
Faster Fréchet Distance under Transformations
Kevin Buchin #�

Technical University of Dortmund, Germany

Maike Buchin # �

Ruhr University Bochum, Germany

Zijin Huang # �

University of Sydney, Australia

André Nusser # �

Université Côte d’Azur, CNRS, Inria, France

Sampson Wong #�

BARC, University of Copenhagen, Denmark

Abstract
We study the problem of computing the Fréchet distance between two polygonal curves under
transformations. First, we consider translations in the Euclidean plane. Given two curves π and σ

of total complexity n and a threshold δ ≥ 0, we present an Õ(n7+ 1
3) time algorithm to determine

whether there exists a translation t ∈ R2 such that the Fréchet distance between π and σ + t is at
most δ. This improves on the previous best result, which is an O(n8) time algorithm.

We then generalize this result to any class of rationally parameterized transformations, which
includes translation, rotation, scaling, and arbitrary affine transformations. For a class T of rationally
parametrized transformations with k degrees of freedom, we show that one can determine whether
there is a transformation τ ∈ T such that the Fréchet distance between π and τ(σ) is at most δ in
Õ(n3k+ 4

3) time.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Fréchet distance, curve similarity, shape matching

Funding André Nusser : This work was supported by the French government through the France
2030 investment plan managed by the National Research Agency (ANR), as part of the Initiative of
Excellence of Université Côte d’Azur under reference number ANR-15-IDEX-01.

1 Introduction

Many applications require determining the similarity of two geometric shapes, disregarding
their location or orientation. More specifically, shape matching asks for the distance between
two shapes if we allow the shapes to be transformed to minimize their distance [1, 3, 53].
Transformations may include translations, rotations, scaling, or a combination thereof. In
this paper, we focus on polygonal curves under the Fréchet distance. Curves occur in
many applications and need to be matched whenever they describe a local pattern, for
example to recognize handwritten characters [47] or trademarks [5]. The Fréchet distance is
arguably the most popular distance measure for curves in computational geometry. There
has been significant algorithmic progress on the Fréchet distance, for instance, most recently
on approximation [30, 50, 51], data structures [6, 12, 17, 26, 36, 37, 41, 40], algorithm
engineering [8, 18, 33, 15, 13], simplification [11, 27, 49, 52], clustering [16, 19, 25, 42, 46, 20],
Fréchet variants [21, 22, 23, 32, 35, 38, 39], and its complexity in general [10, 24, 29, 28].

The Fréchet distance under translation is defined as the minimum Fréchet distance for any
translation of the curves. Computing the Fréchet distance under translations was first studied
by Efrat, Indyk and Venkatasubramanian [34] and by Alt, Knauer and Wenk [4, 45, 54].

ar
X

iv
:2

50
1.

12
81

4v
1

 [
cs

.C
G

]
 2

2
Ja

n
20

25

mailto:kevin.buchin@tu-dortmund.de
https://orcid.org/0000-0002-3022-7877
mailto:maike.buchin@rub.de
https://orcid.org/0000-0002-3446-4343
mailto:huang.zi.jin24@gmail.com
https://orcid.org/0000-0003-3417-5303
mailto:andre.nusser@cnrs.fr
https://orcid.org/0000-0002-6349-869X
mailto:sawo@di.ku.dk
https://orcid.org/0000-0003-3803-3804

2 Faster Fréchet Distance under Transformations

For two curves of total complexity n in R2, an Õ(n10) time algorithm1 for the Fréchet
distance under translation was presented in [34], and an Õ(n8) time algorithm was presented
in [4]. Wenk [54] generalized the approach in [4] to higher dimensions and a wide range
of other transformations, e.g., for rotations or scalings in 2D in Õ(n5) time, or for affine
transformations in d dimensions in Õ(n3(d2+d)+2) time.

Despite significant algorithmic progress on various aspects of the Fréchet distance, no
faster algorithms for computing the (continuous) Fréchet distance under transformations
have been developed until now. In contrast, for computing the discrete Fréchet distance
under translation, first an Õ(n6)-time algorithm [43] was developed, then an Õ(n5)-time
algorithm [7], and more lately an Õ(n4+ 2

3)-time algorithm [14].

Our Contribution

In this paper, we present the first progress on the Fréchet distance under transformations
since its introduction [4, 34, 45, 54]. Similar to the algorithm in [4, 54], our algorithm can
be used for a wide range of classes of transformations. Specifically, given two curves π

and σ of total complexity n and a threshold δ ≥ 0, we want to determine whether there is
a transformation τ from a given class of transformations, such that the Fréchet distance
between π and τ(σ) is at most δ. Our algorithm improves the running time for translations
in two dimensions from O(n8) to Õ(n7+ 1

3). More generally, we improve the running time
for the various classes of transformations (and dimensions) given by Wenk [4] by roughly a
factor of n2/3. For example, for rotations or scalings in R2, our algorithm runs in Õ(n4+ 1

3)
time and for affine transformations in d dimensions in Õ(n3(d2+d)+ 1

3) time.
We first present our approach for the special case of translations in two dimensions. Then

we generalize our approach to other transformations and higher dimensions. Similarly to the
approach in [4], we compute an arrangement in the space of transformations, which in the
case of 2D translations has complexity O(n6). In [4], the Fréchet distance is computed for
every vertex of this arrangement in O(n2) time per vertex by using the free space diagram,
which results in an overall running time of O(n8). In our approach, we instead traverse the
arrangement, making use of the fact that the free space diagram for adjacent faces in the
arrangement is similar.

The challenge with using this approach is that it requires a data structure for dynamic
directed graph reachability. This is a challenging problem on its own that to the best of
our knowledge mostly saw progress on planar graphs [31, 44, 48] or more specifically grid
graphs [7, 14]. In [14], a data structure with efficient updates and queries for reachability in
a dynamic directed grid graph is presented. However, while the discrete Fréchet distance
naturally reduces to a reachability problem on such a grid, this is not the case for the
(continuous) Fréchet distance. An open question is whether there is a dynamic graph
reachability data structure more suitable for the case of the continuous Fréchet distance
under transformations.

We note that in an independent work, progress was made on the one-dimensional Fréchet
distance under translation or scaling [9]. In this work, the authors present an Õ(n8/3)
algorithm for both problems, making use of the offline dynamic data structure of [14].

1 By Õ(·) we hide (poly-)logarithmic factors in n.

K. Buchin, M. Buchin, Z. Huang, A. Nusser, S. Wong 3

Structure

We provide an outline for the remainder of this paper. In Section 2, we cover the preliminaries
for our paper. In Section 3, we first present a detailed analysis of the changes in the free
space diagram when traversing the arrangement in the space of translations. We refer to
these changes as events. The free space diagram induces a directed graph, which we refer
to as free space graph and in which we need to perform a reachability query. We analyze
how the graph changes for the various types of events. In Section 4, we then show how these
events can be modeled by a small number of changes to a suitable grid graph, which allows
us to utilize the data structure in [14]. The challenge is that at an event rows or columns in
the free space graph may swap, or rows and columns may appear or disappear, which are
operations that cannot be modeled directly in the grid graph. In Section 5, we show how to
generalize our algorithm to other classes of transformations.

2 Preliminaries

A d-dimensional polygonal curve π is a piecewise linear curve represented as a continuous
mapping from [1, n] to Rd. For integer i, the point πi = π[i] is a vertex, and πi = πiπi+1 =
π[i, i + 1] is a segment.

The Fréchet distance is a popular measure of the similarity between two polygonal
curves. An orientation-preserving reparameterization is a continuous and bijective function
f : [0, 1] → [0, 1] such that f(0) = 0, and f(1) = 1. The widthf,g(π, σ) between two curves
π and σ with respect to the reparameterizations f and g, is defined as follows.

widthf,g(π, σ) = max
t∈[0,1]

∥π(f(t)) − σ(g(t))∥

Consider the scenario where a person is walking their dog with a leash connecting them:
the person needs to stay on π while walking according to f , and the dog needs to stay on
σ while walking according to g. The maximum leash length is the width between π and σ

with respect to the reparameterizations f and g. The standard Fréchet distance dF (π, σ) is
the minimum leash length required over all possible walks (defined by reparameterizations f

and g).

dF (π, σ) = inf
f,g∈[0,1]→[0,1]

widthf,g(π, σ)

Problems relating to the Fréchet distance are commonly solved in a configuration space
called the freespace diagram.

The freespace Fδ(π, σ) is a collection of points in R2 in the range [1, n] × [1, n]. A point
(x, y) is in the freespace if the Euclidean norm (distance) ∥π[x] − σ[y]∥ between π[x] and σ[y]
is at most δ. As opposed to the free space, we will call [1, n] × [1, n] \ Fδ(π, σ) the forbidden
space.

Fδ(π, σ) = {(x, y) ∈ [1, n] × [1, n] | ∥π(x) − σ(y)∥ ≤ δ}

The freespace diagram D = Dδ(π, σ) is the partition of the freespace into n × n cells. A
cell Ci,j in D contains the freespace in the range [i, i + 1] × [j, j + 1]. Alt and Godau [2] made
the critical observation that the freespace within a cell Ci,j is an intersection between an
ellipse Ei,j and the square Si,j = [i, i + 1] × [j, j + 1]; it is convex with constant description
complexity. They also showed that dF (π, σ) ≤ δ if and only if there is a bi-monotone path in
Dδ(π, σ) from (1, 1) to (n, n) through the freespace.

4 Faster Fréchet Distance under Transformations

An intersection between the boundaries ∂Ei,j and ∂Si,j \ {(i, j), (i + 1, j), (i, j + 1), (i +
1, j + 1)} is called a critical point. A point (i, j) ∈ N × N is a corner point. We say the line
π[i] × [1, n] is the freespace diagram boundary defined by πi (and analogous for σi). We say
the strip [i, i + 1] × [1, n] is the ith column, and the strip [1, n] × [i, i + 1] is the ith row.
We say a critical point p is a row (resp. column) critical point if p lies on a vertical (resp.
horizontal) boundary.

3 From freespace reachability to graph reachability

In this and the next section, we describe our ideas using an intuitive class of transformations:
translation in R2. Specifically, we determine whether there exists a translation vector t = λv⃗

such that dF (π, σ + t) ≤ δ, where λ ∈ R≥0 and v⃗ is a fixed directional vector. For this, we
first describe how to transform the freespace reachability problem into a graph reachability
problem.

Using the freespace diagram D = Dδ(π, σ), we construct a refined freespace diagram
(refined FSD or FSD for short) (see Figure 1, left). Let l(πi) (resp. l(σj)) be the vertical
(resp. horizontal) boundary of D defined by πi (resp. σj). For every critical point p on the
boundaries, we draw a perpendicular grid line l(p) through p. Note that by definition, a
critical point does not coincide with a corner point of D. If p lies on the horizontal boundary,
l(p) is a vertical line; otherwise, l(p) is a horizontal line. The refined FSD includes all grid
lines, the freespace diagram boundaries, and their intersections. For simplicity, we redefine
Dδ(π, σ) to denote the refined FSD. Let the intersection between a grid line and a FSD
boundary be a propagated critical point.

0 0

0 1

1

1

1 1

1

1 1

1

0 0

01

π1 π2

σ1

σ2

Figure 1 From the refined freespace diagram to the refined freespace graph. On the left freespace
diagram (FSD), the corner points, critical points, and propagated critical points are marked by
squares, blue circles, and red circles, respectively. On the right freespace diagram graph (FSG), the
corner, boundary, and interior vertices are marked by squares, circles, and crosses, respectively.

Using the refined FSD Dδ(π, σ), we construct a refined freespace graph (refined FSG or
FSG for short) Gf = Gf

δ (π, σ) as follows (see Figure 1, right). For every intersection between
a grid line and a FSD boundary, add a boundary vertex. For every intersection between two
grid lines, add an interior vertex. For every intersection between two freespace boundaries,
add a corner vertex. Note that each vertex in Gf is uniquely defined by an ordered pair
(p, q), where l(p) is vertical and l(q) is horizontal; p (resp. q) is either a vertex of π (resp. σ)
or a critical point in D — let v(p, q) be such vertex in Gf . Each vertex is assigned a weight

K. Buchin, M. Buchin, Z. Huang, A. Nusser, S. Wong 5

that is either 1 or 0. For every vertex u = v(p, q), if a = l(p) ∩ l(q) lies on a boundary of the
freespace diagram, we set w(u) = 1 if a lies in the freespace or w(u) = 0 if otherwise. We
set the weights of the rest of the vertices, the interior vertices, to 1. We say a vertex u is
activated if w(u) = 1 or deactivated if w(u) = 0. We say a vertex v(πi, ·) (resp. v(·, σj)) lies
on the freespace graph boundary defined by πi (resp. σj).

To construct edges, we use the geometric positions of the grid lines and the FSG boundaries.
For vertices in Gf defined by every grid line or FSG boundary l(p), add a directed edge
(v(p, q), v(p, q′)) to Gf if l(q) is immediately below l(q′). If l(q) and l(q′) overlap, break
ties arbitrarily. Analogously, add a directed edge (v(p, q), v(p′, q)) if l(p) is immediately to
the left of l(p′). A path P ⊆ Gf is an ordered subset {(a1, b1), ..., (am, bm)} of edges where
bi = ai+1, ∀1 ≤ i < m. We say P is a feasible path if a1 = v(π1, σ1), bm = v(πn, σn), and
w(ai) = w(bi) = 1 for all values of i. When a1 and bm are specified, P is a feasible path if P

uses exclusively activated vertices. We say a FSG Gf is st-reachable if there exists a feasible
path in Gf from v(π1, σ1) to v(σn, πn). The following lemma naturally is derived from the
properties of the freespace diagram.

▶ Lemma 1. The FSG Gf = Gf
δ (π, σ) is st-reachable if and only if dF (π, σ) ≤ δ.

Proof. It is well-known that dF (π, σ) ≤ δ if and only if there exists an xy-monotone path
through the freespace from (1, 1) to (n, n) in Dδ(π, σ). Such a monotone path can always be
transformed into a feasible path P . Every subpath Pi,j = P ∩ Ci,j within cell Ci,j is a line
segment ab, where both a and b is either a critical point or a corner point. We will argue
that for every subpath Pi,j from critical point a = l(p) ∩ l(q) to b = l(p′) ∩ l(q′), there exists
a path P f

i,j ⊆ Gf from v(p, q) to v(p′, q′) using only vertices of weight 1. By construction,
w(v(p, q)) = w(v(p′, q′)) = 1 and all interior vertices have weight 1. Therefore, a path
starting at v(p, q), turning at v(p′, q), and finally arriving at v(p′, q′) is a valid candidate for
P f

i,j , as required.
Analogously, if a subpath P f

i,j from v(p, q) to v(p′, q′) exists, then we use the segment ab

as Pi,j . The segment ab must lie in the freespace, because the freespace is convex within
every cell Ci,j , as shown by Alt and Godau [2]. ◀

Consider translating σ along v⃗. As σ translates, the FSG also changes, and we would
like to know how these changes affect the st-reachability of Gf . To do this, we track the
following freespace events. See Figure 2 for visualizations of these row freespace events.

▶ Definition 2. We define the following row freespace events. Column freespace events are
defined analogously.
1. A Vertex-edge (VE) event is defined by a tuple (p, σw), where p is either a vertex of π or

a row critical point in row w.
a. Entering/leaving event: the corner point p enters or leaves the freespace.
b. Appearing/disappearing event: the grid line l(p) appears or disappears as the critical

point p appears or disappears.
2. A Vertex-vertex-edge (VVE) event is defined by a triplet (p, q, σw), where p and q are

row critical points in row w.
a. Overlapping event: two grid lines l(p) and l(q) overlap.
b. Separating event: two overlapping grid lines l(p) and l(q) no longer overlap.

Let σ + t be the curve by applying translation t to σ. For now, we assume that we
know the ordered set T = {t1, t2, ..., tm} of freespace events (translations), where ti = λiv⃗,
λi ∈ R≥0, and λi ≤ λi+1. We further assume that T is complete, which is defined as follows.

6 Faster Fréchet Distance under Transformations

p

q
p q

p
p′

p

σ1

σ2

σ1

σ2

p

q

Figure 2 In the top row of figures, as the segment σ1σ2 translates, the critical points p and q

moves down and up, respectively. As l(p) and l(q) (colored in blue) move, they overlap and then
separate. In the bottom row, as σ1σ2 translates, a new critical point p appears, and then a new
critical point p′ appears.

▶ Definition 3. We say the ordered set T = {t1, ..., tm} of freespace events is complete if
Gf

δ (π, σ + ti) and Gf
δ (π, σ + ti+1) differ by exactly one freespace event, for all 1 ≤ i < m.

To update the freespace graph to reflect the state of the freespace diagram, we define the
following freespace graph operations. Let R(p) be the set of vertices defined by l(p), and let
R(p)[i] denote the ith vertex, where i ≥ 1.

▶ Definition 4. We define the following freespace graph operations.
Vertex operation: either activate or deactivate a vertex of Gf .
Row operation: either insert or delete a row of Gf . Column operations are defined
analogously.

To insert a row R(p) of vertices between adjacent rows R(pa) and R(pb), add a vertex
v(q, p) for every q, where q is either a critical point on a horizontal FSG boundary or
a vertex of π. For every 1 ≤ i < |R(pa)|,

1. remove the edge (R(pb)[i], R(pa)[i]),
2. add horizontal edge (R(p)[i], R(p)[i + 1]), and
3. add vertical edges (R(pb)[i], R(p)[i]) and (R(p)[i], R(pa)[i]).
To remove the row R(p) of vertices, remove R(p) and their adjacent edges. For every
1 ≤ i ≤ |R(pa)|, add edges (R(pb)[i], R(pa)[i]).

We show that we can update the FSG Gf
δ (π, σ + ti−1) to Gf

δ (π, σ + ti) using a constant
number of freespace graph operations, plus processing time. For these updates, we will
distinguish between a corner vertex operation and a boundary vertex operation.

▶ Lemma 5. Let Gf
i = Gf

δ (π, σ + ti). Given Gf
i−1, to compute Gf

i , it takes
O(1) time and O(1) corner vertex operations if ti is an entering/leaving event,
O(1) time and O(1) boundary vertex operations if ti is an overlapping or separating event,
O(n) time plus O(1) row operations, if ti is an appearing/disappearing event.

K. Buchin, M. Buchin, Z. Huang, A. Nusser, S. Wong 7

Proof. If ti is an entering/leaving event, we simply set the weight of the respective corner
vertex to either 1 or 0.

If ti is a VVE event defined by (p, q, w), let p and q lie on the ith and jth FSD boundary,
respectively. A VVE event affects only the vertices v(πi, p), v(πj , p), v(πi, q), and v(πj , q).
It takes O(1) time to determine their weights by computing cells Ci,w and Cj,w from scratch.

If ti is an appearing/disappearing event in the jth row, it takes linear time to recompute
the row critical points in this row. Then, it takes linear time to compute the grid lines l(pa)
and l(pb) that l(p) lie between. Once l(pa) and l(pb) is identified, it takes exactly one row
insertions or deletions to update Gf

i−1 to Gf
i . Therefore, it takes O(n) time plus a constant

number of row operations. ◀

Using a naive implementation, in the worst case, a row operation can take Ω(n2) time
since there are Ω(n2) vertical grid lines. Determining st-reachability takes Ω(n4) time, since
there are Ω(n4) vertices in the FSG. Hence, using the FSG directly would be infeasible. In
the next section, we fix these issues by defining an “equivalent” grid graph in which updates
and queries can be done more efficiently than the naive implementation.

4 From freespace graph reachability to grid graph reachability

In this section, using the refined FSG Gf = Gf
δ (π, σ), we define a grid graph Gg = Gg

δ (π, σ).
We then show that Gf is st-reachable if and only if Gg is st-reachable. An advantage of the
newly defined grid graph is that its number of vertices does not change under updates. We
show that the structural changes implied by the FSG operations can be simulated by simply
modifying the weights in the grid graph, without needing to add or remove vertices. These
features of the grid graph allow us to use the offline dynamic grid reachability result in [14]
to obtain a faster update and query time.

The grid graph Gg contains all vertices of the the freespace graph Gf . Additionally, to
maintain the same number of vertices in the grid graph under updates, we require a set of
placeholder vertices, which we define as follows. Refer to Figure 3 for an illustration. Let mr

i

(resp. mc
i) be the number of row critical points in the ith row (resp. column) of D = Dδ(π, σ).

We define a family of ordered sets {Hr
1 , ..., Hr

n−1} of row placeholder points. Each set Hr
i

contains exactly 2n−mr
i points, and let Hr

i [j] denote the jth point for 1 ≤ j ≤ 2n−mr
i . The

family of ordered sets of column placeholder points {Hc
1 , ..., Hc

n−1} are analogously defined.
For a row (resp. column) placeholder point h, the placeholder line l(h) is horizontal (resp.
vertical). Note that the placeholder points and lines are abstractly defined as they do not
exist in D.

In addition to vertices in Gf , add a placeholder vertex v(p, q) to Gg where p (resp. q)
is either a vertex of π (resp. σ), a critical point, or a placeholder point. The weight of a
placeholder vertex on a boundary matches the weight of the adjacent corner vertex either
directly above or to its right. Specifically, for every h in every Hr

i and every point p in the union
of the vertices of π and row critical points. For h ∈ Hr

j , we set w(v(p, h)) = w(v(πi, σj+1))
if p = πi. Otherwise, we set w(v(p, h)) = 1. Analogously, for every h ∈ Hc

i , we set
w(v(h, q)) = w(v(πi+1, σj)) if q = σj . Otherwise, we set w(v(h, q)) = 1.

To define the edges in Gg, we define the ordering of the placeholder lines among the grid
lines and the FSD boundaries. The lowest placeholder line l(Hr

i [1]) lies above all grid lines
l(p), where p is a row critical point on the ith row. The placeholder line l(Hr

i [j + 1]) is above
l(Hr

i [j]). The FSD boundary l(σi+1) is above the highest placeholder line l(Hr
i [2n − mr

i]).
The ordering involving vertical placeholder lines is analogously defined. The set of placeholder
lines defined by Hc

i are between l(πi+1) and the rightmost grid line in the ith column.

8 Faster Fréchet Distance under Transformations

Hc
1 Hc

2

Hr
1

Hr
2

Figure 3 A visual illustration of the placeholder lines and their relative positions among the grid
lines and the freespace diagram boundaries. The row (resp. column) placeholder points and lines
are colored in red (resp. green). The grid lines are colored in blue.

For vertices in Gg defined by l(p), add a directed edge (v(p, q), v(p, q′)) to Gg if l(q) is
immediately below l(q′) and add a directed edge (v(q, p), v(q′, p)) to Gg if l(q) is immediately
to the left of l(q′). If l(q) and l(q′) overlap, then break ties using the same ordering as in
Gf . Add additional diagonal directed edge (v(p, q), v(p′, q′)) if p is immediately to the left of
p′ and q is immediately below q′. We say a vertex defined by two placeholder points is a
placeholder vertex as well as an interior vertex.

Next, we check that our construction fits the grid graph definition of [14]. An N × N

grid graph consists of vertices numbered from (1, 1) to (N, N) and edges from vertex (i, j) to
each of vertices (i + 1, j), (i, j + 1), and (i + 1, j + 1), where the weight of a vertex is either 1
or 0. With Gg

δ (π, σ) defined, we prove the following. By construction, every of n − 1 rows in
Dδ(π, σ) contains exactly 2n critical points and placeholder points combined. Together with
n horizontal boundaries, there are N = 2n · (n − 1) + n = 2n2 − n horizontal lines. For the
same reasons, there are N vertical lines. Clearly, Gg

δ (π, σ) is an N × N grid graph.
Before proving that Gf

δ (π, σ) and Gg
δ (π, σ) are equivalent in terms of st-reachability, we

first show that a feasible path P ⊆ Gg has several desired properties. By the monotonicity of
a feasible path and the convexity of the freespace in a cell, we observe the following.

▶ Observation 6. Let P be a feasible path in Gg. If P contains a corner vertex v(πi, σj),
then let l(pl) and l(pr) be the first grid lines that are not placeholder lines to the left and
right of l(πi), respectively. Similarly, let l(pa) and l(pb) be the first grid line above and below
l(σj) respectively. Then, we have either w(v(pl, σj)) = 1 or w(v(πi, pb)) = 1. Analogously,
we have either w(v(πi, pa)) = 1 or w(v(pr, σj)) = 1.

Proof. See Figure 4 for an illustration. For the sake of contradiction, assume that the weight
of both v(pl, σj) and v(πi, pb) are 0. Since the freespace is convex within a cell, l(πi) ∩ l(σj)
is the only point in Ci−1,j−1 that lies in the freespace. By construction, this implies that
for all grid lines l(p) lying between l(πi−1) and l(πi), w(v(p, σj−1)) = 0. For all l(q) lying
between l(σj−1) and l(σj), w(v(πi−1, q)) = 0. There exists at least one vertex with weight 0
in P , contradicting the assumption that P uses exclusively vertices of weight 1. An analogous
argument holds for the case where the weights of both v(pr, σj) and v(πi, pa) are 0. ◀

K. Buchin, M. Buchin, Z. Huang, A. Nusser, S. Wong 9

v(πi, σj)

l(σj)

l(πi)

l(pb)

l(pl)

P

v(pl, σj)

v(πi, pb)

a

Figure 4 If vertices v(πi, pb) and v(pl, σj) are deactivated, point (i, j) is the only point that lies
in the freespace in Ci−1,j−1. Due to monotonicity, the path P must use a deactivated vertex (say a).

Due to the properties of Gg, a diagonal edge in a path P can be replaced by using the
rectilinear edges in the same “cube”. Furthermore, if the final vertex b of a subpath Pj ⊆ P

is a placeholder vertex, we can transform Pj such that it ends at a non-placeholder vertex.
We have the following lemma.

▶ Lemma 7. If there is a feasible path P in a grid graph Gg, there is a feasible path P ′ in
Gg with the following properties.
1. P ′ does not contain diagonal edges.
2. For every 1 ≤ j ≤ n, the first vertex of P ′ partly defined by σj is not a placeholder vertex.

Proof. We first replace the diagonal edges in P . Consider a diagonal edge (a, b) ∈ P in the
“cube”, where (a, ct) and (cb, b) are the vertical edges, and (a, cb) and (ct, b) are horizontal
edges. Observe that by construction, either both a and b lie on the boundaries, or at least
one of them is an interior vertex. If both a and b lie on the boundaries, either cb or ct must
be activated, since the opposite would contradict either Observation 6 or the convexity of
the freespace in a cell.

If a is an interior vertex, we consider the following cases. If b is also an interior vertex,
then so are ct and cb with weight 1, and we replace (a, b) with (a, ct) and (ct, b). If b is a
boundary vertex, then either cb or ct is an interior vertex, and we replace (a, b) with either
(a, cb) and (cb, b) or (a, ct) and (ct, b). The more interesting case is when b = v(πi+1, σj+1) is
a corner vertex. In this case, cb = v(πi+1, h ∈ Hr

i), and by construction, w(cb) = w(b) = 1.
We replace (a, b) with (a, cb) and (cb, b).

If b is an interior vertex, we use similar case distinctions. If a is an interior vertex, cb must
also be an interior vertex. If a is a boundary vertex lying on the left (resp. bottom) boundary,
then cb (resp. ct) is an interior vertex. The more interesting case is where a = v(πi, σj) is a
corner vertex. In this case, both cb and ct are boundary vertices. By Observation 6, at least
one of them (say cb) has weight 1, and we replace (a, b) with (a, cb) and (cb, b).

With P containing exclusively rectilinear edges, we partition P into subpaths lying on
different rows (see Figure 5). Specifically, let Pj ⊆ P be the subpath containing the first
vertex a defined by σj and the first vertex b defined by σj+1. We first transform Pj to
guarantee that b is not defined by a placeholder point. Let b = v(h ∈ Hc

i , σj+1), and note that
w(b) = w(πi+1, σj+1) = 1. Let l(p′) be immediately to the left of l(Hc

i [1]). By Observation 6,
w(c = v(p′, σj+1)) = 1. Combining this argument with the fact that all interior vertices have
weight 1 and the rectilinearity of P , we can transform Pj to end at c, and Pj+1 to start at
c. Since the first vertex v(π1, σ1) and the final vertex v(πn, σn) of P are not defined by a

10 Faster Fréchet Distance under Transformations

σj+1

σj

Hc
j

hp′

bc

Pj

v(πi+1, σj+1)

a

Figure 5 A path Pj−1 ending at a placeholder vertex b can be transformed to end at a non-
placeholder vertex c.

placeholder vertex, once we apply the transformation above, the first vertex of every subpath
Pj is not defined by a placeholder vertex. The proof is complete. ◀

We next observe that if there is a path in Gg that does not use a placeholder vertex, the
path also exists in Gf . Indeed, excluding the placeholder lines, Gg and Gf use the same set
of grid lines and FSG boundaries, and the same ordering.

▶ Observation 8. If there is a path P in Gg = Gg
δ (π, σ) such that P does not use any

placeholder vertices or diagonal edges, then P also exists in Gf = Gf
δ (π, σ).

To demonstrate that Gf and Gg are equivalent with respect to st-reachability, we first
note that any feasible path in Gg corresponds to a feasible path in Gf . Specifically, given a
subpath P ⊆ Gg that traverses the “strip” defined by a single set of placeholder points, we
can always construct a corresponding subpath Q ⊆ Gf such that Q starts and ends at the
same vertices as P . We have Lemma 9 and 10.

▶ Lemma 9. Let P be a path in Gg = Gg
δ (π, σ). Let P start at a non-placeholder vertex

v(p, σj). Let (v(p′, q′), v(p′, Hr
j [1])) be the last edge of P , where q′ ̸= Hr

j [1]. There exists a
path Q from v(p, σj) to v(p′, q′) in Gf = Gf

δ (π, σ).

Hc

ai

ai+1

bi
Pi

ai

ai+1

bi
Pi

Qi

Gg Gf

Pi+1

Figure 6 A path Qi in Gf can be constructed by connecting the vertex bi where Pi ends and the
vertex ai+1 where Pi+1 starts.

Proof. Let {P1, ..., Pu} be the subpaths of P generated by removing all placeholder vertices
from P (see Figure 6). For 1 ≤ i ≤ u, let Pi be a path starting from ai and ending at bi. By
Observation 8, the path Pi also exists in Gf . Since the placeholder vertices are removed,
every ai or bi is either a boundary vertex or an interior vertex. Since the interior vertices
have weight 1, a path Qi from bi to ai+1 exists in Gf . We set Q = (

⋃
1≤i≤u−1 Pi ∪ Qi) ∪ Pu

to complete the proof. ◀

K. Buchin, M. Buchin, Z. Huang, A. Nusser, S. Wong 11

▶ Lemma 10. Let P be a path in Gg = Gg
δ (π, σ). Let (v(p, q), v(p, Hr

j [1])) be the first edge
of P , and let P ends at a non-placeholder vertex v(p′, σj+1). There exists a path Q from
v(p, q) to v(p′, σj+1) in Gf = Gf

δ (π, σ).

Proof. If P does not contain a vertex defined by any vertical boundary, then the lemma
trivially holds as the interior vertices have weight 1. Otherwise, P contains a set of vertices
defined by {πu, ..., πw} in increasing order of indices. By Observation 6 and convexity of the
freespace in a cell, there is a path P1 in Gf from v(p, q) to v(πu, σj+1), and a path P2 from
v(πw, σj+1) to v(p′, σj+1).

Since P uses only activated vertices, for every u ≤ i ≤ w, w(v(πi, h)) = 1 for some
h ∈ Hr

j . By construction of Gg, v(πi, h) is activated if and only if v(πi, σj+1) is activated,
whose weight must also be 1. By the convexity of the freespace within a cell, since v(πi, σj+1)
and v(πi+1, σj+1) are activated, for every l(p) lying between l(πi) and l(πi+1), the vertex
v(p, σj+1) is activated. Therefore, ∀u ≤ i ≤ w, there is a path Pi ⊂ Gf from v(πi, σj+1) to
v(πi+1, σj+1) using activated vertices. We set Q = P1 ∪ (

⋃
u≤i≤w Pi) ∪ P2 to complete the

proof. ◀

We are finally ready to show that Gf and Gg are equivalent in terms of st-reachability.

▶ Lemma 11. There exists a feasible path P f in the freespace graph Gf
δ (π, σ) if and only if

there exists a feasible path P g in the grid graph Gg
δ (π, σ).

Proof. First, we observe that if there is a feasible path P f ⊆ Gf , then there is a feasible path
P g ⊆ Gg. Consider a partition of P f into subpaths lying in different cells of the freespace
diagram. Let the subpath P f

i,j ⊆ P start from the vertex a to the vertex b, where a lies on
the bottom or left boundary of Ci,j , and b lies on the top or right boundary of Ci,j . Since
the interior vertices have weight 1, and a diagonal edge can be used if b is a corner vertex,
there is a path P g

i,j ⊆ Gg from a to b using activated vertices.
Second, we show that if there is a feasible path P g ⊆ Gg, then there is a feasible

path P f ⊆ Gf . We use an analogous argument where we construct a feasible path P f

using subpaths in P g. By Lemma 7, we know that P g uses exclusively rectilinear edges.
Furthermore, by the same Lemma 7, P g can be partitioned into subpaths {P g

1 , ..., P g
n−1}

such that ∀1 ≤ j ≤ n − 1, P g
j starts at a non-placeholder vertex a = v(p, σj), and ends at

another non-placeholder vertex b = v(p′, σj+1). We partition P g
j using its first edge (a′, b′),

where vertex a′ is partly defined by a placeholder point Hr
j [1]. By Lemma 9, there is a path

P fa
j in Gf from a to a′. By Lemma 10, there is a path P fb

j in Gf from a′ to b. We set
P f

j = P fa
j ∪ P fb

j and P f =
⋃

j P f
j to complete the proof. ◀

Now, we show that freespace graph operations can be implemented in the grid graph
efficiently.

▶ Lemma 12. Let Gg
i be the associated grid graph of the freespace graph Gf

i . Let u be a
freespace graph operation that updates Gf

1 to Gf
2 . To update Gg

1 to Gg
2 , it is sufficient to update

the weights of at most:
O(n) vertices if u is a corner vertex operation,
O(1) vertices if u is a boundary vertex operation, or
O(n) vertices if u is a row operation.

Proof. If u is a corner vertex operation activating a corner vertex v(πi, σj), we activate
v(πi, σj) in Gg. Then, we activate v(πi, h1) for every h1 ∈ Hr

j−1, and activate v(h2, σj) for
every h2 ∈ Hc

i−1. Since there are at most a linear number of placeholder points defined per

12 Faster Fréchet Distance under Transformations

row and column, this operation requires us to change the weights of O(n) vertices in Gg. If
u activates a boundary vertex a, we simply activate a in Gg. If u deactivates a vertex, we
use analogous procedure.

If u is a boundary vertex operation, to insert a row of vertices while maintain the
properties of the grid graph, we take advantage of the fact that the intersection between the
freespace and a cell boundary is a single interval. Specifically, to insert R(p) of vertices below
R(pa) and above R(pb) in row j, let the critical point p lie on the i′th vertical boundary.
For 1 ≤ i ≤ n, if i = i′, then set w(v(πi′ , Hr

j [1])) = 1. For every other value of i, set
w(v(πi), Hr

j [1]) = 1, if the weights of both v(πi, pa) and v(πi, pb) are 1. Otherwise, set
w(v(πi), Hr

i [1]) = 0. Reduce the size of Hr
j by one by removing Hr

j [1].
We prove the correctness of the boundary vertex operation by showing that this insertion

process maintains the properties of the grid graph. First, the total number of row critical
points plus the placeholder points stays the same. Second, it is sufficient to determine the
weight of v(πi, p) by checking the weights of v(πi, pa) and v(πi, pa). Both intersections
l(πi) ∩ l(pa) and l(πi) ∩ l(pb) need to lie in the freespace for l(πi) ∩ l(p) to lie in the freespace,
since the opposite suggests that there is a grid line between l(pa) and l(pb), contradicting
the assumption that l(pa) and l(pb) are adjacent.

If u is a row operation, to delete R(p) lying in the jth row, let l(q) be the first grid line
below l(Hr

j [1]). For all 1 ≤ i ≤ n, set w(v(πi, q)) = w(v(πi, σj)). Insert a new placeholder
point at the beginning of Hr

j by setting Hr
j [1] = q. This process also maintains the properties

of the grid graph. Column operations uses analogous arguments. ◀

Given Gg
i−1 = Gg

δ (π, σ + ti−1) and event ti, we can now transform Gg
i−1 to Gg

i . Specifically,
in Lemma 5, we have shown that if ti is a VE event, it takes O(n) time plus O(1) corner
vertex operations or row operations. If ti is a VVE event, it takes O(1) time plus O(1)
boundary vertex operations. By combining Lemma 5 and Lemma 12, we can bound the
number of vertex weight changes for each freespace event type.

▶ Lemma 13. Given Gg
δ (π, σ + ti−1) and the next event ti, to compute Gg

δ (π, σ + ti), it takes
O(n) vertex weight changes if ti is a VE event, or
O(1) vertex weight changes if ti is a VVE event.

We can now summarize Sections 3 and 4 and state the main lemma of this section. In
Lemma 1, we have shown that the Fréchet distance dF (π, σ) is at most δ if and only if the
refined freespace graph Gf = Gf

δ (π, σ) is st-reachable. In Section 4, for each Gf , we have
defined an associate grid graph Gg = Gg

δ (π, σ). In Lemma 11, we have shown that Gg is
st-reachable if and only if Gf is st-reachable. Combining the above with Lemma 13, we have
the following.

▶ Lemma 14. Let T = {t1, ..., tm} be a complete set of freespace events containing exclusively
mvve VVE events and mve VE events. Let N = 2n2 − n, and let Tu(N) (resp. Tq(N)) be
the time complexity to update (resp. query st-reachability) in an N × N grid graph. It takes

O(N2 + (mve · n + mvve) · Tu(N) + m · Tq(N))

time to determine if there exists ti ∈ T such that dF (π, σ + ti) ≤ δ.

Using the results by Alt, Knauer and Wenk [4], we can build an arrangement in the
translation space. Using this arrangement, we can compute a set of complete events
(translations) T containing exclusively O(n6) VVE events and O(n5) VE events. They
have shown that it is sufficient to consider only translations in T to determine if there is a
translation t such that dF (π, σ + t) ≤ δ.

K. Buchin, M. Buchin, Z. Huang, A. Nusser, S. Wong 13

We analyze the running time. In total, we require O(n6) vertex updates for Gg. Using
the result of Bringmann, Künnemann and Nusser [14], we can update a vertex and perform
st-reachability queries in amortized O(N2/3 · log2 N) = O(n4/3 · log2 n) time. We obtain the
following theorem. We defer the proof of Theorem 15, and its generalization, to Section 5.

▶ Theorem 15. The Fréchet distance under translation in R2 can be decided in O(n7+ 1
3 log2 n)

time.

5 Fréchet distance under transformation

In this section, we consider a class T of transformations that is rationally parameterized or
rationally represented with k degrees of freedom as defined by Wenk [54].

▶ Definition 16 ([54, Definition 25]). Let 1 ≤ k ≤ d2 +d, and let p1, . . . , pd2+d, q1, . . . , qd2+d ∈
R[X1, . . . , Xk] be 2(d2 + d) polynomials of constant degree in k variables, such that qi(x) ̸= 0
for all 1 ≤ i ≤ d2 + d and for all x ∈ Rk. Let ri := pi/qi for all 1 ≤ i ≤ d2 + d, such that
ri(x) := pi(x)/qi(x) for all x ∈ Rk. If

T =




r1(x) . . . rd(x)
rd+1(x) . . . r2d(x)

...
. . .

...
rd2−d+1(x) . . . rd2(x)

 ,


rd2+1(x)
rd2+2(x)

...
rd2+d(x)


∣∣∣∣∣ x ∈ Rk

 ,

then we call T rationally parameterized or rationally represented with k degrees of freedom
(dof). Rk is called the parameter space of T .

Let Rk be the parameter space of T . For x ∈ Rk, let τx denote the transformation defined
by the k-tuple x of parameters. Let π and σ be two d-dimensional polygonal curves. Let
τx(σ) be the resulting curve by applying the transformation τx to σ.

In Rk, a vertex-vertex-edge (VVE) critical transformation T vve
δ (πi, πj , σw) is the union of

every point x ∈ Rk such that the segment τx(σw) lies on the intersection of the boundary of
the d-spheres centered at πi and πj , respectively, and it is formally defined as follows.

T vve
δ (πi, πj , σw) = {x ∈ Rk | ∃z ∈ σw, ∥τx(z) − πi∥ = ∥τx(z) − πj∥ = δ}

Analogously, a vertex-edge (VE) critical transformation T ve
δ (πi, σw) is the union of every

point x ∈ Rk such that the segment τx(σw) lie on the boundary of the d-ball centered at πi,
and it is formally defined as follows.

T ve
δ (πi, σw) = {x ∈ Rk | ∃z ∈ σw, ∥τx(z) − πi∥ = δ}

Every critical transformation is a semi-algebraic set. Using O(n3) VVE critical
transformations and O(n2) VE critical transformations, Wenk [54, Proof of Theorem 8] showed
that they can build an arrangement Aδ in O(n3k) time using O(n3k) space. Furthermore,
Aδ contains at most O(n3k) k′-dimensional faces for 0 ≤ k′ ≤ k − 1. Let τF = τx be the
transformation that is represented by an arbitrary parameter x ∈ F . In [54, Lemma 24],
Wenk showed that if there exists some transformation τ such that dF (π, τ(σ)) < δ, then
there exists some k′-dimensional face F ∈ Aδ such that for any τF , dF (π, τF (σ)) ≤ δ. Their
results are summarized as follows.

▶ Fact 17. Given a pair of polygonal curve π and σ, a real number δ ≥ 0, and a class T
of transformations that is rationally represented with k degrees of freedom, one can build

14 Faster Fréchet Distance under Transformations

an arrangement Aδ = Aδ(π, σ, T) using at most O(n3) VVE critical transformations and
O(n2) VE critical transformations. The arrangement Aδ has in total O(n3k) complexity,
and it can be constructed in O(n3k) time using O(n3k) space. To determine if there exists
a transformation τ ∈ T such that dF (π, τ(σ)) ≤ δ, it is sufficient to check exactly one
transformation τF for every k′-dimensional face F ∈ Aδ, where 0 ≤ k′ ≤ k − 1.

Once the arrangement Aδ is constructed, the remainder of the previous algorithm in
Wenk [54] is straightforward. For every face F ∈ Aδ, sample a point x ∈ F , and determine
if dF (π, τx(σ)) ≤ δ using classic algorithms (Alt and Godau [2] for example). In total, this
takes Õ(n3k · n2) time.

To obtain a running time improvement, we use a similar approach to previous sections.
We generate a complete set of events as follows. Initialize an empty graph G = (V, E). For
every face F ∈ Aδ, add a vertex vF to V. For every two adjacent faces F and F ′, add an
edge (vF , vF ′) to E . For each vertex vF , record a transformation τF . Next, we compute a
complete set of events using G. Initialize an empty set of events T . Then, use a DFS to
compute a spanning tree of G, and perform a Euler tour over the spanning tree starting
from an arbitrary vertex. For each directed edge e = (vF ′ , vF) in the tour, we add an event
only if we enter or leave a critical transformation. More specifically, let B(F) be the set of
critical transformations adjacent to face F . If B(F) \ B(F ′) = {Tc}, we say e traverses onto
the critical transformation Tc via F . If B(F ′) \ B(F) = {Tc}, we say e traverses out of the
critical transformation Tc via F .

Let D(p) be the d-sphere of radius δ centered at p. Depending on the cases where e

traverse onto or out of a VVE or VE critical transformation, we add the respective freespace
events defined in Definition 2.
1. If Tc is a VVE critical transformation T vve

δ = T vve
δ (πi, πj , σw), we compute p = D(πi) ∩

τF (σw) and q = D(πj) ∩ τF (σw), and append an event t defined by (p, q, σw) to T . If e

traverses onto Tc, t is an overlapping event. If e traverses out of T vve
δ , t is a separating

event.
2. If Tc is a VE critical transformation T ve

δ = T ve
δ (πi, σw), we compute p = D(πi) ∩ σw, and

we append an event t represented by (p, σw) to T . If e traverses onto Tc, t is an entering
event if p = πi, or an appearing event if p ̸= πi. Analogously, if e traverses out of Tc, te

is a leaving event if p = πi, or a disappearing event if p ̸= πi.

We say an event t is associated with the critical transformation Tc and the edge e, if t

is computed from an edge e traversing onto or out of Tc. We show that T has two desired
property.

▶ Lemma 18. Given the arrangement Aδ = Aδ(π, σ, T), one can compute a complete set
T = {t1, ..., tO(n3k)} of freespace events in O(n3k) time with the following properties.
1. Every face in Aδ is associated with at least one event in T .
2. For each event ti associated with edge (vF , vF ′) ∈ E, Gf

δ (π, τF (σ)) and Gf
δ (π, τF ′(σ)) differ

by exactly one freespace event.

Proof. First, observe that each edge (vF , vF ′) in the Euler tour traverses onto or out of at
most one critical transformation. The opposite suggests that the faces F and F ′ are not
adjacent. It is also clear that G is a connected component containing a vertex vF for every
face F ∈ Aδ, since the parameter space Rk itself is also a face. An Euler tour over the
spanning tree visits every vertex, and hence every face at least once.

We next argue that the freespace graph does not change unless a freespace event occurs.
It is clear that unless an appearing or disappearing event occurs, neither the vertices nor

K. Buchin, M. Buchin, Z. Huang, A. Nusser, S. Wong 15

the edges in a freespace graph Gf change. What remains is to argue that the vertex weights
do not change unless an event occurs. More specifically, unless a freespace event occurs, no
intersection a = l(p) ∩ l(q) enter or leave the freespace.

For the sake of contradiction, say that a either enters or leaves the freespace and a
freespace event does not occur. Clearly, v(p, q) cannot be a corner vertex, as the weight
change is explicitly captured by the entering/leaving event. v(p, q) cannot be an interior
vertex, as every interior vertex has weight 1 regardless.

Therefore, v(p, q) is a boundary vertex and a is a critical point. Without loss of generality,
let p be a vertex of π. If a enters the freespace, a must coincide with a critical point
b = l(p′) ∩ l(q), so grid lines l(p) and l(p′) overlap. If a leaves the freespace, a must first
coincide with (again say) b, so the grid lines l(p) and l(p′) separate. In both cases, either an
overlapping event occurs or a separating event occurs, contradicting the assumption.

Let p (resp. q) be a critical point on the ith (resp. jth) FSD boundary. We next argue
that no freespace event occurs unless we traverses onto or out of a critical transformation.
This is true by the definition. An entering/appearing (resp. leaving/disappearing) event
defined by (p, πw) occurs only when the associated edge (vF , vF ′) traverses onto (resp. out of)
the critical transformation T ve

δ (πi, σw). An overlapping (resp. separating) event defined by
(p, q, σw) occurs only when (vF , vF ′) traverses onto (resp. out of) the critical transformation
T vve

δ (πi, πj , σw).
Observe that exactly one freespace event occurs every time we traverses onto or out

of a critical transformation, which is captured by the Euler tour. Therefore, every face is
associated with at least one event in T , and for every edge (vF , vF ′) associated with an event
t ∈ T , Gf (π, τF (σ)) and Gf (π, τF ′(σ)) differ by exactly one event. ◀

We also observe that fewer faces are adjacent to VE critical transformations than to VVE
critical transformations.

▶ Observation 19. In the arrangement Aδ = Aδ(π, σ, T), there are at most O(n3k) faces
adjacent to VVE critical transformations, and O(n3k−1) faces adjacent to VE critical
transformations.

Proof. Wenk [54] proved that there are at most O(n3k) faces in Aδ, which upperbounds the
number of faces adjacent to VVE critical transformations. They also showed that a critical
transformation is a semi-algebraic set with constant description complexity [54, Lemma 24].
Therefore, each face in Aδ is the intersection of at most k critical transformations. If a face
is adjacent to a VE critical transformation, there are at most n3(k−1) possible ways to choose
k − 1 from n3 critical transformations. There are at most n2 VE critical transformations,
and in total, O(n3k−1) faces are adjacent to VE critical transformations. ◀

To obtain fast updates and queries in the grid graph, we use the offline dynamic grid
reachability result by [14]. The problem is defined as follows. We start from a directed
N × N -grid graph, and we are given a set {u1, ..., uU } of updates such that each update ui

is to either activate or deactivate a vertex. For 1 ≤ i ≤ U , the goal is to compute after each
update ui whether there is a feasible path from vertex v(1, 1) to v(N, N). Their result is as
follows.

▶ Fact 20 (Frechet distance under translation[14, Theorem 3.4]). Offline dynamic grid
reachability can be solved in time O(N2 + UN2/3 log2 N).

We summarize the results in this paper, which we will then combine to obtain a faster
algorithm for computing the Fréchet distance under rationally parameterized transformations.

16 Faster Fréchet Distance under Transformations

We take as inputs a real number δ ≥ 0, a class T of transformations rationally represented
with k degrees of freedom, and a pair of polygonal curves π and σ, each with n vertices. Our
goal is to determine if there exists a transformation τ ∈ T such that dF (π, τ(σ)) ≤ δ.

To do this, Wenk [54] has shown that it is sufficient to construct an arrangement Aδ

in the parameter space Rk and sample a transformation from each face. In Lemma 18, we
have shown that we can traverse this arrangement and generate a complete set of O(n3k)
freespace events in O(n3k) time. In Section 3 and 4, we explained our ideas using translation.
However, all results revolve around handling a complete set of freespace events, and hence
apply to more general settings of transformations. We can therefore plug in the number
of updates to Lemma 14. Our algorithm takes O(n4 + n3k · (Tu(n2) + Tq(n2)) time, where
Tu(n2) (resp. Tq(n2)) is the time complexity to update a vertex (resp. query st-reachability)
in an O(n2) × O(n2)-grid graph. By Fact 20, Tu(n2) + Tq(n2) takes amortized O(n4/3 log2 n)
time. For classes of rationally parameterized transformations with at least one degree of
freedom, k ≥ 1. We state our final result.

▶ Theorem 21. The Fréchet distance under transformations rationally represented with k

degrees of freedom can be decided in O(n3k+4/3 log2 n) time.

6 Conclusion

Our algorithm provides the first progress in over 20 years for computing the (continuous)
Fréchet distance under transformations. The running time comes from traversing an
arrangement in the space of transformations, performing an update to a dynamic grid
graph data structure in each step.

We conclude with open questions. Can the update time be reduced? Improving the
update time for the data structure of [14] would directly improve our running time. But
it may also be possible to tailor the data structure for our setting. For instance, we could
prune the lower levels of the data structure, since reachability in the inside of free space cells
does not carry any information.

Can we prove a non-trivial conditional lower bound for computing the Fréchet distance
under translations? The complexity of the arrangement, Ω(n6), would seem like a natural
lower bound. However, even transferring the n4−o(1) conditional lower bound for the discrete
Fréchet distance under translation [14] to the (continuous) Fréchet distance seems difficult,
since the lower bound construction crucially relies on the fact that the discrete Fréchet
traversal can only stay on the vertices and not on the edges.

References
1 Helmut Alt. The computational geometry of comparing shapes. In Susanne Albers, Helmut

Alt, and Stefan Näher, editors, Efficient Algorithms, Essays Dedicated to Kurt Mehlhorn on
the Occasion of His 60th Birthday, volume 5760 of Lecture Notes in Computer Science, pages
235–248. Springer, 2009. doi:10.1007/978-3-642-03456-5_16.

2 Helmut Alt and Michael Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 05:75–91, 1995.
URL: https://www.worldscientific.com/doi/abs/10.1142/S0218195995000064, doi:10.
1142/S0218195995000064.

3 Helmut Alt and Leonidas J. Guibas. Discrete geometric shapes: Matching, interpolation,
and approximation. In Jörg-Rüdiger Sack and Jorge Urrutia, editors, Handbook of
Computational Geometry, chapter 3, pages 121–153. North Holland / Elsevier, 2000. doi:
10.1016/B978-044482537-7/50004-8.

https://doi.org/10.1007/978-3-642-03456-5_16
https://www.worldscientific.com/doi/abs/10.1142/S0218195995000064
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1142/S0218195995000064
https://doi.org/10.1016/B978-044482537-7/50004-8
https://doi.org/10.1016/B978-044482537-7/50004-8

K. Buchin, M. Buchin, Z. Huang, A. Nusser, S. Wong 17

4 Helmut Alt, Christian Knauer, and Carola Wenk. Matching polygonal curves with respect to
the Fréchet distance. In Proc. 18th Annual Symposium on Theoretical Aspects of Computer
Science (STACS), pages 63–74. Springer, 2001. doi:10.1007/3-540-44693-1_6.

5 Helmut Alt, Ludmila Scharf, and Sven Scholz. Probabilistic matching and resemblance
evaluation of shapes in trademark images. In Proc. 6th ACM International Conference on Image
and Video Retrieval (CIVR), pages 533–540. ACM, 2007. doi:10.1145/1282280.1282357.

6 Boris Aronov, Tsuri Farhana, Matthew J. Katz, and Indu Ramesh. Discrete Fréchet distance
oracles. In Proc. 40th International Symposium on Computational Geometry (SoCG), volume
293 of LIPIcs, pages 10:1–10:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL:
https://doi.org/10.4230/LIPIcs.SoCG.2024.10, doi:10.4230/LIPICS.SOCG.2024.10.

7 Rinat Ben Avraham, Haim Kaplan, and Micha Sharir. A faster algorithm for the discrete
Fréchet distance under translation. CoRR, abs/1501.03724, 2015. URL: http://arxiv.org/
abs/1501.03724, arXiv:1501.03724.

8 Julian Baldus and Karl Bringmann. A fast implementation of near neighbors queries for
Fréchet distance (GIS Cup). In Proceedings of the 25th ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, SIGSPATIAL’17, pages 99:1–99:4,
New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/3139958.3140062,
doi:10.1145/3139958.3140062.

9 Lotte Blank, Jacobus Conradi, Anne Driemel, Benedikt Kolbe, André Nusser, and Marena
Richter. Transforming dogs on the line: On the Fréchet distance under translation or scaling
in 1D. Under submission, January 2025.

10 Lotte Blank and Anne Driemel. A faster algorithm for the Fréchet distance in 1d for the
imbalanced case. In Proc. 32nd Annual European Symposium on Algorithms (ESA), volume
308 of LIPIcs, pages 28:1–28:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.
URL: https://doi.org/10.4230/LIPIcs.ESA.2024.28, doi:10.4230/LIPICS.ESA.2024.28.

11 Karl Bringmann and Bhaskar Ray Chaudhury. Polyline simplification has cubic complexity.
J. Comput. Geom., 11(2):94–130, 2020. URL: https://doi.org/10.20382/jocg.v11i2a5,
doi:10.20382/JOCG.V11I2A5.

12 Karl Bringmann, Anne Driemel, André Nusser, and Ioannis Psarros. Tight bounds for
approximate near neighbor searching for time series under the Fréchet distance. In Proc.
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 517–550. SIAM, 2022. doi:
10.1137/1.9781611977073.25.

13 Karl Bringmann, Marvin Künnemann, and André Nusser. When lipschitz walks your dog:
Algorithm engineering of the discrete fréchet distance under translation. In Fabrizio Grandoni,
Grzegorz Herman, and Peter Sanders, editors, 28th Annual European Symposium on Algorithms,
ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs,
pages 25:1–25:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https:
//doi.org/10.4230/LIPIcs.ESA.2020.25, doi:10.4230/LIPICS.ESA.2020.25.

14 Karl Bringmann, Marvin Künnemann, and André Nusser. Discrete Fréchet distance under
translation: Conditional hardness and an improved algorithm. ACM Trans. Algorithms,
17(3):25:1–25:42, 2021. doi:10.1145/3460656.

15 Karl Bringmann, Marvin Künnemann, and André Nusser. Walking the dog fast in practice:
Algorithm engineering of the fréchet distance. J. Comput. Geom., 12(1):70–108, 2021. URL:
https://doi.org/10.20382/jocg.v12i1a4, doi:10.20382/JOCG.V12I1A4.

16 Frederik Brüning, Jacobus Conradi, and Anne Driemel. Faster approximate covering of
subcurves under the Fréchet distance. In Proc. 30th Annual European Symposium on
Algorithms (ESA), volume 244 of LIPIcs, pages 28:1–28:16. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ESA.2022.28, doi:
10.4230/LIPICS.ESA.2022.28.

17 Kevin Buchin, Maike Buchin, Joachim Gudmundsson, Aleksandr Popov, and Sampson
Wong. Map-matching queries under Fréchet distance on low-density spanners. In Proc.
40th International Symposium on Computational Geometry (SoCG), volume 293 of LIPIcs,

https://doi.org/10.1007/3-540-44693-1_6
https://doi.org/10.1145/1282280.1282357
https://doi.org/10.4230/LIPIcs.SoCG.2024.10
https://doi.org/10.4230/LIPICS.SOCG.2024.10
http://arxiv.org/abs/1501.03724
http://arxiv.org/abs/1501.03724
https://arxiv.org/abs/1501.03724
http://doi.acm.org/10.1145/3139958.3140062
https://doi.org/10.1145/3139958.3140062
https://doi.org/10.4230/LIPIcs.ESA.2024.28
https://doi.org/10.4230/LIPICS.ESA.2024.28
https://doi.org/10.20382/jocg.v11i2a5
https://doi.org/10.20382/JOCG.V11I2A5
https://doi.org/10.1137/1.9781611977073.25
https://doi.org/10.1137/1.9781611977073.25
https://doi.org/10.4230/LIPIcs.ESA.2020.25
https://doi.org/10.4230/LIPIcs.ESA.2020.25
https://doi.org/10.4230/LIPICS.ESA.2020.25
https://doi.org/10.1145/3460656
https://doi.org/10.20382/jocg.v12i1a4
https://doi.org/10.20382/JOCG.V12I1A4
https://doi.org/10.4230/LIPIcs.ESA.2022.28
https://doi.org/10.4230/LIPICS.ESA.2022.28
https://doi.org/10.4230/LIPICS.ESA.2022.28

18 Faster Fréchet Distance under Transformations

pages 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL: https:
//doi.org/10.4230/LIPIcs.SoCG.2024.27, doi:10.4230/LIPICS.SOCG.2024.27.

18 Kevin Buchin, Yago Diez, Tom van Diggelen, and Wouter Meulemans. Efficient trajectory
queries under the Fréchet distance (GIS Cup). In Proceedings of the 25th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, SIGSPATIAL’17,
pages 101:1–101:4, New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/
3139958.3140064, doi:10.1145/3139958.3140064.

19 Kevin Buchin, Anne Driemel, Joachim Gudmundsson, Michael Horton, Irina Kostitsyna,
Maarten Löffler, and Martijn Struijs. Approximating (k, ℓ)-center clustering for curves. In
Proc. 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2922–2938. SIAM,
2019. doi:10.1137/1.9781611975482.181.

20 Kevin Buchin, Anne Driemel, Natasja van de L’Isle, and André Nusser. klcluster: Center-based
clustering of trajectories. In Farnoush Banaei Kashani, Goce Trajcevski, Ralf Hartmut Güting,
Lars Kulik, and Shawn D. Newsam, editors, Proceedings of the 27th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, SIGSPATIAL 2019,
Chicago, IL, USA, November 5-8, 2019, pages 496–499. ACM, 2019. doi:10.1145/3347146.
3359111.

21 Kevin Buchin, Chenglin Fan, Maarten Löffler, Aleksandr Popov, Benjamin Raichel, and Marcel
Roeloffzen. Fréchet distance for uncertain curves. ACM Trans. Algorithms, 19(3):29:1–29:47,
2023. doi:10.1145/3597640.

22 Kevin Buchin, Brittany Terese Fasy, Erfan Hosseini Sereshgi, and Carola Wenk. On length-
sensitive Fréchet similarity. In Proc. 18th International Symposium on Algorithms and Data
Structures (WADS), volume 14079 of Lecture Notes in Computer Science, pages 208–231.
Springer, 2023. doi:10.1007/978-3-031-38906-1_15.

23 Kevin Buchin, Maarten Löffler, Tim Ophelders, Aleksandr Popov, Jérôme Urhausen, and
Kevin Verbeek. Computing the Fréchet distance between uncertain curves in one dimension.
Comput. Geom., 109:101923, 2023. URL: https://doi.org/10.1016/j.comgeo.2022.101923,
doi:10.1016/J.COMGEO.2022.101923.

24 Kevin Buchin, Tim Ophelders, and Bettina Speckmann. SETH says: Weak Fréchet distance
is faster, but only if it is continuous and in one dimension. In Proc. 30th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2887–2901. SIAM, 2019. doi:10.1137/1.
9781611975482.179.

25 Maike Buchin, Anne Driemel, and Dennis Rohde. Approximating (k, ℓ)-median clustering for
polygonal curves. ACM Trans. Algorithms, 19(1):4:1–4:32, 2023. doi:10.1145/3559764.

26 Maike Buchin, Ivor van der Hoog, Tim Ophelders, Lena Schlipf, Rodrigo I. Silveira, and
Frank Staals. Efficient Fréchet distance queries for segments. In Proc. 30th Annual European
Symposium on Algorithms (ESA), volume 244 of LIPIcs, pages 29:1–29:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.ESA.2022.
29, doi:10.4230/LIPICS.ESA.2022.29.

27 Siu-Wing Cheng and Haoqiang Huang. Curve simplification and clustering under Fréchet
distance. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1414–
1432. SIAM, 2023. URL: https://doi.org/10.1137/1.9781611977554.ch51, doi:10.1137/
1.9781611977554.CH51.

28 Siu-Wing Cheng and Haoqiang Huang. Fréchet distance in subquadratic time. CoRR,
abs/2407.05231, 2024. To appear at SODA 2025. URL: https://doi.org/10.48550/arXiv.
2407.05231, arXiv:2407.05231, doi:10.48550/ARXIV.2407.05231.

29 Siu-Wing Cheng and Haoqiang Huang. Solving Fréchet distance problems by algebraic
geometric methods. In Proc. ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
4502–4513. SIAM, 2024. doi:10.1137/1.9781611977912.158.

30 Connor Colombe and Kyle Fox. Approximating the (continuous) Fréchet distance. In
Proc. 37th International Symposium on Computational Geometry (SoCG), volume 189 of

https://doi.org/10.4230/LIPIcs.SoCG.2024.27
https://doi.org/10.4230/LIPIcs.SoCG.2024.27
https://doi.org/10.4230/LIPICS.SOCG.2024.27
http://doi.acm.org/10.1145/3139958.3140064
http://doi.acm.org/10.1145/3139958.3140064
https://doi.org/10.1145/3139958.3140064
https://doi.org/10.1137/1.9781611975482.181
https://doi.org/10.1145/3347146.3359111
https://doi.org/10.1145/3347146.3359111
https://doi.org/10.1145/3597640
https://doi.org/10.1007/978-3-031-38906-1_15
https://doi.org/10.1016/j.comgeo.2022.101923
https://doi.org/10.1016/J.COMGEO.2022.101923
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1137/1.9781611975482.179
https://doi.org/10.1145/3559764
https://doi.org/10.4230/LIPIcs.ESA.2022.29
https://doi.org/10.4230/LIPIcs.ESA.2022.29
https://doi.org/10.4230/LIPICS.ESA.2022.29
https://doi.org/10.1137/1.9781611977554.ch51
https://doi.org/10.1137/1.9781611977554.CH51
https://doi.org/10.1137/1.9781611977554.CH51
https://doi.org/10.48550/arXiv.2407.05231
https://doi.org/10.48550/arXiv.2407.05231
https://arxiv.org/abs/2407.05231
https://doi.org/10.48550/ARXIV.2407.05231
https://doi.org/10.1137/1.9781611977912.158

K. Buchin, M. Buchin, Z. Huang, A. Nusser, S. Wong 19

LIPIcs, pages 26:1–26:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL:
https://doi.org/10.4230/LIPIcs.SoCG.2021.26, doi:10.4230/LIPICS.SOCG.2021.26.

31 Krzysztof Diks and Piotr Sankowski. Dynamic plane transitive closure. In Lars Arge, Michael
Hoffmann, and Emo Welzl, editors, Algorithms - ESA 2007, 15th Annual European Symposium,
Eilat, Israel, October 8-10, 2007, Proceedings, volume 4698 of Lecture Notes in Computer
Science, pages 594–604. Springer, 2007. doi:10.1007/978-3-540-75520-3_53.

32 Anne Driemel, Ivor van der Hoog, and Eva Rotenberg. On the discrete Fréchet distance in a
graph. In Proc. 38th International Symposium on Computational Geometry, (SoCG), volume
224 of LIPIcs, pages 36:1–36:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL:
https://doi.org/10.4230/LIPIcs.SoCG.2022.36, doi:10.4230/LIPICS.SOCG.2022.36.

33 Fabian Dütsch and Jan Vahrenhold. A filter-and-refinement-algorithm for range queries
based on the Fréchet distance (GIS Cup). In Proceedings of the 25th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems, SIGSPATIAL’17,
pages 100:1–100:4, New York, NY, USA, 2017. ACM. URL: http://doi.acm.org/10.1145/
3139958.3140063, doi:10.1145/3139958.3140063.

34 Alon Efrat, Piotr Indyk, and Suresh Venkatasubramanian. Pattern matching for sets
of segments. Algorithmica, 40(3):147–160, 2004. URL: https://doi.org/10.1007/
s00453-004-1089-y, doi:10.1007/S00453-004-1089-Y.

35 Chenglin Fan and Benjamin Raichel. Computing the Fréchet gap distance. Discrete &
Computational Geometry, 65(4):1244–1274, June 2021. doi:10.1007/s00454-020-00224-w.

36 Arnold Filtser and Omrit Filtser. Static and streaming data structures for Fréchet distance
queries. ACM Trans. Algorithms, 19(4):39:1–39:36, 2023. doi:10.1145/3610227.

37 Arnold Filtser, Omrit Filtser, and Matthew J. Katz. Approximate nearest neighbor for
curves: Simple, efficient, and deterministic. Algorithmica, 85(5):1490–1519, 2023. URL:
https://doi.org/10.1007/s00453-022-01080-1, doi:10.1007/S00453-022-01080-1.

38 Omrit Filtser, Mayank Goswami, Joseph S. B. Mitchell, and Valentin Polishchuk. On flipping
the Fréchet distance. In Proc. 14th Innovations in Theoretical Computer Science Conference
(ITCS), volume 251 of LIPIcs, pages 51:1–51:22. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2023. URL: https://doi.org/10.4230/LIPIcs.ITCS.2023.51, doi:10.4230/
LIPICS.ITCS.2023.51.

39 Emily Fox, Amir Nayyeri, Jonathan James Perry, and Benjamin Raichel. Fréchet edit distance.
In Proc. 40th International Symposium on Computational Geometry (SoCG), volume 293 of
LIPIcs, pages 58:1–58:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024. URL:
https://doi.org/10.4230/LIPIcs.SoCG.2024.58, doi:10.4230/LIPICS.SOCG.2024.58.

40 Joachim Gudmundsson, Martin P. Seybold, and Sampson Wong. Map matching queries on
realistic input graphs under the Fréchet distance. In Proc. 2023 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1464–1492. SIAM, 2023. URL: https://doi.org/10.
1137/1.9781611977554.ch53, doi:10.1137/1.9781611977554.CH53.

41 Joachim Gudmundsson, André van Renssen, Zeinab Saeidi, and Sampson Wong. Translation
invariant Fréchet distance queries. Algorithmica, 83(11):3514–3533, 2021. URL: https:
//doi.org/10.1007/s00453-021-00865-0, doi:10.1007/S00453-021-00865-0.

42 Joachim Gudmundsson and Sampson Wong. Cubic upper and lower bounds for subtrajectory
clustering under the continuous Fréchet distance. In Proc. ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 173–189. SIAM, 2022. doi:10.1137/1.9781611977073.9.

43 Minghui Jiang, Ying Xu, and Binhai Zhu. Protein structure-structure alignment with discrete
Fréchet distance. In Proc. 5th Asia-Pacific Bioinformatics Conference (APBC), volume 5
of Advances in Bioinformatics and Computational Biology, pages 131–141. Imperial College
Press, 2007. URL: http://www.comp.nus.edu.sg/%7Ewongls/psZ/apbc2007/apbc162a.pdf.

44 Adam Karczmarz and Marcin Smulewicz. Fully Dynamic Strongly Connected Components
in Planar Digraphs. In Karl Bringmann, Martin Grohe, Gabriele Puppis, and
Ola Svensson, editors, 51st International Colloquium on Automata, Languages, and
Programming (ICALP 2024), volume 297 of Leibniz International Proceedings in Informatics

https://doi.org/10.4230/LIPIcs.SoCG.2021.26
https://doi.org/10.4230/LIPICS.SOCG.2021.26
https://doi.org/10.1007/978-3-540-75520-3_53
https://doi.org/10.4230/LIPIcs.SoCG.2022.36
https://doi.org/10.4230/LIPICS.SOCG.2022.36
http://doi.acm.org/10.1145/3139958.3140063
http://doi.acm.org/10.1145/3139958.3140063
https://doi.org/10.1145/3139958.3140063
https://doi.org/10.1007/s00453-004-1089-y
https://doi.org/10.1007/s00453-004-1089-y
https://doi.org/10.1007/S00453-004-1089-Y
https://doi.org/10.1007/s00454-020-00224-w
https://doi.org/10.1145/3610227
https://doi.org/10.1007/s00453-022-01080-1
https://doi.org/10.1007/S00453-022-01080-1
https://doi.org/10.4230/LIPIcs.ITCS.2023.51
https://doi.org/10.4230/LIPICS.ITCS.2023.51
https://doi.org/10.4230/LIPICS.ITCS.2023.51
https://doi.org/10.4230/LIPIcs.SoCG.2024.58
https://doi.org/10.4230/LIPICS.SOCG.2024.58
https://doi.org/10.1137/1.9781611977554.ch53
https://doi.org/10.1137/1.9781611977554.ch53
https://doi.org/10.1137/1.9781611977554.CH53
https://doi.org/10.1007/s00453-021-00865-0
https://doi.org/10.1007/s00453-021-00865-0
https://doi.org/10.1007/S00453-021-00865-0
https://doi.org/10.1137/1.9781611977073.9
http://www.comp.nus.edu.sg/%7Ewongls/psZ/apbc2007/apbc162a.pdf

20 Faster Fréchet Distance under Transformations

(LIPIcs), pages 95:1–95:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. URL: https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.
ICALP.2024.95, doi:10.4230/LIPIcs.ICALP.2024.95.

45 Christian Knauer. Algorithms for Comparing Geometric Patterns. PhD thesis, Free University
Berlin, 2002. URL: http://dx.doi.org/10.17169/refubium-16312.

46 Abhinandan Nath and Erin Taylor. k-median clustering under discrete Fréchet and hausdorff
distances. In Proc. 36th International Symposium on Computational Geometry (SoCG), volume
164 of LIPIcs, pages 58:1–58:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL:
https://doi.org/10.4230/LIPIcs.SoCG.2020.58, doi:10.4230/LIPICS.SOCG.2020.58.

47 E. Sriraghavendra, K. Karthik, and Chiranjib Bhattacharyya. Fréchet distance based approach
for searching online handwritten documents. In Proc. 9th International Conference on
Document Analysis and Recognition (ICDAR), pages 461–465. IEEE Computer Society, 2007.
doi:10.1109/ICDAR.2007.4378752.

48 Sairam Subramanian. A fully dynamic data structure for reachability in planar digraphs. In
Thomas Lengauer, editor, Algorithms - ESA ’93, First Annual European Symposium, Bad
Honnef, Germany, September 30 - October 2, 1993, Proceedings, volume 726 of Lecture Notes
in Computer Science, pages 372–383. Springer, 1993. doi:10.1007/3-540-57273-2_72.

49 Mees van de Kerkhof, Irina Kostitsyna, Maarten Löffler, Majid Mirzanezhad, and Carola
Wenk. Global curve simplification. In Proc. 27th Annual European Symposium on
Algorithms (ESA), volume 144 of LIPIcs, pages 67:1–67:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ESA.2019.67, doi:
10.4230/LIPICS.ESA.2019.67.

50 Thijs van der Horst and Tim Ophelders. Faster Fréchet distance approximation through
truncated smoothing. In Proc. 40th International Symposium on Computational Geometry
(SoCG), volume 293 of LIPIcs, pages 63:1–63:15. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2024. URL: https://doi.org/10.4230/LIPIcs.SoCG.2024.63, doi:10.4230/
LIPICS.SOCG.2024.63.

51 Thijs van der Horst, Marc J. van Kreveld, Tim Ophelders, and Bettina Speckmann. A
subquadratic nϵ-approximation for the continuous Fréchet distance. In Proc. ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1759–1776. SIAM, 2023. URL: https:
//doi.org/10.1137/1.9781611977554.ch67, doi:10.1137/1.9781611977554.CH67.

52 Marc J. van Kreveld, Maarten Löffler, and Lionov Wiratma. On optimal polyline simplification
using the Hausdorff and Fréchet distance. J. Comput. Geom., 11(1):1–25, 2020. URL:
https://doi.org/10.20382/jocg.v11i1a1, doi:10.20382/JOCG.V11I1A1.

53 Remco C. Veltkamp. Shape matching: Similarity measures and algorithms. In Proc.
International Conference on Shape Modeling and Applications (SMI), page 188. IEEE Computer
Society, 2001. doi:10.1109/SMA.2001.923389.

54 Carola Wenk. Shape Matching in Higher Dimensions. PhD thesis, Free University Berlin,
2003. URL: http://dx.doi.org/10.17169/refubium-8310.

https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.95
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2024.95
https://doi.org/10.4230/LIPIcs.ICALP.2024.95
http://dx.doi.org/10.17169/refubium-16312
https://doi.org/10.4230/LIPIcs.SoCG.2020.58
https://doi.org/10.4230/LIPICS.SOCG.2020.58
https://doi.org/10.1109/ICDAR.2007.4378752
https://doi.org/10.1007/3-540-57273-2_72
https://doi.org/10.4230/LIPIcs.ESA.2019.67
https://doi.org/10.4230/LIPICS.ESA.2019.67
https://doi.org/10.4230/LIPICS.ESA.2019.67
https://doi.org/10.4230/LIPIcs.SoCG.2024.63
https://doi.org/10.4230/LIPICS.SOCG.2024.63
https://doi.org/10.4230/LIPICS.SOCG.2024.63
https://doi.org/10.1137/1.9781611977554.ch67
https://doi.org/10.1137/1.9781611977554.ch67
https://doi.org/10.1137/1.9781611977554.CH67
https://doi.org/10.20382/jocg.v11i1a1
https://doi.org/10.20382/JOCG.V11I1A1
https://doi.org/10.1109/SMA.2001.923389
http://dx.doi.org/10.17169/refubium-8310

	1 Introduction
	2 Preliminaries
	3 From freespace reachability to graph reachability
	4 From freespace graph reachability to grid graph reachability
	5 Fréchet distance under transformation
	6 Conclusion

