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In this article, based on a recent formularization of the holographic principle proposed and in-
vestigated by the present author, we show that the weak equivalence principle in general relativity
is equivalent to the equivalence between two forms of the Dirac constant, that is, the action of the
spin degree of freedom in the two-dimensional Hilbert space and the lower bound in the quantum
mechanical uncertainty relations. This result follows from an equation between the Euclidean and
Lorentzian world-line actions of a massive particle divided by the Dirac constant, via the Wick
rotation, by using the Euclidean and Lorentzian actions of a holographic tensor network, whose
quantum state is classicalized by introducing the superselection rule.

The holographic principle [1–3] equates the degrees
of freedom in the bulk spacetime with the amount of
information stored in the quantum pure state of quan-
tum field theory (conformal field theory) defined on its
codimension-one boundary spacetime without gravity.
Before the emergence of the holographic principle, the
principles of unitary quantum mechanics (or quantum
field theory) and general relativity had been considered
to be completely distinct, with the former governing non-
gravitational physics and the latter governing classical
gravity. The purpose of this article is to show that, in
the holographic theory, there exists a fundamental equiv-
alence between these two theories at the level of their
principles.

As the concrete model of the holography, we con-
sider the three-dimensional anti-de Sitter spacetime/two-
dimensional conformal field theory (AdS3/CFT2) cor-
respondence at the strong-coupling limit of the CFT2,
which is treated as a quantum many-body system of
qubits [4–7]. We refer to the AdS3 spacetime as the
bulk spacetime, and the CFT2 is defined on the boundary
spacetime without gravity. Based on advances pertaining
to this correspondence in the holographic tensor network
(HTN) theory [8, 9], we replace the AdS3 spacetime with
a scale-invariant tensor network, that is, the multi-scale
entanglement renormalization ansatz of the quantum me-
chanically entangled ground state of the boundary CFT2

[10–12].

The novelty of this article lies in the classicalization of
this HTN by assuming the existence of a superselection
rule (the qubit Pauli third matrix as the superselection
rule operator) in the qubits ground state of the HTN
[13, 14]. Due to the superselection rule, the complete
set of the qubits observables is restricted to an Abelian
set of those that commute with the superselection rule
operator, and then the quantum ground state becomes
equivalent to a diagonal quantum mixed state with re-
spect to this Abelian restricted set of the qubits observ-
ables [15–17]: this means that the information stored in
the quantum coherence (i.e., the off-diagonal part) of the
ground state is completely lost. This is the classical-

ized HTN (cHTN). We denote the classicalized quantum
ground state by |ψ〉 = (|ψ〉,A) for the Abelian restricted
set A of the qubits observables by introducing the super-
selection rule. We denote the Shannon entropy of this
diagonal quantum mixed state |ψ〉 by H [|ψ〉].
Now, based on the holographic principle, we write

down the actions of the cHTN of the ground state of
the boundary CFT2 in the Euclidean regime (spacetime)
and the Lorentzian regime (spacetime) as

IE [|ψ〉] = −~EH [|ψ〉] , (1)

IL[|ψ〉] = −~LH [|ψ〉] , (2)

respectively [14, 18]. The negative sign on the right-
hand side of each equation indicates that information is
lost in the boundary CFT2 by the classicalization. In
other words, the bulk degrees of freedom are −1 (where
the negative value indicates stochasticity) [14, 19]. Here,
−~E and −~L are the actions of −1 degree of freedom
(i.e., the actions of the pixel [14]) in the cHTN in the
Euclidean and Lorentzian regimes, respectively, and we
distinguish between ~E and ~L conceptually. The phys-
ical roles of ~E and ~L are the action of the spin degree
of freedom in the two-dimensional Hilbert space and the
lower bound in the quantum mechanical uncertainty re-
lations in the bulk spacetime, respectively [20].
First, we consider the Wick rotation

tE = itL (3)

between the Euclidean time tE (i.e., the imaginary time)
and the Lorentzian time tL (i.e., the real time). From
the definitions (1) and (2) of the unit actions −~E and
−~L, respectively, this relation (3) is equivalent to the
following relation:

ME

~E
=
ML

~L
. (4)

Here, the masses ME and ML are conceptually distin-
guished from each other and are respectively defined in
the Euclidean world-line action SE and the Lorentzian
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world-line action SL of a massive particle in the bulk
spacetime. To show this equivalence between the rela-
tions (3) and (4), we consider a massive particle in the
cHTN. Namely, this equivalence follows from the equiv-
alence [21]

SE

~E
= −i

SL

~L

∣

∣

∣

∣

tL→−itE

. (5)

The reason why we consider the Euclidean world-line ac-
tion SE divided by the Dirac constant ~E is that, for a
massive particle in the cHTN, this quantity is the amount
of information of events read from the cHTN by the tem-
poral increment of the Euclidean action of the particle
[18, 19].
Next, we consider the condition

~E = ~L . (6)

By assuming this value to be the Dirac constant ~,
this condition indicates consistent derivation of (non-
relativistic) path-integral unitary bulk quantum mechan-
ics in the Lorentzian regime from imaginary-time path-
integral in the Euclidean regime via the inverse Wick
rotation [19]. From the relation (4), this condition (6) is
equivalent to the following condition:

ME =ML (7)

for an arbitrary massive particle in the bulk spacetime.
Here, ML appears in the rest energy MLc

2 as the energy
uncertainty ∆E of the cHTN in the ground state. So,
ML is the inertial mass. Specifically, in the Lorentzian
regime, energy uncertainty ∆E of the cHTN is used in
the physical interpretation of the on-shell equation of the
Lorentzian action of the cHTN in the presence of a mas-
sive particle as the time–energy uncertainty relation of
the cHTN in the ground state [20, 22]. In the Euclidean
regime, on the other hand, ME of a rest-massive parti-
cle linearly appears in an infinitesimal amount of infor-
mation dI = dτESE/~E for the bulk imaginary proper
time τE , and dI is used as the direct source to derive
the perturbation of the background AdS3 spacetime [18].
Thus, ME is the gravitational mass. These identities (7)
for the massive particles in the bulk spacetime therefore
correspond to the weak equivalence principle in general
relativity (i.e., the equivalence between the inertial mass
ML and the gravitational mass ME).
This equivalence between the relations (6) and (7)

is the equivalence between the consistency of unitary
bulk quantum mechanics in the framework of the cHTN
[14, 19] and the weak equivalence principle in general rel-
ativity. In conclusion, this result suggests that quantum
mechanics and general relativity are two sides of the same
coin at the level of their principles.
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