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Abstract
Compared to other clinical screening techniques, speech-and-
language-based automated Alzheimer’s disease (AD) detec-
tion methods are characterized by their non-invasiveness, cost-
effectiveness, and convenience. Previous studies have demon-
strated the efficacy of fine-tuning pre-trained language mod-
els (PLMs) for AD detection. However, the objective of this
traditional fine-tuning method, which involves inputting only
transcripts, is inconsistent with the masked language modeling
(MLM) task used during the pre-training phase of PLMs. In
this paper, we investigate prompt-based fine-tuning of PLMs,
converting the classification task into a MLM task by inserting
prompt templates into the transcript inputs. We also explore the
impact of incorporating pause information from forced align-
ment into manual transcripts. Additionally, we compare the per-
formance of various automatic speech recognition (ASR) mod-
els and select the Whisper model to generate ASR-based tran-
scripts for comparison with manual transcripts. Furthermore,
majority voting and ensemble techniques are applied across
different PLMs (BERT and RoBERTa) using different random
seeds. Ultimately, we obtain maximum detection accuracy of
95.8% (with mean 87.9%, std 3.3%) using manual transcripts,
achieving state-of-the-art performance for AD detection using
only transcripts on the ADReSS test set.
Index Terms: prompt learning, pre-trained language model,
alzheimer’s disease detection, pauses encoding

1. Introduction
Alzheimer’s disease (AD), the most common cause of demen-
tia, is a neurodegenerative disease that worsens over time and
causes irreversible damage to the brain, manifested by a per-
sistent deterioration of an individual’s cognitive and functional
abilities, including language, memory, attention, and executive
function [1]. Studies have shown that mid-course intervention
before neuronal degeneration in the brain can effectively allevi-
ate the problem, so early detection of AD is crucial [1, 2]. In
contrast to traditional clinical detection methods, speech-and-
language-based automatic AD diagnosis technology has be-
come a research hotspot due to its non-invasive, low-cost and
convenient characteristics. Recent ADReSS challenge has also
promoted the development of related technologies [3].

1.1. Related studies of speech and language in AD detection
Current research primarily utilizes two types of features ex-
tracted from spontaneous speech: acoustic features from raw
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audio signals and linguistic features from transcripts [4, 5].
Both features offer unique insights into cognitive decline associ-
ated with AD. Based on the recent studies [6, 7, 8, 9, 10], acous-
tic features used in AD detection can be divided into prosody,
duration of pauses, vocal quality, emotional embeddings, pre-
trained models embeddings features, and more. Key linguistic
features include, but are not limited to, lexical richness, syn-
tactic complexity and pre-trained textual embedding features
[11, 12, 13]. Previous research has demonstrated that, compared
to using acoustic features alone, employing linguistic features
extracted from participants’ speech transcripts is more effec-
tive in distinguishing between AD and non-AD [8, 14]. Ad-
vanced natural language processing (NLP) techniques, particu-
larly those involving pre-trained language models (PLMs) like
BERT, have greatly improved the analysis of linguistic features.
PLMs are trained on vast amounts of text data. They can capture
complex patterns and contextual information that are critical for
identifying cognitive decline. Wang et al. [15] investigated the
use of feature and model combination approaches to improve
the robustness of domain fine-tuning of BERT and RoBERTa
pre-trained text encoders, obtaining an AD detection accuracy
of 91.67% on manual transcripts of the ADReSS test set.

1.2. The application of PLMs in AD detection

Currently, the use of PLMs in AD detection typically in-
volves two approaches, the first is utilizing them as feature
extractors, and the second is fine-tuning (refers to the tradi-
tional fine-tuning mentioned in the following sections) them
[14, 15, 16, 17]. While using PLMs as feature extractors can
leverage pre-trained representations efficiently, this approach is
often limited by its inability to adapt to domain-specific nu-
ances, and lack of task-specific optimization. The second ap-
proach can overcome these limitations. However, the objective
during the fine-tuning phase is inconsistent with the objectives
of the pre-training phase of PLMs. PLMs like BERT primarily
learn during the pre-training phase through two tasks: masked
language modeling (MLM) and next sentence prediction (NSP)
[18, 19]. The objectives of the two tasks are inconsistent with
that of the fine-tuning method aimed at AD binary classifica-
tion mentioned above. This inconsistency may result in the
PLMs overlooking fine-grained information, such as semantic
coherence and pragmatic features, which are valuable for AD
detection during the fine-tuning process.

1.3. The work of this paper

To address the inconsistency issue of objectives between the tra-
ditional fine-tuning (TFT) phase and the pre-training phase of
PLMs for AD detection, as mentioned in Section 1.2, we in-
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vestigated a novel fine-tuning paradigm based on prompts. By
inserting prompt templates into the transcript inputs, we con-
verted the text classification task into an MLM task, thereby
achieving better consistency with the pre-training objectives.
Previous studies have demonstrated the effectiveness of prompt-
based fine-tuning (PBFT) in tasks such as text classification and
text matching [20, 21, 22], but there has been limited research
in the medical domain [23], particularly in the field of AD de-
tection. In this paper, we converted the problem of classifying
AD and non-AD labels into a word probability prediction task.
Specifically, we insert a prompt template into the input text:
“The diagnosis result is [MASK]”. After fine-tuning the PLMs
with this prompt on the training data, the models are required
to predict whether the “[MASK]” token is the word “alzheimer
or “healthy” . This prompt-based approach provides the model
with a clear prediction framework, which is consistent with the
pre-training tasks. Consequently, it leverages the semantic and
contextual knowledge acquired during pre-training phase more
effectively and reduces the extent of model parameter adjust-
ments required during fine-tuning phase. Different positions
to insert the prompt template were also explored. To compare
with the aforementioned PBFT method, we also implemented
the TFT method, which only inputs the transcripts and does
not include the aforementioned prompt phrases. Additionally,
we implemented pause encoding using the timestamp outputs
from forced alignment. To the best of our knowledge, no previ-
ous research has combined PBFT with pause encoding for AD
detection. Recent advancements in automatic speech recogni-
tion (ASR) technologies, such as wav2vec 2.0 [24] and Whis-
per [25], have significantly enhanced the viability of ASR tran-
scripts for AD classification. To compare with the manual tran-
scripts, we investigated the impact of ASR transcripts on AD
classification performance. Specifically, we compared different
ASR models and selected the Whisper model for further ex-
periments. Each sample in the ADReSS dataset includes di-
alogue content between the interviewer and the subject, and
we explored the effect of the interviewer’s transcripts on AD
detection. To mitigate the overfitting risk of PLMs on small
datasets and enhance robustness, mjority voting and ensemble
techniques were further applied across BERT and RoBERTa us-
ing different random seeds. The main contributions of this paper
are summarized below:

• It presents the first work combining PBFT with pause
encoding for AD detection. Experimental results show
that PBFT generally outperforms the TFT paradigm and
confirm the effectiveness of pause encoding.

• It compares the performance of various ASR models on
the ADReSS dataset and investigates the impact of ASR-
based versus manual transcripts on AD detection perfor-
mance.

• It achieves a state-of-the-art (SOTA) AD detection ac-
curacy of 95.8% using only manual transcripts on the
ADReSS test set.

The rest of this paper is organized as follows. Section 2
presents the data and transcripts generation process. Section 3
describes two methods for fine-tuning PLMs and pause encod-
ing. Section 4 reports the experimental procedures, results, and
related analysis. Finally, conclusions are drawn and future work
is discussed in Section 5.

2. Data
In this paper, the ADReSS challenge dataset from INTER-
SPEECH 2020 [3] is used for training and evaluating the AD

detection system. It is selected from the Pitt Corpus in the De-
mentiaBank database [26]. The data consists of speech record-
ings and corresponding manual transcripts of spoken picture de-
scriptions elicited from subjects and guidance phrases from the
interviewers. Each sample has a binary AD label (alzheimer
or healthy). The training set includes 108 subjects and the test
set includes 48 subjects. both balanced in terms of gender, age
and binary labels. The data are in English and undergo acoustic
enhancement through noise removal and audio volume normal-
ization. Further details of the dataset are described in [3].

The following subsections describe how we processed the
ADReSS dataset to obtain the manual and ASR transcripts.

2.1. Manual Transcripts
The transcripts in the ADReSS dataset were annotated using
the CHAT (Codes for the Human Analysis of Transcripts) for-
mat [27]. This format standardizes the transcripts of spoken
language, including punctuation, speaker identification, and the
notation of nonverbal sounds and actions. We processed these
annotations to ensure that the manual transcripts accurately cor-
respond to what the participants actually said. Behavioral noises
such as “&=laughs” and “&=coughs” were removed. Symbols
such as &, @, (.), (..), (...), <, >, /, and xxx were also removed.
Instances of “word [x n]” were replaced by repeating “word”
n times. And then, we obtained manual transcripts that repre-
sent what were actually produced in speech (including guidance
phrases from the interviewers). Additionally, based on the an-
notations, we also obtained transcripts containing only the sub-
jects’ speech.

2.2. ASR Transcripts
We compared two advanced ASR models, wav2vec 2.0 [24]
and Whisper [25], to determine which model could achieve
more accurate transcription results on the pathological speech
dataset. For the wav2vec 2.0 model, we utilized three fine-
tuned versions: wav2vec2-large-960h1, wav2vec2-large-960h-
lv60-self2, and wav2vec2-large-xlsr-53-english3. For the Whis-
per model, whisper-large-v34 is utilized. The ASR-based tran-
scripts include speech from both the subjects and the interview-
ers. All these models are available on HuggingFace.

3. Methods
In this paper, we used BERT and RoBERTa as the PLMs to
be fine-tuned. Experiments were conducted on base-sized56 or
large-sized78 versions.

3.1. Traditional Fine-Tuning (TFT)

TFT method refers to using the “BertForSequenceClassifica-
tion” or “RobertaForSequenceClassification” classes from the
Transformers library9, as illustrated in Figure 1. The input text
is tokenized into tokens, including special tokens [CLS] and
[SEP]. Each token, is converted into embeddings using embed-
ding layers and then passed through transformer layers. The fi-

1https://huggingface.co/facebook/wav2vec2-large-960h
2https://huggingface.co/facebook/wav2vec2-large-960h-lv60-self
3https://huggingface.co/jonatasgrosman/wav2vec2-large-xlsr-53-

english
4https://huggingface.co/openai/whisper-large-v3
5https://huggingface.co/google-bert/bert-base-uncased
6https://huggingface.co/FacebookAI/roberta-base
7https://huggingface.co/google-bert/bert-large-uncased
8https://huggingface.co/FacebookAI/roberta-large
9https://github.com/huggingface/transformers
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Figure 1: Overall structure for TFT.

nal hidden state of the [CLS] token, which captures the overall
meaning of the input, is then passed to a sequence classifcation
head (a linear layer with the sigmoid activation function over
the average pooled output) to produce the classification logits
and then determine whether the label is AD or non-AD.

3.2. Prompt-based Fine-Tuning (PBFT)
The PBFT converts the text classification task into an MLM task
by using manually designed prompt templates. Therefore, the
model now needs to predict the probability of the label word
to fill in the masked position, as illustrated in Figure 2. For
this prompt template “The diagnosis result is [MASK]”, the
“[MASK]” is the word “alzheimer” or “healthy”, corresponding
to the AD or non-AD label, respectively. Each label word cor-
responds to one token in the vocabulary of BERT or RoBERTa.
Unlike the TFT method mentioned in Section 3.1, the tran-
scripts need to be concatenated with the prompt template before
being input into the PLMs, and the final hidden state represen-
tation of the “[MASK]” token is used to pass into MLM Head
to predict logits representing the probablities for the AD and
non-AD label words to fill in the masked position given the cor-
responding vocabulary. The logits are then normalized using
the softmax function to compute the cross entropy loss for the
label words “alzheimer” and “healthy”. We experimented with
inserting the prompt template in two different positions (before
or after the transcript) to investigate the impact of template po-
sitions on the correct prediction of label words, namely: “The
diagnosis result is [MASK] +transcript” or “transcript + The
diagnosis result is [MASK]”. We used the OpenPrompt frame-
work [28] based on Pytorch to implement the PBFT with PLMs.

3.3. Pause Encoding
We encoded the pauses between words in the input transcripts
to better capture disfluency information. The specific methodol-
ogy is as follows. The processed transcripts were forced aligned
with speech recordings using a forced aligner [29], which used
the symbol “SIL” to denote pauses between words. Pauses at
the beginning and end of the recordings, as well as transcripts
from the interviewer, were removed. Following the method
described in [30], pauses were categorized into three groups:
short (under 0.5 sec), medium (0.5-2 sec), and long (over 2
sec). These three bins of pauses were encoded using the punc-
tuation marks “,”, “.”, and “. . . ”, respectively. Because all
punctuations were removed from the processed transcripts, the
aforementioned three encodings solely represented pause infor-
mation.

Table 1: Mean WER (%) of the ASR models on ADReSS.

ASR model All Healthy Alzheimer Training set Test set

wav2vec2-large-960h 50.19 42.68 57.78 49.74 51.19

wav2vec2-large-960h-lv60-self 43.19 35.97 50.48 42.44 44.84

wav2vec2-large-xlsr-53-english 64.85 57.03 72.74 65.49 63.43

whisper-large-v3 34.24 28.47 40.07 32.97 37.06
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Figure 2: Overall structure for PBFT.

4. Experiments
We first describe the experimental setup in Section 4.1, followed
by the presentation and analysis of the experimental results in
Section 4.2. The results include the evaluation of the perfor-
mance of four versions of two ASR models, as well as the AD
detection results under the different conditions and methods.
Overall, we conducted a series of comparative experiments, in-
cluding four fine-tuned versions of two ASR models, PBFT ver-
sus TFT, manual transcripts versus ASR transcripts, the use ver-
sus non-use of pause encoding, and the inclusion versus exclu-
sion of interviewer’s transcripts in the input sequence.

4.1. Experimental Setup
We set maximum input length of BERT and RoBERTa to 512.
We performed 10-fold cross-validation on the training set and
tested on the test set. To enhance robustness, each AD detection
system performed majority voting over the last three fine-tuning
epochs of BERT or RoBERTa, and the two PLMs were also
fused. For PBFT, the results of the templates in the two different
positions were further integrated. Additionally, the evaluation
of each system was repeated 15 times using 15 different random
seeds. Mean, standard deviation (std) and the maximum among
accuracy of all runs are used as performance measures. The
following hyperparameters (slightly tuned) were chosen. For
both fine-tuning methods, the number of training epochs was
20, the learning rate was 1e-05, AdamW optimizer was used,
and the weight decay was 0.01. For TFT, the batch size was
4, while for PBFT, it was 1. All the parameters of both BERT
and RoBERTa PLMs were fine-tuned. We converted the ASR
outputs to lowercase, removed all punctuations, and used the
manual transcripts as the ground truth for calculating the WER.

4.2. Results and Analysis
4.2.1. WER of the ASR models

The performance of four fine-tuned versions of the two ASR
models (wav2vec 2.0 and Whisper) on the ADReSS dataset is
shown in Table 1, which presents the mean WER results for
five groups: All (training set plus test set), Healthy, Alzheimer,
Training set, and Test set. The results indicate that the WER
for each ASR model is higher in the Alzheimer group than in
the Healthy group, which is expected, as AD patients tend to
use fillers, incomplete words, and unclear articulation. The
WERs for the Training set and Test set are approximately
equal. The whisper-large-v3 model demonstrates the best
performance across all ASR models: All (34.24%), Healthy
(28.47%), Alzheimer (40.07%), Training set (32.97%), and Test
set (37.06%). Therefore, we selected its ASR transcripts for the
subsequent experiments.

4.2.2. AD detection results

The performance measures of TFT and PBFT for AD detec-
tion under different conditions are shown in Table 2, which re-
veals several main trends. Firstly, PBFT generally outperforms



Table 2: AD detection results of TFT (the rows where the values of “Prompt Positions” are “-”) and PBFT (the remaining rows) under
different conditions. Column 2 represents the use of either BERT or RoBERTa individually or the majority voting of their results. For
PBFT, column 3 indicates whether a single prompt position (Before or After) is used, or the late fusion of both positions. Columns
4-6 display the results of 10-fold cross-validation on the training set, while columns 7-9 present the testing results on the test set. The
results in each cell contain four specific sections, separated by “/”, corresponding to four different transcript inputs. These inputs, from
left to right, are: “transcripts containing only the subjects”, “transcripts containing only the subjects and added pause encoding”,
“transcripts containing both subjects and interviewers”, and “transcripts from the ASR model whisper-large-v3”. The results presented
in parentheses are derived from the large-sized PLMs, whereas the others are from the base-sized PLMs.

Sys PLMs Prompt Positions Training Set CV Acc (%) Test Set Acc (%)
Mean Std Maximum Mean Std Maximum

1

BERT

- 80.4/80.8/78.9/75.5 2.1/2.7/3.0/1.4 82.3/83.7/81.9/78.5 81.6/82.4/79.6/70.8 3.0/1.3/2.3/2.9 84.6/84.3/83.3/76.4
2 Before 81.2(81.7)/81.5(83.3)/82.4/75.7 1.8(2.0)/2.3(2.5)/1.8/1.6 86.1(85.2)/86.1(86.1)/86.1/78.7 79.9(86.0)/84.4(84.6)/80.0/72.1 2.2(3.0)/3.8(2.5)/3.0/2.6 83.3(91.7)/87.5(91.7)/85.4/77.1
3 After 74.0(81.5)/74.5(80.2)/73.6/70.9 2.2(1.9)/2.8(3.4)/3.1/2.2 78.7(82.4)/80.6(83.3)/77.8/75.0 80.1(81.3)/80.7(84.0)/77.8/66.9 3.3(4.5)/4.5(4.7)/2.9/2.6 85.4(93.8)/85.4(93.8)/81.3/70.8
4 Before+After 79.8(82.1)/82.2(82.8)/78.4/74.9 2.0(2.0)/2.8(2.0)/1.8/2.1 83.3(87.0)/83.3(87.0)/82.4/77.8 83.6(86.5)/84.2(86.5)/77.2/70.8 2.5(2.0)/2.7(3.4)/2.8/2.3 87.5(89.6)/87.5(91.7)/81.3/75.0
5

RoBERTa

- 81.3/82.4/80.0/77.3 2.2/2.3/2.4/1.9 83.6/85.2/82.2/78.9 82.1/82.9/80.6/74.4 2.4/1.7/2.9/3.3 85.4/85.4/85.4/75.2
6 Before 81.4(82.0)/83.7(83.3)/80.2/76.7 1.4(1.9)/2.0(4.1)/1.5/1.7 84.3(84.3)/87.0(88.0)/83.3/80.6 80.3(82.9)/80.1(84.2)/77.5/74.6 2.5(3.8)/3.7(4.6)/2.8/2.0 85.4(87.5)/85.4(91.8)/81.3/79.2
7 After 80.2(82.5)/83.3(82.0)/75.7/74.1 1.8(2.0)/1.8(2.6)/1.7/2.0 84.3(87.0)/86.1(84.3)/78.7/78.7 80.7(82.5)/83.2(82.8)/80.7/70.0 2.3(3.4)/4.2(3.9)/3.4/4.4 85.4(87.5)/91.7(91.7)/85.4/79.2
8 Before+After 83.0(84.1)/84.0(84.2)/80.1/76.8 1.7(1.2)/1.5(3.2)/1.2/2.8 86.1(86.1)/86.1(84.3)/83.3/79.6 82.9(83.2)/84.7(84.9)/79.6/72.9 2.2(3.9)/3.4(5.8)/3.2/3.3 87.5(89.6)/89.0(93.8)/85.4/81.3
9 BERT

+
RoBERTa

- 82.8/83.3/81.6/77.6 2.1/2.2/2.2/2.1 84.2/86.7/82.8/82.4 83.6/84.2/80.4/72.6 2.5/1.6/2.5/1.8 87.5/91.7/85.4/77.1
10 Before 81.3(81.3)/82.7(82.5)/82.1/78.4 1.3(1.3)/2.4(2.4)/1.4/1.8 85.2(85.2)/88.0(88.0)/86.1/84.3 82.5(84.0)/82.9(84.0)/76.9/72.8 2.5(3.0)/4.2(2.6)/2.7/1.6 89.6(91.7)/91.7(91.7)/83.3/79.2
11 After 78.5(78.5)/79.4(79.4)/75.2/76.5 2.1(2.1)/1.7(1.7)/2.1/2.3 83.3(83.3)/84.3(84.3)/80.6/81.5 83.5(84.7)/82.6(82.6)/78.9/68.9 3.1(3.9)/3.4(4.0)/2.8/2.4 91.7(93.8)/89.6(93.8)/87.5/75.0
12 Before+After 83.1(83.1)/84.2(84.2)/81.1/77.6 1.2(1.2)/1.2(1.3)/1.6/1.5 86.1(86.1)/88.0(88.0)/85.2/82.4 85.0(85.0)/86.5(87.9)/79.7/72.6 2.2(2.6)/2.6(3.3)/2.6/2.4 91.7(89.6)/91.7(95.8)/85.4/79.2

TFT in terms of the mean or maximum accuracy, indicating that
PBFT is more effective for AD detection. For PBFT, there is no
significant performance difference between prompt templates at
different positions. Late fusion of templates from two different
positions within any individual PLMs does not lead to perfor-
mance improvement, likely due to insufficient diversity between
the different position templates among the resulting PLMs, re-
sulting in a lack of complementarity. However, majority voting
between different PLMs (BERT + RoBERTa) across different
prompt positions can enhance detection performance and im-
prove stability (smaller std). This may because the late fusion
of the two PLMs can further leverage their complementarity,
since RoBERTa’s performance is generally, but not consistently,
superior to BERT.

Regarding results from different transcript inputs, TFT and
PBFT reveal consistent trends. Results from transcripts con-
taining only the subjects outperform those including the in-
terviewers, suggesting that interviewers’ transcripts may inter-
fere with the model’s extraction of linguistic features relevant
to distinguishing AD from non-AD. The addition of pause en-
coding to the manual transcripts consistently enhances perfor-
mance, indicating that it aids the model in capturing features
such as disfluencies associated with AD. Although we selected
the relatively well-performing Whisper model, its ASR-based
transcripts reduce AD detection performance compared to man-
ual transcripts. This may be due to the difficulty in extracting
useful classification features from ASR-based transcripts with
high WER. Recent studies [33, 34] have indicated that imper-
fect ASR transcripts can sometimes provide valuable cues for
downstream tasks (e.g., AD detection, emotion recognition),
thereby improving the performance of the corresponding tasks.
The discrepancy in conclusions in this study may be attributed
to the different ASR models and methods used. This paper lacks
sufficient investigation into the impact of ASR transcripts on
downstream task performance (as it is not the main focus of this
paper), necessitating further research for a more in-depth anal-
ysis in this area.

Table 3: Comparison of the best test set accuracy presented
in this paper with the recent SOTA results based on different
modalities for the ADReSS dataset.

Literature Modality Test Set Acc (%)

Laguarta et al.[31] Audio + Pre-trained Biomarkers 93.8

Martinc et al. [32] Audio + Manual Transcript 93.8

Wang et al. [15] Manual Transcript 91.7

Our work Manual Transcript 95.8

To investigate whether large-sized PLMs provide improve-
ments over base-sized ones, we conducted PBFT with large-
sized PLMs. These results are presented in parentheses in Table
2. As noted in previous analysis, including interviewer tran-
scripts will reduce AD detection performance, and the perfor-
mance of ASR-based transcripts with errors is lower than that
of manual transcripts. Therefore, we only used two types of
inputs in this experiment: transcripts containing only the sub-
jects (left side of the first “/”) and transcripts containing only
the subjects and added pause encoding (right side of the first
“/”). Comparing these results with those from the base-sized
PLMs, we can observe that increasing the model size slightly
improves AD detection performance. Ultimately, we achieved a
maximum AD detection accuracy of 95.8% on the test set when
inputs are manual transcripts containing only the subjects and
added pause encoding (with mean 87.9%, std 3.3%) (the bolded
values in Sys. 12), reaching SOTA results using only manual
transcripts.

The best AD detection performance presented in this paper
were further compared in Table 3 with SOTA results reported in
recent literature using the same ADReSS dataset to demonstrate
their competitiveness.

5. Conclusions
In this paper, we proposed a method for AD detection by com-
bining prompt-based fine-tuning of PLMs with pause encod-
ing. Majority voting and ensemble techniques were further ap-
plied across BERT and RoBERTa using different random seeds.
Experimental results demonstrated the superiority of prompt-
based fine-tuning over traditional fine-tuning, with pause encod-
ing enhancing AD detection performance in both methods. To
compare with manual transcripts, we employed the ASR model
whisper-large-v3, which demonstrated relatively better perfor-
mance, to obtain ASR-based transcripts. We found that ASR
transcripts with hign WER reduce AD detection performance
compared to manual transcripts. We also investigated the im-
pact of interviewer’s transcripts on AD detection performance
and found that they interfere with the model’s ability to cor-
rectly distinguish between AD and non-AD. Ultimately, maxi-
mum detection accuracy of 95.8% (with mean 87.9%, std 3.3%)
was obtained using manual transcripts, achieving SOTA perfor-
mance in AD detection using only transcripts on the ADReSS
test set. We hope that the research presented in this paper will
provide valuable insights for the development of more effective
automatic AD detection techniques. Moving forward, we aim
to investigate the relationship between ASR errors and linguis-
tic features extracted from the speech of AD patients to better
understand what the model has learned.
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