On the maximum of Cramér's V

Etsuo Hamada

Faculty of Information Science, Osaka Institute of Technology, 1-79-1 Kitayama, Hirakata, Osaka, Japan.

Abstract

The Cramér's V is popular as an association coefficient in goodnessof-fit tests for contingency tables and its maximum value is known to be 1, but it is not true. We propose a modified Cramér's V.

keyword: Cramér's V

1 Cramér's V

The Cramér's V is popular as an association coefficient in goodness-of-fit tests for contingency tables. For a contingency table

	B_1	•••	B_j	•••	B_c	sum
A_1	x_{11}	•••	x_{1j}	•••	x_{1c}	$x_{1.}$
÷	:		÷		÷	÷
A_i	x_{i1}	• • •	x_{ij}	• • •	x_{ic}	x_{i} .
÷	÷		÷		÷	÷
A_r	x_{r1}	•••	x_{rj}	•••	x_{rc}	x_{r} .
sum	$\overline{x}_{\cdot 1}$	•••	$\overline{x}_{.j}$	•••	$\overline{x}_{\cdot c}$	n

Table 1: Contingency table

the definition of the Cramér's V is

$$V = \sqrt{\frac{\chi^2}{n \min(c - 1, r - 1)}}$$
(1.1)

where c is the number of columns, r is the number of rows, and χ^2 is the chi-square statistic of the contingency table as follows:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(x_{ij} - e_{ij})^2}{e_{ij}},$$
(1.2)

where e_{ij} is the expectation with respect to the observation x_{ij} . As the probability version for (1.2), [2] wrote, in page 282, that

On the other hand, by means of the inequalities $p_{ij} \leq p_i$ and $p_{ij} \leq p_{.j}$ it follows from the last expression that $\varphi^2 \leq q-1$, where $q = \min(r, c)$ denotes the smaller of the numbers r and c, or their common value if both are equal.

Note that symbols, etc. above are adapted to the format of this paper and the mean square contingency is

$$\varphi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(p_{ij} - p_{i\cdot} p_{\cdot j})^2}{p_{i\cdot} p_{\cdot j}},$$
(1.3)

and $\varphi^2 = \chi^2/n$ because of $x_{ij} = n p_{ij}$ and $e_{ij} = n p_{i\cdot} p_{\cdot j}$.

PROPOSITION 1.1 ([2])

$$0 \leq \frac{\varphi^2}{q-1} = \frac{\varphi^2}{\min(r,c)-1} \leq 1.$$

The Cramér's V has since been defined as (1.1) whose maximum value has been used as 1. For example, see [1], [3], and [4].

2 The maximum value of V

Since Cramér introduced the contingency coefficient V, its maximum value has been recognized as $n(\min(r, c) - 1)$, as in Proposition 1.1. However, we recognize that this is a mistake and that the correct value is n(rc - 1).

THEOREM **2.1** For the chi² statistic (1.2) of the contingency table, its maximum value is as follows:

$$\max \chi^2 = n(rc-1).$$

LEMMA 2.1 For the mean square contingency (1.3) of the contingency table, its maximum value is as follows:

$$\max \varphi^2 = rc - 1.$$

We first prove the Lemma. The proof of the theorem can be derived naturally from the result.

	$2 \times 2 co$	ontingency table	3×3 contingency table		
	V	modified V	V	modified V	
Min.	0.0837	0.0483	0.4774	0.2387	
1st Qu.	0.7096	0.4097	1.038	0.519	
Median	0.9358	0.5403	1.2656	0.6328	
Mean	0.9815	0.5667	1.2874	0.6437	
3rd Qu.	1.2369	0.7141	1.5263	0.7632	
Max.	1.7321	1	2	1	

Table 2: simulation results for Cramér's V and a modified Cramér's V (the number of data is 200 and the number of simulations is 1000.)

(Proof of Lemma 2.1) By using the relations $p_{ij} \leq p_i$ and $p_{ij} \leq p_{.j}$ that [2] showed, it holds that

$$\begin{split} \varphi^2 &= \sum_{i=1}^r \sum_{j=1}^c \frac{(p_{ij} - p_{i.} p_{.j})^2}{p_{i.} p_{.j}} \\ &= \sum_{i=1}^r \sum_{j=1}^c \frac{p_{ij}^2}{p_{i.} p_{.j}} - 2 \sum_{i=1}^r \sum_{j=1}^c p_{ij} + \sum_{i=1}^r \sum_{j=1}^c p_{i.} p_{.j} \\ &= \sum_{i=1}^r \sum_{j=1}^c \frac{p_{ij}^2}{p_{i.} p_{.j}} - 1 \\ &\leq \sum_{i=1}^r \sum_{j=1}^c \frac{p_{i.} p_{.j}}{p_{i.} p_{.j}} - 1 = \left(\sum_{i=1}^r \sum_{j=1}^c 1\right) - 1 = rc - 1. \end{split}$$

Thus we propose a modified Cramér's V as follows:

modified V =
$$\sqrt{\frac{\chi^2}{n(cr-1)}}$$
 (2.4)

3 Simulation

For two contingency tables, 2×2 and 3×3 , for the total number n = 200, we randomly generate the number of cells. We assume that the probabilities of the cells are all equal and that the number of simulations is 1000.

Figure 1: simulation results for Cramér's V and a modified Cramér's V (the number of data is 200 and the number of simulations is 1000.)

4 Conclusion

The proof and simulation results regarding the maximum clearly show that we need to modify the Cramér's V. The previous contingency coefficients must be modified by using a modified Cramér's V with the maximum value 1.

Acknowledgment. This paper was partially supported by Grantin-Aid for Scientific Research (C) (general) 22K11946 from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

- Haldun Akoglu, User's guide to correlation coefficients, Turkish Journal of Emergency Medicine, 18, 91–93, 2018.
- [2] Harald Cramér, Mathematical methods of statistics, Princeton University Press, 1946.
- [3] Charles C. Okeke, Alternative methods of solving biasedness in Chisquare contingency table, Academic Journal of Applied Mathematical Sciences, 5(1), 1-6, 2019.
- [4] Wataru Urasaki, Tomoyuki Nakagawa, Tomotaka Momozaki, and Sadao Tomizawa, Generalized Cramér's coefficient via f-divergence for contin-

gency tables, Advances in Data Analysis and Classification, 18, 893–910, 2024.