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Abstract 

A novel framework is proposed that combines multi-resonance biosensors with machine 

learning (ML) to significantly enhance the accuracy of parameter prediction in biosensing. Unlike 

traditional single-resonance systems, which are limited to one-dimensional datasets, this approach 

leverages multi-dimensional data generated by a custom-designed nanostructure—a periodic array 

of silicon nanorods with a triangular cross-section over an aluminum reflector. High bulk 

sensitivity values are achieved for this multi-resonant structure, with certain resonant peaks 

reaching up to 1706 nm/RIU. The field analysis reveals Mie resonances as the physical reason 

behind the peaks. The predictive power of multiple resonant peaks from transverse magnetic (TM) 

and transverse electric (TE) polarizations is evaluated using Ridge Regression modeling. 

Systematic analysis reveals that incorporating multiple resonances yields up to three orders of 

magnitude improvement in refractive index detection precision compared to single-peak analyses. 

This precision enhancement is achieved without modifications to the biosensor hardware, 

highlighting the potential of data-centric strategies in biosensing. The findings establish a new 

paradigm in biosensing, demonstrating that the synergy between multi-resonance data acquisition 

and ML-based analysis can significantly enhance detection accuracy. This study provides a 

scalable pathway for advancing high-precision biosensing technologies. 
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1. Introduction 

A notable innovation in optical biosensing is the use of resonant structures that enhance 

detection performance through light-nanostructure interactions [1-9]. Traditionally, single-

resonance biosensors offer a single measurable response to external changes like refractive index 

variations [10-16]. Refractive index sensors are used in biosensing and medical diagnostics, 

chemical and environmental sensing, food and beverage quality control, optical and photonic 

devices, pharmaceutical analysis, industrial monitoring [17-24]. Index However, the limitations of 

single-resonance systems [25, 26] in capturing complex, multi-dimensional biological signals have 

led to the exploration of new approaches. Introducing multi-resonant structures [27-31] presents a 

transformative advancement in the field, enabling the collection of richer, multi-dimensional 

datasets and paving the way for improved precision and robustness in parameter prediction. 

Machine learning (ML) has become a groundbreaking tool in biosensing, facilitating the 

analysis and interpretation of complex, high-dimensional data [32-36]. Combining multi-

resonance biosensors with ML methods can significantly enhance the precision of target variable 

predictions. This combination is particularly effective with multi-dimensional datasets that contain 

latent correlations and patterns not evident in lower-dimensional data. Traditional one-dimensional 

(1D) biosensing data have often been modeled using simple linear fittings, which may not provide 

optimal precision [37, 38].  

Here, we propose a novel framework to overcome these limitations by utilizing multi-

dimensional data and demonstrate the high potential of utilizing multi-dimensional data in 

biosensing through an exemplary optical multi-resonant structure. Our approach is based on the 

principle that incorporating multiple predictors or resonances leads to superior prediction accuracy 

of the target variable compared to using lower-dimensional or 1D data. This hypothesis is validated 

by modeling a relatively simple-to-fabricate nanostructure consisting of a triangular cross-

sectioned array of periodic silicon nanorods over an aluminum back reflector.  

Most resonant peaks in our structure exhibit sensitivity values in the hundreds of nm/RIU, with 

specific peaks reaching bulk sensitivity as high as 1706 nm/RIU. It is shown through electric and 

magnetic field analysis that the magnetic and electric dipole type Mie resonances are the physical 

reasons behind the TM and TE peaks, respectively. Such sensitivity performance underscores the 

effectiveness of our design [39] and exemplifies the broader principle demonstrated in this work, 

that is, utilizing multi-dimensional data can significantly enhance biosensing precision. To 
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quantitatively establish this principle, we select four resonant peaks from the absorption profiles 

of transverse magnetic (TM) and transverse electric (TE) polarizations and employ ML techniques, 

namely the Ridge Regression modeling, to analyze their predictive power [40-44]. By 

systematically evaluating all possible combinations of these predictors (peaks)—from using each 

individually to incorporating all four simultaneously—we show that adding predictors consistently 

improves precision. Specifically, when combining the peaks from both polarizations, 

approximately 3 orders of magnitude enhancement in bulk refractive index detection precision is 

achieved compared to some single peaks. This approach allows us to maintain the same 

hardware—biosensor structure and measurement setup—while enhancing performance through 

innovative data processing. The findings presented in this paper not only highlight the desirable 

sensitivity performance of our multi-resonant structure but also provide proof of concept for a 

general novel paradigm in biosensing. By demonstrating the synergy between multi-resonance 

data acquisition and ML-based analysis, this work lays the foundation for future advancements in 

high-precision biosensing technologies. 

 

2. Proposed structure 

The schematic of the proposed structure is shown in Fig. 1 along with the definition of the xyz 

coordinates. The structure consists of a periodic array of silicon based nanorods with triangular 

cross-section. Figure 1(b) demonstrates the cross-section (side view) of the structure, where it can 

be observed that the nanorods have a triangular shape in the cross section with the base (or array 

period), p = 2 m, and height, h = 4 m. The reason to use a tapered design instead of one with 

vertical sidewalls is that a tapered design is equivalent to superposition of various widths, each 

supporting a specific resonance, leading to maximization of the multi-resonant behavior. The 

substrate is an optically thick Aluminum layer to ensure that all the transmission is blocked.  

 

3. Simulation results  

The reflection spectrum of the proposed structure is simulated. The simulations are carried out 

in the Finite-difference time-domain (FDTD) environment using the commercial Ansys Lumerical 

FDTD software, and the details of the simulation are mentioned in the “Methods” section. Since 

the transmission (T) is almost zero, the absorption spectrum (A) can be directly found from the 

reflection spectrum (R), i.e., A=1-R, which is exemplified in Figs. 2(a) and (b) for the spectral 
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range of 0.4-7 µm for the TM and TE polarizations, respectively. It can be seen that for both 

polarizations there are a high number of distinct peaks in the absorption spectrum, covering the 

infrared range. There are also a high number of peaks available in the wavelength range below 1 

µm that cannot be seen very distinctly in Figs. 2(a,b). Therefore, Figs. 2(c,d) show the TM and TE 

absorption spectra of the structure in the 0.4-1 µm spectral range to demonstrate the peaks in that 

range more clearly. However, for simplicity, in the rest of this work, the peaks in the infrared range 

are used to demonstrate the concept. 

To evaluate the biosensing functionality of the structure, we examine the peak shift with 

varying bulk refractive index above the structure. Figure 3(a) shows the absorption spectra of the 

TM polarization for the three bulk refractive index values of 1.45, 1.50, and 1.55. It can be 

observed that the peaks undergo a red shift (towards higher wavelengths) as the bulk refractive 

index increases. For example, Fig. 3(b) shows the close-up view of the shift of the absorption peak 

around the wavelength of 3.3 µm. It can be observed that the peak shifts around 139.2 nm for a 

0.1 increment in the bulk index (from 1.45 to 1.55), corresponding to a bulk sensitivity of 1392 

nm/RIU for this peak. Another example of a TM polarization peak with high sensitivity is the one 

around the wavelength of 4.8 µm which has a bulk sensitivity of 1149 nm/RIU, shown in Fig. 3(c) 

(See Table 1 for more peak sensitivity examples for both polarizations). 

Figure 3(d) shows the absorption spectra shift of the TE polarization for the bulk refractive 

index values of 1.45, 1.50, and 1.55. Fig. 3(e) shows the close-up view of the shift of the absorption 

peak around the wavelength of 3.5 µm, which has a bulk sensitivity of 1283 nm/RIU. Another 

example is the peak around the wavelength of 4.2 µm. The bulk sensitivity is calculated to be 

around 784 nm/RIU for this peak. Unlike other designs requiring intricate multilayered 

nanofabrication, our design achieves a high sensitivity performance with enhanced simplicity and 

scalability. 

By comparing the peak shifts for both polarizations, we can see that almost all the peaks for 

the TM polarization undergo a stronger red-shift compared to the TE polarization. This is due to 

the fact that the electric field is parallel to the cross-section plane for the TM polarization, and 

hence it penetrates directly into the surface of the Si triangular nanorods (see Fig. 1(b)). Therefore, 

the electric resonances for the TM polarization can be influenced more significantly by the index 

variation above the surface of the structure. This is while for the TE polarization, the electric field 
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is perpendicular to the cross-section, i.e., parallel to the surface of triangular nanorods, making the 

electric resonances less sensitive to index variations.  

To evaluate the refractive index sensitivity of the structure more closely, we vary the refractive 

index of the simulation environment, from 1.45 to 1.55 by 0.001 increments. For the TM and TE 

polarizations, certain peaks shown in Figs. 3(a) and 3(d) are chosen, respectively, and the 

wavelength shift versus the bulk index shift are plotted for those peaks. The results are shown in 

Figs. 4(a,b) for the TM and TE polarizations, respectively. The nm/RIU for the peak shifts in Fig. 

4 are presented in Table 1.  

As seen in Fig. 4, like most biosensing measurements, the relationship between the measured 

quantity (peak shift) and the sensing input (bulk index) seems linear. However, even in the 

simulations, the relationships are not perfectly linear due to nonlinear physical phenomena such as 

adjacent resonances or peaks influencing each other. In actual experimental measurements, the 

linearity may be even weaker due to experimental imperfections and errors such as noise or 

measurement setup inaccuracies. Therefore, a purely linear model does not always provide a 

precise prediction of the bulk index value based on the measured resonance location. This occurs 

when only one peak shift is considered, and a linear fit is used as the calibration curve. However, 

as will be demonstrated in detail in the coming sections, if, through data training and machine 

learning algorithms, more than one peak (in this case 4 peaks) is considered, the precision of 

estimating the bulk index based on the measured peak location gets significantly enhanced. In 

other words, if we use multiple peaks or resonances, or a multi-dimensional set of data (4D in this 

case), instead of one peak, or using 1D data, the precision of the system will be highly improved. 

This enables us to attain significantly higher precision using the same biosensor structure and the 

same measurement setup, but with a slightly different post data processing strategy.  

Figures 5 and 6 present the electric and magnetic field distributions for the selected TM and 

TE polarization resonances, respectively, providing strong confirmation of Mie-type dipole modes 

within the silicon nanorod [45]. For TM polarization (Figure 5), where the incident wave consists 

of Ex and Hz, the fields inside the structure include Ex, Ey, and Hz. The bottom row of Figure 5 

illustrates the localized Hz hotspots, while the top row presents quiver plots of Ex-Ey, revealing 

clear circulating electric field loops around the magnetic field peaks. This behavior aligns with 

Ampère’s Law, ∇×E=−∂B/∂t, where a time-varying Hz dipole moment along the z-axis induces a 

rotational Ex, Ey field around it. The presence of these closed-loop electric field structures around 
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a concentrated magnetic field hotspot confirms that these resonances correspond to magnetic 

dipole Mie modes. 

Similarly, Fig. 6 (TE polarization) shows the field behavior for an incident wave consisting of 

Hx and Ez, with the fields inside the nanorod including Hx, Hy, and Ez. The bottom row illustrates 

the localized Ez field hotspots, while the top row quiver maps display circulating Hx, Hy vectors 

around these regions. This pattern is characteristic of Faraday’s Law, ∇×H=∂D/∂t , where an 

oscillating electric dipole moment along the z-axis (Ez) induces a surrounding rotational magnetic 

field (Hx, Hy). The formation of these looped H-field structures around strong Ez hotspots confirms 

that these TE resonances correspond to electric dipole Mie modes. 

Together, these field distributions validate that TM polarization supports magnetic dipole Mie 

resonances, while TE polarization supports electric dipole Mie resonances, fully consistent with 

the expected behavior of high-index dielectric nanostructures in the infrared. The presence of well-

defined dipole fields and circulating response patterns further reinforce that these resonances 

originate from localized Mie-type scattering rather than extended traveling waves, governing the 

observed refractive index sensitivity trends. 

 

4. Multi-resonance data processing through ML and precision enhancement  

To demonstrate the biosensing precision enhancement through ML based multi-dimensional 

data processing, we consider the shift of 4 TM and 4 TE peaks shown in Figs. 4(a) and 4(b), 

respectively. Figures 7(a) and 7(b) demonstrate the scatter plots of the shift of those 4 peaks for 

TM and TE polarizations, respectively, versus the bulk index shift starting from 1.45. The bulk 

index shift ranging between 0.001 to 0.1 with 0.001 increments is multiplied by 1000 for 

simplicity, and is denoted as x, i.e., 100 values in total, ranging from 1 to 100. The peak shift values 

are referred to as y1, y2, y3, and y4 for the TM peaks at the wavelengths of 1859, 2926, 3281, and 

4854 nm, respectively, and as y11, y22, y33, and y44 for the TE peaks at the wavelengths of 2349, 

3428, 3744, and 4189 nm, respectively. Since y values (peak shifts) are measured in the biosensor 

(the location of peaks) and are used to predict the value of x associated with them (bulk index 

shift), yi’s are referred to as predictors, and x is referred to as the target variable. Table S1 in the 

Supplementary Information shows the descriptive statistics of the target variable x and the TM 

polarization predictors. The model development for ML based data training is detailed in the 

Supplementary Information, using the TM polarization predictors for demonstration. During 
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model development, we conducted multicollinearity assessments and calculated Variance Inflation 

Factors (VIF) to ensure predictor robustness. VIF values suggested strong multicollinearity among 

predictors. Therefore, in addition to the linear regression used for multi-dimensional modeling 

initially, we have used a Ridge Regression model to address possible adverse effects of 

multicollinearity in multi-dimensional data modeling. Additionally, all models underwent rigorous 

validation using 10-fold cross-validation to ensure reliability and generalizability.  

Figure 8 illustrates the performance enhancement achieved by leveraging multiple resonance 

shifts in the proposed multi-resonance optical biosensor for bulk refractive index sensing. The 

diagrams in Figs. 8(a) and (b) are organized to depict all possible combinations of predictors y1, 

y2, y3, and y4, and their associated mean squared error (MSE) values using the Ridge Regression 

modeling for the TM and TE polarizations, respectively. The leftmost column represents the 

individual predictors (‘y₁’ through ‘y₄’) and their corresponding MSE when used individually in 

simple 1D linear modeling. As we move rightward, the combinations of the predictors increase, 

culminating in the simultaneous utilization of all four predictors. Each box is labeled with its 

respective MSE value, showcasing the performance of that specific combination of predictors.  

The progression from left to right consistently demonstrates a reduction in MSE values as 

additional predictors are incorporated. For instance, in the TM polarization, two peaks used 

individually yield MSE values of 2.466 and 7.226, respectively. However, when all four TM peaks 

are utilized together, the MSE dramatically reduces to 0.0173. Similarly, in the TE polarization, 

individual MSEs of 1.1186 and 7.3318 are reduced to 0.0357 when all four TE peaks are combined. 

Importantly, by incorporating both TM and TE polarizations and utilizing all eight resonant peaks 

as 8-dimensional data, the MSE further improves to 0.0090, with an R² value of 1.000, 

demonstrating near-perfect precision.  

The lines between the columns connect the combinations in the right columns that can be 

produced by their connected adjacent left columns by adding another predictor to it. There are 28 

connecting lines in total. The red line highlights combinations where the inclusion of additional 

predictors results in a two-order-of-magnitude improvement in MSE. For instance, for TM 

polarization, combining ‘y₂’ and ‘y₃’ leads to a 274-fold precision gain compared to using ‘y₂’ 

alone. There are in total 9 blue lines which indicate at least one order of magnitude improvement, 

while black lines represent MSE enhancements ranging between 1-10 times. This means for a total 

of 10 out of 28 lines, adding an additional predictor to certain predictor combinations, leads to at 
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least an order of magnitude enhancement in the modeling precision for the case of TM polarization, 

which is over 35% of all the lines. For the case of TE polarization, there are 2 red lines (>100-fold 

enhancement) and 8 blue lines (>10-fold enhancement), indicating a similar precision 

enhancement performance compared to the TM polarization. The yellow lines represent 

combinations where the inclusion of additional predictors results in no improvement. There is only 

one yellow line for each of the TM and TE polarizations in Figs. 8(a,b), out of a total of 28 cases, 

where in both cases MSE has remained approximately the same. It can therefore be observed that 

additional predictors have nonlinear impact. While the overall trend is a reduction in MSE with 

more predictors, the magnitude of improvement varies. For example, the addition of ‘y₄’ to ‘y₁’ 

and ‘y₃’ (indicated by black lines) provides less significant improvement compared to the addition 

of ‘y₂’ to ‘y₁’ (red line) for the TM polarization. 

The findings illustrated by the figure confirm that multi-resonance analysis significantly 

enhances biosensing precision without requiring additional hardware. This improvement stems 

solely from advanced post-processing using machine learning. The systematic reduction in MSE 

demonstrates the ability of machine learning techniques to extract synergistic information from 

multiple resonance shifts, effectively overcoming limitations of traditional single-resonance 

methods. 

Figure 8, as a complete picture, further emphasizes the cost-effectiveness of the proposed 

methodology. Traditional methods rely on hardware advancements to improve sensing precision, 

often leading to increased costs and complexity. In contrast, this approach achieves superior 

performance solely through data-driven techniques applied to existing hardware. This paradigm 

shift not only reduces costs but also broadens the applicability of high-precision biosensors in 

resource-constrained settings. 

Finally, combining all the peaks in both TE and TM polarizations, i.e., using 8 dimensional 

data in our Ridge Regression model, the MSE and R2 values of 0.009 and 1.000 are achieved, 

respectively. This further attests to the enhancement of accuracy in data modeling when all the 

predictors are incorporated. Other parameters associated with the 8-dimensional modeling are 

available in the Supplementary Information. 
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5. Discussion, conclusion, and future work 

This study establishes a significant advancement in the field of biosensing by demonstrating 

the transformational potential of utilizing multidimensional data in multi-resonance biosensors. 

The results provide compelling evidence that the integration of multiple predictors significantly 

enhances the precision of target variable prediction. By using a simple yet highly effective optical 

multi-resonant structure as an illustrative example, we show that the principle of multidimensional 

data utilization is not only theoretically sound but also practically achievable with scalable 

fabrication techniques such as nanoimprint lithography. 

Our structure, consisting of a triangular cross-section array of periodic silicon nanorods over 

an aluminum back reflector, exemplifies a design that combines simplicity with high performance. 

The sensitivity of the structure, which can be as high as 1706 nm/RIU, underscores its capability 

as a biosensing platform. This performance is further elevated when the multi-dimensional nature 

of its resonances is leveraged through machine learning methods. By systematically analyzing 

combinations of four resonant predictors using Ridge Regression modeling, we reveal a clear 

trend: the inclusion of additional predictors leads to consistent improvements in precision, with 

some combinations achieving over an order of magnitude reduction in mean squared error. 

Notably, for TM polarization, individual peaks result in MSEs of 2.466 and 7.226, while the 

use of all four peaks reduces the MSE to 0.0173. Similarly, for TE polarization, the individual 

MSEs of 1.1186 and 7.3318 are reduced to 0.0357 when all four peaks are combined. Furthermore, 

combining TM and TE polarizations and utilizing all eight resonant peaks results in the best 

performance observed in this study, with an MSE of 0.0090 and an R² value of 1.000. This 

highlights the high potential of maintaining the same biosensor structure and measurement setup 

while enhancing performance through advanced data processing techniques. This approach 

represents a novel and efficient pathway to significantly improve biosensing precision without the 

need for complex hardware modifications. 

The ability to achieve near-perfect precision with a simple biosensor design and advanced data 

processing renders this work particularly promising for complex and real-time biosensing 

applications. The significant enhancement in data interpretation accuracy demonstrated here is 

critical for addressing the challenges of high-speed and high-complexity biosensing environments. 

By providing a robust framework for leveraging multidimensional data, this work paves the way 

for biosensing platforms capable of tackling intricate biological systems and dynamic scenarios. 
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The implications of these findings extend beyond the specific design and application studied 

here. They represent a general principle that can be applied to a wide range of biosensing 

technologies. Multidimensional data acquisition, when coupled with advanced data analysis 

techniques such as machine learning, offers a powerful pathway to overcoming the limitations of 

traditional one-dimensional biosensing approaches. This paradigm shift has the potential to 

significantly enhance the accuracy, reliability, and robustness of biosensors across diverse 

applications. 

Looking ahead, the integration of multi-resonance biosensors with sophisticated ML 

algorithms opens new avenues for innovation in biosensing. Future research could explore the 

application of this principle to more complex biological systems, incorporate additional predictors 

from other physical modalities, and develop advanced machine learning frameworks tailored for 

biosensing data. By advancing the understanding and application of multidimensional data 

utilization, this work contributes to the ongoing evolution of biosensing technologies and their 

impact on science and society. 

 

6. Methods  

Lumerical simulation setup: The simulation is carried out in the FDTD simulation environment 

using the Ansys Lumerical commercial software. The simulation environment is 2D in the xy plane 

since the structure is infinite in the z axis direction. In other words, only the cross section of one 

period of the structure is being simulated. The boundary condition in the x axis direction is the 

periodic boundary condition, while along the y axis it is chosen to be the perfectly matched layer 

(PML) boundary condition to ensure no reflection back in that direction. The Frequency-Domain 

Field Profile DFT monitor is placed right under the top boundary of the FDTD simulation 

environment, and the planewave source is placed under the monitor. The monitor collects the 

reflection data. The monitor has 30000 frequency points and collects the spectrum in the 0.4-10 

µm range. The planewave source is incident in the -y direction for the normal incidence. 

For the field simulations, the monitor was placed in the xy plane in the simulation environment. 

The field simulations are carried out with the 1.45 bulk index since the resonant behavior of certain 

peaks may disappear while changing the bulk index from 1 to 1.45.
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Figure 1. (a) 3D view and (b) cross-section view of the proposed design, consisting of a periodic 

array of triangular cross sectioned Si nanorods over an Al back reflector. p and h denote the period 

and the height of nanorods, respectively. p = 2 m and h = 4 m. The direction of the electric (in 

blue) and magnetic (in green) fields for the TM and TE polarizations of the incident beam are also 

shown. 
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Figure 2. Absorption spectra for (a,c) TM and (b,d) TE polarizations at two different spectral 

ranges. 
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Figure 3. Absorption spectra for three different bulk refractive index values of 1.45, 1.50, and 1.55 

for the (a-c) TM, and (d-f) TE polarizations. 
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Figure 4. Resonance wavelength shift vs bulk index change for the structure for 4 peaks of (a) TM 

and (b) TE polarization. The peak locations (in nm) mentioned in the figure refer to their location 

at the bulk index of 1.45. 
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Figure 5. H-field quiver maps (top panel) and Ez field magnitude color maps (bottom panel) of the 

TM 4 peaks selected for analysis listed in Table 1. 
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Figure 6. E-field quiver maps (top panel) and Hz field magnitude color maps (bottom panel) of the 

TE 4 peaks selected for analysis listed in Table 1. 
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Figure 7. Scatter plots of yi’s vs x, referring to the peaks chosen from the (a) TM and (b) TE 

absorption spectra vs bulk index change (1000x).  
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Figure 8. MSE diagram comparing the accuracy performance of Ridge Regression modeling using 

all possible combinations of the four predictors for (a) TM and (b) TE polarizations. 
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Table 1. nm/RIU for the peak shifts in Fig. 4.  

TM Polarization TE Polarization 

Peak Location (nm)1 Sensitivity (nm/RIU) Peak Location (nm) Sensitivity (nm/RIU) 

1859 598 2349 394 

2926 1706 3428 502 

3281 1392 3744 1283 

4854 1149 4189 784 

Note 1: The peak locations (in nm) mentioned in the table refer to their locations at the bulk index 

of 1.45. 
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S1. Descriptive statistics of all variables for the TM polarization 

Table S1. Descriptive statistics of variables for the TM polarization 

Statistic x y1 y2 y3 y4 

Count 100 100 100 100 100 

Mean 50.5000 28.4201 75.4105 73.3240 56.8787 

Std. Deviation 29.0115 17.6078 51.3501 41.3989 33.3703 

Minimum 1.0000 0.6400 0.9600 1.2800 1.2800 

25th Percentile 25.7500 13.2804 28.8010 38.8013 28.2409 

Median 50.5000 27.3609 70.5624 74.0825 56.1619 

75th Percentile 75.2500 43.6815 118.9640 110.1637 85.1228 

Maximum 100.0000 59.8420 170.5657 139.2046 114.8838 

 

S2. Correlation analysis 

The Pearson correlation coefficients, presented in Table S2, show extremely strong positive 

correlations between x and each yi, and between the yi’s themselves. The exploratory analysis 

indicates that while each predictor is strongly related to x, the high correlations among predictors 

suggest multicollinearity, which can affect multiple regression models. This necessitates careful 

modeling strategies to mitigate multicollinearity’s impact. 

Table S2. Correlation matrix. 

 x y1 y2 y3 y4 

x 1.0000 0.9986 0.9958 0.9990 0.9999 

y1  0.9986 1.0000 0.9991 0.9957 0.9993 

y2 0.9958 0.9991 1.0000 0.9915 0.9971 

y3 0.9990 0.9957 0.9915 1.0000 0.9982 

y4 0.9999 0.9993 0.9971 0.9982 1.0000 

 

The plots in Fig. 5 indicate strong positive linear relationships, suggesting that linear regression 

models may be appropriate.  
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S3. 10-fold cross validation 

It is noteworthy that the number of observations data is 100 in this case. In other words, the 

data can be 1D, meaning 100 (x,yi) pairs for each individual yi, or can be 4D, meaning 100 sets of 

(x, y1,y2,y3,y4). To develop the models and assess their accuracy, a 10-fold cross-validation 

approach is carried out for all models. In general, a k-fold cross validation is a technique which 

works in the following way: First, the data is shuffled and put it in k equal groups or folds. Then 

on each iteration, the remaining (k-1) set of folds (or groups) are used as our training set and the 

metrics such as accuracy are measured in the test set, which is the remaining 1 group (or fold) out 

of the k total groups. This process is repeated in each iteration, until all the k sets are used once as 

a test set (and the other k-1 groups as training sets) to measure the metrics. The final metric such 

as accuracy is the average of all the accuracies from each iteration. This method is used when the 

number of observations is relatively small (100 in this case), and the option to create a large test 

set is not available. Therefore, all models are developed using 10-fold cross-validation, where the 

dataset is divided into 10 folds, and the model is trained and tested 10 times, each time using a 

different fold as the test set. 

 

S4. Simple 1D linear regression models 

First to test the precision of linear fitting for 1D data, for the relationship between each yi and 

x, a simple linear regression model is developed as follows:  

 

 x = β0 + β1yi + ϵ S.1 

 

For each set of yi, 100 pairs of (x,yi) are used in their associated linear model. The precision of the 

model is evaluated using the parameters of MSE (mean square error) and R2 (R-squared). Their 

equations are as follows: 

 
MSE = 

1

𝑛
∑(𝑥𝑖 − 𝑥�̂�)

2

𝑛

𝑖=1

 S.2 

 
𝑅2 = 1 −

∑(𝑥𝑖 − 𝑥�̂�)
2

∑(𝑥𝑖 − �̅�)2
 S.3 
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where n denotes the number of observations in the dataset, 𝑥𝑖 denotes the value of the target 

variable in the i’th observation, 𝑥�̂� denotes the predicted value of the target variable x, and �̅� 

denotes the mean value of the target variable x in the dataset.  

Conceptually, MSE represents the error of the estimator or predictive model created based on 

the given set of observations in the sample. It measures the average squared difference between 

the predicted values and the actual values, quantifying the discrepancy between the model’s 

predictions and the true observations. R2 on the other hand, represents the proportion of the total 

variation in the data that the model can explain. For example, an R-squared value of 0.8 indicates 

that 80% of the variation in the dependent variable can be explained by the independent variables 

in the model. Therefore, a lower MSE and a higher R2 value both represent a higher model 

accuracy, with MSE = 0 and R2 = 1.0 meaning perfect model accuracy. 

The 10-fold cross-validated MSE and R2 values of each linear model are presented in Table 

S3. The model using y4 as the predictor achieved the lowest MSE of 0.2345 and the highest R2 of 

0.9996, indicating that it provides the most accurate predictions among the single predictor models. 

In other words, y4 (4854 nm peak) has the most linear behavior among all yi’s. 

Table S3. Simple 1D linear regression results with 10-fold cross-validation. 

Predictor Cross-validated MSE R2 

y1 2.4665 0.9962 

y2 7.2260 0.9892 

y3 1.7489 0.9971 

y4 0.2345 0.9996 
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S5. Multi-Dimensional Modeling Approaches 

 

S5.1 Multiple linear regression model 

Now, to include all 4 peak shifts, i.e., to include predicters y1 through y4, a multiple linear 

regression model is developed using all predictors as follows: 

 x = β0 + β1y1 + β2y2 + β3y3 + β4y4 + ϵ S.4 

 

The MSE and R2 values using multiple linear regression model with 10-Fold Cross-Validation are 

found to be 0.0173 and 1.0000, respectively, i.e., near perfect prediction model accuracy. This 

indicates an enhancement of over 2 orders of magnitude in the MSE value, or in the precision of 

estimating the bulk index, compared to the case of using y1, y2, or y3 individually, and an 

enhancement of over an order of magnitude compared to the case of using y4 individually in the 

one-dimensional linear regression modeling approach.  

 

S5.2 Multicollinearity assessment 

Now, we assess the variance inflation factor (VIF) for all predictors, which is a statistical tool 

used to measure the severity of multicollinearity in a regression model [46]. This is to make sure 

that the accuracy of our model is not degraded because of multicollinearity among predictors. VIF 

quantifies how much the variance of estimated regression coefficients increases if predictors (yi) 

are correlated (referred to as multicollinearity). Since the correlation among predictors is high (see 

table 1), they may have overlapped information in explaining x, therefore, we calculate VIF. VIF 

= 1 means no correlation, VIF = 1-10 typically means moderate correlation, and VIF > 10 means 

high correlation, which can be problematic in terms of reducing the model precision. A high VIF 

value indicates that a predictor (yi) can be linearly computed using other predictors. VIF values 

are calculated and presented in table S4. The VIF values indicate severe multicollinearity among 

the predictors. 
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Table S4. Variance Inflation Factor (VIF) for TM polarization predictors. 

Predictor VIF 

const. 23.1548 

y1 5019.8970 

y2 1722.9343 

y3 1101.4025 

y4 4814.3072 

 

Constant is a constant value that we create as a separate column (usually 1) in VIF analysis, 

and its VIF is found to be 23.1584. Since this constant value inherently is not correlated with other 

predictors (inputs or y’s) it creates flexibility and baseline for regression. Although the multiple 

linear regression model shows excellent predictive performance, since the calculated VIF values 

are high, which means a predictor can be linearly predicted from other predictors, the regression 

coefficients become less reliable, and hence the standard errors of the coefficients may increase. 

This can decrease the predictive power of the model. Therefore, we use lasso or ridge regression 

to reduce the possible adverse effect of multicollinearity. This is while as we observed earlier in 

this specific case, the presence of multiple predictors significantly increases the predictive power 

of predictors (yi), by reducing the MSE by orders of magnitude. However, to ensure that the 

possible adverse effects of multicollinearity are addressed, a Ridge Regression model is employed 

in the following section. 

S5.3 Addressing Multicollinearity with Ridge Regression 

Given the severe multicollinearity observed among the predictors yi (table S4), Ridge 

Regression is employed to mitigate its effects [47]. Ridge Regression introduces an L2 

regularization penalty to the loss function, which shrinks the regression coefficients and reduces 

the variance of the estimates. In other words, it is used to reduce overfitting by adding the penalty 

term to the loss function of the model. 

The Ridge Regression model takes the following form:  

 

min
𝛽

{∑(𝑥𝑖 − 𝛽0 − ∑ 𝛽𝑖𝑦𝑖𝑗)2 + 𝛼

𝑝

𝑗=1

𝑛

𝑖=1

∑ 𝛽𝑗
2

𝑝

𝑗=1

} S.5 
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where: xi is the target variable (i=1 in this case), yij are the predictor variables, β0 is the intercept, 

βj’s are the coefficients, and α is the regularization parameter controlling the strength of the penalty. 

The model is trained using 10-fold cross-validation to select the optimal α and evaluate the model’s 

performance. The performance of the Ridge Regression model with 10-fold cross-validation is 

summarized in Table S5.  

Table S5. Ridge regression performance metrics for TM polarization (10-fold cross-validation). 

Metric Mean Standard Deviation 

MSE 0.0173 0.0069 

RMSE 0.1296 0.0226 

MAE 0.1099 0.0197 

R2 1.0000 0.0000 

 

The Ridge Regression model achieved a very low MSE of 0.0173 (same as multiple linear 

regression model) with a small standard deviation, indicating consistent performance across the 

folds. The values of the RMSE (root mean squared error) and MAE (mean absolute error) 

parameters are also low, and the R2 value of 1.0000 suggests that the model explains virtually all 

the variance in the target variable x. 

 

S5.4 Residual Analysis with Cross-Validated Predictions 

Residual analysis involves examining the differences between the observed values and the 

values predicted by the regression model, known as residuals. This analysis is essential for 

validating the assumptions of linear regression, including linearity, homoscedasticity (constant 

variance), independence, and normality of residuals [48]. By assessing these assumptions, we can 

evaluate the adequacy of the model and its suitability for making reliable predictions. In this 

section, residual analysis is performed on the Ridge Regression model using cross-validated 

predictions. Cross-validation provides an unbiased assessment by ensuring that each prediction is 

made by a model that did not use the corresponding data point during training. 

A separate function is defined to perform residual analysis with the Ridge Regression model 

incorporating 10-fold cross-validation. The steps are as follows: 1. Training the Ridge Regression 

model using a range of α values (see equation 3) and selecting the optimal α via cross validation. 

2. Generating cross-validated predictions using the trained model. 3. Calculating residuals as the 
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difference between actual and predicted values. 4. Creating diagnostic plots to assess model 

assumptions. 

Figure S1 shows the plot of Residuals vs. Predicted Values which assesses homoscedasticity 

and linearity. The plot shows that the residuals are randomly scattered around zero without any 

apparent pattern, indicating that the assumptions of linearity and homoscedasticity are satisfied.  

 

Figure S1. Residuals vs. predicted values for 4D Ridge Regression of TM polarization (10-fold cross-

validated). 

To complete the residual analysis, the following plots and their interpretations are presented 

here: 

• Figure S2: Normal Q-Q Plot of Residuals, which evaluates the normality of residuals. 

• Figure S3: Histogram of Residuals, to visualize the distribution of residuals. 

• Figure S4: Residuals vs. Predictor y1 Plot, to check for patterns indicating non-linearity or 

omitted variables. 

As shown in Table S1, the variables have similar distributions, with means and medians closely 

aligned, indicating symmetric distributions. The standard deviations reflect the variability in each 

variable, with y2 showing the highest variability. 
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Figure S2: Normal Q-Q Plot of Residuals (Cross-Validated) 

The residuals closely follow the straight line in the Q-Q plot [49], suggesting that they are 

approximately normally distributed, which satisfies the normality assumption. 

 

Figure S3: Histogram of Residuals (Cross-Validated) 
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The histogram shows a symmetric distribution centered around zero, further supporting the 

normality of residuals. 

Residuals vs. Predictors Residuals are plotted against predictor y1 to check for any patterns. 

 

Figure S4: Residuals vs. y1 (Cross-Validated) 

The residuals display no discernible patterns or trends when plotted against each predictor, 

indicating that the model captures the relationships adequately and that the linearity assumption 

holds for each predictor. 

Conclusion of Residual Analysis  

The residual analysis confirms that the Ridge Regression model meets the key assumptions of 

linear regression:  

• Linearity: The relationship between the predictors and the target variable is linear.  

• Homoscedasticity: The variance of residuals is constant across all levels of predicted values.  

• Normality of Residuals: The residuals are approximately normally distributed.  
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• Independence of Residuals: Given the data collection process, residuals are assumed to be 

independent. These results validate the adequacy of the Ridge Regression model for predicting x 

using the predictors y1, y2, y3, and y4. 

 

S6. 4D Ridge Regression coefficients for the TM polarization  

Table S6. 4D Regression coefficients for the TM polarization 

Predictor Coefficient 

Intercept −0.0162 

y1 −0.1681 

y2 −0.0515 

y3 0.0690 

y4 0.9514 

 

The coefficients in table S6 indicate the expected change in x for a one-unit change in each 

predictor, holding other variables constant. Specifically:  

• The intercept is −0.0162, representing the expected value of x when all predictors are zero.  

• y1 has a coefficient of −0.1681, suggesting a slight negative relationship with x when controlling 

other variables.  

• y2 has a coefficient of −0.0515, also indicating a slight negative relationship with x.  

• y3 has a coefficient of 0.0690, indicating a small positive relationship with x.  

• y4 has a coefficient of 0.9514, showing a strong positive relationship with x. 
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S7. 8-dimensional Ridge Regression modeling parameters 

Best alpha = 0.1748, Cross-validated MSE = 0.0090, R² = 1.0000 

 

Table S7. Ridge Regression Performance Metrics (10-fold cross-validation) 

Metric Mean Standard Deviation 

MSE 0.0090 0.0041 

RMSE 0.0925 0.0207 

MAE 0.0770 0.0149 

R2 1.0000 0.0000 

 

 

Table S8. 4D Regression coefficients for TM polarization 

Polarization Predictor Coefficient 

 Intercept -0.1796 

 

 

TM 

y1 -0.0467 

y2 −0.0515 

y3 0.0532 

y4 0.5082 

 

 

TE 

y11 0.0276 

y22 0.0497 

y33 0.1859 

y44 -0.0899 
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S8. Feature Selection 

By incorporating recursive feature elimination [50] which is a method that finds the most valuable 

predictors by eliminating the least valuable ones one by one, and while considering x as the target 

variable, and [y1, y2, y3, y4] and [y11, y22, y33, y44] as predictors for the TM and TE polarizations 

respectively, the feature selection results are as follows: 

Top 1 predictor (meaning that if we only have the option to pick one of the predictors to predict 

the outcome, the following will have the most probability of predicting the outcome): y4 

Top 2: y4, y42 

Top 3: y4, y32, y42  

Top 4: y2, y4, y32, y42 

Top 5: y2, y4, y22, y32, y42  

Top 6: y2, y3, y4, y22, y32, y42 

Top 7: y1, y2, y3, y4, y22, y32, y42 
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