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Abstract
Recent studies show that pretrained vision models can boost

performance in audio downstream tasks. To enhance the perfor-
mance further, an additional pretraining stage with large-scale
audio data is typically required to infuse audio-specific knowl-
edge into the vision model. However, such approaches require
extensive audio data and a carefully designed objective func-
tion. In this work, we propose bypassing the pretraining stage
by directly fine-tuning the vision model with our Look-Aside
Adapter (LoAA) designed for efficient audio understanding.
Audio spectrum data is represented across two heterogeneous
dimensions—time and frequency—and we refine adapters to
facilitate interactions between tokens across these dimensions.
Our experiments demonstrate that our adapters allow vision
models to reach or surpass the performance of pretrained audio
models in various audio and speech tasks, offering a resource-
efficient and effective solution for leveraging vision models in
audio applications.
Index Terms: audio classification, transfer learning, parameter
efficient fine-tuning, adapter

1. Introduction
In the era of transformers [1], self-supervised learning [2, 3]
is revolutionizing all domains, including computer vision (CV)
and natural language processing (NLP). The paradigm of pre-
training followed by fine-tuning has been widely embraced.
However, compared to CV and NLP, the audio domain often
encounters the challenge of relatively small datasets for large-
scale pretraining. Despite the emergence of large-scale audio
classification datasets such as AudioSet [4] and EPIC-SOUNDS
[5], there remains a pressing need for more extensive data to
support the exponential scaling of transformer-based models.

An approach to audio classification involves initially lever-
aging pretrained weights from the ImageNet dataset [6] in the
current research paradigm. This strategy has shown superior
performance over models with randomly initialized weights,
underscoring the potential of cross-modality transfer learning
and the efficiency of attention-based models in processing au-
dio datasets, which often suffer from limited resources [7, 8].

Subsequently, methods for audio transfer learning, such as
the Self-Supervised Audio Spectrogram Transformer (SSAST)
and Audio-MAE, require large-scale audio pretraining to ac-
quire domain-specific knowledge [9, 10, 11]. Furthermore, an
additional fine-tuning stage is required for downstream tasks. If
the downstream dataset is as large as the pretraining dataset, to-
tal training costs would significantly increase. Thus, it would be

*Equal contribution.

Figure 1: An illustration of our simplified approach for audio
classification. Our newly proposed Parameter Efficient Fine-
Tuning (PEFT) paradigm for audio classification is a direct
adaptation to downstream tasks in a singular stage. This ap-
proach even outperforms the current paradigm, which involves
pretraining with large-scale audio datasets such as AudioSet-
2M, as evidenced by its performance on the EPIC-SOUNDS
dataset.

beneficial to employ a methodology that is parameter efficient
and allows for a straightforward adaptation to downstream tasks
without dividing the training procedure into multiple stages.
For example, the concept of convolutional bypasses (Convpass)
has been introduced as efficient adaptation modules for Vision
Transformers in computer vision research [12].

With a focus on parameter efficiency with simple proce-
dures and adaptation to the specific properties of audio data, we
considered the incorporation of audio-friendly adapters along-
side image models. We propose a new parameter efficient
paradigm for audio classification, featuring the Look-Aside
Adapter (LoAA). This audio friendly adapter is designed to
aid ImageNet pretrained vision models in facilitating interac-
tions between tokens across both time or frequency dimensions
for audio data. Because unlike image data, which contains
only spatial information, audio data—when converted to a Mel-
spectrogram—encompasses two distinct domains: time and fre-
quency.

Our evaluation spans various audio and speech datasets, in-
cluding EPIC-SOUNDS, ESC-50 [13], and Speech Commands
V2 [14]. It is especially notable that our framework for au-
dio classification surpasses the performance of large-scale pre-
trained models, such as SSAST, on the EPIC-SOUNDS dataset.
Note that this performance has been achieved without any large-
scale audio pretraining.
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(a) Parallel Adapter (b) Look-Aside Adapter

Figure 2: Graphical illustration of adapter module pipelines of
conventional parallel adapter (left) and our look-aside adapter
(right). d: input token dimension; r: bottleneck dimension; T :
time sequence of each token.

2. PEFT with Look-Aside Adapter
2.1. Parameter-Efficient Fine-Tuning (PEFT)

Parameter-efficient fine-tuning (PEFT) aims to adapt a pre-
trained model to unseen domains and downstream tasks by up-
dating only a small number of parameters. For example, adapter
tuning [15, 16] inserts small trainable modules (adapters) to
each layer of a frozen pretrained model. Additionally, to en-
hance efficiency, LoRA [17] injects low-rank matrices into
projection layers within attention blocks. Another approach
involves prompt tuning [18] and prefix tuning [19], which
prepends learnable prompts to input or activations. These ap-
proaches demonstrated comparable performance to full fine-
tuning while updating only a fraction of the model parameters.
Our work leverages the PEFT to fine-tune image models for au-
dio downstream tasks with less than 10% of total parameters
updated.

2.2. PEFT for Audio based on a Frozen Image Model

Recent works [8, 20] demonstrated that using ImageNet pre-
trained weights for initialization improves audio model perfor-
mance even when they are trained on large-scale audio datasets
afterward. This suggests that pre-trained knowledge about im-
age data can be transferred into the audio domain. Still, the per-
formance of a model pre-trained solely on an image dataset [8]
is inferior to that of a model pretrained on audio datasets [11].
This is because, although the audio spectrogram is similar to
2D images, they have different characteristics. Each dimension
in image data contains spatial information. However, the audio
data is heterogeneous, represented by time and frequency di-
mension. Most recent works mitigate this gap between modali-
ties by large-scale pretraining on audio datasets [11, 21, 22]. In
the training process, the model learns how to distinguish time
and frequency dimensions naturally. Since this large-scale pre-
training is expensive in terms of both computation and memory
cost, we propose applying PEFT to image models for multiple
audio downstream tasks.

The PEFT method we use in this work is parallel Houlsby
adapter [16], a simple approach in PEFT that attaches small
feed-forward networks next to transformer layers. The adapter
module gets input h from block B(·), which can be either an
attention (Attn) block or a feed-forward network (FFN) block.
The initial linear layer W↓ ∈ Rd×r projects it to a lower-
dimensional space defined by bottleneck dimension r(r < d).
The low dimension input then goes through nonlinear activation

Table 1: Top-1 accuracy when putting adapters alongside with
attention block or feedforward network block for each kernel
and the number of parameters on EPIC-SOUNDS dataset. Best
results are highlighted in bold, and second best results are
underlined.

# Param (Ratio) Kernel Shape
(1,1) F(3,1) T(1,3) (3,3)

Audio Pretrained Model (SSAST): 53.75

ATTN Block
1.035M (1.2%) 53.38 53.79 53.43 53.20
2.026M (2.3%) 53.33 54.44 54.52 53.64
4.017M (4.6%) 53.42 53.86 54.08 53.44

FFN Block
1.035M (1.2%) 53.04 53.53 53.42 53.03
2.026M (2.3%) 53.42 53.73 54.50 53.30
4.017M (4.6%) 53.30 53.73 54.01 53.24

function f(·) (e.g., GELU) and second linear layer W↑ ∈ Rr×d

that projects it back to the original input dimension d, as shown
in Figure 2(a). The final output is computed by adding block
output and the adapter module output:

h← B(h) + f(hW↓)W↑ (1)

The audio input h holds information of three domains:
time, frequency, and token dimension. The parallel adapter, em-
ploying linear layers, facilitates interactions only within the to-
ken dimensional axis, as shown in Figure 2(a). Consequently, in
a PEFT scenario with a frozen image model, the interaction be-
tween tokens relies entirely on the pretrained attention layers.
In other words, employing previous PEFT methods does not
directly affect how tokens interact across time and frequency
axes. Instead, these methods project each token to an appro-
priate dimensional space and hope image-based pretrained at-
tention layers perform well. To tackle this issue, we propose
a Look-Aside Adapter, which enables inter-token interaction
within the adapter module through a simple modification to ex-
isting methods.

2.3. Look-Aside Adapter (LoAA)

We propose to use 1D convolution layers as the projection lay-
ers within the adapter to facilitate token-wise interactions across
time and frequency axes. We call our method Look-Aside
Adapter (LoAA). Similar to Equation 1, we define the form of
LoAA:

h← B(h) + f(hU↓)U↑ (2)

where U↓ employs a kernel size of either 1 × N or N × 1,
with an input channel of d, and an output channel of r. Corre-
spondingly, U↑ utilizes the same kernel size as U↓, with an input
channel of r, and an output channel of d. This means that our
adapter module acts as a recognizer of time or frequency pat-
terns, as shown in Figure 2(b). Regarding that a linear layer can
be interpreted as 1× 1 convolution layer, we study the effect of
kernel size. To ensure a fair comparison, we equalized the num-
ber of parameters across each case by adjusting the bottleneck
dimension r.

As shown in Table 1, LoAA with 1 × 3 (Time) and 3 × 1
(Frequency) kernel outperforms the parallel adapter with lin-
ear layers, denoted as 1 × 1 on the table. Considering that an
enlargement of kernel size leads to a reduction in bottleneck



Table 2: Performance comparison of PEFT with LoAAs and current paradigm on various audio and speech datasets. T: Time, (1,3)
kernel; F: Frequency, (3,1) kernel. AS, LS, and IN in the PT-Data column correspond to AudioSet [4], LibriSpeech [23], and ImageNet
[6], respectively. The best results are highlighted in bold, and the second best results are in underlined.

Audio Dataset Speech Dataset
EPIC ESC-50 SPC-2

Model Fine-Tuning Method # Param PT-Data Top-1 mAP mAP mAP

Image Pretrained→ Audio Pretrained

MAE-AST [21] Full FT 100% AS+LS - - 90.0 97.9
SSAST [10] Full FT 100% AS+LS 53.75 0.237 88.8 98.0

Image Pretrained Only

AST [8] Full FT 100% IN 52.22 0.222 87.9 97.8
Linear Probe 0.04% IN 38.95 0.136 65.6 42.1
Parallel Adapter 5% IN 53.40 0.227 87.0 96.7
Ours - Attn(T) 2% IN 54.52 0.234 85.4 96.5
Ours - FFN(F) 2% IN 53.73 0.231 85.8 96.3
Ours - Attn(T) FFN(F) 5% IN 54.14 0.238 87.1 96.9
Ours - Attn(T) FFN(F) 10% IN 54.11 0.240 88.3 97.0

dimension, this result suggests that a parameter trade-off be-
tween the token dimensional axis and the time/frequency axis
is beneficial for audio data understanding. Moreover, the low
performance in 3 × 3 kernel indicates that merely incorporat-
ing convolution layers into the adapter, without considering the
heterogeneity of audio data, fails to effectively capture audio-
specific patterns.

3. Experiments
3.1. Datasets and Tasks

We evaluate the Look-Aside Adapter on three commonly used
audio and speech benchmarks, including audio classification on
EPIC-SOUNDS, Environmental Sound Classification (ESC),
and speech classification on Speech Commands.

• Pretrain Data (PT-Data), including ImageNet [6] for vision
and AudioSet-2M [4] for audio, is used to pretrain baseline
models. AudioSet-2M contains approximately 2 million 10-
second YouTube clips with weak annotations for 527 types
of audio events.

• EPIC-SOUNDS (EPIC) [5] comprises 78,366 categorized
temporal annotations spread across 44 classes, with an aver-
age length of 4.9 seconds. Test splits are divided into subsets
for audio-based interaction recognition and detection. We
employ top-1 accuracy and mean Average Precision (mAP)
as evaluation metrics.

• ESC-50 [13] comprises 2,000 environmental audio record-
ings, each lasting 5 seconds, categorized into 50 classes.
We evaluate our method using the results from 5-fold cross-
validation, using the same data splits as AST.

• Speech Commands (SPC-2) [14] is a dataset for
two keyword spotting tasks containing 35 speech com-
mands. The training/validation/testing sets consist of
84,843/9,981/11,005 1-second recordings, respectively.

3.2. Implementation Details
The implementation of our method is based on AST. For the
EPIC-SOUNDS dataset that AST has not been tested on, we fol-
low the SSAST setup of EPIC-SOUNDS [5], utilizing a learn-

ing rate of 1e-4, the AdamW optimizer, and a training dura-
tion of 30 epochs without mixup. For the ESC-50 dataset, we
use a learning rate of 1e-4 for full fine-tuning, the Adam op-
timizer, and a training duration of 25 epochs without mixup.
For PEFT, we choose the learning rate 5e-4 in 5e-5, 1e-4, and
5e-4. For the SPC-2 dataset, we use a learning rate of 2.5e-4,
the Adam optimizer, and a training duration of 30 epochs with
mixup. Note that we reshape the flattened tokens into a two-
dimensional time-frequency format within our adapter module
for the integration of convolution layers. Therefore, we do not
overlap patches in our PEFT experiments. We use patch over-
lapping for full fine-tuning. We conducted our experiments
using computing clusters equipped with NVIDIA RTX 3090
GPUs, allocating a single GPU for each experiment.

3.3. Results
We compare the following methods in our experiments:
• Image pretrained→ Audio pretrained: We introduce two

audio models based on AST [21, 10], which were pretrained
on large-scale audio datasets. Following pretraining, these
models undergo full fine-tuning for each specific downstream
task. The results reported are directly from the papers.

• Image pretrained Only: We conduct experiments on au-
dio and speech benchmarks using ImageNet pretrained AST
model. We employ both full fine-tuning and linear probing
methods to examine the image-based model’s ability to learn
audio patterns.

• Image pretrained Only with PEFT (Ours): We compare
our proposed method with various design choices to parallel
adapter. For settings with 2% trainable parameters, we em-
ploy either a time-based LoAA using 1 × 3 kernel (r = 36)
with an attention block or a frequency-based LoAA using
3× 1 kernel (r = 36) with a feed-forward block for simplic-
ity. For 5% and 10% parameter settings, we employ a combi-
nation of adapters in both blocks, with bottleneck dimensions
of r = 36 and r = 72, respectively. Parallel adapter parame-
ters are set to 5%, with a bottleneck dimension of r = 108.

The results presented in Table 2 offer several key insights.
Initially, it is observed that image-pretrained models, through
the application of our PEFT method, can achieve performance



Table 3: Top-1 accuracy of our Look-Aside Adapter Combina-
tions on EPIC-SOUNDS dataset. Best results are highlighted in
bold, and second best results are underlined.

Method # of params.
5% 10%

Attn(L) FFN(L) 53.40 53.85
Attn(T) FFN(T) 53.55 54.01
Attn(F) FFN(F) 54.05 54.35
Attn(T) FFN(F) 54.14 54.11
Attn(F) FFN(T) 53.90 54.04

on par with dedicated audio models. Notably, our approach out-
performs SSAST in all examined parameter settings (2%, 5%,
and 10%) on the EPIC-SOUNDS dataset and delivers nearly
equivalent results on the other two benchmarks, with a perfor-
mance discrepancy of less than 1%.

Furthermore, our method surpasses previous approaches
owing to its audio-centric architecture. Our method demon-
strates superior performance across all benchmarks when com-
pared to the parallel adapter which has the same number of
parameters. This suggests that our proposed method, which
enables token-wise interactions across the time and frequency
domains, efficiently bridges the gap between audio and image
data.

4. Discussions
4.1. What is the optimal combination of Look-Aside
Adapter modules for a transformer-based model?

Recent works [24, 25] empirically showed that parallel insertion
is superior to conventional sequential insertion. While those
works mix parallel adapters with other PEFT methods, such
as LoRA and prefix tuning, to achieve high performance, our
method solely uses parallel adapter architecture.

We study the various combinations of time-based LoAA
(1× 3 kernel) and frequency-based LoAA (3× 1 kernel), using
them as parallel adapters. Table 3 illustrates the different design
choices for attention block (Attn) and FFN block (FFN). When
the number of parameters is 5%, indicating greater parameter
efficiency, time-based LoAA for the Attn block and frequency-
based LoAA for the FFN block prove to be the best options.

4.2. What is the effect of fine-tuning by an audio friendly
adapter?

While general PEFT methods should learn domain-specific and
task-specific knowledge, our PEFT method should learn the
modality difference at the same time. To efficiently transfer
knowledge from the different modality, we introduce a new
adapter architecture with an inductive bias towards audio data.

Inserting an audio friendly adapter can impact the atten-
tion mechanism, potentially leading to smoother attention maps
based on the characteristics of the audio Mel-spectrogram. An
audio friendly adapter can refine the model’s focus on relevant
parts of the audio Mel-spectrogram by introducing additional
parameters that are fine-tuned for downstream tasks. This fine-
tuning process can help the model to better distinguish between
more and less important features in the frequency-time dimen-
sion, leading to smoother and more focused attention distribu-
tions.

Audio 
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Figure 3: Attention maps of bell sound produced by AST-based
models trained in different ways. The audio data is obtained
from AudioSet and represented by 128 dimensions of frequency
and 1024 timesteps. We examine the self-attention of tokens
from the last layer, and display the results for the key timesteps
of 320-336. Each token corresponds to 16 × 16 area of the
audio spectrogram and the attention maps are made up of 8×64
tokens. For clearer visualization, the tokens are upscaled to
their original size.

4.2.1. Visualization of Attention Map

We visualize the Mel-spectrogram for a bell sound and the at-
tention maps at key timesteps during each stage of training in
Figure 3. When utilizing only ImageNet pretrained weights, the
attention map is focused on the main parts of the bell sound’s
Mel-spectrogram but is also noisy.

Addressing this issue, a model with large-scale audio pre-
training can better focus on significant aspects of the audio data,
thereby reducing overall noise. After large-scale audio pretrain-
ing, the resulting attention map has shown a marked reduction
in overall noise. It has a tendency to focus on tokens truly cru-
cial for audio classification.

However, instead of relying on extensive audio pretrain-
ing, the use of the Look-Aside Adapter (ours) basically reduces
overall noise and gives higher attention not only on the essential
regions where features of the Mel-spectrogram are prominent
but also on the finer details while achieving efficiency.

5. Conclusion

The conventional two-stage paradigm, which starts with pre-
trained vision models, leverages large-scale audio pretraining
followed by task-specific fine-tuning to learn the audio-specific
knowledge for downstream tasks. However, it is challenging
due to the need of substantial audio data and a well-designed
learning objective for large-scale audio pretraining. This study
proposes bypassing that pretraining stage by directly fine-tuning
the vision model with our parallel Look-Aside Adapter (LoAA).
It enables efficient knowledge transfer from image models in
one step to audio downstream tasks. Our approach outperforms
pretrained audio models on EPIC-SOUNDS dataset and also
yields comparable results on various other audio and speech
datasets. In future work, by delving into the distinctive dis-
parities between image and audio data modalities, we aim to
architect a novel multimodal framework with modality-specific
encoders.
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