21 68.18 2022
M2FNet [18] 69.69 69.86 2022

HAAN-ERC [26] 69.48 69.47 2023
Ours 70.53 70.6 2024
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Table 2. The results of different methods on the MELD database.

Method ACC(%) WF1(%) Year

DialogueTRM [15] 65.66 63.55 2020
MMGCN [16] - 58.65 2021
MM-DFN [17] 62.49 59.46 2022
UniMSE [27] 65.09 65.51 2022

HAAN-ERC [26] 66.5 65.66 2023
Ours 66.93 66.1 2024

3.3 Comparative Analysis

In Tables 1 and 2, we show the performance of different approaches on the
IEMOCAP and MELD datasets. The evaluation metrics are Accuracy (ACC)
and Weighted F1 score (WF1). On the IEMOCAP dataset, our method out-
performed the state-of-the-art by 0.84% in ACC and 0.74% in WF1. Similarly,
on the MELD dataset, our method surpassed the state-of-the-art by 0.43% in
ACC and 0.44% in WF1. The reasons are probably twofold. Firstly, we argue
that this is because most of these models do not explicitly consider redundant
information in the cross-modal fusion process, but our proposed method consid-
ers these through a gated cross-modal attention mechanism. Secondly, most of
them only take into account the distances of different emotion samples of the
same modality, but not the distances of the same emotion samples of different
modalities.

3.4 Ablation Studies

To verify the effectiveness of WavFusion model, we conduct ablation studies
on the IEMOCAP dataset. First, we reveal the importance of each modality
in this section. Specifically, when utilizing a single modality, we omitted the
gated cross-modal attention and multimodal homogeneous feature discrepancy
learning. The results in Table 3 illustrate that the highest accuracy and weighted
average F1 scores are attained when incorporating all three modalities. Due
to the complexity of emotion recognition, recognizing emotions using a single
modality is challenging to meet the demands of reality. We can achieve better
recognition performance by integrating multimodal information.

Additionally, we introduce LVC blocks to capture local information related
to visual features. To assess the significance of LVC blocks, we conducted an
experiment where we omitted the LVC blocks from the model, thus failing to
capture local information about visual features. From Table 4, we observe that
the model with the LVC block outperforms the model without the LVC block.
The inclusion of LVC blocks improves ACC by 0.63% and the WF1 by 0.76%.
The experiment demonstrates that the LVC blocks are beneficial for capturing
relevant contextual details and spatial dependencies.



WavFusion: Towards wav2vec 2.0 Multimodal Speech Emotion Recognition 9

Table 3. Experiment results on the diffferent modalities.

Modality ACC(%) WF1(%)

A 66.06 65.59
T 58.74 58.63
V 29.88 26.31

A+T 67.75 67.45
A+V 66.33 64.14

A+V+T 70.53 70.6

Table 4. Experiment results on LVC BLOCK.

Models ACC(%) WF1(%)

w/o LVC block 69.90 69.84
w/ LVC block 70.53 70.60

We also investigate the impact of multimodal homogeneous feature discrep-
ancy learning in our framework. In this work, we assigned weights to the balance
factor λ for margin loss and observed its effects across various weight values. The
corresponding results are presented in Table 5. The results indicate that the op-
timal performance on the IEMOCAP dataset is achieved. The model shows a
significant improvement by 2.64% and WF1 by 2.94% compared to the absence
of margin loss (λ = 0). This demonstrates the effectiveness of multimodal homo-
geneous feature difference learning in enhancing the model’s capacity to discern
emotions across diverse modalities. However, we also observe that the perfor-
mance deteriorates when the balance factor is excessively large (λ = 10). This
suggests that an excessive emphasis on margin loss might have a detrimental
effect on the original classification task.

We also observe the effect of gated cross-modal attention mechanism in the
proposed framework. In our experiments, we define the original transformer layer
the shallow transformer and the modified transformer layer as deep transformer,
and observe their effect on the different numbers. In the first line, we omit the
proposed gated cross-modal attention mechanism and solely conduct a basic con-
catenation of the three modal features at the last dimension. The corresponding
results are shown in Table 6 where it is observed that 9 shallow transformer lay-
ers, 3 deep transformer layers yield the optimal performance for the IEMOCAP
dataset. Moreover, from the first and second lines, we can discern the significance
of the gated cross-modal attention mechanism for fusion.
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Table 5. Experiment results on the diffferent λ.

λ ACC(%) WF1(%)

0 67.89 67.66
0.01 68.63 68.39
0.1 69.11 68.96
1 70.53 70.6
10 64.43 64.19

Table 6. Experiment results on the transformed layers in wav2vec 2.0.

method Shallow transformer Deep transformer ACC(%) WF1(%)

concat 12 0 66.67 66.78

Attention

11 1 68.61 68.55
10 2 68.54 68.32
9 3 70.53 70.6
8 4 69.29 69.06

4 Conclusion

In this paper, we propose a novel SER approach, which is designed a gated
cross-modal attention alternative to self-attention in the wav2vec 2.0 pre-trained
model to dynamically fuse features from different modalities. Additionally, we
introduce a novel LVC block to efficiently capture the local information of vi-
sual features. The model can more effectively utilize the spatial characteristics
of visual data, resulting in more comprehensive representations. Finally, we de-
sign the concept of multimodal homogeneous feature discrepancy learning, which
helps the model to effectively learn and distinguish representations of the same
modalities but different emotions. The effectiveness of the proposed model is
demonstrated on the IEMOCAP and MELD datasets. The results show promis-
ing performance compared to state-of-the-art methods. In the future, we plan to
utilize the leveraging large amounts of unlabeled audio and video data available
to recognize the different emotion.
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